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Introduction: Nonlinear Partial Differential
Equations and Exact Solutions

Exact solutions: history, classical symmetry methods, extensions

One of the crucial problems in the theory of partial differential equations (PDEs) at
its early stages in the eighteenth and nineteenth century was finding and studying
classes of important equations that were integrable in closed form and, in particu-
lar, possessed explicit solutions. It seems that the first general type of explicit solu-
tions were traveling waves in d’Alembert’s formula for the linear wave equation. The
method of separation of variables was developed by Fourier in the study of heat con-
duction problems, and was later generalized and extended by Sturm and Liouville in
the 1830s. Many famous mathematicians, such as Euler, Lagrange, Liouville, Sturm,
Laplace, Darboux, Bäcklund, Lie, Jacobi, Boussinesq, Goursat, and others developed
various techniques for obtaining explicit solutions of a variety of linear and nonlinear
models from physics and mechanics. Their methods included a number of particular
transformations, symmetries, expansions, separation of variables, etc. Similarity so-
lutions appeared in the works by Weierstrass around 1870, and by Bolzman around
1890. After the Blasius construction (1908) of the exact self-similar solution for the
two-dimensional (2D) boundary layer equations proposed by Prandtl in 1904, simi-
larity solutions of linear and nonlinear boundary-value problems became more com-
mon in the literature. General principles for finding solutions of systems of ODEs
and PDEs by symmetry reductions date back to the famous Lie papers [389]–[393]
published in the 1880s and 1890s.

In the first half of the twentieth century, the basic priorities in PDE theory were
re-evaluated in light of the influence of mathematical physics. As a result of this,
and possibly in view of the essential progress achieved in existence-uniqueness-
regularity theory for classes of PDEs of different types, explicit solutions gradually
began to lose their exceptional role. At that time, many results and techniques on
explicit integration were forgotten. On the other hand, in the 1930s, and especially
in the 1940s and 1950s, exact solutions and similarity reductions returned to the
scene in the asymptotic and singularity analysis of difficult practical problems of gas
and hydrodynamics which appeared in many fundamental technological, industrial,
and military areas in different countries. In the 1930s, the first basic ideas and re-
sults in this area were due to von Mises, von Kármán, Bechert, Guderley, Sedov (in
the 1940s), and others, who applied scaling and similarity techniques to the study
of complicated nonlinear models and singularity phenomena. These gas and hydro-
dynamic models included systems of several nonlinear PDEs, for many of which a
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rigorous mathematical analysis remains elusive, even now. The exact similarity so-
lutions were the only possible way to detect crucial features of nonstationary and
singular evolution, such as focusing of spherical waves in gas dynamics and shock-
wave phenomena. In light of this, it was no accident that the gas dynamic and hydro-
dynamic equations became the first applications of new general ideas and methods of
the group analysis of the PDEs, which Ovsiannikov began to develop in the 1950s.
On the basis of Lie groups, he proposed a general approach to invariant and par-
tially invariant solutions of nonlinear PDEs. A notion of group-invariant solutions,
including special cases of traveling waves and similarity patterns, was emphasized
by Birkhoff on the basis of hydrodynamic problems in the 1940s.

In the second half of the twentieth century, the increase of interest in exact so-
lutions and exactly solvable models was two-fold. Firstly, the applied areas related
to modern physics, mechanics and technology induced more and more complicated
models dealing with systems of nonlinear PDEs. In this context, it is worth mention-
ing the new theory of weak solutions of nonlinear degenerate porous medium equa-
tions initiated in the 1950s (uniqueness approaches dated back to classical Holm-
gren’s method, 1901), and self-focusing in nonlinear optics described by blow-up
solutions of the nonlinear Schrödinger equation in the beginning of the 1960s. Sec-
ondly, the effective development in the 1960s and 1970s of the method for the exact
integration of nonlinear PDEs, such as the inverse scattering method and Lax pairs
introduced an exceptional class of fully integrable evolution equations possessing
countable sets of exact solutions, such as N-solitons.

It seems that the beginning of the twenty-first century may be characterized in a
manner similar to the 1950s. At that time, the complexity of many nonlinear PDE
models of principal interest rose so high that one could not expect a mathematically
rigorous existence-regularity theory to be created soon. For instance, there are many
fundamental open problems in the theory of higher-order multi-dimensional quasilin-
ear thin film equations, higher-order KdV-type PDEs with nonlinear dispersion pos-
sessing compacton, peakon and cuspon-type solutions, quasilinear degenerate wave
equations and systems including equations of general relativity. Modern PDE theory
proposes a number of new canonical higher-order models, to which many classical
techniques do not apply in principle. In these and other difficult areas of general
PDE theory, exact solutions will continue to play a determining role and often serve
as basic patterns, exhibiting the correct classes of existence, regularity, uniqueness
and specific asymptotics.

The classical method for detecting similarity reductions and associated explicit
solutions of various classes of PDEs is the Lie group method of infinitesimal trans-
formations. These approaches and related extensions are explained in a series of
monographs by L.V. Ovsiannikov, N.H. Ibragimov, G.W. Bluman and J.D. Cole,
P.J. Olver, G.W. Bluman and S. Kumei amongst others. We refer to the “CRC Hand-
book of Lie Group Analysis of Differential Equations” [10] containing a large list of
results and references on this subject.

Over the years, many generalizations of the concept of symmetry groups of non-
linear PDEs have been proposed. The first of these go back to Lie himself (con-
tact transformations), to E. Cartan (dynamical symmetries, 1910), and to E. Noether
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(generalized symmetries, 1918). Other ideas that appeared in this period are dis-
cussed in Anderson–Kamran–Olver [11]. Many generalizations can be viewed as
extensions of the classical semi-inverse method in Continuum Mechanics, which has
a natural counterpart in symmetry methods (as was first noted by G. Birkhoff in the
1950s).

During the last fifty years, when more nonlinear models and applied PDEs began
to attract the attention of mathematicians, many other fruitful attempts were made to
extend the classical apparatus of Lie group symmetries for PDEs. A significant num-
ber of new classes of such generalized symmetries and corresponding exact solutions
were found. Not pretending to completeness, precise statements, and the correct char-
acterization of such ideas, we include in this list the following (specific power tools
for integrable equations are not mentioned):

- the method of nonclassical symmetries (invariant surface conditions);
- the method of partially invariant solutions;
- the Bäcklund transformation method;
- the Baker–Hirota bilinear method;
- the direct and modified method;
- the conditional and generalized conditional symmetry method;
- the non-local symmetry method;
- the truncated Painlevé approach;
- the weak symmetries method;
- the side conditions method;
- the method of linear invariant subspaces for nonlinear operators;
- the method of linear determining equations;
- the method of B-determining equations;
- the nonlinear separation method;
- the functional separation method;
- the method of symmetry-preserving constraints;
- the symmetry-enhancing method;
- the differential constraint method.

We will present descriptions and references concerning most of the methods that are
related to the techniques used in our analysis (some of the others can be traced out
through use of the Index).

Most of the above methods can be reformulated by using the technicalities of the
method of differential constraints. Such ideas initially appeared in the theory of first-
order PDEs. In particular, Lagrange used differential constraints to determine total
integrals of nonlinear equations with two independent variables

F(x, y, u, ux , uy) = 0.

Monge and Ampère proposed the technique of first integrals for solving the second-
order PDEs

F(x, y, u, ux , uy, ux x , uxy, uyy) = 0,

and in 1870, Darboux extended this approach by introducing an extra second-order
PDE which is in involution with the original equation (this is what is now called



xiv Exact Solutions and Invariant Subspaces

a differential constraint). The history of this analysis and the detailed description
of Darboux’s method are given in Goursat [260] and Forsyth [196]. General theory
of related overdetermined systems is due to many famous names, such as Riquier,
Cartan, Ritt, and Spencer, as explained in Pommaret [468].

Systematic approaches to differential constraints, related symmetry and Lie group
methods were proposed by Birkhoff in the 1940s (hydrodynamics and fluid dynam-
ics) and by Yanenko in the 1960s (gas dynamics). A formal description of the method
is not difficult: consider a PDE for solutions u = u(x, t), with independent variables
(x, t) ∈ IR × IR+, where t denotes the time-variable. Given a sufficiently smooth
function F(·), consider the evolution PDE

F[u] ≡ F(u, Du, D2u, ...) = 0, (0.1)

where Du = {ux , ut }, D2u = {ux x, uxt , utt }, etc. denote vectors of partial deriva-
tives of arbitrary fixed finite orders. To find particular exact solutions consider, in-
stead of the single PDE (0.1), a system of two (or possibly more) equations{

F1[u] = 0,
�[u] = 0,

(0.2)

where the second equation plays the role of an extra differential constraint. As usual,
one can take F1 = F in the first equation, but, in general, these operators can be
different under the hypothesis that the consistency of the system implies that such
functions u(x, t) also satisfy the original equation (0.1). For example, if F[u] =
F1[u]− F2[u], the following system may be considered:{

F1[u] = �[u],
�[u] = F2[u],

with an unknown operator � to be determined from the consistency condition.
The key ingredient of the differential constraint analysis is to find such suitable

operator pairs {F1,�} in (0.2). This is a difficult problem. Indeed, the consistency
condition of the system leads to a PDE for �, which may be much more complicated
than the original one (0.1) for u (to say nothing about PDEs in the multi-dimensional
Euclidean space, where x ∈ IR N ). Nevertheless, there exists an essential advantage
of this constraint analysis: one needs to find a particular solution of the compatibility
equation.∗ In the methods listed above, the choice of suitable constraint operators
was heavily affected by applying new additional ideas, including some results of
classical group-invariant analysis and extensions, or those from neighboring areas of
the theory and applications of the PDEs under consideration.

In sufficiently general settings (that do not deal with hard consistency of the PDEs
for �) the scheme for the differential constraint method looks like using a practically
random choice of consistent constraint operators �. In a natural sense, such a proce-
dure does not essentially differ from trial and error dealing with a priori prescribed
classes of functions {u(x, t, α)} (α is a parameter, possibly functional) to be substi-
tuted into the PDE (0.1) to check whether some of the functions by chance satisfy it.

∗ We do not mention the second important aspect of the method: how to find the solutions, corresponding
to a consistent pair {F1,�}; this can also be extremely difficult.



Introduction xv

The differential constraint may determine the possible class of solutions {u(x, t, α)},
and, in many cases, this makes the procedure of seeking exact solutions algorithmic,
rather than the trivial, random substitution of functions.

It is worth mentioning what is meant here by exact solutions. Indeed, the best
opportunity is to detect the explicit solutions expressed in terms of elementary or, at
least, known functions of mathematical physics (Euler’s Gamma, Beta, elliptic, etc.),
in terms of quadratures, and so on. But this is not always the case, even for simple
semilinear PDEs. Therefore, exact solutions will mean those that can be obtained
from some ODEs or, in general, from PDEs of lower order than the original PDE
(0.1). For instance, such an extension of the notion of exact solutions was proposed
by A.A. Dorodnitsyn in the middle of the 1960s.

In particular, our goal is to find a reduction of the PDEs to a finite number of ODEs
representing a dynamical system.

Three-fold role of exact solutions: existence-uniqueness-asymptotics

Exact solutions of nonlinear models have always played a special role in the theory
of nonlinear evolution equations. For difficult quasilinear PDEs or systems, exact
solutions can often be the only possibility to formally describe the actual behavior
of general, more arbitrary solutions. Furthermore, exact solutions are often crucial
for developing general existence-uniqueness and asymptotic theory. There are many
remarkable examples of important nonlinear models where an appropriate exact so-
lution simultaneously reveals an optimal description of:

(i) local and global existence functional classes;

(ii) uniqueness classes; and,

(iii) classes of correct generic asymptotic behavior.

Actually, (iii) is well understood in rigorous or, more often, formal asymptotic anal-
ysis of nonlinear PDEs. The first two conclusions (i) and (ii) are harder to see and
difficult to prove, even for reasonably simple evolution PDEs. Moreover, the par-
ticular space-time structure of such solutions may also detect useful features of the
new methods and tools, which are necessary for studying general solutions. In the
theory of parabolic reaction-diffusion equations, there exist seminal examples where
the exact solutions determine the correct rescaled variables obtained via nonlinear
transformations, in terms of which the Maximum Principle can be applied to extend
regularity properties of these particular solutions to more general ones.

More and more often, modern theory of evolution PDEs deals with classes of
extremely difficult, strongly nonlinear, higher-order equations with degenerate and
singular coefficients. In particular, for at least twenty five years, a permanent source
of such models is thin film theory, generating various fourth, sixth and higher-order
thin film equations with non-monotone and non-divergent operators (essential parts
of Chapters 3 and 6 are devoted to such equations). Bearing in mind the multi-
dimensional setting in IRN for N ≥ 2, it is unlikely that a rigorous, mathemat-
ically closed existence-uniqueness-regularity and singularity (blow-up) theory for
these equations in different free-boundary settings will be developed soon. New ex-
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act solutions of thin film models will continue to supply us with a new regularity
information that will be used to correct the existing methods in order to create a
more general theory.

Linear invariant subspaces for nonlinear operators

As a key idea, we seek exact solutions of (0.1) on linear n-dimensional subspaces
which in many cases are invariant under the nonlinear operators of the models. A
formal general scheme for the approach is easy, though, as often happens, its abstract
mathematical formulation leads to rather obscure explanations.

We define a subspace in terms of the linear span denoted by

Wn = L{ f1(x), ..., fn(x)},
with n unknown linearly independent basis functions { f j (x)}. For instance, these
functions are picked to be solutions of a given linear PDE

P[ f ] = 0, (0.3)

where P = P(Dx ) is the annihilator of subspace Wn , in the sense that there holds
P : Wn → {0}. Then (0.1) is replaced by a system{

F[u] = 0,
�[u] ∈ Wn,

(0.4)

where � is another unknown function (or, in general, a nonlinear operator). Using the
annihilator (0.3), the second condition in (0.4) is written as a differential constraint

P[�[u]] = 0.

Here the main difficulty appears: how to choose consistent pairs of operators � and
P . We next can look for solutions in the form of finite expansions

�[u(x, t)] = C1(t) f1(x)+ ...+ Cn(t) fn(x) ∈ Wn for t ∈ IR, (0.5)

with unknown coefficients {C j (t)}.
Finally, as the crucial step, assuming that the inverse �−1 exists, we demand the

subspace Wn be invariant under the superposition of operators,

F ◦�−1 : Wn → Wn . (0.6)

Then the operator F ◦�−1 is said to preserve or admit the subspace Wn . Substituting
the expansion (0.5) into the PDE (0.1), most plausibly, leads to a low-dimensional
reduction of the original PDE restricted to this invariant subspace.

In the case of first-order (in t) evolution PDEs with independent variables x and t ,

ut = F[u] ≡ F(u, ux , ux x , ...), (0.7)

taking the identity � = I in (0.5), it follows that if Wn is invariant under F , then

F[u] = 	1(C1, ...,Cn) f1 + ...+	n(C1, ...,Cn) fn ∈ Wn for u ∈ Wn, (0.8)

where {	 j } denote the expansion coefficients of F[u] on Wn . Hence, (0.7) restricted
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to the invariant subspace Wn is the n-dimensional dynamical system (DS) for the
expansion coefficients {C j (t)} in (0.5),{C ′1 = 	1(C1, ...,Cn),

... ... ...
C ′n = 	n(C1, ...,Cn).

(0.9)

For n = 1, 2, or 3, such DSs can often be studied on the phase-plane, or, at least,
admit asymptotic analysis of some of their generic, stable orbits.

We will give several examples for which the above approach represents an easy
way to predict such a linear structure of exact solutions. For instance, let us observe
that, under the same invariance conditions, the second-order evolution equation

utt = F[u] ≡ F(u, ux , ux x , ...)

admits solutions (0.5), where � = I , with a harder 2nth-order DS,{C ′′1 = 	1(C1, ...,Cn),
... ... ...

C ′′n = 	n(C1, ...,Cn).

As a principal feature, this book can be viewed as a practical guide that introduces
a number of techniques for constructing exact solutions of various nonlinear PDEs
in IRN for arbitrary dimensions N ≥ 1. Indeed, several such exact solutions can
be obtained by other techniques including differential constraints which have been
successfully developed algorithmically on the basis of computer symbolic manip-
ulation techniques. Nevertheless, some other solutions, especially those of higher-
order equations in IRN , will be difficult to detect by such “purely computational”
approaches. The ideas of linear invariant subspaces can play a decisive role in ex-
plaining such a geometric origin of invariant manifolds, the corresponding exact so-
lutions, and extensions to other PDEs.

Examples: classic fundamental solutions belong to invariant subspaces

For linear homogeneous PDEs, the three-fold existence-uniqueness-asymptotics na-
ture (i)–(iii) of exact solutions is straightforward in view of the classical concept of
fundamental solutions of linear operators and convolution representations of general
solutions. It is remarkable and surprising that, for a number of classical linear and
quasilinear models, the fundamental solutions are associated with linear subspaces
invariant under nonlinear operators.

The heat equation and linear subspace for its fundamental solution

Consider the canonical heat equation (HE)

ut = 
u in IRN × IR+
(

 =∑N

i=1
∂2

∂x2
i

)
. (0.10)

Its fundamental solution denoted by b(x, t) is given by the Gaussian kernel,

b(x, t) = (4π t
)− N

2 e−
|x |2
4t , (0.11)
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and takes Dirac’s delta δ(x) as initial data,

lim t→0+ b(x, t) = δ(x), (0.12)

where the convergence is understood in the sense of distributions.
As is well known in parabolic theory (see e.g., Friedman [205]), the structure of

the Gaussian kernel in (0.11) illustrates Tikhonov’s uniqueness (1935) [552] and local
existence functional class of measurable functions,

U = {v(x) : ∃ A > 0 and a > 0, such that |v(x)| ≤ Aea|x |2 in IRN
}
.

Then the Cauchy problem for the HE with initial data u0(x) ∈ U has a unique
solution that is local in time and is given by the convolution

u(x, t) = b(·, t) ∗ u0 ≡
(
4π t

)− N
2

∫
IRN

e−
|x−y|2

4t u0(y) dy. (0.13)

By checking the convergence of the integral, it is easy to see that this formula guaran-
tees the existence and uniqueness of the solution locally in time, at least for all t < a

4 .
In order to make the solution global in time, another growth condition should be im-
posed on the initial data, e.g., assuming that |u0(x)| ≤ Aea|x |2−ε

, with an arbitrarily
small constant ε > 0. In this case, the integral in (0.13) is finite for all t > 0.

The explicit formula (0.13) also determines the asymptotic behavior as t →∞ of
global solutions. Namely, if initial data are integrable, u0 ∈ L1(IRN ), and have unit
mass,

∫
u0(x) dx = 1, as the fundamental solution does in (0.12), then

u(x, t) ≈ b(x, t) for t � 1. (0.14)

It is convenient to express this asymptotic convergence in the rescaled sense by using
the time-scaling factor t N/2 as in (0.11). Then (0.14) reads

t
N
2
∣∣u(x, t)− b(x, t)

∣∣→ 0 as t →∞ (0.15)

uniformly on expanding sets {|x | ≤ c
√

t}, where c > 0 is an arbitrary constant.

Invariant subspaces. The exponential structure of the fundamental solutions (0.11)
suggests introducing the logarithmic variable

v(x, t) = ln b(x, t) ≡ − N
2 ln(4π t)− 1

4t |x |2,
where the right-hand side belongs to the 2D subspace W2 that is given by the span

W2 = L{1, |x |2}. (0.16)

The new function v = ln u satisfies the semilinear parabolic equation

vt = 
v + |∇v|2 ≡ F[v], (0.17)

that contains the quadratic Hamilton–Jacobi operator |∇v|2. Thus, the logarithmic
change of variables leads to the nonlinear operator F in (0.17) that obviously pre-
serves the subspace W2. Substituting into (0.17) an arbitrary function

v(x, t) = C0(t)+ C1(t)|x |2 ∈ W2 for t ≥ 0, (0.18)
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we find by calculating 
|x |2 = 2N and |∇|x |2|2 = 4|x |2 that

C ′0 + C ′1|x |2 = F
[
C0 + C1|x |2

] ≡ 2NC1 + 4C2
1 |x |2.

This yields the dynamical system {
C ′0 = 2NC1,

C ′1 = 4C2
1 ,

(0.19)

which is easily integrated. The second equation implies that C1(t) = − 1
4t up to

translations in t . Therefore, C ′0 = − N
2t , and this gives the fundamental solution (0.11)

in terms of the original variable u = ev .
This analysis admits some easy and immediate extensions. Firstly, it is evident that

the operator in (0.17) admits the (N+1)-dimensional invariant subspace

WN+1 = L{1, x2
1 , ..., x2

N } �⇒ v(x, t) = C0(t)+C1(t)x
2
1+...+CN (t)x2

N . (0.20)

The DS then becomes (N+1)-dimensional,{
C ′0 = 2

∑
(i) Ci ,

C ′j = 4C2
j , j = 1, ..., N,

which can also be integrated. Secondly, one can consider the general invariant sub-
space of arbitrary quadratic polynomials

WM = L{1, xi , xi x j , i, j,= 1, ..., N} (0.21)

of dimension M = N2+3N+2
2 , where the expansion contains more coefficients gen-

erating an M-dimensional DS. Clearly, using the orthogonal transformations and
translations, the exact solutions on the subspace (0.21) reduce to those on (0.20). But
this is not the case for the corresponding second-order hyperbolic equation

vt t = 
v + |∇v|2
for which the family of solutions on the subspaces (0.21) and (0.20) differ essentially.
In the corresponding DS, we have the second-order derivatives C ′′j , and hence, both
{C j (0)} and {C ′j (0)} should be prescribed as initial data, so, for the subspace (0.21),
it is a 2M-dimensional DS.

The porous medium equation and linear subspace for its fundamental solution

For quasilinear parabolic equations for which convolution and eigenfunction expan-
sion techniques are not applicable the determining features (i)–(iii) of exact solutions
are not straightforward and demand different and difficult nonlinear mathematics.
Consider the classic porous medium equation (PME)

ut = 
um in IRN × IR+, (0.22)

where m > 1 is a fixed exponent. By the Maximum Principle, the PME possesses
nonnegative solutions u(x, t), so that um makes sense for any non-integer value of
m. The advanced theory of such degenerate parabolic equations that admit weak
(generalized) solutions can be found in a number of monographs on parabolic PDEs;
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see [148, 206, 245]. For m = 1, (0.22) reduces to the heat equation (0.10), so the
PME can be viewed as its nonlinear extension.

Let us see if the quasilinear PME inherits some distinctive evolution properties
available for the HE, and, especially, whether it admits a kind of fundamental solu-
tion to be understood, of course, in a different nonlinear way. The answer is yes, and
the PME has the famous Zel’dovich–Kompaneetz–Barenblatt (ZKB, 1950) source-
type self-similar solution that is again denoted by b(x, t),

b(x, t) = t−kN f (y), y = x
tk , where k = 1

N(m−1)+2 . (0.23)

The rescaled profile f (y) is given explicitly,

f (y) = [A0(a2 − |y|2)+
] 1

m−1 , with the constant A0 = k(m−1)
2m , (0.24)

where (·)+ denotes the positive part max{(·), 0}. The constant a > 0 characterizes
the preserved total mass of the solution. We want b(x, t) to initially take Dirac’s
delta, as shown in (0.12). Direct computations yield the unique value of a = a(m)
(see e.g., [509, p. 21]),

1 =
∫

IRN
f (y) dy ≡ N ωN

∫ a

0
zN−1[A0(a2 − z2)

] 1
m−1 dz

�⇒ a
2

m−1+N = π− N
2 A

− 1
m−1

0
�( m

m−1+ N
2 )

�( m
m−1 )

, (0.25)

where � is Euler’s Gamma function, and ωN = 2πN/2

N�(N/2) denotes the volume of the

unit ball in IRN .
Returning to the rescaled fundamental profile (0.24), it follows that, unlike (0.11)

for the heat equation, b(x, t) is compactly supported in x for any t > 0. This is a
striking property of the finite propagation for the quasilinear degenerate parabolic
equation (0.22). At the free-boundary (interface), where |y| = a, the profile f (y)
has finite regularity, and f m−1(y) is just Lipschitz continuous.

Thus, it seems that the solutions of the HE and the PME correspond to entirely
different functional settings. Nevertheless, a striking continuity with respect to the
exponent m can be observed when passing to the limit as m → 1+ in (0.24). Then,
using that, in (0.25), the ratio of Gamma functions is equal to

( m
m−1

)N/2 + ..., it is
easy to conclude that, uniformly in y,

f (y)→ (
4π
)− N

2 e−
|y|2

4 as m → 1+,

where, on the right-hand side, there appears the rescaled Gaussian kernel of the fun-
damental solution (0.11). This means a continuous “branching” at m = 1+ of the
solution (0.24) from the fundamental solution (0.11) of the linear HE. Once more,
this asserts using the term fundamental solution of the nonlinear PME.

It turns out that, in PME theory, the ZKB solution plays a similar three-fold role
(i)–(iii). Firstly, the inverse parabolic profile of the rescaled kernel f (y) in (0.24)
determines the class of uniqueness and local existence,

U = {v(x) ≥ 0 : ∃ A > 0 such that v(x) ≤ A(1+ |x |2) 1
m−1 in IR N

}
.
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It follows by comparison with the following separate variables blow-up solution:

u∗(x, t) = C∗|x | 2
m−1 (T − t)−

1
m−1 , with C∗ =

[ k(m−1)
2m

] 1
m−1 ,

that the weak solution exists, at least for all t < T ∼ A1−m . For global exis-
tence it suffices to restrict the growth rate at infinity, e.g., by assuming that u0(x) =
O
(|x | 2

m−1−ε
)

as x →∞ for some arbitrarily small ε > 0.
Secondly, in a similar manner, for nonnegative initial data u0 ∈ L1(IR N ) with unit

mass,
∫

u0(x) dx = 1, (0.14) holds. The asymptotic convergence (0.14) is again to
be understood in the rescaled sense (0.15) with the time factor tkN , instead of t N/2.
Note that k = 1

2 for m = 1. The convergence is uniform on compact sets {|x | ≤ c tk},
c > 0, corresponding to the new similarity variable y in (0.23).

Invariant subspaces. Though the ZKB-solution (0.23) is a classical example of self-
similar solutions induced by a group of scaling transformations, let us now interpret it
in terms of the same invariant subspace (0.16). The rescaled inverse parabolic profile
(0.24) suggests using the new dependent variable

v = um−1,

which is known as the pressure in the theory of filtration of liquids and gases in
porous media. Most of the regularity results for the PME are formulated in terms of

the pressure. Substituting u = v
1

m−1 into the PME yields the pressure equation

vt = v
v + 1
m−1 |∇v|2 ≡ F[v]. (0.26)

Similar to the transformed HE (0.17), the quadratic operator F in (0.26) preserves
the subspace (0.16). Plugging (0.18) yields a slightly different dynamical system for
the expansion coefficients, {

C ′0 = 2NC0C1,

C ′1 = 2
(m−1)k C2

1 .

As in (0.19), the second equation is integrated independently, determining (0.23).
We easily reveal the dynamics on other extended subspaces of F in (0.26): the

subspace (0.20) remains invariant, leading to the (N+1)-dimensional DS{
C ′0 = 2C0

∑
(i) Ci ,

C ′j = 2C j
∑

(i) Ci + 4
m−1 C2

j , j = 1, ..., N.

On the invariant subspace of arbitrary quadratic polynomials (0.21), the PME be-
comes an M-dimensional DS which is again reduced to that on the subspace (0.20)
via rotations and translations. The quasilinear degenerate hyperbolic equation

vt t = v
v + 1
m−1 |∇v|2

restricted to WM becomes a 2Mth-order DS.

Elementary extensions to higher-order equations. We formally combine operators
in (0.17) and (0.26), add extra operators, and create a fourth-order parabolic equation

vt = F[v] ≡ −α
2v + β
v + γ v
v + δ|∇v|2 + µv + ν, (0.27)

with six arbitrary constants denoted by Greek letters. Such PDEs belong to the class



xxii Exact Solutions and Invariant Subspaces

of Kuramoto–Sivashinsky equations from flame propagation theory that will be stud-
ied in the subsequent chapters. Obviously, the fourth-order term−α
2v vanishes on
the invariant subspace (0.21), so (0.27) on WM is an M-dimensional DS. The corre-
sponding hyperbolic PDE is a Boussinesq-type equation from water-wave theory,

vt t = −α
2v + β
v + γ v
v + δ|∇v|2 + µv + ν,

which becomes a 2Mth-order DS on the same invariant subspace WM .

Models, targets, prerequisites

On nonlinear models and PDEs to be considered

The underlying idea of invariant subspaces for nonlinear operators applies here to a
large variety of nonlinear PDEs from many areas of mathematics, mechanics, and
physics. Exact solutions on invariant subspaces arise in many quasilinear equations
and various free-boundary problems from different applications. In this book, we
will deal with various PDEs and models that exhibit some common nonlinear invari-
ant features. Beyond this “invariant essence,” many of the models have nothing in
common and often belong to completely disjoint areas of mathematics.

We begin Chapter 1 with some history and present those classical and more recent
examples of interesting solutions on invariant subspaces that were constructed in
the twentieth century. In the rest of the book, we develop several techniques for
constructing exact solutions that describe singularity behavior for various nonlinear
PDEs, including (see Index for details and precise references)

- reaction-diffusion-absorption PDEs and combustion models;
- parabolic and hyperbolic PDEs with the p-Laplacian operators;
- gas dynamics models, including the Kármán–Fal’kovich–Guderley equation;
- fourth, sixth, and 2mth-order thin film equations;
- fourth-order Riabouchinsky–Proudman–Johnson equations;
- free-boundary problems for the Navier–Stokes equations in IR2;
- Kuramoto–Sivashinsky equations and extensions;
- KdV-type equations with blow-up, nonlinear dispersion PDEs with compactons;
- higher-order extensions of the Rosenau–Hyman equation;
- modifications of the Fuchssteiner–Fokas–Camassa–Holm equations;
- Green–Naghdi equations;
- Harry Dym-type equations;
- quasilinear pseudo-parabolic (magma) equations;
- quasilinear wave equations and dispersive Boussinesq models;
- Zabolotskaya–Khokhlov-type equations;
- Zakharov–Kuznetsov equation with nonlinear dispersion;
- quasilinear parabolic, hyperbolic, and KdV-type systems;
- Maxwell equations from nonlinear optics;
- Monge-Ampère-type equations of second and higher orders;
- logarithmic Gauss curvature equations;
- non-integrable PDEs admitting bilinear Baker–Hirota representations; etc.
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In some cases, using exact solutions, we will describe interesting evolution proper-
ties that are related to singularity blow-up or extinction phenomena, finite interface
propagation and regularity, with the special attention to oscillatory, changing sign
behavior of weak solutions near interfaces. For several PDEs, this leads to many
mathematical open problems, which we state when necessary. Most of the results are
published for the first time.

Main problems and targets

There exist two main fundamental problems in invariant subspace theory:

• Problem I, F �→ {Wn}: Given a nonlinear operator F, which invariant subspaces
Wn does it preserve?

• Problem II, Wn �→ {F}: Given a subspace Wn, which nonlinear operators F
admit it?

In addition, there are a number of other practical questions, e.g.,

• Which operators F admit higher-dimensional invariant subspaces as further ex-
tensions of the basic, simple invariant subspaces?

• Is there a well-defined procedure to detect invariant subspaces and their maximal
dimensions (i.e., maximal dynamical systems that are restrictions of the PDE to the
subspace)?

Problem I is fundamental, and is key for the existence of lower-dimensional reduc-
tions of the PDEs. For arbitrary operators F , this does not admit a complete solution,
but we will successfully study Problem I for many particular classes of nonlinear
differential and discrete operators.

On the contrary, Problem II admits a complete algorithmic solution. It was solved
for N = 1, i.e., for ordinary differential operators, by the second author of the book
[544, 545] in terms of Lie–Bäcklund symmetries of linear ODEs. For general opera-
tors in IRN , Problem II was solved in Kamran–Milson–Olver [312] by introducing
a new approach to the annihilating differential operators. Nevertheless, as often hap-
pens in mathematics, a complete algorithmic solution does not assume easy practical
applications of the results. It is said in [312, p. 316] that (for operators in IRN ) “The
formulae for the affine annihilators and annihilators are often extremely complicated,
even for relatively simple subspaces.” Bearing in mind the practical aspects of cal-
culations, the geometric concepts of invariant subspaces will continue to play an
important role.

The general problem of finding invariant subspaces for wide classes of nonlinear
operators in IR N is not completely solved here. We suspect that such a problem can-
not be tackled with sufficient generality. Nevertheless, for quadratic and polynomial
operators in IR, we present a complete classification of some types of invariant sub-
spaces. We also introduce examples of invariant subspaces and exact solutions for
classes of multi-dimensional quasilinear operators in IRN .
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Partially invariant subspaces: invariant sets

Another related direction of our analysis is the construction of invariant sets M ⊂
Wn on a linear subspace Wn for operator F . This simply means that Wn is partially
invariant, i.e., F[Wn] �⊆ Wn , but, for some part M of Wn ,

F[M] ⊆ Wn . (0.28)

The principal difference from the invariant subspaces for which F : Wn → Wn is
that condition (0.28) leads to an overdetermined DS for the expansion coefficients
{C j (t)} in (0.5).

Let us illustrate this for equation (0.7), assuming that Wn is not invariant under F
in the sense of (0.6) with � = I . Suppose, for instance, that F maps Wn onto an
(n+s)-dimensional subspace, so that s new functions appear in the expansion

F : Wn → Wn+s = L{ f1, ..., fn, fn+1, ..., fn+s },
and, instead of (0.8),

F[u] = 	1(·) f1 + ...+	n(·) fn

+	n+1(·) fn+1 + ...+	n+s(·) fn+s ∈ Wn+s .

This leads to the same DS (0.9) accompanied by s extra algebraic conditions{
	n+1(C1, ...,Cn) = 0,

... ... ...
	n+s(C1, ...,Cn) = 0.

Such overdetermined DSs are not always consistent and are hard to study. The proof
of the existence of the corresponding solutions on M becomes more involved, though
we present a number of nonlinear evolution PDEs for which such overdetermined
DSs are consistent.

Partial invariance as a manifestation of “partial integrability”

We discuss the principal link to integrable equations which admit countable sets
of exact N-soliton and other solutions. We illustrate this by starting with the most
classical integrable Korteweg–de Vries (KdV) equation

ut + 6uux + ux x x = 0, (0.29)

which has been known since the 1870s and was first derived by J. Boussinesq. Fol-
lowing the standard scheme for integrable PDEs (see Newell [436, Ch. 4]), we apply
the change u = wx , yielding the potential KdV equation

wt + 3(wx)
2 +wx x x = 0.

Next, setting

w = 2(ln |v|)x = 2vx
v , so that u = 2(ln |v|)x x , (0.30)

reduces it to the homogeneous quadratic equation

F∗[v] ≡ vvxt − vxvt + vvx x x x − 4vxvx x x + 3(vx x)
2 = 0. (0.31)
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As a final step, the Baker–Hirota bilinear method † [284] is applied to derive a count-
able set of N-solitons {vk(x, t)}, such that each solution vk(x, t) of (0.31) belongs
to a linear subspace of exponential functions. We will use various linear subspaces
to illustrate finite-dimensional dynamics, which exist for equation (0.31) and related
models and correspond to well-known soliton-type solutions.

1-soliton on subspace Wexp
2 . This is the simplest travelling wave (TW) given by a

single exponent,

v1(x, t) = 1+ eθ1(x,t), where θ1(x, t) = p1x − p3
1t (0.32)

and p1 �= 0 is a constant. Clearly, in this case, the 2D linear subspace (a module)

W exp
2 = L{1, ep1x } (0.33)

is invariant under the quadratic operator F∗ in (0.31). Indeed, as usual, looking for
solutions of (0.31) on W exp

2 ,

v(x, t) = C1(t)+ C2(t)ep1 x , (0.34)

and plugging it into (0.31) yields a single term, (C1C ′2−C2C ′1+ p3
1C1C2)ep1x = 0,

since the coefficient of the highest-degree exponential e2p1x vanishes, as the integra-
bility demands. Therefore, the PDE (0.31) on W exp

2 reduces to the single ODE (an
underdetermined DS)

C1C ′2 − C2C ′1 = −p3
1C1C2 �⇒ (C2

C1

)′ = −p3
1

C2
C1

, (0.35)

so, on integration, C2(t) = AC1(t)e−p3
1 t , where A is a constant. Here, C1(t) �= 0

is an arbitrary smooth function that is eliminated by the differential change (0.30).
Thus, up to an arbitrary multiplier C1(t), (0.34) represents the 1-soliton solution
(0.32) belonging to the invariant subspace W exp

2 . Notice that exact solutions (0.34)
on W exp

2 can satisfy various PDEs involving operator F∗, e.g.,

αvt t + βvt = F∗[v]+ µv + ν + σvx x + ρ
[
vvx x − (vx )

2
]

+ ε(vvx x x − vxvx x )+ λ
[
vvx x x x − (vx x)

2
]+ ... ,

(0.36)

with some linear and nonlinear operators preserving the subspace (0.33).

2-soliton on Wexp
4 . The 2-solitons are composed of three exponential patterns

v2(x, t) = 1+ eθ1 + eθ2 + C4eθ1+θ2, (0.37)

where, as in (0.32), θ1 = p1x− p3
1t , θ2 = p2x− p3

2t , and p1 �= p2. In soliton theory
[436, p. 123], applying the Baker–Hirota differential operator to (0.31) yields

C4 =
( p1−p2

p1+p2

)2
.

As above, we can interpret (0.37) by using the linear subspace (module)

W exp
4 = L{1, ep1x , ep2x , e(p1+p2)x}.

† The bilinear differential operator in (0.31), transformations, such as (0.30), hierarchies of the KdV and
KP equations, hyperelliptic representation of periodic solitons, etc., were introduced by H.F. Baker in
1903, [22]; see details in Athorne–Eilbeck–Enolskii [20, p. 275].
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For instance, if W exp
4 = L{1, ex , e2x , e3x} (this assumes more nonlinear interaction

between terms than for the standard 2-soliton; see below), looking for

v(x, t) = C1(t)+ C2(t)ex + C3(t)e2x + C4(t)e3x (0.38)

and substituting into (0.31) yields(
C1C ′2 − C2C ′1 + C1C2

)
ex + 2

(
C1C ′3 − C3C ′1 + 8C1C3

)
e2x

+ [C2C ′3 − C3C ′2 + 3
(
C1C ′4 − C4C ′1

)+ C2C3 + 81C1C4
]
e3x

+ 2
(
C2C ′4 − C4C ′2 + 8C2C4

)
e4x + (C3C ′4 − C4C ′3 + C3C4

)
e5x = 0.

(0.39)

Hence, for the given module W exp
4 , there exists another module W̃ exp

5 such that

F∗ : W exp
4 → W̃ exp

5 = L{ex , e2x , e3x , e4x , e5x}
(the coefficients of 1 and e6x vanish). Equating the five coefficients in (0.39) to zero
yields the overdetermined system of five equations for four functions

C1C ′2 − C2C ′1 = −C1C2,
C1C ′3 − C3C ′1 = −8C1C3,
C2C ′3 − C3C ′2 + 3

(
C1C ′4 − C4C ′1

)+ C2C3 + 81C1C4 = 0,
C2C ′4 − C4C ′2 = −8C2C4,
C3C ′4 − C4C ′3 = −C3C4.

(0.40)

According to (0.28), the last two ODEs (projections onto e4x and e5x ) determine an
invariant set M on W exp

4 , in the sense that F[u] ∈ W exp
4 for all u ∈ M . Hence, the

module W exp
4 is partially invariant. Writing all the ODEs (0.40), excluding the third

one, in the form of (0.35) and integrating gives

C2(t) = AC1(t)e−t , C3(t) = BC1(t)e−8t , and C4(t) = DC1(t)e−9t ,

where, as above, C1(t) is arbitrary, and A, B , and D are constants. Plugging these
expressions into the long third ODE in (0.40), rewritten in the form of

C2
2

(C3
C2

)′ + 3C2
1

(C4
C1

)′ + C2C3 + 81C1C4 = 0,

we obtain a single relation between constants, AB = 9D. This gives two exact
solutions of 2-soliton type

v(x, t) = 1± (ex−t + 9be2(x−4t)
)+ be3(x−3t) (b ∈ IR).

A similar interpretation of general N-soliton solutions means that, for the inte-
grable equation (0.31),

∃ solutions on partially invariant modules W exp
n for arbitrarily large n.

In this sense, the fully integrable equations represent an exceptional limit case of evo-
lution PDEs that possess exact solutions belonging to an infinite number of invariant
sets on linear exponential subspaces (modules) of arbitrarily large dimension.

The invariance under the nonlinear operators can be treated as a kind of a partial
integrability property (cf. “...remnants of integrability” [192, p. 573]), in the sense
that we describe classes of nonlinear non-integrable PDEs for which only a finite



Introduction xxvii

number of invariant subspaces Wn , or sets with exact solutions, can be detected.
In fact, for any arbitrarily large l, there exists a family of nonlinear non-integrable
PDEs possessing at least l different types of solutions (looking like “N-solitons”) on
linear invariant subspaces Wn , or on sets, with n large enough (see Section 1.5.2).
Such PDEs may be treated as intermediate, i.e., between general equations with no
invariant properties at all, and the rather thin class of fully integrable PDEs.

Trigonometric subspace Wtr
3 : TWs. We next try solutions

v(x, t) = C1 + C2 cos γ x + C3 sin γ x ∈ W tr
3 = L{1, cos γ x, sin γ x}, (0.41)

where γ ∈ IR is a parameter. W tr
3 is invariant under F∗, so that restricting the PDE

(0.31) to W tr
3 yields three ODEs

C2C ′3 − C3C ′2 + 4γ 3
(
C2

2 + C2
3

) = 0,
C1C ′3 − C3C ′1 + γ 3C1C2 = 0,
C2C ′1 − C1C ′2 + γ 3C1C3 = 0.

The matrix of this first-order DS is singular and nontrivial solutions are possible for
C1(t) ≡ 0. This gives the TW

v(x, t) = sin(γ x + 4γ 3t).

In terms of the original function u = 2(ln |v|)x x , such solutions describe moving
blow-up singularities with the following behavior near the poles:‡

u(x, t) ∼ 1
(x−x0(t))2 , where x0(t) = −4γ 2t + constant. (0.42)

A slight modification of the KdV equation (0.31) produces another interesting
evolution on W tr

3 . For instance,

v(x, t) = 1+ cos(x + t) ≡ 2 cos2
[1

2 (x + t)
]

satisfies F∗[v] = 4.

This function, being extended by zero in {(x, t) : 1
2 |x + t| ≥ π

2 }, becomes a
smooth compacton. Such compact structures entered nonlinear dispersion theory in
the 1980s. We will discuss their mathematical well-posedness in Chapters 3–7.

Polynomial subspace Wp
4 : second rational solution. Similarly, equation (0.31) can

be considered on the polynomial subspace such as

W p
4 = L{1, x, x2, x3}, i.e., v(x, t) = C1(t)+C2(t)x+C3(t)x

2+C4(t)x
3, (0.43)

which leads to a similar DS. Solving it yields

v(x, t) = 36t + b2x + 3bx2 + 3x3 (b ∈ IR),

which, by (0.30), gives the second rational solution u2(x, t) of the KdV equation
with the singular behavior (0.42) near poles

(
these are known since 1978, see survey

[407]; the first rational solution is elementary, u1(x, t) = − 2
x2

)
.

‡ The study of the Schrödinger operator with the inverse square potential U(x) ∼ (x − x0)
−2 goes

back to Hardy (1920), [280] (Hardy’s inequality for embeddings of functional L2 spaces with singular
weights) and Friedrichs (1935), [208].
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Polynomial-trigonometric subspace W4
p,t: positons. Consider next the subspace

W p,t
4 = L{1, x, cos x, sin x}, composed of basis functions of subspaces in (0.43) and

(0.41). Plugging the expansion on W p,t
4 into equation (0.31) gives the solutions

v(x, t) = C1(t)+ C2(t)x + C3(t) cos x + C4(t) sin x, where
C1C ′2 − C2C ′1 + C3C ′4 − C4C ′3 + 2

(
C2

3 + C2
4

) = 0,
C3C ′1 − C1C ′3 + C1C4 − 3C2C3 = 0,
C1C ′4 − C4C ′1 + C1C3 + 3C2C4 = 0,
C2C ′4 − C4C ′2 + C2C3 = 0,
C3C ′2 − C2C ′3 + C2C4 = 0.

The first three ODEs are projections of the PDE onto 1, cos x , and sin x respectively,
while the last two represent the expansion coefficients of x cos x and x sin x that do
not belong to W p,t

4 . Similar to (0.40), this DS yields two solutions

v(x, t) = ±(3t + x)+ sin(x + t),

which are indeed the positon solutions of the KdV equation. Such positons, or har-
monic breathers, have been recognized since the 1980s, [16, 418]. They exhibit the
same type (0.42) of singularity (for continuous integrable models, all known positons
have singularities), but a different behavior as x → ∞. Similarly, the polynomial-
exponential subspace W p,e

4 = L{1, x, cosh x, sinh x} leads to the negatons, that were
first constructed in 1996, [485].

Exponential-trigonometric subspace W4
e,t: complexitons. We now look for so-

lutions of (0.31) on the trigonometric-exponential subspace,

v(x, t) = C1(t) cos x + C2(t) sin x + C3(t)ex + C4(t)e−x .

Substituting yields five ODEs being the projections of (0.31) onto 1, ex sin x , ex cos x ,
e−x cos x , and e−x sin x respectively,

−C2C ′1 + C1C ′2 + 2C4C ′3 − 2C3C ′4 + 4
(
C2

1 + C2
2

)+ 16C3C4 = 0,
−C3C ′1 − C3C ′2 + (C1 + C2)C ′3 − 4C2C3 = 0,
−C3C ′1 + C3C ′2 + (C1 − C2)C ′3 − 4C1C3 = 0,
C4C ′1 + C4C ′2 − (C1 + C2)C ′4 − 4C1C4 = 0,
−C4C ′1 + C4C ′2 + (C1 − C2)C ′4 − 4C2C4 = 0.

These are easily integrated by adding and subtracting two pairs of similar ODEs.
Besides TWs, we obtain one more solution

v(x, t) = cos(x − 2t)+ sinh(x + 2t), (0.44)

which is determined up to an arbitrary smooth multiplier C(t). This is precisely
the complexiton solution that was constructed rather recently, [405]. Concerning a
perturbed equation, note that v(x, t) = sin(x − 4t) solves F∗[v] = 8, and v(x, t) =
cos(x − 2t)+ cosh(x + 2t) (cf. (0.44)) satisfies the equation F∗[v] = 12.

We have illustrated all types of known elementary soliton-type solutions of (0.31).
All these solutions of the KdV equation can be constructed by the Wronskian method
for integrable equations; a modern description is given in [407]. Similar DS reduc-
tions are also key for classes of non-integrable PDEs, though, of course, the consis-
tency of DSs can be tricky and will be established in a few cases.
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Sign-invariants for second-order parabolic equations (Chapter 8)

We also aim to emphasize a new interesting aspect of our exact solutions. It turns out
that, for second-order parabolic equations, many solutions on invariant subspaces
Wn may induce so-called sign-invariants, which are nonlinear differential operators
H[u] = H (x, u, Du, D2u, ...) preserving both their signs on evolution orbits. For
the Cauchy problem in IRN × IR+ with initial data u0(x), this means that

H[u0(x)] ≤ 0 (≥ 0) in IRN �⇒ H[u(x, t)] ≤ 0 (≥ 0) in IRN for t > 0. (0.45)

Such partial differential inequalities are naturally associated with different barrier
techniques in the theory of parabolic equations, where the Maximal Principle applies
to control the operator signs on evolution orbits. Barrier approaches are the corner-
stone of regularity and asymptotic theory of linear and nonlinear parabolic PDEs.
For instance, classical Schauder and Bernstein estimates, as well as the Nash–Moser
technique, are based on the Maximum Principle and use barrier analysis of parabolic
differential inequalities. We refer to monographs [206, 245, 442, 472, 550].

In (0.45), the sign-invariant H preserves both signs, ≥ 0 and ≤ 0, on solutions of
the parabolic PDE. The connection with invariant subspaces Wn is as follows:

H[u] = 0 on Wn (or on a set M ⊂ Wn). (0.46)

Vice versa, the equality (0.46) can be used to determine the corresponding sign-
invariant H[u]. We will show how to reconstruct such operators H by means of the
structure of the invariant (or partially invariant) subspaces Wn . Of course, (0.46) is
then a differential constraint generating solutions on Wn . It is important that, un-
like just the constraint (0.46), the partial differential inequalities (0.45) characterize
evolution properties of wider classes of solutions than simply those on Wn .

Discrete operators: applications to moving mesh methods and lattices (Chapter 9)

We will also deal with discrete nonlinear operators F for which we prove some re-
sults on the existence of linear invariant subspaces Wn and construct exact solutions
of some discrete equations. As a further application, we describe invariant aspects of
moving mesh methods (MMMs), which have become a powerful tool of numerical
solutions of nonlinear PDEs possessing blow-up and other evolution singularities.
We also introduce exact solutions on invariant subspaces for some anharmonic lat-
tices associated with different evolution PDEs.

Prerequisites: a GUIDE on models, nonlinear PDEs, and solutions

The book is meant for advanced graduate level students and does not assume a
knowledge of the fundamentals of the mathematical theory of PDEs and functional
analysis, except the basics of the Maximum Principle for second-order parabolic
equations in the theory of sign-invariants in Chapter 8 (though we have included nec-
essary preliminary information). The knowledge of some standard aspects of ODE
theory would be useful for performing some analytical manipulations and phase-
plane diagrams. Sometimes our discussions around exact solutions on invariant sub-
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spaces include specific aspects of PDE theory. These parts can be omitted without
causing any future confusion.

We hope that the present methods for parabolic, hyperbolic, KdV-type, and nonlin-
ear dispersion PDEs, as well as discrete equations, will be useful for the readers with
a mathematical background that is not necessarily applied or pure. We expect that
several aspects of our analysis can be fruitful for researchers and students specializ-
ing in mechanics, physics, engineering, and those working with nonlinear PDEs.
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CHAPTER 1

Linear Invariant Subspaces in Quasilinear
Equations: Basic Examples and Models

We begin this chapter with a few well-known and even classical examples of exact solutions
of various nonlinear PDEs of mathematical physics with quadratic or cubic nonlinearities. We
will treat these solutions from the point of view of the linear subspaces invariant under appro-
priate nonlinear operators. Indeed, ideas of low-dimensional reductions of evolution equations
restricted to linear subspaces or manifolds have been known for a long time. Certainly there
are other interesting solutions of a similar invariant nature, which we are not aware of. It would
be interesting to detect more examples which date back to the first half of the twentieth and,
hopefully, to the nineteenth century.

The rest of the chapter is devoted to further examples, in which we introduce empirical tools
to study general properties of invariant subspaces, spaces of the corresponding nonlinear or-
dinary differential operators, and exact solutions. More systematic and advanced mathematics
is developed in Chapter 2.

1.1 History: first examples of solutions on invariant subspaces

1.1.1 Five models from gas dynamics

Example 1.1 (Ovsiannikov solutions) In 1948, L.V. Ovsiannikov [455] showed
that the study of spatial transonic flows of ideal polythropic gas leads to the following
quasilinear elliptic-hyperbolic equation∗ in IR3:


u ≡ ux x + uyy = [(u − 1)2]zz ≡ F[u], (1.1)

where u = u(x, y, z) is the reduced projection of the flow velocity on the z-axis.
Equation (1.1) is hyperbolic in the domain {(x, y, z) ∈ IR3 : u(x, y, z) > 1} and is
elliptic in {u < 1}. Ovsiannikov detected its exact solutions in the following form:

u(x, y, z) = 1+ u0(x, y)+ u1(x, y)z + 1
12 u2(x, y)z2. (1.2)

Substituting this expression into (1.1) and equating the coefficients of 1, z, and z2

(projections onto these functions) to zero yields that the functions u0(x, y), u1(x, y),
and u2(x, y) satisfy the following system of elliptic PDEs in IR2:{


u0 = 1
3 u2u0 + 2u2

1,

u1 = u2u1,

u2 = u2

2.
(1.3)

Actually, existence of such solutions as (1.2), (1.3) reflects the straightforward fact

∗ We put boxes around the main PDEs possessing solutions on invariant subspaces.
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that the linear subspace defined by the span W3 = L{1, z, z2} is invariant under the
nonlinear operator F in (1.1), in the sense that

for any u ∈ W3, F[u] ∈ W3 (or F[W3] ⊆ W3).

This invariance of W3 under F is understood, as in standard linear algebra.
Of course, the system of three PDEs (1.3) is not easy to study in general, but it

is a low-dimensional system for three functions defined in IR2, unlike the original
PDE (1.1) that is posed in IR3. Moreover, the last equation for u2 is independent of
the others and can be studied separately.† Once this has been solved and a suitable
function u2(x, y) has been determined, the rest of (1.3) yields a system of linear
elliptic PDEs for u0 and u1 that can be studied by standard techniques.

This class of Ovsiannikov’s solutions, as well as applied problems of analytical
fluid mechanics [29] and other important applications in combustion theory [594],
stimulated mathematical interests to such canonical semilinear elliptic PDEs


u = f (u), (1.4)

with a given nonlinear function f (u). The typical power nonlinearity is f (u) = ±u p ,
with the exponent p > 1, or f (u) = |u|p−1u for solutions u of changing sign. In
elliptic theory, two classes of problems were most popular:

(i) the Dirichlet problem in a bounded domain � ⊂ IR N , with u = 0 on the boundary
∂�, and

(ii) the problem in the whole space IR N .

In the former case, for f (u) = −u p , the famous Sobolev critical exponent occurs

pS = N+2
N−2 for N ≥ 3 (pS = ∞ for N = 1, or 2).

The global and local properties of solutions are completely different in the subcrit-
ical, p < pS , and the supercritical, p > pS , ranges. In the critical case, p = pS ,
there exists the explicit Loewner–Nirenberg solution [400]

u(x) =
[

N(N−2)λ
2

N−2

N(N−2)+λ
4

N−2 |x |2

](N−2)/2
,

where λ > 0 is arbitrary. The questions of existence, nonexistence, and multiplicity
of solutions for equation (1.4) have been actively studied in general elliptic theory
during the last forty years. We refer to classical papers [331, 464] and to Mitidieri–
Pohozaev [425] for history, references, and a systematic treatment of the nonexis-
tence problem via the nonlinear capacity approach.

Example 1.2 (Von Mises solutions) Consider the potential equation of the 1D flow
of a compressible gas

�t t + 2�x�xt + a�x x + b�t�x x + c(�x)
2�x x = 0, (1.5)

where a, b, and c are constants. R. von Mises introduced the following class of exact

† L.V. Ovsiannikov was the supervisor, who proposed the equation 
u = u2 in a bounded domain to
S.I. Pohozaev in 1958 [467], that led to “Pohozaev’s Identities” (1965) [464] in elliptic theory.
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solutions of (1.5) (this is mentioned in Titov [553], we have not succeeded in tracing
out the original von Mises work):

�(x, t) = C1(t)+ C2(t)x + C3(t)x
2. (1.6)

Plugging (1.6) into (1.5) yields an ODE system for the expansion coefficients {Ci },
C ′′1 = −2C2C ′2 − 2aC3 − 2bC3C ′1 − 2cC2

2C3,

C ′′2 = −4(C2C3)
′ − 2bC3C ′2 − 8cC2C2

3 ,

C ′′3 = −2(4+ b)C3C ′3 − 8cC3
3 .

(1.7)

Similar to the example above, the finite expansion (1.6) indicates that the oper-
ator on the left-hand side of (1.5) composed of linear, quadratic, and cubic terms
preserves the 3D subspace

W3 = L{1, x, x2}.
The last equation for C3 in (1.7) can be solved independently in terms of Jacobi
elliptic functions.

In view of differential manipulations with expansion coefficients in square prod-
ucts on the right-hand side of (1.7), it is relevant to call W3 an invariant module,
which in Algebra [373, Ch. III] is used as a generalization of linear vector spaces
with a field replaced by a ring; see Section 2.8. For simplicity, we sometimes keep
using the term subspace if no confusion is likely.

Example 1.3 (Guderley solutions) Consider the potential equation for transonic
flow written as

�yy + N−1
y �y = (γ + 1)�x�x x in {x > 0, y > 0}, (1.8)

where N = 1 or 2 and γ = cp
cv

> 1 is the fixed constant, called the adiabatic
exponent. From Guderley’s book [267, p. 65]: “The solution of the exact potential
equation of the flow in the throat of DE LAVAL nozzle has been obtained by MEYER

[422] in the form of a series expansion. We shall show that the first term of this expan-
sion represents the exact solution of the equation for transonic flow.” K.G. Guderley
presented two explicit solutions of (1.8),

�(x, y) = c
2 x2 + c2

2 (γ + 1)xy2 + c3

24 (γ + 1)2y4 for N = 1,

�(x, y) = c
2 x2 + c2

4 (γ + 1)xy2 + c3

64 (γ + 1)2y4 for N = 2;

see [267, p. 66, 69] (we keep the original notation).
These explicit Guderley’s solutions belong to the subspace W3 = L{1, x, x2}

which is invariant under the quadratic operator F[�] = �x�x x given on the right-
hand side of (1.8). In addition, Guderley described properties of solutions

�(x, y) = x3 f (y)

belonging to the 1D invariant subspace L{x3} of F . “The exponent of x could then be
chosen such that the powers of x would cancel out from the equation,” [267, p. 69].
Such solutions were also studied by H. Görtler [259].

These results altogether are expressed by saying that operator F admits the 4D
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invariant subspace
W4 = L{1, x, x2, x3}

with exact solutions

�(x, y) = C1(y)+ C2(y)x + C3(y)x2 + C4(y)x3

governed by the eighth-order DS
C ′′1 + N−1

y C ′1 = 2(γ + 1)C2C3,

C ′′2 + N−1
y C ′2 = 2(γ + 1)

(
2C2

3 + 3C2C4
)
,

C ′′3 + N−1
y C ′3 = 18(γ + 1)C3C4,

C ′′4 + N−1
y C ′4 = 18(γ + 1)C2

4 .

Guderley’s solutions correspond to C4(y) ≡ 0. The last equation is the radial version
of the quadratic elliptic PDE (1.4) with f (u) = 18(γ + 1)u2.

Example 1.4 (Titov’s solutions) It was shown by S.S. Titov [555] that the same
quadratic operator F[�] = �x�x x admits another 3D subspace

W3 = L{1, x
3
2 , x3

}
.

This gives Titov’s solutions of (1.8)

�(x, y) = C1(y)+ C2(y)x
3
2 + C3(y)x3 ∈ W3,

where the coefficients of the expansion satisfy the following ODE system:
C ′′1 + N−1

y C ′1 = 9
8 (γ + 1)C2

2 ,

C ′′2 + N−1
y C ′2 = 45

4 (γ + 1)C2C3,

C ′′3 + N−1
y C ′3 = 18(γ + 1)C2

3 .

Example 1.5 (Ryzhov–Shefter solutions) The Lin–Reissner–Tsien (LRT) equa-
tion

−ϕxϕx x + ϕyy + ϕzz − 2ϕxt = 0 in IR3 × IR (1.9)

was discovered in 1948 [395] as a model for oscillation of a thin profile in transonic
flow. O.S. Ryzhov and G.M. Shefter derived this equation later “...for the investiga-
tion of nonstationary processes in the vicinity of the surface of transition through the
speed of sound in Laval nozzles when the dimensions and form of the critical cross
section change with time sufficiently rapidly,” [505, p. 939]. In cylindrical coordi-
nates {

z = r cosϑ,
y = r sin ϑ,

(1.9) takes the form

−ϕxϕx x + ϕrr + 1
r ϕr + 1

r2 ϕϑϑ − 2ϕxt = 0, (1.10)

and admits the following exact Ryzhov–Shefter solutions, 1959 (we keep the original
notation from [505]):

ϕ = λ(t)x + 1
2 A(t)[x −
(t)]2 + h1(ϑ, t)[x −
(t)]r2 + h2(ϑ, t)r4. (1.11)
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The expansion coefficients solve the following PDE system:
λt + 1

2 Aλ = A
t ,

2At + A2 = h1ϑϑ + 4h1,
2h1t + h1 A = h2ϑϑ + 16h2.

As shown in Example 1.3, solutions (1.11) are associated with the invariant sub-
space W3 = L{1, x, x2} of the operator ϕxϕx x . There exists its 4D invariant exten-
sion W4 = L{1, x, x2, x3}. There are other more detailed invariant interpretations.
For instance, taking the subspace W6 = L{1, x, r2, x2, xr2, r4} and hence solutions

ϕ(x, r, ϑ, t) = C1 + C2x + C3x2 + C4r2 + C5xr2 + C6r4

yields the following system of PDEs for the coefficients {Ci (ϑ, t)}:
2C2C3 = 4C4 + C4ϑϑ − 2C2t ,
4C2

3 = 4C5 + C5ϑϑ − 4C3t ,
2C3C5 = 16C6 + C6ϑϑ − 2C5t ,
C1ϑϑ = 0, C2ϑϑ = 0, C3ϑϑ = 0.

(1.12)

Solutions (1.11) then correspond to

C1 = 1
2 A
2, C2 = λ− A
, C3 = 1

2 A, C4 = −h1
, C5 = h1, C6 = h2.

The general solution of (1.12) is as follows:

C1 = a1(t)ϑ + b1(t), C2 = a2(t)ϑ + b2(t), C3 = a3(t)ϑ + b3(t),

C4 = K1 cos 2ϑ + K2 sin 2ϑ + αϑ2 + βϑ + γ,
C5 = K̃1 cos 2ϑ + K̃2 sin 2ϑ + α̃ϑ2 + β̃ϑ + γ̃ ,
C6 = (µ1 + ν1ϑ) cos 2ϑ + (µ2 + ν2ϑ) sin 2ϑ,

where K1,2(t), K̃1,2(t) are arbitrary functions, and other coefficients α(t), β(t), ...
are expressed by functions {ai (t), bi (t)} by substituting into the PDE (1.10). Other
PDE systems occur by studying (1.10) on the 3D invariant subspace L{1, r2, r4}.

1.1.2 Nonlinear wave equation

Example 1.6 (Quadratic wave equation) Ovsiannikov [456, p. 286] performed a
classification of group-invariant solutions of the following system:{

uy = vx ,
uux = vy,

which also describes transonic gas flows. This is equivalent to the quadratic wave
equation uyy = (uux)x , or, replacing y �→ t ,

utt = F[u] ≡ 1
2 (u

2)x x in IR × IR. (1.13)

Olver and Rosenau introduced the following explicit solution of (1.13):

u(x, t) = αt2 + at + b ±√2α x, where α > 0, (1.14)
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that is “...not obtainable by partial invariance by appending the second order side
condition

utt = 2α, (1.15)

where α is a constant,” [448, p. 112].
These solutions belong to the 3D invariant subspace W3 = L{1, x, x2} preserved

by operator F in (1.13). Plugging

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 ∈ W3 (1.16)

into the PDE yields the following DS:
C ′′1 = C2

2 + 2C1C3,
C ′′2 = 6C2C3,

C ′′3 = 6C2
3 .

(1.17)

The solutions (1.14) then correspond to the particular case C3(t) ≡ 0, where the
second ODE is C ′′2 = 0. Choosing C2(t) = ±

√
2α yields C ′′1 = 2α, whence come

solutions (1.14). On the other hand, taking C2(t) = αt (α �= 0) leads to the new
polynomial solution

u(x, t) = α2

12 t4 + at + b + αtx .

Fixing now a nontrivial solution C3(t) = 1
t2 of (1.17) yields Euler’s ODE for C2,

t2C ′′2 = 6C2 �⇒ C2(t) = At3 + B
t2 , (1.18)

where A and B are arbitrary constants of integration. Finally, solving the first ODE
yields a more general family of solutions on W3 (D, E ∈ IR),

u(x, t) = A2t8

54 + ABt3

2 + B2

4t2 + Dt2 + E
t +

(
At3 + B

t2

)
x + 1

t2 x2.

For α = 0 in the side condition (1.15), the explicit solution [448, p. 112] is

u(x, t) = ±(t + a)
√

x + b,

which, after translation, belongs to the 1D invariant subspace W1 = L{√x}. The
dynamics on W1 with solutions u(x, t) = C(t)

√
x is described by the ODE

C ′′ = 0.

1.1.3 Quadratic Boussinesq-type equations

Example 1.7 (Olver–Rosenau solution) In 1986, Olver and Rosenau [448] consid-
ered the following Boussinesq-type equation:

utt = F[u] ≡ ux x + β(u2)x x + γ ux xt t in IR × IR, (1.19)

which was introduced by Boussinesq in 1871 [74] for studying long waves in shallow
water. This equation also describes longitudinal waves in solid rods with effects of
lateral inertia included. In [448], the following Olver–Rosenau solution of (1.19) was
constructed:

u(x, t) = − 1
2β + 3γ

2βt2 + 1
2βt2 x2, (1.20)
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where parameters of translations in x and t are not included. Therefore, this is a
two-parameter family of solutions.

Such a simple solution initiated a discussion on general invariant group origins of
exact solutions. Written in the form of

u(x, t) = − 1
2β + ϕ(t)ψ(x), with ϕ(t) = 1

2βt2 and ψ(x) = x2 + 3γ,

the solution looks like a standard affine version of a separable solution
(
i.e., becom-

ing separable after shifting in u by − 1
2β

)
, and hence is expected to be obtained by

local group approaches dealing with groups of scaling or other non-classical meth-
ods. Nevertheless, it was proved that ”...the entire two-parameter family could not
have come from a single local group,” [448, p. 111].

Concerning the invariant subspace treatment of (1.20), it is easy to observe the
subspace W2 = L{1, x2} that is invariant under the quadratic operator F in (1.19).
As done in Example 1.6, we take solutions (1.16) on the extended subspace W3, and,
on substitution into the PDE, obtain the system

C ′′1 = 2C3 + 2βC2
2 + 4βC1C3 + 2γC ′′3 ,

C ′′2 = 12βC2C3,

C ′′3 = 12βC2
3 .

As far as explicit solutions are concerned, the last equation gives

C3(t) = 1
2βt2 .

Substituting into the second ODE yields Euler’s equation (1.18). Finally, the follow-
ing solutions of the Boussinesq-type equation (1.19) are obtained:

u(x, t) = − 1
2β + βA2t8

27 + β ABt3 + ( 3γ
2β + βB2

2

) 1
t2

+ Dt2 + E
t +

(
At3 + B

t2

)
x + 1

2βt2 x2.

Bearing in mind translations in x and t , this is a six-parameter family of solutions
which, for A = B = D = E = 0, gives the Olver–Rosenau solution (1.20).

1.1.4 Examples from reaction-diffusion-absorption theory

We next turn the attention to nonlinear reaction-diffusion-absorption PDEs which
have given a record number of various exact solutions, including those on invariant
subspaces. The basic nonlinear diffusion operator in such parabolic equations was
already derived by J. Boussinesq [77] , who, in 1904, studied non-stationary flows of
soil water under the presence of free surface, and derived the PDE

ut = γ (uux)x . (1.21)

Here, γ = k
m is a positive constant, where k is the filtration coefficient and m is the

porosity of soil. The function u = u(x, t) is the pressure of the ground water. Here,
(1.21) is the quadratic porous medium equation (PME). Boussinesq also derived the
exact solution of the PME (1.21) in separate variables

u(x, t) = X (x)T (t).
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u(x, t)

t1

t2

t3

t4

x

0 < t1 < t2 < t3 < t4

0
l−l

Figure 1.1 Evolution described by the Boussinesq solution (1.22).

Plugging into (1.21) yields two independent ODEs for functions T (t) and X (x),

T ′
T 2 = γ (X X ′)′

X = −λ,

where λ > 0 is the parameter of separation. Solving the first equation leads to the
so-called Boussinesq solution

u(x, t) = X (x)
λt , (1.22)

where X ≥ 0 is a solution of the ODE

γ (X X ′)′ = −λX.

Solving this ODE on a bounded interval x ∈ (−l, l) with the zero Dirichlet boundary
conditions

X (−l) = X (l) = 0

yields the Boussinesq ordered regime that describes the time decay of solutions of
the initial-boundary value problem for the PME on a bounded interval. See Figure
1.1. The fact that the Boussinesq solution (1.22) is asymptotically stable and that the
corresponding decay rate O

( 1
t

)
for t � 1 is correct for general solutions of the PME

for arbitrary bounded initial data u(x, 0) = u0(x) ≥ 0 was proved much later in the
1970s; see details and references in [245, Ch. 2].

For the PME in the whole space, i.e., for x ∈ IR (the Cauchy problem), the fa-
mous Zel’dovich–Kompaneetz–Barenblatt (ZKB) solution is key for stability analy-
sis as t → ∞. We have discussed the ZKB solution in the Introduction (see (0.23))
and refer to a great amount of literature in [245] concerning the foundation of PME
theory.

More complicated spatio-temporal patterns can occur for the PME with extra low-
order operators, such as reaction or absorption ones. There are many models of this
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type. For instance, the PME with a nonlinear convection term

ut = γ (uux)x + βuux ,

also known as the diffusion-convection Boussinesq equation, occurs in the various
fields of petroleum technology and ground water hydrology. Let us begin with an-
other example, where the interesting exact solutions on invariant subspaces arise.

Example 1.8 (PME with absorption: Kersner’s solution) Consider the exact so-
lution constructed by R. Kersner in the middle of the 1970s; see references in [333,
334]. At that time, Kersner was a PhD student supervised by A.S. Kalashnikov, who
performed in the 1960s-70s the pioneering research of localization-extinction phe-
nomena for nonlinear degenerate parabolic PDEs, including equations from diffusion-
absorption theory. Key results are reflected in his fundamental survey [309]. Among
Kalashnikov’s other PDE models, there is a famous diffusion-absorption equation
with the critical absorption exponent

vt =
(
vσ vx

)
x − v1−σ , (1.23)

where σ > 0 is a parameter. In filtration theory, according to G.I. Barenblatt, absorp-
tion power-like terms−v p describe the phenomenon of seepage on a permeable bed.
The Cauchy problem for equation (1.23) admits weak nonnegative compactly sup-
ported solutions. The first explicit localized solutions of such diffusion-absorption
equations were constructed by L.K. Martinson and K.B. Pavlov in 1972; see details
and references in [509, p. 21].

Let us derive explicit solution of (1.23) using the invariant subspaces. Introducing
the pressure variable from filtration theory, u = vσ , yields a PDE with the quadratic
differential operator and a constant sink,

ut = F[u] ≡ uux x + 1
σ (ux )

2 − σ. (1.24)

Clearly, operator F[u] preserves the 2D subspace W2 = L{1, x2}, since

F[C1 + C2x2] = 2C1C2 − σ + 2
(
1+ 2

σ

)
C2

2 x2 ∈ W2.

Therefore, (1.24) admits solutions

u(x, t) = C1(t)+ C2(t)x
2, (1.25)

with the expansion coefficients C1(t) and C2(t) satisfying the dynamical system{
C ′1 = 2C1C2 − σ,

C ′2 = 2
(
1+ 2

σ

)
C2

2 .
(1.26)

Integrating the uncoupled second ODE and substituting

C2(t) = − σ
2(σ+2)t

into the first equation yields Kersner’s solution (1976)

u(x, t) = [A0t−
σ

σ+2 − σ(σ+2)
2(σ+1) t − σ

2(σ+2)t x2
]
+ ,

where A0 is an arbitrary constant. Despite its elementary structure, the solution is
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u(x, t)

t1

t2

t3t4
x

0 < t1 < t2 < t3 < t4 < T

0

Figure 1.2 Finite-time extinction for the PME with absorption (1.23) described by Kersner’s
solutions (1.25); T is the extinction time, so u(x, T ) ≡ 0.

not group-invariant if A0 �= 0. The positive part [·]+ determines weak solutions of
(1.24) with finite interfaces, so they describe interesting and principal phenomena of
non-Darcy interface propagation with turning points, extinction patterns, quenching,
etc. Figure 1.2 shows this unusual extinction behavior. Similar explicit solutions also
exist for the multi-dimensional PME with absorption in IRN× IR+ (Martinson, 1979,
[414])

ut = ∇ · (uσ∇u)− u1−σ ,

and for other extended PME-type models, see [509, p. 103].

Example 1.9 (Oron–Rosenau solution) In 1986, A. Oron and P. Rosenau consid-
ered the following fast diffusion equation with absorption [453]:

vt = (
√
v )x x −

√
v, (1.27)

which, in plasma physics, describes energy diffusion in a strong magnetic field in the
presence of energy sinks due to plasma radiation. It was shown that (1.27) admits the
Oron–Rosenau solution

v(x, t) = B2(x)
(
C0
∫ dx

B2(x)
− t
)2
, (1.28)

where C0 is a constant and B(x) satisfies the ODE

B ′′ + 2B2 − B = 0.

Bearing in mind the idea of invariant subspaces, we derive the quadratic version
of (1.27) by setting v = u2, to obtain the PDE

F[u] ≡ 2uut = ux x − u. (1.29)
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In the space of smooth functions of the time-variable t , operator F in (1.29) admits
the 2D subspace

W2 = L{1, t}.
Since

F[C1 + C2t] = 2C1C2 + 2C2
2 t ∈ W2,

there exist the corresponding solutions

u(x, t) = C1(x)+ C2(x)t ∈ W2. (1.30)

On substitution into (1.29), we obtain the following fourth-order DS:{
C ′′1 − C1 = 2C1C2,

C ′′2 − C2 = 2C2
2 .

Since C2C ′′1 = C1C ′′2 , on integration, we have

C2C ′1 = C1C ′2 + C0,

with a constant C0. Integrating again yields

C1(x) = C0C2(x)
∫ dx

C2
2 (x)

,

which yields the solution (1.28) with B = −C2.

Example 1.10 (Dyson–Newman solution) In 1980, W.I. Newman [437] consid-
ered the following quasilinear parabolic equation:

ut = F[u] ≡ 1
2 (uux)x + u(1− u). (1.31)

It is a quasilinear extension of the Kolmogorov–Petrovskii–Piskunov–Fisher (KPPF)
equation of population genetics,

ut = 1
2 ux x + u(1− u),

which, since the 1930s, induced several fundamental directions in mathematical the-
ory of nonlinear parabolic PDEs. The original KPP-paper (1937) [353] contains a
number of famous mathematical ideas and results.

As stated in [437], using the idea from a personal communication with F. Dyson
(1978), Newman looked for solutions composed of the hyperbolic cosine. To be pre-
cise, in terms of invariant subspaces, solutions take the form

u(x, t) = C1(t)+ C2(t) cosh x, (1.32)

belonging to the subspace W2 = L{1, cosh x} which is invariant under the quadratic
operator F in (1.31). Then the expansion coefficients satisfy the DS{

C ′1 = −C2
1 − 1

2 C2
2 + C1,

C ′2 = − 3
2 C1C2 + C2.

(1.33)

Unlike a simpler quadratic DS (1.26), system (1.33) cannot be solved explicitly,
but is integrated in quadratures, giving interesting properties of finite-front propa-
gation and evolution to traveling waves in such nonlinear media. In particular, this
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u(x, t)
t1

t2

t3

1

x

t1 < t2 < t3

0

Figure 1.3 Formation of a traveling wave in the quasilinear model (1.31) described by Dyson–
Newman’s solution (1.32).

Dyson–Newman’s solution propagates for t � 1 with the asymptotic speed 1
2 . See

Figure 1.3. There are other applications of such solutions in the theory of reaction-
absorption PDEs; see [509, p. 106] and references therein.

Example 1.11 (Blow-up: Galaktionov’s solution) The semilinear heat equation

ut = F[u] ≡ ux x + (ux)
2 + u2 (u > 0), (1.34)

which was introduced to PDE theory in 1979 (see [245, Ch. 9] for history), plays a
decisive role in blow-up combustion problems. This is the only semilinear reaction-
diffusion equation of the second order that generates the regional blow-up (S-regime)
for which bell-shaped solutions blow up on spatial intervals of the length 2π , [509,
p. 294]. The change u = ln v transforms (1.34) into a semilinear heat equation,

vt = vx x + v ln2 v, (1.35)

where the reaction term, q(v) = v ln2 v, is “almost” linear as v → +∞, but, never-
theless, satisfies the Osgood criterion of blow-up,∫∞ ds

q(s) <∞.

Therefore, solutions of (1.35) with sufficiently large initial data blow-up in finite time
creating unusual localized blow-up patterns. Mathematical analysis of such blow-up
localization phenomena uses specific stability techniques from singular perturbation
theory and exact solutions; see details in books [509, Ch. 4] and [245, Ch. 9].

Operator F[u] in (1.34) preserves the 2D subspace W2 = L{1, cos x} [232, 217].
Thus, for arbitrary C1 and C2,

F[C1 + C2 cos x] = C2
1 + C2

2 + (2C1 − 1)C2 cos x ∈ W2.

This gives the exact solutions of (1.34) of the form

u(x, t) = C1(t)+ C2(t) cos x, (1.36)
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u(x, t)

t1

t2

t3
t4

−1

x

0 < t1 < t2 < t3 < t4 < T

0 π−π 2π−2π

Figure 1.4 Non-monotone blow-up evolution of the invariant solutions (1.36), (1.37).

where the coefficients C1(t) and C2(t) satisfy the DS{
C ′1 = C2

1 + C2
2 ,

C ′2 = (2C1 − 1)C2.
(1.37)

This is not integrated explicitly and is studied on the phase-plane. In Figure 1.4 the
non-monotone with time behavior of such explicit solutions is shown. These describe
two singularities: the initial collapse of Dirac’s delta-type initial data posed at points
±2πk, and finite-time blow-up afterwards. It is curious that this exact 2π-periodic
(in x) Galaktionov’s solution (1.36), (1.37) [217, 232] is not localized and blow-up
globally as t → T− at any point x ∈ IR. The blow-up rate is strikingly non-uniform
[245, p. 242]: as t → T−, at maxima x = 0 and minima points x = ±π , respectively,

u(0, t) = 1
T−t (1+ o(1))→ +∞ and

u(±π, t) = 1
2 | ln(T − t)|(1 + o(1))→+∞.

Nevertheless, the intersection comparison with such exact solutions guarantees that
any bell-shaped blow-up solution of (1.34) is spatially effectively localized as t →
T− on intervals of length 2π , [245, p. 258].

Example 1.12 (Parabolic system: King’s first solution) The following system of
two second-order PDEs: {

vt = (wvx − vwx )x ,
wt = vx x ,

(1.38)
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is a simple model for the solid-state diffusion of a substitutional impurity by a va-
cancy mechanism; see King [340] and references therein. In this paper, among other
results on explicit and similarity solutions, it was shown that (1.38) admits exact
polynomial King’s first solution

v(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3,

w(x, t) = D1(t)+ D2(t)x + D3(t)x2 + D4(t)x3,

where the expansion coefficients solve the DS
C ′1 = 2(D1C3 − C1 D3),
C ′2 = 2(D2C3 − C2 D3)+ 6(D1C4 − C1 D4),
C ′3 = 6(D2C4 − C2 D4),
C ′4 = 4(D3C4 − C3 D4),
D′1 = 2C3, D′2 = 6C4, D′3 = 0, D′4 = 0.

Here, operators in the right-hand sides of (1.38) preserve the 4D subspace W4 =
L{1, x, x2, x3}. For the operator F1[v,w] = (wvx − vwx )x from the first equation,
this means that F1 : W4 × W4 → W4.

The second polynomial expansion detected in [340] is as follows:

v(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3 + C5(t)x4,
w(x, t) = D1(t)+ D2(t)x + D3(t)x2,

with the resulting DS 

C ′1 = 2(D1C3 − C1 D3),
C ′2 = 2(D2C3 − C2 D3)+ 6D1C4,
C ′3 = 6D2C4 + 12D1C5,
C ′4 = 4D3C4 + 12D2C5,
C ′5 = 10D3C5, D′1 = 2C3,
D′2 = 6C4, D′3 = 12C5.

Note that components v and w belong to different subspaces,

v ∈ W5 = L{1, x, x2, x3, x4}, w ∈ W3 = L{1, x, x2}, so F1 : W5 × W3 → W5.

Example 1.13 (Fast diffusion equation: King’s second solution) The following
construction is also due to King [342]. Using in the fast diffusion equation

vt =
(
v− 3

2 vx
)

x

the pressure transformation u = v−3/2 reduces it to the equation with quadratic
nonlinearities

ut = F[u] ≡ uux x − 2
3 (ux)

2. (1.39)

This possesses exact King’s second solution

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3.
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Plugging this into the PDE yields the DS
C ′1 = 2C3C1 − 2

3 C2
2 ,

C ′2 = 6C1C4 − 2
3 C2C3,

C ′3 = 2C2C4 − 2
3 C2

3 ,
C ′4 = 0.

This means that the quadratic operator F in (1.39) admits the 4D subspace

W4 = L{1, x, x2, x3} (
and F : W4 → W3 = L{1, x, x2}).

The final two examples represent some remarkable invariant subspaces of the max-
imal dimension (a crucial theoretical aspect to be studied in the next chapter).

Example 1.14 (Reaction-diffusion equation: 5D polynomial subspace) Consider
now the quasilinear equation with the negative exponent σ = − 4

3 , corresponding to
the case of fast diffusion and a specific superlinear reaction term:

vt =
(
v− 4

3 vx
)

x + v
7
3 . (1.40)

Using the pressure transformation u = v−4/3 yields the quadratic PDE

ut = F[u] ≡ uux x − 3
4 (ux )

2 − 4
3 . (1.41)

It was shown in Galaktionov [220] that operator F preserves the 5D subspace

W5 = L{1, x, x2, x3, x4},
so (1.41) admits the solution

u(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3 + C5(t)x4,

with the coefficients {Ci (t)} satisfying the DS
C ′1 = 2C1C3 − 3

4 C2
2 − 4

3 ,
C ′2 = 6C1C4 − C2C3,

C ′3 = 12C1C5 + 3
2 C2C4 − C2

3 ,
C ′4 = 6C2C5 − C3C5,

C ′5= 2C3C5 − 3
4 C2

4 .

This fifth-order DS is not easy to study, but some particular features of such exact
solutions can be obtained and used for comparison with general solutions of (1.40).
The equation (1.40) admits single point blow-up, and the exact solutions describe
interesting generic blow-up patterns.

Example 1.15 (Reaction-absorption equation: 5D trigonometric subspace) Con-
sider an equation with the same fast diffusion and a different absorption term,

vt =
(
v−

4
3 vx
)

x − v−
1
3 . (1.42)

The pressure transformation u = v−4/3 now yields the quadratic PDE

ut = F[u] ≡ uux x − 3
4 (ux)

2 + 4
3 u2. (1.43)
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Here, F admits the 5D subspace spanned by trigonometric functions,

W5 = L{1, cos(λx), sin(λx), cos( λx
2 ), sin( λx

2 )
}
, where λ = 4√

3
.

Therefore, the PDE (1.43) has exact solutions on W5 [220]

u(x, t) = C1 + C2 cos(λx)+ C3 sin(λx)+ C4 cos( λx
2 )+ C5 sin( λx

2 ),

where the coefficients {Ci (t)} solve the DS
C ′1 = 4

3 C2
1 − 4

(
C2

2 + C2
3

)− 1
2 C2

3 ,

C ′2 = − 8
3 C1C2 + 1

2

(
C2

4 − C2
5

)
,

C ′3 = − 8
3 C1C3 + C4C5,

C ′4 = 4
3 C1C4 − 4(C3C5 + C2C4),

C ′5 = 4
3 C1C5 − 4(C2C5 − C3C4).

This DS is more difficult, though some key asymptotic properties of orbits can be
detected that describe interface and extinction phenomena for (1.42).

1.2 Basic ideas: invariant subspaces and generalized separation of variables

1.2.1 Invariant subspaces

Following the above examples, consider a general first-order evolution PDE

ut = F[u], (1.44)

where F is a kth-order ordinary differential operator,

F[u] ≡ F
(
x, u, ux , ..., Dk

x u
)
.

Here, F(·) is a given sufficiently smooth function and Dx denotes ∂
∂x .

Let { fi (x), i = 1, ..., n} be a finite set of n ≥ 1 linearly independent functions,
and let Wn denote their linear span,

Wn = L{ f1(x), ... , fn(x)}.
Wn is an n-dimensional linear subspace consisting of their linear combinations with
real coefficients,

u =
n∑

i=1
Ci fi , for any vector C = {Ci } ∈ IRn.

The subspace Wn is said to be invariant under the given operator F if

F[Wn] ⊆ Wn,

and then F is said to preserve or admit Wn . As in linear algebra, this means

F
[ n∑

i=1
Ci fi (x)

] = n∑
i=1

	i (C1, ... ,Cn) fi (x) for any C ∈ IRn,

where {	i} are the expansion coefficients of F[u] ∈ Wn in the basis { fi }.
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It follows that if the linear subspace Wn is invariant under F, then equation (1.44)
has solutions of the form

u(x, t) =
n∑

i=1
Ci (t) fi (x), (1.45)

where the coefficients {Ci (t)} satisfy the dynamical system

C ′i (t) = 	i (C1(t), ... ,Cn(t)), i = 1, ..., n.

The PDE (1.44), which is an infinite-dimensional DS, being restricted to the invariant
subspace Wn becomes an n-dimensional dynamical system.

1.2.2 First extension: second-order hyperbolic equations

A first extension is obvious: for the second-order evolution PDE

utt = F[u], (1.46)

there exist solutions (1.45) governed by the 2nth-order DS

C ′′i (t) = 	i (C1(t), ... ,Cn(t)), i = 1, ..., n. (1.47)

There are other easy generalizations to higher-order PDEs. For instance, if operator
P is a linear annihilator of the subspace Wn , i.e., P : Wn → {0}, then, for arbitrary
operators F1, the PDE

utt = F[u]+ (P[u]) F1[u]

on Wn reduces to the same DS (1.47).

1.2.3 Second extension: invariant subspaces for delay-PDEs

If, for a given operator F , an invariant subspace Wn has been detected, one can find
other types of equations of differential, integral, or functional types, which can be
restricted to Wn . Another simple extension is to consider the functional delay-PDE
corresponding to (1.44),

ut (t) = F[u(t − 1)], (1.48)

where the right-hand side is defined for the solution u(·, t − 1) with the 1-retarded
time-argument. The discrete evolution mechanism of such equations is well-suited
for various applications. Differential delay models appear in population genetics,
bioscience problems, control theory, electrical networks with lossless transmission
lines, etc.; see Remarks. Theory of functional delay-ODEs, to say nothing of the
delay-PDEs, is not as advanced as that of standard differential equations. In partic-
ular, the questions of symmetries, constraints, reductions, and exact solutions are
less developed, and, in many cases, it is not clear how to translate related notions to
non-local-in-time functional operators.

In the present case, we arrive at the same invariant conclusion: if F : Wn → Wn ,
then (1.48) admits exact solutions (1.45) for which the expansion coefficients solve
the following system of delay-ODEs:

C ′i (t) = 	i (C1(t − 1), ... ,Cn(t − 1)), i = 1, ..., n.
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Delay-ODEs are infinite-dimensional DSs, which are difficult to study, but are sim-
pler than delay-PDEs (1.48).

1.2.4 Generalized separation of variables: first simple example

Let us present next an example explaining some features of the main problem of
determining invariant subspaces for a given nonlinear operator. Consider the standard
quadratic ordinary differential operator from reaction-diffusion theory

F[u] = α(ux x )
2 + βuux x + γ (ux)

2 + δu2, (1.49)

with arbitrary real parameters α, β, γ , and δ. Such operators occur in several appli-
cations that will be discussed later on. Consider a 2D subspace

W2 = L{1, f (x)}, (1.50)

where the first basic function is constant 1, and the set {1, f (x)} is assumed to be
linearly independent. Obviously, the simplest 1D subspace W1 = L{1} is invariant
under F , since

F[1] = δ ∈ W1.

Therefore, we need to determine a single second function f (x) from the invariance
condition

F[W2] ⊆ W2. (1.51)

Substituting into (1.49)

u = C1 + C2 f ∈ W2,

where C1 and C2 are arbitrary constants, yields

F[u](x) = δC2
1 + 2δC1C2 f (x)+ βC1C2 f ′′(x)+ C2

2 F[ f ](x).

The first two terms belong to W2. Consider the last two terms. Since C1C2 and C2
2

are independent, (1.51) is valid iff there exist parameters µ1,2 and ν1,2 such that f
satisfies the following overdetermined system of ODEs:{

f ′′ = µ1 + ν1 f,
F[ f ] = µ2 + ν2 f.

(1.52)

The second equation implies that Ŵ1 = L{ f } is also invariant if such an f exists for
µ2 = 0 (and ν2 �= 0). If µ2ν2 �= 0, then F : Ŵ1 → W2 and, in a natural sense, the
element f generates the 2D invariant subspace (1.50).

This procedure of determining admissible basis functions f (x) from an overde-
termined system of ODEs with several free parameters is called the generalized sep-
aration of variables (GSV). In the present case, the GSV can be performed easily,
since the first equation is linear and, clearly, for various values of parameters, there
are six types of functions,

f (x) ∈ {x, x2, cos λx, sin λx, coshλx, sinh λx}, with λ = constant �= 0. (1.53)

Substituting each of the functions f into the second equation in (1.52), we obtain the
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set (a linear subspace) of quadratic operators preserving subspace (1.50). We do not
do this here; however, we do present the results of more general computations in the
next section.

For 3D and multi-dimensional subspaces, the GSV leads to complicated overde-
termined systems of ODEs that do not admit a simple treatment. Even for a general
2D subspace L{ f1, f2} with two unknown basis functions, the GSV becomes essen-
tially more involved. In our further study of invariant subspaces in Chapter 2, we will
use another approach associated with Lie–Bäcklund symmetries of linear ODEs, and
will return to the general theory of GSV in Section 7.3.

The above GSV reveals typical basis functions (1.53) of the invariant subspaces
(1.50) for quadratic operators. These are:

(i) polynomial,
(ii) trigonometric, and
(iii) exponential subspaces,

which will be studied later on.

On related aspects of finite commutative rings. Consider the operator F in (1.49)
in the linear space K of real analytic functions of the single variable x . The quadratic
polynomial structure of (1.49) suggests introducing the commutative product

u ∗ v = αux xvx x + β
2

(
uvx x + vux x

)+ γ uxvx + δuv (1.54)

for any u, v ∈ K . In this case, K becomes a commutative ring with the product
(1.54), which is not associative in general.

It is interesting to interpret nilpotents and idempotents of this ring. To this end, for
instance, consider the corresponding hyperbolic PDE (1.46). Then a nilpotent ε(x)
satisfying

ε ∗ ε = 0, i.e., F[ε] = 0,

is indeed a stationary solution of (1.46). On the other hand, any idempotent e(x)
satisfying

e ∗ e = e, i.e., F[e] = e,

is associated with the separate variables solution

u(x, t) = ϕ(t)e(x), where ϕ′′(t) = ϕ2(t).

For instance, the blow-up function ϕ(t) = 6(T − t)−2 can be chosen.
We are now looking for 2D subrings A of K , and will describe where a link to

overdetermined systems of ODEs is coming from. Assume that, in a subring A, there
exists a generating element p such that p and p∗p are linearly independent. Actually,
it can be shown that this is the case for any subring; see references in Remarks. This
implies that p satisfies the system of two ODEs{

p ∗ (p ∗ p) = µ1 + ν1(p ∗ p),
(p ∗ p) ∗ (p ∗ p) = µ2 + ν2(p ∗ p),

with four free parameters, as above. It is a system of two fourth-order nonlinear
ODEs for p, which is difficult to study for general quadratic operators F .
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1.3 More examples: polynomial subspaces

In the last three sections we present further examples of PDEs with quadratic, cubic,
and other polynomial operators preserving linear subspaces of various dimensions.
These results are introductory to more advanced theory developed in the subsequent
chapters.

1.3.1 Classification and first examples of polynomial subspaces

We study second-order (k = 2) quadratic and cubic operators admitting subspaces
that are composed of polynomials of the fixed order n,

Wn = L{1, x, ..., xn−1}, with n ≥ 2. (1.55)

Operators preserving such a given subspace form a linear space. In the next proposi-
tions, the bases of such linear spaces of nonlinear operators are described.

Proposition 1.16 Subspace (1.55) is invariant under the general quadratic operator
of the second order

F[u] = b6(ux x)
2 + b5uxux x + b4uux x + b3(ux )

2 + b2uux + b1u2 (1.56)

only in the following four cases:

(i) n = 2 with a 5D space spanned by operators

F1[u] = (ux x)
2, F2[u] = ux ux x ,

F3[u] = uux x , F4[u] = (ux )
2, F5[u] = uux ,

i.e., b1 = 0 in (1.56);

(ii) n = 3 with a 4D space spanned by

F1[u] = (ux x)
2, F2[u] = ux ux x , F3[u] = uux x , F4[u] = (ux)

2,

i.e., b1 = b2 = 0;

(iii) n = 4 with a 3D space spanned by

F1[u] = (ux x)
2, F2[u] = uxux x , F3[u] = uux x − 2

3 (ux)
2,

i.e., b1 = b2 = 0 and b3 = − 2
3 b4;

(iv) n = 5 with a 2D space spanned by

F1[u] = (ux x)
2 and F2[u] = uux x − 3

4 (ux)
2,

i.e., b1 = b2 = b5 = 0 and b3 = − 3
4 b4.

For n ≥ 6, no nontrivial operators (1.56) preserving subspace (1.55) exist.

Proof. For n ≤ 5, the proof is straightforward by plugging the finite sum expansion

u = C1 + C2x + ...+ Cn xn−1

into operator (1.56) and equating the coefficients of the expansion of F[u], corre-
sponding to higher-degree terms xl with l ≥ n, to zero. Any computer codes on
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algebraic manipulations in Maple, Matematica, MatLab, or Reduce, etc., are suit-
able for this analysis. The last negative statement for n ≥ 6 will follow from a more
general result to be proved in Section 2.2 (Theorem 2.8).

A similar approach applies to other propositions presented below for various op-
erators and subspaces.

Proposition 1.17 Subspace (1.55) is invariant under the general cubic operator of
the second order

F[u] = b10(ux x)
3 + b9(ux x)

2ux + b8(ux x)
2u + b7ux x(ux )

2

+ b6ux xuxu + b5ux xu2 + b4(ux)
3 + b3(ux)

2u + b2uxu2 + b1u3 (1.57)

only for the following three cases:

(i) n = 2 with an 8D space spanned by

F1[u] = (ux x)
3, F2[u] = ux (ux x)

2, F3[u] = u(ux x)
2,

F4[u] = (ux )
2ux x , F5[u] = uuxux x , F6[u] = u2ux x ,

F7[u] = (ux)
3, F8[u] = u(ux)

2;
(ii) n = 3 with a 6D space spanned by

F1[u] = (ux x)
3, F2[u] = ux (ux x)

2,
F3[u] = u(ux x)

2, F4[u] = (ux )
2ux x ,

F5[u] = ux [2uux x − (ux)
2], F6[u] = u[2uux x − (ux)

2];
(iii) n = 4 with a 2D space spanned by

F1[u] = (ux x)
3 and F2[u] = ux x

[
uux x − 2

3 (ux)
2
]
.

For n ≥ 5, no nontrivial cubic operators (1.57) preserving subspace (1.55) exist.

Example 1.18 (Quadratic PDEs) As an illustration of case (iii) in Proposition 1.16,
we consider a fully nonlinear PDE

ut = α(ux x )
2 + βuxux x + γ

[
uux x − 2

3 (ux)
2
]
. (1.58)

Nonlinearities (ux x)
2 and (ux x)

3 are typical for the dual porous medium equations
in filtration theory; see references in [49]. In this case, (1.58) has solutions

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3,
C ′1 = 2γC1C3 − 2

3 γC2
2 + 2βC2C3 + 4αC2

3 ,

C ′2 = 6γC1C4 + 6βC2C4 − 2
3 γC2C3 + 4βC2

3 + 24αC3C4,

C ′3 = 2γC2C4 − 2
3 γC2

3 + 18βC3C4 + 36αC2
4 ,

C ′4 = 18βC2
4 .

The last equation with β > 0 and C4(0) > 0 implies finite-time blow-up,

C4(t) = C4(0)
1−18βC4(0)t

→ +∞ as t → T−, (1.59)

where T = [18βC4(0)]−1. If C4(0) < 0, then

C4(t) = − |C4(0)|
1+18β|C4(0)|t → 0 as t →+∞


