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Preface

Recent years have witnessed an explosion of research activities in the field of
soliton propagation in nonlinear optical media. These activities are motivated
by the fact that optical solitons, both temporal and spatial variety, do have
practical relevance in the latest communication technology based on gener-
ation and transportation of localized optical pulses. To date, these optical
pulses have already made tera bit/s transmission through optical fibers fea-
sible in the laboratory. In addition, they also play significant roles in several
other technologically relevant aspects, such as optical switching and signal
processing.

Early investigations in these areas began with Kerr law nonlinearity in
which the refractive index of the medium is proportional to the light intensity.
With further development of the subject, several forms of nonlinearity have
come under investigation. Notable among these forms of nonlinearity are
parabolic or cubic-quintic, power law, dual-power law, and saturating non-
linearities. These nonlinearities reveal many new and interesting behaviors
hitherto unknown in Kerr law of nonlinearity. However, in spite of tremen-
dous progress in these areas in the last 2 decades, and despite the fact that
several important and extremely well-written books are now available that
deal with soliton propagation in optical communication systems and allied
areas, no textbook of worth deals exclusively with soliton propagation in
media that possess non-Kerr law nonlinearities. Thus, to bridge the gap be-
tween availability and nonavailability, we felt the need to bring out a book
exclusively dealing with optical soliton propagation in non-Kerr law media.

This book is organized as follows: Chapter 1 presents an introduction to
the field of fiber optics and basic features of fiber-optic communications. The
nonlinear Schrödinger’s equation (NLSE) has been introduced and mathe-
matical aspects, including conserved quantities, have been outlined in
chapter 2. In this chapter, we have also introduced the perturbation to the
NLSE. Adiabatic dynamics of soliton parameters have also been introduced.
Finally, we have discussed the concept of quasi-stationary solitons and their
influences in this chapter. In chapter 3, we have derived the NLSE for Kerr law
nonlinearity from basic principle. The inverse scattering transform has been
outlined and, using this principle, the 1-soliton solution has been obtained
in this chapter. In addition, we have explained the variational principle and
Lie transform, which are used to integrate the NLSE with Hamiltonian-type
perturbation. The non-Kerr law solitons have been discussed in chapters 4
through 7. Chapters 4, 5, 6, and 7 are respectively devoted to the study of
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solitons with power law, parabolic law, dual-power law, and saturable law
nonlinearities. In each case, we have developed the soliton dynamics, eval-
uated integrals of motion, and devoted enough space to develop adiabatic
dynamics of perturbed quantities based on multiple-scale perturbation the-
ory. In addition, the existence of bistable soliton is discussed in chapter 7.
Chapter 8 is devoted to intrachannel collision of optical solitons in the pres-
ence of perturbation terms. Both Hamiltonian as well as non-Hamiltonian
type perturbations have been considered. The nonlinearities that are studied
in this chapter are Kerr, power, parabolic, and dual-power laws. In chapter 9,
the stochastic perturbation of optical solitons has been studied. The corre-
sponding Langevin equations are derived and analyzed for each of the laws
of nonlinearity, namely Kerr, power, parabolic, and dual-power laws. Optical
couplers are introduced in chapter 10. Twin core and multiple-core couplers
have been discussed. At the end of this chapter, we have briefly discussed
solitons in magneto-optic waveguides. The book concludes with chapter 11,
which treats an introduction to optical bullets.

This book is intended for graduate students at the master’s and doctoral
levels in applied mathematics, physics, and engineering. Undergraduate stu-
dents with senior standing in applied mathematics, physics, and engineering
will also benefit from this book. The prerequisite of this book is a knowledge
of partial differential equations, perturbation theory, and elementary physics.

Anjan Biswas, is extremely thankful to Dr. Michael Busby, director of
the Center of Excellence in Information Systems Engineering and Manage-
ment of Tennessee State University in Nashville, Tennessee, with which this
author was previously affiliated. Without constant encouragement and fi-
nancial support from Dr. Busby, this project would not have been possi-
ble. The first author is also extremely thankful and grateful to Dr. Tommy
Frederick, vice provost of research at Delaware State University, with which
this author is presently affiliated, for his constant encouragement. Without
these two persons’ blessings, this project would not have been possible.
Finally, the author is extremely grateful to his parents for all their uncondi-
tional love in his upbringing, blessings, education, support, encouragement,
and sacrifices throughout his life, till today. This author is deeply saddened
by the sudden death of his mother after a massive heart attack in Calcutta,
India, which occurred during the course of writing this book.

Swapan Konar is grateful to Prof. H. C. Pande, vice chancellor emeritus,
Birla Institute of Technology, India; Prof. S. K. Mukherjee, vice chancellor,
Birla Institute of Technology, and Prof. P. K. Barhai, head of the Department
of Applied Physics, Birla Institute of Technology, for encouragement and con-
stant support. Finally, he sincerely thanks his wife Tapati for her tolerance and
encouragement and his little son Argho for sacrificing his playtime.
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1
Introduction

This introductory chapter is intended to provide a general overview of fiber
optics. It starts with a history of and current developments in fiber optics in
Section 1.1. Section 1.2 provides a brief account of types of optical waveguides
and the issues of fiber-optic communications.

1.1 History

The propagation of optical pulses, or solitons, through optical fibers has been a
major area of study given its potential applicability in optical communication
systems. The field of telecommunications has undergone a substantial evolu-
tion in the last couple of decades due to the impressive progress in the devel-
opment of optical fibers, optical amplifiers, and transmitters and receivers. In
a modern optical communication system, the transmission link is composed
of optical fibers and amplifiers that replace the electrical regenerators. How-
ever, the amplifiers introduce some noise and signal distortion that limit the
system capacity. Presently, the optical systems that show the best characteris-
tics in terms of simplicity, cost, and robustness against the degrading effects of
a link are those based on intensity modulation with direct detection (IM-DD).
Conventional IM-DD systems are based on the non-return-to-zero (NRZ) for-
mat, but for soliton-based transmission at higher data rates the return-to-zero
(RZ) format is used. Soliton-based transmission allows the exploitation of the
fiber capacity much more. [9].

The performance of optical system is limited by several effects that are
present in optical fibers and amplifiers. Signal propagation through optical
fibers can be affected by group velocity dispersion (GVD), polarization mode
dispersion (PMD), and nonlinear effects. The chromatic dispersion that is es-
sentially the GVD when waveguide dispersion is negligible is a linear effect
that introduces pulse broadening and generates intersymbol interference. The
PMD arises due to the fact that optical fibers for telecommunications have two
polarization modes, in spite of the fact that they are called monomode fibers.
These modes have two different group velocities that induce pulse broadening

1
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depending on the input signal state of polarization. The transmission impair-
ment due to PMD looks similar to that caused by GVD. However, PMD is
random whereas GVD is a deterministic process. So, PMD cannot be con-
trolled at the receiver. Newly installed optical fibers have quite low values of
PMD that are about 0.1 ps/

√
km.

The main nonlinear effects that arise in monomode fibers are Brillouin
scattering, Raman scattering, and the Kerr effect. Brillouin is a backward scat-
tering that arises from acoustic waves and can generate noise at the receiver.
Raman scattering takes place in both forward and backward directions from
silica molecules. The Raman gain response is characterized by low gain and
wide bandwidth, namely about 30 THz. The Raman threshold in conventional
fibers is of the order of 500 mW for copolarized pump and Stokes’ wave (that
is about 1 W for random polarization), thus making Raman effect negligible
for a single-channel signal. However, it becomes important for multichannel
wavelength-division-multiplexed (WDM) signals due to an extremely wide
band of wide gain curve.

The Kerr effect of nonlinearity is due to the dependence of the fiber refrac-
tive index on the field intensity. The intensity dependence of the refractive
index leads to a larger number of interesting nonlinear effects. Notable among
them, which have been studied widely, are self-phase modulation (SPM)
and cross-phase modulation (XPM). SPM refers to the self-induced nonlinear
phase shift experienced by an optical field during its propagation through an
optical fiber. SPM is responsible for spectral broadening. The SPM-induced
chirp combines with the linear chirp generated by the chromatic dispersion.
If the fiber dispersion coefficient is positive, namely in the normal disper-
sion regime, linear and nonlinear chirps have the same sign, whereas in an
anomalous dispersion regime, they are of opposite signs. In the former case,
pulse broadening is enhanced by SPM, while in the later case it is reduced. In
the anomalous dispersion case, the Kerr nonlinearity induces a chirp that can
compensate the degradation induced by GVD. Such a compensation is total
if soliton signals are used.

If multichannel WDM signals are considered, the Kerr effect can be more
degrading since it induces nonlinear cross-talk among the channels that are
known as XPM. In addition, WDM generates new frequencies called four-
wave mixing (FWM). The other issue in the WDM system is the collision-
induced timing jitter that is introduced due to the collision of solitons in
different channels. The XPM causes further nonlinear chirp that interacts
with the fiber GVD as in the case of SPM. The FWM is a parametric interaction
among waves that satisfies a particular relationship called phase-matching that
leads to power transfer among different channels.

To limit the FWM effect in a WDM, it is preferable to operate with a local
high GVD that is periodically compensated by devices having an opposite
GVD sign. One such device is a simple optical fiber with appropriate GVD,
and the method is commonly known as dispersion management. With this ap-
proach, the accumulated GVD can be very low and, at the same time, FWM
is strongly limited. Through dispersion management it is possible to achieve
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the highest capacity for both RZ and NRZ signals. In that case, the overall
link dispersion has to be kept very close to zero, while a small amount of
chromatic anomalous dispersion is useful for the efficient propagation of a
soliton signal. It has been demonstrated with soliton signals that dispersion
management is very useful since it reduces collision-induced timing jitter and
also pulse interactions. It thus permits the achievement of higher capacities
than those allowed by the link having constant chromatic dispersion.

1.2 Optical Waveguides

One of the most promising applications of soliton theory is in the field of
optical communications. In optical communications systems, information is
encoded into light pulses and transmitted through optical fibers over long
distances. Commercial systems have been in operation since 1977 and a
transatlantic undersea optical cable has been developed. In 1973, Hasegawa
and Tappert [183, 184] proposed that soliton pulses could be used in optical
communications. However, the technology was not available until 7 years
later, at which time researchers at Bell Laboratories had experimentally
demonstrated the propagation of solitons in optical fibers.

Rapid developments in communications technology have occurred—
for example, the change from the use of wires to send signals (wire tele-
graphy) to wireless or radio telegraphy—leading to enormously increased
communication rates, measured by bits per second by a factor of 1 billion.
The latest in this series of advances is the optical fiber system in which large
amounts of information, coded as light pulses, pass along silica fibers. The
first transoceanic links, namely along the Atlantic and Pacific oceans, have
been established. As marvelous as these advances have been, the present
system still uses only a tiny fraction of the information-carrying capacity of
optical fibers.

Taking a look at waveguides, in particular an optical fiber, one can see
how solitons promise to revolutionize the field of telecommunications. The
main idea of a waveguide is to guide a beam of light by employing a varia-
tion of refractive index in the transverse direction so as to cause the light to
travel along a well-defined channel. The dependence of refractive index on
the transverse direction, the direction perpendicular to that in which the wave
propagates, can be continous or discontinous. The essential feature, however,
is that the refractive index is maximal in the channel along which one wishes
the light to be guided.

Figures 1.1(a) and 1.1(b) show the cross-section of an optical fiber. The
inner core consists of a special form of silica glass with very low absorption
and is between 10 to 60 µm in diameter. This core is surrounded by a glass
cladding whose refractive index, n2, is very close to but slightly less than n1,
the linear refractive index of the inner core. This ensures that the wave is
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FIGURE 1.1
(a) & (b) Cross section of an optical fiber.

guided, namely its intensity is largely confined, to the inner core by virtue of
total internal reflection.

Two parameters characterize an optical fiber, namely the core-cladding
index difference (�) that is defined as:

� = n1 − n2

n1
(1.1)

and the normalized frequency (V) that is defined as:

V = 2πa
λ

√
n2

1 − n2
2 (1.2)

where a is the radius of the fiber core as shown in Figure 1.2 and λ is the
wavelength of light. The parameter V determines the number of modes sup-
ported by the fiber. For a V less than 2.405 the fibers support a single mode
and so the fibers that are designed to satisfy such conditions are known as

Protective Jacket

Cladding
(125 µm diam.)

Fiber Core
(10–50 µm diam.)

FIGURE 1.2
Structure of an optical fiber.
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FIGURE 1.3
Soliton detection window and soliton train.

single-mode fibers. A typical multimode fiber would have the core radius as
a = 25–30 µm. However, for a single-mode fiber, a typical value of � is
∼ 3 × 10−3 and requires a to be in the range of 2–4 µm. The value of the
outer radius b is less critical as long as it is large enough to confine the modes
entirely. Typically, b = 50–60 µm for both single-mode and multimode fibers
(Figure 1.2).

The basic idea of using optical fibers for communications is relatively sim-
ple. The message is coded in binary by representing one as a pulse-like modu-
lation of a carrier wave whose wavelength is in the micrometer (10−6 m) range
and whose frequency is in the terahertz (1014 Hz) range and representing zero
by the absence of such a pulse. The arrangement is shown in Figure 1.3. The
pulses are approximately 10–25 picoseconds (10−12 s) wide and the average
distance between them is four times that amount. Experimentally, fibers have
managed effective transmission rates in the gigabit range (109 bits/s).

1.2.1 Types of Optical Fibers

Based on the refractive index profile there are two types of optical fibers:

1. Step index fiber: In a step index fiber, the refractive index of the core
is uniform throughout and undergoes an abrupt or a step change at
the core-cladding boundary.

2. Graded index fiber: In a graded index fiber, the refractive index of the
core is made to vary in a parabolic manner such that the maximum
value of the refractive index is at the center of the core (Figure 1.4).

Propagating rays in the fiber can be classified as meridional and skew rays.
Meridional rays are confined to the meridional plane of the fiber, which are
planes that contain the axis of symmetry of the fiber. Skew rays are not con-
fined to a single plane. They propagate along the fiber.

1.2.2 Advantages of Fiber-Optic Communications

The various advantages of soliton communication through optical fibers are
enumerated here:
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FIGURE 1.4
(a) Step-index fiber and (b) graded-index fiber.

1. Wider bandwidth: The information-carrying capacity of a transmis-
sion system is directly proportional to the carrier frequency of the
transmitted signals. The optical carrier frequency is in the range of
1013−1015 Hz while the radio wave frequency is about 106 Hz and
the microwave frequency is about 1010 Hz. Thus, the optical fiber
yields greater transmission bandwidth than conventional commu-
nication systems and the data rate or number of bits per second
is increased to a greater extent in the optical fiber communication
system.

2. Low transmission loss: Due to the usage of ultra-low-loss fibers and
erbium-doped silica fibers as optical amplifiers, one can achieve
almost lossless transmission. In modern optical fiber telecommuni-
cation systems, the fibers having a transmission loss of 0.2 dB/km
are used. Furthermore, using erbium-doped silica fibers over a short
length in transmission path selective points, appropiate optical am-
plification can be achieved. Thus, the repeater spacing is more than
100 km. Since the amplification is done in the optical domain itself,
the distortion produced during the strengthening of the signal is
almost negligible.

3. Dielectric waveguide: Optical fibers are made from silica, which is an
electrical insulator. Therefore, they do not pick up any electromag-
netic waves or any high-current lightning. They are also suitable
in explosive environments. Furthermore, the optical fibers are not
affected by any interference originating from power cables, railway
power lines, and radio waves. There is no cross-talk between the
fibers in a cable because of the absence of optical interference be-
tween the fibers.

4. Signal security: Signals transmitted through the fibers do not radiate.
In addition, signals cannot be tapped from a fiber in an easy manner.
Therefore, optical communication provides 100% signal security.

5. Small size and weight: Fiber-optic cables are developed with small
radii and are flexible, compact, and lightweight. They can be bent
or twisted without any damage. Optical fiber cables are superior to
copper cables in terms of storage, handling, installation, and trans-
portation, maintaining comparable strength and durability.
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The Nonlinear Schrödinger’s Equation

This chapter will talk about the mathematical aspects of the nonlinear
Schrödinger’s equation (NLSE) that governs the propagation of solitons
through an optical fiber. Section 2.1 is an introduction to NLSE. In Section 2.2,
the conserved quantities of the NLSE will be derived. In Section 2.3 the soliton
parameters will be introduced and the formulae for the adiabatic dynamics
of these parameters in the presence of the perturbation terms will be given.
Finally, in Section 2.4, the concept of quasi-stationarity will be introduced.

2.1 Introduction

The NLSE plays a vital role in various areas of physical, biological, and engi-
neering sciences. It appears in many applied fields, including fluid dynamics,
nonlinear optics, plasma physics, and protein chemistry. The NLSE that is go-
ing to be studied in this book is given by [86, 108, 399]

iqt + 1
2

qxx + F (|q |2)q = 0 (2.1)

In (2.1), F is a real-valued algebraic function and one needs to have
the smoothness of the complex function F (|q |2)q : C �→ C . Considering
the complex plane C as a two-dimensional linear space R2, it can be said
that the function F (|q |2)q is k times continuously differentiable so that one
can write

F (|q |2)q ∈
∞⋃

m,n=1

Ck((−n, n) × (−m, m);R2)

In equation (2.1), q is the dependent variable, x and t are the independent
variables, and the subscripts represent the partial derivative of q with respect
to that variable. So, qt stands for ∂q/∂t while qxx stands for ∂2q/∂x2. The first
term in (2.1) represents the time evolution term, while the second term is due
to the group velocity dispersion and the third term accounts for nonlinearity.
Thus, equations of these types are sometimes known as nonlinear evolution

7
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0

FIGURE 2.1
Profile of a soliton.

equations. This is a nonlinear partial differential equation that is not integrable,
in general. The nonintegrability is not necessarily related to the nonlinear
term in (2.1). Higher order dispersion, for example, can also make the system
nonintegrable while it still remains Hamiltonian.

Equation (2.1) has been shown to govern the evolution of a wave packet
in a weakly nonlinear and dispersive medium and has thus arisen insuch di-
verse fields as water waves, plasma physics, and nonlinear optics. One other
application of this equation is in pattern formation, where it has been used to
model some nonequilibrium pattern forming systems. In particular, this equa-
tion is now widely used in the optics field as a good model for optical pulse
propagation in nonlinear fibers. Equation (2.1) is known to support solitons
or soliton solutions for various kinds of nonlinearity that will be discussed in
the upcoming chapters. The term soliton refers to a nonlinear wave that prop-
agates without changing properties and is stable against mutual collisions
with other solitons that retain their identities. Solitons have been studied ex-
tensively in various areas of mathematical physics. In the context of optical
fibers, solitons are not only of fundamental interest but also have potential
applications in the field of optical fiber communications. Figure 2.1 shows an
illustration of a soliton. This text is devoted to the study of the propagation
of such solitons through optical fibers with emphasis on the various kinds of
the function F (s) in equation (2.1).

2.1.1 Nonlinearity Classification

There are various kinds of nonlinearities of the function F in (2.1) that are
known so far. They are as follows:

1. Kerr law: F (s) = s
This is also known as cubic nonlinearity and is the simplest known
form of the law of nonlinearity. In this case, the NLSE is integrable by
a method called the Inverse Scattering Transform. This method will
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be discussed in the next chapter. Most optical fibers that are com-
mercially available nowadays obey this Kerr law of nonlinearity.

2. Power law: F (s) = s p

In this case, it is necessary to have 0 < p < 2 to avoid wave collapse.
In fact, it is mandatory that p �= 2 to avoid self-focusing singularity.
This law of nonlinearity arises in nonlinear plasmas and solves the
problem of small K -condensation in weak turbulence theory. It also
arises in the context of nonlinear optics. Physically, various mate-
rials, including semiconductors, exhibit power law nonlinearities.
This case of nonlinearity has been studied, including the pertur-
bation term by multiple-scale analysis. The case where p = 1

2 is
studied in the context of soliton turbulence.

3. Parabolic law: F (s) = s + νs2

This law is commonly known as the cubic-quintic nonlinearity. The
second term is large for the case of p-toluene sulfonate crystals. This
law arises in the nonlinear interaction between Langmuir waves and
electrons. It describes the nonlinear interaction between the high-
frequency Langmuir waves and the ion-acoustic waves by pon-
dermotive forces. This case of cubic-quintic nonlinearity was also
studied by multiple-scale analysis.

4. Dual-power law: F (s) = s p + ξs2p

This model is used to describe the saturation of the nonlinear refrac-
tive index, and its exact soliton solutions are known. The effective
GNLSE with this dual-power law nonlinearity serves as a basic
model to describe spatial solitons in photovoltaic-photorefractive
materials such as lithium niobate. Optical nonlinearities in many
organic and polymer materials can be modelled using this form of
nonlinearity. The solitons of this model become unstable and decay
in the unstable region 1 ≤ p < 2, while for p ≥ 2, the solitons col-
lapse in a finite time.

5. Saturating law: F (s) = λs
1+λs

This law with λ > 0 accurately describes the variation of the di-
electric constant of gas vapors through which a laser beam propa-
gates [30]. Optical nonlinearity saturates at a finite value of optical
intensity in most materials. F (s) in those materials can be mod-
eled using the above form, which is known as the saturating form of
nonlinearity. In semiconductor-doped fibers, the soliton propaga-
tion has been modeled using saturable nonlinearity rather than the
usual Kerr nonlinearity. The main motivation behind such attempts
is the observation of such nonlinearity at not too high intensities
in semiconductor-doped glass and other composite materials. This
case was studied numerically.

6. Exponential law: F (s) = 1
2λ

(1 − e−2λs)
This case of exponential nonlinearity serves as useful model in
homogenous, unmagnetized plasmas and laser-produced plasmas.


