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Preface

 

The treatment of uncertainty in analysis, design, and decision making is going
through a paradigm shift from a probabilistic framework to a generalized framework
that includes both probabilistic and nonprobabilistic methods. Presently, analysts,
including engineers and scientists, recognize the presence of uncertainty and treat
it formally. For example, engineers analyze and model uncertainty in many of their
specialty fields, such as the development of building codes, analysis of natural
hazards (e.g., floods, wind, and earthquakes), decision making in infrastructure
maintenance expenditure, homeland security and protection of assets, and environ-
mental risks. Similarly, scientists analyze and model uncertainty in many of their
specialty fields, such as the diagnostics of diseases, health effects of food additives
and toxins, pharmaceutical research for developing new drugs, understanding of
physical phenomena, prediction and forecasting in economy and weather, and socio-
political changes, trends, and evolutions. The interest in uncertainty will continue
to increase as we continue to design complex systems and deal with new technolo-
gies, systems, and materials, and are increasingly required to make critical decisions
with potentially high adverse consequences. Also, political, societal, and financial
requirements are increasing, thereby adding new dimensions of complexity in meet-
ing the societal demands. The expectations of society are becoming larger than ever,
and its tolerance to errors is diminishing. The aggregate of these factors produces
an environment that requires the formal consideration of uncertainty in decision
making at all levels in a systems framework.

Problems that are commonly encountered by engineers and scientists require
decision making under conditions of uncertainty, lack of knowledge, and ignorance.
The lack of knowledge and ignorance can be related to the definition of a problem,
the alternative solution methodologies and their results, and the nature of the solution
outcomes. Based on present trends, analysts will need to solve complex problems
with decisions made under conditions of limited resources, thus necessitating
increased reliance on the proper treatment of uncertainty and the use of expert
opinions. This book is therefore intended to better prepare future analysts, as well
as assist practitioners in understanding the fundamentals of knowledge and igno-
rance, how to model and analyze uncertainty, and how to select appropriate analytical
tools for a particular problem.

Traditionally, intelligence is defined as the ability to understand and adapt to
the environment by using a combination of inherited abilities and learning experi-
ences. This ability certainly includes the analysis of uncertainty and making deci-
sions under conditions of uncertainty. This is true of many organisms — from ants
to aardvarks to humans. Any organism that survives the remorseless rigors of evo-
lution is sufficiently intelligent for its role in life. Likewise, machines need to be
sufficiently intelligent to make decisions suitable for their functions and adapt to
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and deal with the presence of uncertainty. Any collectives of human decision makers
and their decision-aiding machines must make, in the aggregate, good decisions.
But these decisions are almost always made under conditions of uncertainty.

The term 

 

uncertainty

 

 can be viewed as a component of ignorance. A taxonomic
breakdown of ignorance can reveal many components having a strong association
with human cognition of information and knowledge construction philosophies and
practices. Uncertainty and information as a pair, and ignorance and knowledge as
another pair, are studied in this book since they are tightly interconnected, as the
former component of each pair describes a deficiency in the respective latter com-
ponent, while the latter component of a pair can be viewed as the respective capacity
available to reduce the respective former component. The identification and treatment
of this duality of the respective components of a pair offer opportunities to enhance
understanding of underlying problems or issues and our ability to make decisions.
This book covers primary components of ignorance and their impact on our practice
and our ability to make decisions. This book gives an overview of the current state
of uncertainty modeling and analysis, and covers emerging theories with emphasis
on practical applications in engineering and the sciences.

The complexity of a particular decision situation could increase substantially by
the inclusion of uncertainties, thus requiring, in many cases, the reliance on experts
to shed light on the situation. The complexity of our society and its knowledge base
requires its members to specialize and become experts to attain recognition and reap
rewards to the society and themselves. We commonly deal with or listen to experts
on a regular basis, such as weather forecasts by weather experts, stock and financial
reports by seasoned analysts, suggested medication or procedures by medical pro-
fessionals, policies by politicians, and analyses by world affairs experts. We know
from our own experiences that experts are valuable sources of information and
knowledge, and can also be wrong in their views rendered to us. Expert opinions,
therefore, can be considered to include or constitute nonfactual information. The
fallacy of these opinions might disappoint us, but does not surprise us since issues
that require experts tend to be difficult or complex, with a lot of uncertainty, and
sometimes with divergent views. The nature of some of these complex issues could
only yield views that have subjective truth levels; therefore, they allow for contra-
dictory views that might all be somewhat credible. In political and economic world
affairs and international conflicts, such issues are of common occurrence. For exam-
ple, we have recently witnessed the debates that surrounded the membership of the
People’s Republic of China to the World Trade Organization in 1999, or experts
airing their views on the insoluble Arab–Israeli affairs for the last century, or
analysts’ views on the war in Iraq in 2003, or future oil prices in 2005. These issues
have a common feature of the presence of complexity and uncertainties requiring
the use of expert opinions. Such issues and situations are also encountered in
engineering, the sciences, medical fields, social research, stock and financial markets,
and the legal practice.

Experts, with all their importance and value, can be viewed as double-edged
swords. Not only do they bring in a deep knowledge base and thoughts, but also
they could infuse biases and pet theories. The selection of experts, elicitation, and
aggregation of their opinions should be performed and handled carefully by recog-
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nizing uncertainties associated with this type of information, and sometimes with
skepticism. A primary reason for using expert opinions is to deal with uncertainty
in selected technical issues related to a system of interest. Issues with significant
uncertainty, issues that are controversial or contentious, issues that are complex,
issues with limited objective information, or issues that can have a significant effect
on risk are most suited for expert opinion elicitation. The value of the expert opinion
elicitation comes from its initial intended uses as a heuristic tool, not a scientific
tool, for exploring vague and unknowable issues that are otherwise inaccessible. It
is not a substitute to scientific, rigorous research.

Current techniques for visualizing information commonly do not include degrees
of certainty (or the degrees and types of ignorance) associated with individual or
aggregated information. For example, for a commander in a battlefield to command,
she or he needs to choose. To choose is to decide — almost always on the basis of
imperfect information — and momentous decisions require knowledge of threats
with a degree of certainty that might not be a requisite for decisions less momentous
than waging war. Battlespace visualization techniques should allow both information
and uncertainty to be portrayed effectively and grouped intuitively. Intelligent agents
are promising technologies that may facilitate visualization of data and information
uncertainty. Civilian applications can also be constructed to meet societal needs,
such as Internet information metatagging for uncertainty and uncertainty visualiza-
tion of search results.

In preparing this book, the authors strove to achieve the following objectives:

1. To develop a philosophical foundation for the meaning, nature, and hier-
archy of knowledge and ignorance

2. To provide background information and historical developments related
to knowledge, ignorance, and the elicitation of expert opinions

3. To provide a systems framework for the analysis and modeling of
uncertainty

4. To summarize and illustrate methods for encoding data and expressing
information

5. To provide and illustrate methods for uncertainty and information
synthesis

6. To develop and illustrate methods for uncertainty measures and related
criteria for knowledge construction

7. To examine and illustrate methods for uncertainty propagation in
input–output systems

8. To guide the readers of the book on how to effectively elicit opinions from
experts in such a way that would increase the truthfulness of the outcomes

9. To provide methods for visualizing uncertainty
10. To provide practical applications in these areas based on recent studies

The book introduces fundamental concepts of classical sets, fuzzy sets, rough
sets, probability, Bayesian methods, interval analysis, fuzzy arithmetic, interval prob-
abilities, evidence theory, open-world models, sequences, and possibility theory.
These methods are presented in a style tailored to meet the needs of practitioners in
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many specialty fields, such as engineering, physical and social sciences, economics,
law, and medicine. The book emphasizes the practical use of these methods, and
establishes their limitations, advantages, and disadvantages. Although the applica-
tions at the end of the book were developed with emphasis on engineering, techno-
logical, and economics problems, the methods can also be used to solve problems
in other fields, such as social sciences, law, insurance, business, and management.

 

STRUCTURE, FORMAT, AND MAIN FEATURES

 

This book was written with a dual use in mind, as both a self-learning guidebook
and a required textbook for a course. In either case, the text has been designed to
achieve important educational objectives of introducing theoretical bases, guidance
and applications of the analysis, and modeling of uncertainty.

The eight chapters of the book lead the readers from the definition of needs, to
the foundations of the concepts covered in the book, to theory and guidance and
applications. The first chapter provides an introduction that discusses systems,
knowledge (its sources and acquisition), and ignorance (its categories as bases for
modeling and analyzing uncertainty). The practical use of concepts and tools pre-
sented in the book requires a framework and a frame of thinking that deals holistically
with problems and issues as systems. Background information on system modeling
is provided also in Chapter 1. Appendix A is called out in Chapter 1 to offer a
historical perspective on knowledge.

Chapter 2 presents the fundamentals of encoding data and expressing informa-
tion using classical set theory, fuzzy sets, and rough sets. Basic operations for these
sets are defined and demonstrated. Fuzzy relations and fuzzy arithmetic can be used
to express and combine collected information. The fundamentals of probability
theory, possibility theory, interval probabilities, and monotone measures are sum-
marized as they relate to uncertainty analysis. Examples are used in this chapter to
demonstrate the various methods and concepts.

Chapter 3 covers uncertainty and information synthesis based on a mission-
based system definition. The chapter starts by introducing measure theory and
monotone measures and includes possibility theory and Dempster–Shafer theory of
evidence, and then compares and contrasts them with probability theory with some
of its variations and special applications, including linguistic probabilities, Bayesian
probabilities, imprecise probabilities (including interval probabilities), interval
cumulative distribution functions, and probability bounds. This chapter also dis-
cusses various multivariate dependence types and their models and describes fuzzy
measures and fuzzy integrals.

Chapter 4 provides definitions and classification of uncertainty measures, includ-
ing nonspecificity measures, such as the Hartley, evidence, possibility, and fuzzy
sets’ nonspecificity measures; entropy-like measures, such as Shannon entropy,
discrepancy measure, and entropy measures for evidence theory of dissonance and
confusion; and fuzziness measure. The chapter also includes applications relating
to combining expert opinions.

Chapter 5 introduces uncertainty-based criteria for the construction of knowledge
that include a minimum uncertainty criterion, maximum uncertainty criterion, and
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uncertainty invariance criterion, with demonstrative examples of aggregating expert
opinions. The chapter also introduces methods for open-world analysis, including
statistical estimators for sequences and patterns, such as the Laplace model, add-c
model, and Witten–Bell model, and an analytical estimator based on the theory of
evidence, i.e., the transferable belief model for evidential reasoning and belief
revision. Applications to diagnostics are discussed.

Chapter 6 focuses on a class of models in engineering and the sciences of relating
input variables to output variables for a system, building on knowing the underlying
physical laws, such as material mechanics, and utilizing constraints, such as bound-
ary conditions. The numerical computations might be based on finite element meth-
ods that are used to model the entire system. The model complexity can be increased
by considering nonlinearity in behavior and other special considerations, such as
bifurcation, instability, logic rules, and across-discipline or across-physics interac-
tions. This chapter also presents methods for propagating uncertainty in input–output
systems. The methods presented in this chapter are illustrated using simple linear
systems. These methods form the basis for potential extensions to complex cases.

Chapter 7 provides guidance on using expert opinion elicitation processes. These
processes can be viewed as variations of the Delphi technique, with scenario analysis
based on uncertainty models, ignorance, knowledge, information and uncertainty
modeling related to experts and opinions, and nuclear industry experiences and
recommendations. This chapter also demonstrates the applications of expert opinion
elicitation by summarizing results from practical examples.

Chapter 8 provides techniques for visualizing uncertainty in information. Visu-
alization techniques are needed to allow both information and uncertainty to be
portrayed effectively and grouped intuitively. This need is demonstrated, and icons
are introduced for uncertainty and ignorance that are called uncerticons and ignori-
cons, respectively.

In each chapter of the book, computational examples are given in the individual
sections of the chapter, with more detailed engineering applications provided in
some of the key chapters. Also, each chapter includes a set of exercise problems
that cover topics discussed in the chapter. The problems were carefully designed to
meet the needs of instructors in assigning homework and the readers in practicing
the fundamental concepts.

For the purposes of teaching, the book can be covered in one semester. The
chapter sequence can be followed as a recommended sequence. However, if needed,
instructors can choose a subset of the chapters for courses that do not permit a
complete coverage of all chapters, or a coverage that cannot follow the order
presented. In addition, selected chapters can be used to supplement courses that do
not deal directly with uncertainty modeling and analysis, such as risk analysis,
reliability assessment, expert opinion elicitation, economic analysis, systems anal-
ysis, litigation analysis, and social research courses. Chapters 1 and 2 can be covered
concurrently, or preferably, Chapter 2 covered after Chapter 1. Appendix A is called
out in Chapter 1 to offer historical perspective on knowledge. Chapter 3 builds on
some of the materials covered in Chapter 2. Chapter 4 builds on some of the
materials covered in Chapter 3. Chapter 5 builds on Chapters 3 and 4 and should
be covered after completing Chapter 4. Chapter 6 requires knowledge of materials
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covered in Chapters 2 and 3. Chapter 7 provides guidance on using expert opinion
elicitation and can be introduced independently. Chapter 8 also can be introduced
after Chapter 1. The book also contains an extensive bibliography at its end. The
accompanying schematic diagram (Figure 1) illustrates possible sequences of these
chapters in terms of their interdependencies.

The authors invite users of the book to send any comments on its structure
or content to the e-mail address ba@umd.edu. These comments will be used in
developing future editions of the book. Also, users of the book are invited to visit
the website of the Center for Technology and System Management at the Univer-
sity of Maryland, College Park, to find information posted on various projects
and publications that can be related to uncertainty and risk analysis. The URL
address is http://www.ctsm.umd.edu.
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Systems, Knowledge, 
and Ignorance

 

The greatest enemy of knowledge is not IGNORANCE, it is the ILLUSION of
knowledge.

 

— Stephen Hawking

 

1.1 DATA ABUNDANCE AND UNCERTAINTY

 

Intelligence is defined as the ability to understand and adapt to the environment by
using a combination of inherited abilities and learning experiences. This ability
certainly includes the analysis of uncertainty and making decisions under conditions
of uncertainty. The definition of intelligence is applicable to living systems — from
ants to aardvarks to humans — as well as machines. Any organism that survives the
remorseless rigors of evolution is sufficiently intelligent for its role in life. Likewise,
machines need to be sufficiently intelligent to make decisions suitable for their
functions and adapt to and deal with the presence of uncertainty. Any collectives of
human decision makers and their decision-aiding machines must make, in the aggre-
gate, good decisions.

The ability of a living system or machine to make appropriate decisions can
be taken as a measure of intelligence. This decision-making ability requires the
processing of data and information, construction of knowledge, and assessment of
associated uncertainties and risks. The analysis and modeling of uncertainty
enhances this ability of making appropriate decisions, thereby increasing intelli-
gence. This need to model and analyze uncertainties also stems from the awareness
that data abundance does not necessarily give us certainty, and sometimes can lead
to error in decision making, with undesirable outcomes due to either overwhelming,
confusing situations or a sense of overconfidence leading to an improper informa-
tion use. The former situations can be an outcome of the limited capacity of a
human mind in some situations to deal with complexity and data abundance,
whereas the latter can be attributed to a higher order of ignorance, called the
ignorance of self-ignorance.

As our society advances in many scientific dimensions and invents new tech-
nologies, human knowledge is being expanded through observation, discovery, infor-
mation gathering, and propositional logic. Also, the access to newly generated
information is becoming easier than ever as a result of computers and the Internet.
We have entered an exciting era where electronic libraries, online databases, and
information on every aspect of our civilization, such as patents, engineering products,
literature, mathematics, physics, medicine, philosophy, and public opinions, are
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becoming a mouse-click or a few clicks away. In this era, computers can generate
even more information from abundantly available online data. Society can act or
react based on this information at the speed of its generation, creating sometimes
nondesirable situations, for example, price or political volatilities. There is a great
need to assess uncertainties associated with information and quantify our state of
knowledge or ignorance. The accuracy, quality, and incorrectness of such informa-
tion, and knowledge incoherence are coming under focus by philosophers, scientists,
engineers, technologists, decision and policy makers, regulators and lawmakers, and
our society as a whole. As a result, uncertainty and ignorance analyses are receiving
a lot of attention by our society. We are moving from emphasizing the state of
knowledge expansion and creation of information to a state that includes knowledge
and information assessment by critically evaluating them in terms of relevance,
completeness, nondistortion, coherence, and other key measures.

Our society is becoming less forgiving and more demanding from our knowledge
base. The use of noncredible information, leading to questionable decisions, could
place decision makers on the defensive. On the other hand, untimely processing and
use of any available information, even if it might be inconclusive, can be treated
worse than a lack of knowledge and ignorance. In the January 2003 State of the
Union address, U.S. President George W. Bush stated, “The British government has
learned that Saddam Hussein recently sought significant quantities of uranium from
Africa.” A few months later, after the conclusion of the war on Iraq in May 2003,
senior White House officials conceded the information that former Iraqi president
Hussein tried to buy uranium from Niger was inaccurate, but they said Bush’s State
of the Union speech was based on a broader range of intelligence. The argument
that Iraq was trying to reconstitute its nuclear weapons program was a key point in
the administration’s rationale for war. These statements and decisions were made
despite the March 2003 International Atomic Energy Agency dismissal as forgeries
documents that alleged Iraq may have tried to buy 500 tons of uranium from Niger.
The news elevated the problem to scandalous levels for this action on uncertain
information, although inaction on uncertain intelligence, such as the “intelligence
failure” in the case of the 2001 World Trade Center attacks, was treated as scandalous
and was investigated due to its unacceptability. Any inaction due to noncredible
information can be easily taken by our demanding society to be as erroneous as an
action based on noncredible information — hence the need for uncertainty assess-
ment, modeling, and analysis.

Making appropriate decisions commonly entails risks requiring risk control and
management. Although people have control over the levels of some technology-
caused risks to which they are exposed, reduction of risk needs to be pursued by
governments and corporations in response to increasing demands by our society.
Risk reduction generally entails a reduction of benefits to people, thus posing a
serious dilemma. Moreover, the public and policy makers are required, with increas-
ing frequency, to subjectively weigh benefits against risks and assess associated
uncertainties when making decisions. Not using a systems or holistic approach,
vulnerability exists for overpaying to reduce one set of risks that may introduce
offsetting or larger risks of another kind. Such risk-based decisions require uncer-
tainty modeling and analysis.
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The objective of this chapter is to present a systems framework for uncertainty
modeling and analysis, and to discuss knowledge, its sources and acquisition, and
ignorance and its categories. The practical use of concepts and tools presented in
the book requires a framework and a frame of thinking that deals holistically with
problems and issues as systems.

 

1.2 SYSTEMS FRAMEWORK

1.2.1 S

 

YSTEMS

 

 D

 

EFINITIONS

 

 

 

AND

 

 M

 

ODELING

 

The definition and articulation of problems in engineering and the sciences is a critical
task in the processes of analysis and design, and can be systematically performed
within a systems framework. “The mere formulation of a problem is often far more
essential than its solution,” Albert Einstein said. “What we observe is not nature itself,
but nature exposed to our method of questioning,” Werner Karl Heisenberg said.
Commonly, an engineering project can be modeled to include a segment of its
environment that interacts significantly with it to define an underlying system. The
boundaries of the system are drawn based on the mission, goals, and objectives of
the analysis, and the class of performances (including failures) under consideration.

A generalized systems formulation allows scientists and engineers to develop
a complete and comprehensive understanding of the nature of a problem, and
underlying physical phenomena, processes, and activities. In a system formulation,
an image or a model of an object that emphasizes some important and critical
properties is defined. System definition is usually the first step in an overall meth-
odology formulated for achieving a set of objectives. This definition can be based
on observations at different system levels that are established based on these
objectives. The observations can be about the different elements (or components)
of the system, interactions among these elements, and the expected behavior of the
system. Each level of knowledge that is obtained about an engineering problem
defines a system to represent the project or the problem. As additional levels of
knowledge are added to previous ones, higher epistemological levels of system
definition and description are attained that, taken together, form a hierarchy of the
system descriptions.

Informally, what is a system? The term 

 

system

 

 originates from the Greek word

 

systma

 

, which means an organized whole. According to

 

 Webster’s Dictionary

 

, a

 

system

 

 is defined as “a regularly interacting or interdependent group of items forming
a unified whole,” such as a solar system, school system, or system of highways. For
scientists and engineers, the definition can be stated as “a regularly interacting or
interdependent group of items forming a unified whole that has some attributes of
interest.” Alternatively, a system can be defined as a group of interacting, interrelated,
or interdependent elements that together form a complex whole that can be a complex
physical structure, process, or procedure of some attributes of interest. All parts of
a system are related to the same overall process, procedure, or structure, yet they
are different from one another and often perform completely different functions. It
follows from these definitions that the term 

 

system

 

 stands, in general, for a 

 

set of
things 

 

and a 

 

relation among the things

 

. It can be formally stated as
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S

 

 = (

 

T

 

, 

 

R

 

) (1.1)

where 

 

S

 

,

 

 T

 

,

 

 

 

and 

 

R 

 

denote, respectively, a 

 

system

 

,

 

 

 

a

 

 set of things

 

,

 

 

 

and a 

 

relation 

 

(or
possibly a set of relations) defined on 

 

T

 

. This 

 

commonsense expression

 

 by the pair
(

 

T

 

, 

 

R

 

) seems overly simple. Its simplicity, however, is only on the surface. While
the definition is very simple in its form, it contains symbols, 

 

T

 

 and 

 

R

 

, that are
extremely rich in content. 

 

T

 

 stands not only for a single set with arbitrary elements,
finite or infinite, but also, for example, for a power set, a power set of a power set,
etc., or any arbitrary set of sets. Furthermore, things in 

 

T

 

 may have special properties
by which systems are distinguished from one another. These properties can be
referred to as 

 

thinghood properties

 

.

 

 

 

The content of symbol 

 

R

 

 is even richer. For each
set 

 

T

 

, with its special characteristics, the symbol stands for any conceivable relation
defined on 

 

T

 

. Formally, a relation is a subset of some Cartesian product of given
sets. Even if 

 

T 

 

is only a single set, 

 

R

 

 stands for a relation from a family of distinct
types of relations: 

 

R

 

 

 

⊂

 

 

 

T 

 

×

 

 T

 

 (

 

binary relations

 

), 

 

R

 

 

 

⊂

 

 

 

T

 

 

 

×

 

 

 

T

 

 

 

×

 

 

 

T

 

 (

 

ternary relations

 

),
etc. When 

 

T

 

 is a set of sets, the variety of distinct types of relations virtually explodes.
For example, when 

 

T

 

 consists of just two sets, say 

 

T = 

 

{

 

X

 

, 

 

Y

 

},

 

 

 

the number of types
of relations grows quite rapidly, including, for example, the following types:

 

R

 

 

 

⊂

 

 

 

X

 

 

 

×

 

 

 

Y

 

(1.2a)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 

 

Y

 

(1.2b)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

Y 

 

×

 

 

 

Y

 

) (1.2c)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

X 

 

×

 

 

 

Y

 

) (1.2d)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

Y

 

) 

 

×

 

 (

 

X 

 

×

 

 

 

Y

 

) (1.2e)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

×

 

 

 

X

 

 

 

×

 

 

 

X

 

) 

 

×

 

 (

 

Y

 

 

 

×

 

 

 

Y

 

 

 

×

 

 

 

Y

 

) (1.2f)

 

R

 

 

 

⊂

 

 (

 

X

 

 

 

× Y) × (X × Y) × (X × Y) (1.2g)

Although these few examples illustrate the great variety of possibilities repre-
sented by the single symbol R, they still do not capture the full richness of this
symbol. The form of the Cartesian product on which a relation is defined is only
one property of the relation. Other properties depend on the nature of elements of
the relevant Cartesian product that are included in the relation. All these properties
of relations can be subsumed under the suggestive name systemhood properties.

The simplicity of the commonsense expression of a system is, paradoxically, its
weakness as well as its strength. The definition is weak because it is too general
and, consequently, of little pragmatic value. It is strong because it encompasses all
other, more specific definitions of systems. Due to its full generality, the common-
sense expression qualifies for a criterion by which we can determine whether any
given object is a system or not: an object is a system if and only if it can be described
in the form that conforms to Equation 1.1.
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Once we have the capability of distinguishing objects that are systems from
those that are not, it is natural to define systems science as a science whose objects
of study are systems. It is significant that this definition refers to systems, but not
to any particular types of systems, such as physical systems, biological systems,
social systems, or economic systems. This implies that these distinctions of systems,
which are expressed solely in terms of the things involved, are not significant in
systems science. This means, in turn, that systems science is concerned with sys-
temhood properties of systems rather than their thinghood properties.

Classical science, which is predominately oriented to thinghood properties,
and systems science, which is predominately oriented to systemhood properties,
are two distinct perspectives from which scientific inquiry can be approached.
These perspectives are complementary. Although classical scientific inquiries are
almost never devoid of issues involving systemhood properties, these issues are
not of primary interest in classical science and have been handled in an opportu-
nistic, ad hoc fashion. There is no place in classical science for a comprehensive
and thorough study of the various properties of systemhood. The systems perspec-
tive thus cannot be fully developed within the confines of classical science. It was
liberated only through the emergence of systems science. While the systems per-
spective was not essential when science dealt with simple systems, its significance
increases with the growing complexity of systems of our current interest. From
the standpoint of the disciplinary classification of classical science, systems science
is clearly cross-disciplinary.

Systems are traditionally grouped in various overlapping categories, such as:

1. Natural systems, e.g., river systems and energy systems
2. Human-made systems that can be embedded in the natural systems, e.g.,

hydroelectric power systems and navigation systems
3. Physical systems that are made of real components occupying space, e.g.,

automobiles and computers
4. Conceptual systems that could lead to physical systems
5. Static systems that are without any activity, e.g., bridges subjected to dead

loads
6. Dynamic systems, e.g., transportation systems
7. Closed- or open-loop systems, e.g., a chemical equilibrium process and

logistic systems, respectively.

Blanchard (1998) provides additional information on these categories.

1.2.2 REALISM AND CONSTRUCTIVISM IN SYSTEMS THINKING

The emergence of systems science is from two different views about the nature of
knowledge: realism and constructivism. According to realism, a system that is
obtained by applying correctly the principles and methods of science represents
some aspect of the real world. This representation is only approximate, due to limited
resolution of our sensors and measuring instruments, but the relation comprising the
system is a homomorphic image of its counterpart in the real world. Using more
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6 Uncertainty Modeling and Analysis in Engineering and the Sciences

refined instruments, the homomorphic mapping between entities of the system of
concern and those of its real-world counterpart (the corresponding real system)
becomes also more refined, and the system becomes a better representation of its
real-world counterpart. Realism thus assumes the existence of systems in the real
world, which are usually referred to as real systems. It claims that any system
obtained by sound scientific inquiry is an approximate (simplified) representation
of a real system via an appropriate homomorphic mapping.

According to constructivism, all systems are artificial abstractions. They are not
made by nature and presented to us to be discovered, but we construct them by our
perceptual and mental capabilities within the domain of our experiences. The concept
of a system that requires correspondence to the real world is illusory because there
is no way of checking such correspondence. We have no access to the real world
except through experience. It seems that the constructivist view has become pre-
dominant, at least in systems science, particularly in the way formulated by von
Glasersfeld (1995). According to this formulation, constructivism does not deal with
ontological questions regarding the real world. It is intended as a theory of knowing,
not a theory of being. It does not require the denial of ontological reality. Moreover,
the constructed systems are not arbitrary: they must not collide with the constraints
of the experiential domain. The aim of constructing systems is to organize our
experiences in useful ways. A system is useful if it helps us to achieve some aims,
for example, to predict, retrodict, control, make proper decisions, etc.

1.2.3 TAXONOMY OF SYSTEMS

Since systems science is oriented to the study of systemhood properties, its aim is
to understand these properties as completely as possible. The following are key steps
in pursuing this aim:

1. Dividing the spectrum of conceivable systems into significant categories
defined in terms of systemhood properties

2. Studying individual categories of systems and their relationship
3. Organizing these categories into a coherent whole
4. Studying systems problems that emerge from the underlying set of orga-

nized systems categories
5. Studying methodological issues regarding the various types of systems

problems
6. Studying metamethodological issues emerging from systems methodology

A prerequisite for dividing systems by their systemhood properties into signif-
icant categories is developing a conceptual framework within which these properties
can properly be codified. Each framework determines the scope of systems con-
ceived. It captures some basic categories of systems, each of which characterizes a
certain type of knowledge representation, and provides a basis for further classifi-
cation of systems within each category. To establish firm foundations of systems
science, a comprehensive framework is needed to capture the full scope of system-
hood properties.
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1.2.3.1 Epistemological Categories of Systems

Several conceptual frameworks that attempt to capture the full scope of systems
currently conceived have been proposed by Klir (1985), Mesarovic and Takahara
(1975, 1988), Wymore (1976), and Zeigler (1976). In spite of differences in termi-
nology and in the way in which these frameworks evolved, they have essentially the
same expressive power. As an example, a particular framework developed by Klir
(1985) is described here, which is known in the literature as the general systems
problem solver (GSPS). The kernel of the GSPS is a hierarchy of epistemological
categories of systems, which represents the most fundamental taxonomy of systems.
The following is a brief outline of the basic levels in this hierarchy.

At the lowest level of the epistemological hierarchy, an experimental frame is
defined in terms of appropriate variables and their state sets (value sets). In addition,
some supporting medium (such as time, space, or population) within which the
variables change their states is also specified. Furthermore, variables may be clas-
sified as input and output variables.

An experimental frame (also called a source system) may be viewed as a data
description language. When actual data described in this language become avail-
able, we move to the next level in the hierarchy. Systems on this level are called
data systems.

When variables of an experimental frame are characterized by a relationship
among them, we move to a level that is still higher in the hierarchy. It is assumed
on this level that the relationship among the variables is invariant with respect to
the supporting medium involved. That is, it is time invariant, space invariant, space-
time invariant, population invariant, etc. The relationship may involve not only
variables contained in the experimental frame, but also additional variables defined
in terms of the former by specific translation rules in the supporting medium. When
the supporting medium is time, for example, we obtain lagged variables. Systems
on this level are called behavior systems. Some of these systems can also be char-
acterized conveniently as state transition systems.

A data system is represented by a behavior system if, under appropriate initial
or boundary conditions, the support-invariant relation of the latter can be utilized
for generating the data of the former. The generative capability of a behavior system
extends, of course, beyond any given data. That is, a behavior system is capable to
generate, for example, predictions or retrodictions of the variables involved. More-
over, it provides us with an explanation of the behavior of the variables within the
given supporting medium.

Climbing further up the hierarchy involves two principles of integrating systems
as components in larger systems. According to the first principle, several behavior
systems (or sometimes lower-level systems) that may share some variables or interact
in some other way are viewed as subsystems integrated into one overall system.
Overall systems of this sort are called structure systems. The subsystems forming a
structure system are often called its elements.

When elements of a structure system are themselves structure systems, this
overall system is called a second-order structure system. Higher-order structure
systems are defined recursively in the same way.
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8 Uncertainty Modeling and Analysis in Engineering and the Sciences

According to the second integrating principle, an overall system is viewed as
varying (in time, space, etc.) within a class of systems of any of the other types.
The change from one system to another in the delimited class is described by a
replacement procedure that is invariant with respect to the supporting medium
involved (time, space, etc.). Overall systems of this type are called metasystems.

In principle, the replacement procedure of a metasystem may also change. Then,
an invariant (changeless) higher-level procedure is needed to describe the change.
Systems of this sort, with two levels of replacement procedures, are called metasys-
tems of second order. Higher-order metasystems are then defined recursively in the
same way. Structure systems whose elements are metasystems are also allowed by
the framework, similarly as metasystems defined in terms of structure systems.

The key feature of the epistemological hierarchy is that every system defined
on some level in the hierarchy entails knowledge associated with all corresponding
systems on lower levels and, at the same time, contains some knowledge that is not
available in any of these lower-level systems.

The number of levels in the epistemological hierarchy is potentially infinite. In
practice, however, only a small number of levels is considered. For each particular
number of levels, the hierarchy is a semilattice. For five levels, for example, a part
of the semilattice is expressed by the Hasse diagram in Figure 1.1. The circles
represent the various epistemological categories of systems, and the arrows indicate
the ordering from lower to higher categories. Symbols E, D, and B denote experi-
mental frames (source systems), data systems, and behavior systems, respectively.
Symbol S, used as a prefix, stands for structure systems. For example, SD denotes
structure systems whose elements are data systems. Symbol S2 denotes structure
systems of second order. For example, S2B denotes structure systems of structure
systems whose elements are behavior systems. Symbols M and M2 denote metasys-
tems and metametasystems, respectively. The combination SM and MS denotes
structure systems whose elements are metasystems and metasystems whose elements
are structure systems, respectively. The diagram in Figure 1.1 describes only a part
of the first five levels in the epistemological hierarchy; it can be extended in an
obvious way to combinations such as S3B, S2MB, SMSB, M2SB, S2MB, etc.

Categories of systems captured by the epistemological hierarchy are actually
categories in the strong sense of mathematical category theory. It is useful to further
classify systems subsumed under each epistemological category by relevant meth-
odological distinctions. The aim of this classification is to capture the relationship
between classes of systems and methods applicable to problems associated with the
systems. Examples of methodological distinctions are those between systems based
on discrete variables and systems based on continuous variables, between determin-
istic and nondeterministic systems, and between dynamic and spatial systems.

In the subsequent sections, the source, data, generative, structure, and metasys-
tems are described and illustrated in Examples 1.1 and 1.2.

1.2.3.2 Source (or Experimental Frame) Systems

At the first level of knowledge, which is usually referred to as level 0, the system
is known as a source system. Source systems comprise three different components,

C6447_book.fm  Page 8  Tuesday, April 4, 2006  1:39 PM



Systems, Knowledge, and Ignorance 9

namely, object systems, specific image systems, and general image systems, as shown
in Figure 1.2. The object system constitutes a model of the original object. It is
composed of an object, attributes, and a backdrop. The object represents the specific
problem under consideration. The attributes are the important and critical properties
or variables selected for measurement or observation as a model of the original
object. The backdrop is the domain or space within which the attributes are observed.
The specific image system is developed based on the object. This image is built
through observation channels that measure the attribute variation within the back-
drop. The attributes when measured by these channels correspond to the variables
in the specific image system. The attributes are measured within a support set that
corresponds to the backdrop. The support can be either time or space, or can be
population. Combinations of two or more of these supports are also possible. Before
upgrading the system to a higher knowledge level, the specific image system can
be abstracted into a general format. A mapping function is utilized for this purpose
among the different states of the variables to a set of generals that is used for all
the variables.

There are some methodological distinctions that could be defined in this level.
Ordering is one of these distinctions that is realized within state or support sets. Any

FIGURE 1.1 Epistemological hierarchy of systems categories. E = experimental frame or
source system; D = data system; B = behavior system; SE, SD, SB = structure systems based
on source, data, and behavior systems, respectively; S2E, S2D, S2B = second-order structure
systems of the three types; ME, MD, MB = metasystems based on source, data, and behavior
systems, respectively; M2E, M2D, M2B = second-order metasystems of the three types; SME,
SMD, SMB = structure systems based on metasystems of the three types; MSE, MSD, MSB
= metasystems based on structure systems of the three types.
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10 Uncertainty Modeling and Analysis in Engineering and the Sciences

set can be either ordered or not ordered, and those that are ordered may be partially
ordered or linearly ordered. An ordered set has elements that can take real values,
or values on an interval or ratio scale. A partially ordered set has elements that take
values on an ordinal scale; for example, military ranks are partially ordered. A
nonordered set has components that take values on a nominal scale, such as gender
classification of people or political party affiliations of people. Distance is another
form of distinction, where the distance is a measure between pairs of elements of
an underlying set. It is obvious that if the set is not ordered, the concept of distance
is not valid. Continuity is another form of distinction, where variables or support
sets could be discrete or continuous. The classification of the variables as input or
output variables forms another distinction. Those systems that have classified
input–output variables are referred to as directed systems; otherwise, they are
referred to as neutral systems. The last distinctions that could be realized in this
level are related to the observation channels, which could be classified as crisp or
fuzzy, corresponding to nonvague and vague information channels, respectively. For
example, the number of hurricanes in a year hitting a region is uncertain, but takes
on discrete crisp counts, whereas the fit or comfort level associated with wearing a
piece of garment can only be measured in vague terms using linguistic terms such
as comfortable, not comfortable, or partly comfortable. Figure 1.3 summarizes
methodological distinctions realized in the first level of knowledge.

FIGURE 1.2 Source system components.
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1.2.3.3 Data Systems

The second level of a hierarchical system classification is the data system. The data
system includes a source system together with actual data used for the states of
variables for each attribute. The actual states of the variables at the different support
instances yield the overall states of the attributes. Special functions and techniques
are used to infer information regarding an attribute, based on the states of the
variables representing it. A formal definition of a data system could be expressed
as follows:

D = {S, a} (1.3)

where D = data system, S = the corresponding source system, and a = observed data
that specify the actual states of the variables at different support instances.

1.2.3.4 Generative Systems

At the generative knowledge level, support-independent relations are defined to
describe the constraints among the variables. These relations could be utilized in
generating states of the basic variables for a prescribed initial or boundary condition.
The set of basic variables includes those defined by the source system and possibly
some additional variables that are defined in terms of the basic variables. There are
two main approaches for expressing these constraints. The first approach consists
of a support-independent function that describes the behavior of the system. A
function defined as such is known as a behavior function. The second approach
consists of relating successive states of the different variables. In other words, this
function describes a relationship between the current overall state of the basic
variables and the next overall state of the same variables. A function defined as such
is known as a state transition function. For example, a state transition function can

FIGURE 1.3 Methodological distinctions of source systems.
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12 Uncertainty Modeling and Analysis in Engineering and the Sciences

be used to model repairable systems. Such systems can be assumed for the purpose
of demonstration to exit in either a normal, i.e., operating, state or failed state, as
shown in Figure 1.4. A system in a normal state makes transitions to either normal
states that are governed by its reliability level (i.e., it continues to be normal) or
failed states through failure. Once it is in a failed state, the system makes transitions
to either failed states that are governed by its repairable-ease level (i.e., it continues
to be failed) or normal states through repair. Therefore, four transition probabilities
are needed for the following cases:

• Normal-to-normal state transition
• Normal-to-failed state transition
• Failed-to-failed state transition
• Failed-to-normal state transition

The sum of probabilities for transitions originating from the same state must
add up to 1. These probabilities can be determined by testing the system or based
on analytical modeling of the physics of failure and repair logistics as provided by
Kumamoto and Henley (1996).

A generative system defined by a behavior function is referred to as a behavior
system, whereas if it is defined by a state transition function, it is known as a state
transition system. State transition systems can always be converted into equivalent
behavior systems, which makes the behavior systems more general.

The constraints among the variables at this level can be represented using many
possible views or perspectives that are known as masks. A mask represents the
pattern in the support set that defines sampling variables that should be considered.
The sampling variables are related to the basic variables through translation rules
that depend on the ordering of the support set. A formal definition of a behavior
system could be expressed as

EB = (I, K, fB) (1.4a)

where EB = the behavior system defined as the triplet of three items, I = the
corresponding general image system or the source system as a whole, K = the chosen
mask, and fB = the behavior function. If the behavior function is used to generate

FIGURE 1.4 A Markov transition diagram for repairable systems.
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data or states of the different variables, the sampling variables should be partitioned
into generating and generated variables. The generating variables represent initial
conditions for a specific generating scheme. The system in this form is referred to
as a generative behavior system. The formal definition for such a system could be
expressed as

EGB = (I, KG, fGB) (1.4b)

where EGB = the generative behavior system defined as the triplet of three items;
I = the corresponding general image system or the source system as a whole; KG =
the chosen mask partitioned into submasks, namely, a generating submask that
defines the generating sampling variables and a generated submask that defines the
generated variables; and fGB = the generative behavior function, which should relate
the occurrence of the general variables to that of the generating variables in a
conditional format.

Most engineering and scientific models, such as the basic Newton’s law of force
computed as the product of mass of an object and its acceleration, or computing the
stress in a rod under axial loading as the applied force divided by the cross-sectional
area of the rod, can be considered generative systems that relate basic variables such
as mass and acceleration to force, or axial force and area to stress, respectively. In
these examples, these models can be considered behavior systems.

Several methodological distinctions can be identified in this level. One of these
distinctions is the type of behavior function used. For nondeterministic systems
where variables have more than one potential state for the same support instant, a
degree of belief or a likelihood measure to each potential state in the overall state
set of the sampling variables should be assigned. They can be used to quantify
uncertainty using uncertainty measures, discussed in detail in Chapter 4. Each one
of these measures is considered to form a certain distinction within the generative
system. Probability distribution functions and possibility distribution functions are
widely used to construct behavior functions as introduced in Chapters 3 and 4. The
determination of a suitable behavior function for a given source system, mask, and
data is not an easy task. Potential behavior functions should meet a set of conditions
to be satisfactorily accepted. These conditions should be based on the actual con-
straints among the variables. They also relate to the degree of generative uncertainty
and complexity of the behavior system. Another distinction at this level could be
identified in relation to the mask used. If the support set is ordered, the mask is
known as memory dependent; otherwise, the mask is referred to as memoryless.
Figure 1.5 summarizes the different distinctions identified in this knowledge level.

1.2.3.5 Structure Systems

Structure systems are sets of smaller systems or subsystems, as previously discussed.
The subsystems could be source, data, or generative systems. These subsystems may
be coupled due to having common variables or due to interaction in some other
form. A formal definition of a structure system could be expressed as follows:
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14 Uncertainty Modeling and Analysis in Engineering and the Sciences

SEB = {(Vi, EB
i), for all i ∈ e} (1.5)

where SEB = a structure system whose elements are behavior systems, Vi = the set
of sampling variables for the element of the behavior system, EB

i = ith behavior
system, and e = the total number of elements or subsystems in the structure system
with all i that belong to e, i.e., for all i ∈ e.

1.2.3.6 Metasystems

Metasystems are introduced for the purpose of describing changes within a given
support set. The metasystem consists of a set of systems defined at some lower
knowledge level and some support-independent relation. Referred to as a replace-
ment procedure, this relation defines the changes in the lower-level systems. All the
lower-level systems should share the same source system. There are two different
approaches whereby a metasystem could be viewed in relation to the structure
system. The first approach is introduced by defining the system as a structure
metasystem. The second approach consists of defining a metasystem of a structure
system whose elements are behavior systems.

FIGURE 1.5 Example methodological distinctions for generative systems.
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EXAMPLE 1.1 SYSTEM DEFINITION OF CONSTRUCTION OPERATIONS

Construction management concerns itself, among other things, with the real-time
control of construction or production activities. However, in order to develop a control
system for a construction activity, this activity has to be suitably defined depending
on its nature and methods of control using a hierarchical control system (Abraham et
al., 1989; Ayyub and Hassan, 1992a, 1992b, 1992c). The hierarchical system classifi-
cation enables the decomposition of the overall construction activity into subsystems
that represent the different processes involved in each activity. Then each process could
be decomposed into tasks that are involved in performing the process. For construction
activities, a set theory framework is suitable for representing the variables of the
problem. The ability to infer information about the overall system, knowing the
behavior of its components, can be dealt with using special system prediction tech-
niques (Chestnut, 1965; Hall, 1962, 1989; Klir, 1969, 1985; Wilson, 1984). In this
example, levels of an epistemological hierarchy are defined for the purpose of real-
time control.

Source Systems

For the purpose of illustration, the construction activities of concrete placement are
considered and their knowledge level upgraded throughout the course of this example.
The first step in defining the system for these construction activities is to identify a
goal, in this case construction control by safely placing high-quality concrete effi-
ciently and precisely. This goal can be defined through some properties or attributes
of interest that can include safety, quality, productivity, and precision. Considering
only two attributes of construction activities, i.e., safety and quality, the variables or
factors that affect those attributes should be identified. Only two variables are assumed
to affect the safety attribute. These variables could be quantitatively or qualitatively
defined depending on their nature. For qualitative variables, linguistic terms are used
and can be modeled using fuzzy set theory (which is formally introduced in Chapter
2) to define the potential states, together with a suitable observation channel that yields
a quantitative equivalent for each state (Klir, 1985; Klir and Folger, 1988; Zimmerman,
1985). An example of this variable type is labor experience (v1), which is used herein.
This variable is assumed to have four potential states: fair, good, moderate, and
excellent. These linguistic measures can be defined using fuzzy sets. Using a scale of
0 to 10 for the level of experience, these measures can be defined as shown in Figure
1.6. The vertical axis in the figure represents the degree of belief that the corresponding
experience value belongs to the fuzzy sets of fair, good, moderate, or excellent
experience, where experience is on a scale of 0 to 10 (0 = absolutely no experience
and 10 = the absolute highest experience). A mathematical operator can then be defined
in order to get a quantitative equivalent for each state. A one-to-one mapping function
is used in order to define the corresponding general states of the variable (v1). The
second variable (v2) is the method of construction. This variable could have three
potential states, e.g., a traditional method, slip form method, and precast element
method. This is a crisp variable, and its observation channel is represented by an
engineer who decides which method should be used. A similar one-to-one mapping
function is used to relate the different construction methods to the corresponding
general states of the variable (v2).
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The next step in the definition of this system is the identification of the different
supports, i.e., backdrops. In this example, the supports include time, space, and pop-
ulation. The time support is needed in measuring the progress of the different variables
during the construction period. Assuming a construction period of 2 months with
weekly observations, the time support set has eight elements that correspond to the
weeks during the construction period. In other words, the elements are week 1, week
2, …, week 8. The space support is used in relating the current state of each variable
at a specific time support instant to a specific location in space within the system. As
an example, a space support set with elements that represent the type of structural
element under construction is considered. These elements are columns, beams, slabs,
and footings. Such a classification constitutes a space support set with four potential
elements. The population support is used to represent the performance of units having
the same structure with respect to the same variables. The population support set in
this example can represent the set of different crews involved in the construction
activity. This support set could have four potential elements: a falsework crew, a rebar
crew, a concreting crew, and a finishing crew. The overall support set, which represents
the domain within which any of the defined variables can change, is defined by the
Cartesian product of the three support sets. In other words, each variable is measured
at a specific time instant in a specific location for a specific working crew. Therefore,
the overall state of the attribute at a specific time instant is related to the performance
and location of the working crew at that time. This fine classification allows for a
complete identification of the reasons and factors that are responsible for a measured
state of an attribute. This process enables construction control, and results in much
more precise and accurate corrective actions. Table 1.1 summarizes different potential
states for each variable together with observation channels (oi), a specific variable (vi),
and corresponding general variables (vi′). This example is based on the assumption that
personnel with poor experience are not used in the construction activities. The obser-
vation channel is taken as a maximum operator to obtain the specific variable (vi). For
example, using the maximum operator on poor produces 2 from Figure 1.6. The
mapping from vi to vi′ is a one-to-one mapping that can be made for abstraction purposes
to some generalized states. The tabulated values under vi′ in Table 1.1 were selected
arbitrarily for demonstration purposes of such a mapping. Table 1.2 summarizes the
different elements for each support set. Table 1.3 shows the overall support set for a
combination of two of the supports considered in this example of time and space. For

FIGURE 1.6 Fuzzy definitions of experience.
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example, the pair [12, 11] in Table 1.3 indicates columns (i.e., general element 12
according to Table 1.2) and week 1 (i.e., general element 11 according to Table 1.2).

The source system defined as such is classified as neutral since an input–output
identification was not considered. The variables used herein are discrete. The time
support set is linearly ordered, while the space and population support sets are not
ordered. Observation channels for variable v1 are linearly ordered, while those for
variable v2 are not ordered. Observation channels for variable v1 are fuzzy, while those
for variable v2 are crisp. Figure 1.7 shows a procedure diagram of the source system
for this example.

TABLE 1.1
States of Variables

Variable States
Observation
Channel oi

Specific 
Variable vi

Mapping 
Type

General 
Variable vi′

v1 Poor
Fair
Good
Moderate
Excellent

Maximum
Maximum
Maximum
Maximum
Maximum

2
5
8
9

10

One-to-one
One-to-one
One-to-one
One-to-one
One-to-one

0
1
2
3
4

v2 Traditional method
Slip form method
Precast method

One-to-one
One-to-one
One-to-one

Method 1
Method 2
Method 3

One-to-one
One-to-one
One-to-one

10
20
30

TABLE 1.2
Elements of the Different Support Sets

Support Specific Element Mapping Type General Element

Time Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one
One-to-one

11
21
31
41
51
61
71
81

Space Columns
Beams
Slabs
Footings

One-to-one
One-to-one
One-to-one
One-to-one

12
22
32
42

Population Falsework crew
Rebar crew
Concreting crew
Finishing crew

One-to-one
One-to-one
One-to-one
One-to-one

13
23
33
43
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Data Systems

Considering the two variables previously defined, v1 for labor experience and v2 for
method of construction, example data are introduced to illustrate the formulation of
the data system. Variable v1 was defined as a fuzzy variable with fuzzy observation
channels. This variable can transition to potential states at any support instant with
some degrees of belief. Considering the combination of time and space supports, this
formulation results in a three-dimensional data matrix for variable v1. Any two-dimen-
sional data matrix has the degrees of belief of each potential state as its entries. Variable
v2 was defined as a crisp variable with crisp observation channels. As a result, the

TABLE 1.3
The Overall Support Set of Time and Space

Space

Time (Week)

 11  21  31  41  51  61  71  81

Columns (12)
Beams (22)
Slabs (32)
Footings (42)

[12, 11]
[22, 11]
[32, 11]
[42, 11]

[12, 21]
[22, 21]
[32, 21]
[42, 31]

[12, 31]
[22, 31]
[32, 31]
[42, 41]

[12, 41]
[22, 41]
[32, 41]
[42, 41]

[12, 51]
[22, 51]
[32, 51]
[42, 51]

[12, 61]
[22, 61]
[32, 61]
[42, 61]

[12, 71]
[22, 71]
[32, 71]
[42, 71]

[12, 81]
[22, 81]
[32, 81]
[42, 81]

FIGURE 1.7 A source system of a construction activity.
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