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1

1
The Simplest Case: One-Way Treatment Structure 
in a Completely Randomized Design Structure with 
Homogeneous Errors

Suppose an experimenter wants to compare the effects of several different treatments, 
such as the effects of different drugs on people’s heart rates or the yields of several differ-
ent varieties of wheat. Often the fi rst step in analyzing the data from such experiments 
is to use a statistical method, known as a one-way analysis of variance model, to describe 
the data. The model on which the one-way analysis of variance is based is one of the most 
useful models in the fi eld of statistics. Many experimental situations are simply special 
cases of this model. Other models that appear to be much more complicated can often be 
considered as one-way models. This chapter is divided into several sections. In the fi rst 
two sections, the one-way model is defi ned and the estimation of its parameters is 
 discussed. In Sections 1.3 and 1.5, inference procedures for specifi ed linear combinations 
of the treatment effects are provided. In Sections 1.7 and 1.9, we introduce two basic meth-
ods for developing test statistics. These two methods are used extensively throughout 
the remainder of the book. Finally, in Section 1.11, we discuss readily available computer 
analyses that use the above techniques. An example is used to demonstrate the concepts 
and computations described in each section.

1.1 Model Definitions and Assumptions

Assume that a sample of N experimental units is selected completely at random from a 
population of possible experimental units. An experimental unit is defi ned as the basic 
unit to which a treatment will be applied and independently observed. A more complete 
description of experimental units can be found in Chapters 4 and 5.

In order to compare the effects of t different treatments, the sample of N experimental 
units is randomly divided into t groups so that there are ni experimental units in the ith 
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2 Analysis of Messy Data Volume 1: Designed Experiments

group, where i = 1, 2, º , t, and N =  Âi=1  
t
   ni . Grouping the experimental units at random into 

t groups should remove any systematic biases. That is, randomness should ensure that 
the t groups of experimental units are similar in nature before the treatments are applied. 
Finally, one of the t treatments should be randomly assigned to each group of experi-
mental units. Equivalently, the experimental units could be randomly assigned to the 
t treatment groups using some randomization device such as placing n1 tags in a bowl 
with treatment 1, n2 tags in a bowl with treatment 2, º , nt tags in a bowl with treatment t, 
mixing the tags and then randomly selecting tags from the bowl to determine the 
 treatment assigned to each experimental unit. This process of using tags in a bowl 
can obviously be carried out using software that has random number generation 
possibilities.

Let yij denote a response from the jth experimental unit assigned to the ith treatment. The 
values y11, y12, º , y1n1

 can be thought of as being a random sample of size n1 from a popula-
tion with mean m1 and variance s  2   

1
 , the values y21, y22, º , y2n2 

can be thought of as being a 
random sample of size n2 from a population with mean m2 and variance s  2   

2
 , and similarly 

for i = 3, 4, º , t. The parameters mi and s  2   i  represent the population mean and population 
variance if one applied treatment i to the whole population of experimental units.

The simplest case is considered in this chapter in that the variances are assumed to be 
homogeneous or equal across treatments or s  2   

1
  = s  2   

2
  = º = s  2   t . That is, it is assumed that 

the application of the ith treatment to the experimental units may affect the mean of the 
responses but not the variance of the responses. The equal variance assumption is 
 discussed in Chapter 2 as well as the analysis of variance with unequal variances.

The basic objectives of a good statistical analysis are to estimate the parameters of the 
model and to make inferences about them. The methods of inference usually include 
 testing hypotheses and constructing confi dence intervals.

There are several ways to write a model for data from situations like the one described 
above. The fi rst model to be used is called the mi model or the means model. The means 
model is:

 yij = mi + εij i = 1, 2, º , t, j = 1, 2, º , ni 

where it is assumed that

 eij ~ i.i.d. N(0, s 2) i = 1, 2, º , t, j = 1, 2, º , ni (1.1)

The notation eij ~ i.i.d. N(0, s 2) is used extensively throughout this book. It means that the 
eij (i = 1, 2, º , t; j = 1, 2, º , ni) are independently and identically distributed and that the 
sampling distribution of each eij is the normal distribution with mean equal to zero and 
variance equal to s 2.

1.2 Parameter Estimation

The most important aspect of a statistical analysis is to get a good estimate of the error 
variance per experimental unit, namely s 2. The error variance measures the accuracy of an 
experiment—the smaller the s 2, the more accurate the experiment. One cannot make any 
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The Simplest Case: One-Way Treatment Structure 3

statistically valid inferences in any experiment or study without some knowledge of the 
experimental error variance.

In the above situation, the ith sample, i = 1, 2, º , t, provides an estimate of s 2 when ni > 1. 
The estimate of s 2 obtained from the data from the ith treatment is

 

2

2

1

( ).
ˆ

1

jn
ij i

i
j i

y y

n
s

=

-
=

-Â
 

which is an unbiased estimate of s 2 where

 

1
.

in

ij
j

i
i

y

y
n

==
Â

The estimate of s 2 from the ith treatment is ŝ i
2, which is based on ni - 1 degrees of freedom, 

and the sampling distribution of (ni - 1) ̂s i
2/s 2 is a chi-square distribution with ni - 1 degrees 

of freedom.
A weighted average of these t independent estimates of s 2 provides the best estimate for 

s 2 possible for this situation, where each estimate of the variance is weighted by its corre-
sponding degrees of freedom. The best estimate of s 2 is

 

2 2

1 1

ˆ ˆ( 1) ( 1)
t t

i i i
i i

n ns s
= =

= - -Â Â
 

For computational purposes, each variance times its weight can be expressed as

 

2 2 2 2 2 2

1 1 1

ˆ( 1) ( ) ( ). . .

t t t

i i ij i ij i i ij i i i
i i i

n y y y n y y y n SSs
= = =

- = - = - = - =Â Â Â /

where yi. =  Âj=1  
ni

    yij . Then the pooled estimate of the variance is

 

2 1 2 1

1 2

ˆ
( 1) ( 1) ( 1)

t

i
t i

t

SS
SS SS SS

n n n N t
s =+ + +

= =
- + - + + - -

Â�
�

The pooled estimate of the variance ŝ 2 is based on N - t degrees of freedom and the 
sampling distribution of (N - t)ŝ 2/s 2 is a chi-square distribution with N - t degrees of 
freedom; that is, (N - t)ŝ 2/s2 ~ c  2   N-t .

The best estimate of each mi is m̂i = ȳi., i = 1, 2, º , t.
Under the assumption given in Equation 1.1, the sampling distribution of m̂i is normal 

with mean mi and variance s2/ni. That is,

 

sm m
Ê ˆ

=Á ˜Ë ¯
…

2

ˆ ~ , 1,2, ,i i
i

N i t
n

 
(1.2)
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4 Analysis of Messy Data Volume 1: Designed Experiments

Using the sampling distributions of m̂ i and ŝi
2 then

 

m m
s

-
-

= = …
2

ˆ
~ 1,2, ,

ˆ
i i

i N t

i

t t i t
n

 

(1.3)

That is, the sampling distribution of ti is the t-distribution with N - t degrees of freedom. 
In addition, m̂1, m̂2, º , m̂t and si

2 are statistically independent.

1.3 Inferences on Linear Combinations—Tests and Confidence Intervals

This section provides tests of hypotheses and confi dence intervals for linear functions of 
the parameters in the means model. The results in the previous section can be used to test 
hypotheses about the individual mi. Those results can also be used to test hypotheses about 
linear combinations of the mi or to construct confi dence intervals for linear combinations 
of the mi.

For an experiment involving several treatments, the investigator selects the treatments 
to be in the study because there are interesting hypotheses that need to be studied. These 
interesting hypotheses form the objectives of the study. The hypotheses involving the 
treatment means most likely will involve specifi c linear combinations of the means. These 
linear combinations will enable the investigator to compare the effects of the different 
treatments or, equivalently, the means of the different treatments or populations. The 
hypotheses about the means the experimenter has selected can be of the following types 
of hypotheses:

 
01 1 01

1

: vs : (not :)
t

i i a
i

H c a H Hm
=

=Â

for some set of known constants c1, c2, º , ct and a,

 H02: m1 = m2 = · · · = mt vs Ha2: (not H02:) 

and

 H03: mi = mi, for some i π i’ vs Ha3: (not H03:) 

For a linear combination such as that given in H01, one can show that

 

m m

s

= =
-

=

-Â Â

Â
1 1

( )

2 2

1

ˆ

~

ˆ /

t t

i i i i
i i

N tt

i i
i

c c
t

c n
 

(1.4)

This result can be used to make inferences about linear combinations of the form  Âi=1  
t
   ci mi . 

Since the hypothesis in H03 can be written as H03: mi - mi¢ = 0, it is a special case of H01 with 
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The Simplest Case: One-Way Treatment Structure 5

ci = 1, ci� = -1, and ck = 0 if k π i or i�. A test for H02 is given in Section 1.5. The estimated stan-
dard error of  Âi=1   

t
   ci  m̂i is given by

 

� m s=Â Â
2

2ˆ ˆ. .( ) i
i i

i

c
s e c

n
 

(1.5)

To test H01:  Âi=1  
t
   ci  mi = a vs Ha1: (not H01:) compute the t-statistic

 
�

m
m
-

= Â
Â

ˆ

ˆ. .( )

i i
c

i i

c a
t

s e c
  

(1.6)

If |tc| > ta/2,n , where n = N - t, then H01 is rejected at the a = 100% signifi cance level, where 
ta/2,n is the upper a/2 critical point of a t-distribution with n degrees of freedom. A (1 - a) 
100% confi dence interval for  Âi=1  

t
   ci mi  is provided by

 
�

a nm m±Â Â/2,
ˆ ˆ. .( )i i i ic t s e c

 (1.7)

1.4 Example—Tasks and Pulse Rate

The data in Table 1.1 came from an experiment that was conducted to determine how 
six different kinds of work tasks affect a worker’s pulse rate. In this experiment, 78 male 
workers were assigned at random to six different groups so that there were 13 workers in 
each group. Each group of workers was trained to perform their assigned task. On a 
selected day after training, the pulse rates of the workers were measured after they had 
performed their assigned tasks for 1 h. Unfortunately, some individuals withdrew from 
the experiment during the training process so that some groups contained fewer than 
13 individuals. The recorded data represent the number of heart pulsations in 20 s where 
there are N = 68 observations and the total is y = 2197.

For the tasks data, the best estimate of s 2 is

 
( )

6
2

1

ˆ 1, 916.0761 62 30.9045i
i

SS N ts
=

= - = =Â

which is based on 62 degrees of freedom. The best estimates of the mi are m̂1 = 31.923, 
m̂2 = 31.083, m̂3 = 35.800, m̂ 4 = 38.000, m̂5 = 29.500, and m̂6 = 28.818.

For illustration purposes, suppose the researcher is interested in answering the follow-
ing questions about linear combinations of the task means:

 a) Test H0: m3 = 30 vs Ha: m3 π 30.

 b) Find a 95% confi dence interval for ml.
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6 Analysis of Messy Data Volume 1: Designed Experiments

 c) Test H0: m4 = m5 vs Ha: m4 π m5.

 d) Test H0: ml = (m2 + m3 + m4)/3 vs Ha: ml π (m2 + m3 +m4)/3.

 e) Obtain a 90% confi dence interval for 4m1 - m3 - m4 - m5 - m6.

These questions can be answered by applying the results of this section.
Part a result: A t-statistic for testing H0: m3 = 30 is obtained by substituting into 

Equation 1.6 to obtain

 
�
m m

m s
- - -

= = = =3 3

2
3 3

ˆ ˆ30 30 35.8 30.0
3.30

ˆ 30.9045/10ˆ. .( ) /
ct

s e n

The signifi cance probability of this calculated value of t is â = Pr{|tc|> 3.30} = 0.0016 
where Pr{|tc|> 3.30} is the area to the right of 3.30 plus the area to the left of -3.30 in a 
t-distribution with 62 degrees of freedom. The above value of â was obtained from com-
puter output, but it can also be obtained from some special hand-held calculators. Readers 
of this book who lack access to a computer or a calculator should compare tc = 3.30 to ta/2,62 for 
their choice of a.

Part b result: A 95% confi dence interval for m1 is given by

 

�m m± = ±

= ± ¥
1 0.025,62 1

ˆ ˆ( ) 31.923 2.00 30.9045/13. .

31.923 2.00 1.542

t s e

TABLE 1.1

Pulsation Data and Summary Information for Six Tasks

Task

1 2 3 4 5 6

27 29 34 34 28 28

31 28 36 34 28 26

26 37 34 43 26 29

32 24 41 44 35 25

39 35 30 40 31 35

37 40 44 47 30 34

38 40 44 34 34 37

39 31 32 31 34 28

30 30 32 45 26 21

28 25 31 28 20 28

27 29 41 26

27 25 21

34

yi. 415 373 358 380 354 317

ni 13 12 10 10 12 11

y–i. 31.9231 31.0833 35.8000 38.0000 29.5000 28.8182

SSi 294.9231 352.9167 253.6000 392.0000 397.0000 225.6364
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The Simplest Case: One-Way Treatment Structure 7

Thus the 95% confi dence interval about m1 is 28.839 � m1 � 35.007 and we are 95% confi -
dent that this interval contains the true, but unknown value of m1.

Part c result: To test H0: m4 = m5, let l1 = m4 - m5, then l̂1 = m̂4 - m̂5 = 38.0 - 29.5 = 8.5 and

 

� s
Ÿ

=

Ê ˆ= = + =Á ˜Ë ¯Â
6

2 2
1

1

1 1
ˆ. .( ) / 30.9045 2.380

10 12
i i

i

s e l c n

since c1 = c2 = c3 = c6 = 0, c4 = 1, and c5 = -1.
The t-statistic for testing H0: m4 = m5 is

 tc =   8.5 _____ 
2.380

   = 3.57

The signifi cance probability for this test is â = 0.0007.
Part d result: A test of H0: ml = (m2 + m3 + m4)/3 is equivalent to testing H0: ml -   1 _ 

3
   m2 - 

  1 _ 
3
   m3 -   1 _ 

3
   m4 = 0 or testing H0: 3ml - m2 - m3 - m4 = 0. By choosing the last version, the computa-

tions are somewhat easier and the value of the tc test statistic is invariant with respect to a 
constant multiplier.

Let l2 = 3m1 - m2 - m3 - m4, then

 l ˆ2 = 3m̂1 - m̂2 - m̂3 - m̂4 = 3(31.923) - 31.083 - 35.8 - 38.0 = -9.114

The estimate of the standard error of l̂ 2 is

 

� Ê ˆ= + + + =Á ˜Ë ¯2

9 1 1 1ˆ. .( ) 30.9045 5.491
13 12 10 10

s e l
 

A t-statistic for testing H0: 3ml - m2 - m3 - m4 = 0 is

 tc =    -9.114 ______ 
5.491

    = -1.66

The signifi cance probability corresponding to tc is â = 0.1020.
Part e result: Let l3 = 4ml - m3 - m4 - m5 - m6. Then l̂3 = -4.426 and �. .s e (l3̂ ) = 7.0429. A 90% 

confi dence interval for l3 is 

 l̂3 ± t0.05,62 �. .s e (l3̂ ) = -4.426 ± 1.671 ¥ 7.043 = -4.426 ± 11.769

Thus, a 90% confi dence interval is -16.195 � 4ml - m3 - m4 - m5 - m6 < 7.343.

1.5 Simultaneous Tests on Several Linear Combinations

For many situations the researcher wants to test a simultaneous hypothesis about  
several linear combinations of the treatment’s effects or means. For example, the general 
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8 Analysis of Messy Data Volume 1: Designed Experiments

hypothesis involving k linearly independent linear combinations of the treatment means 
can be expressed as

 

m m m
m m m

m m m

+ + + =
+ + + =

+ + + =

�
�
�
�

11 1 12 2 1 1

21 1 22 2 2 2

0 0

1 1 2 2

: vs : (not )

t t

t t
a

k k kt t k

c c c a

c c c a
H H H

c c c a  

(1.8)

The results presented in this section are illustrated using vectors and matrices. However, 
knowledge of vectors and matrices is not really necessary for readers having access a com-
puter with matrix manipulation software, since most computers allow even novice users 
to easily carry out matrix computations.

The hypothesis in Equation 1.8 can be written in matrix notation as

 H0: Cm = a vs Ha: Cmm π a (1.9)

where

 

11 12 1 1 1

21 22 2 2 2

1 2

, , and

t

t

k k kt t k

c c c a

c c c a

c c c a

m
m

m

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= = =
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

�
�

� � � � � �
�

C am

 

(1.10)

It is assumed that the k rows in C were chosen such that they are linearly independent, 
which means that none of the rows in C can be expressed as a linear combination of the 
remaining rows. If the k rows in C are not linearly independent, a subset of the rows that 
are linearly independent can always be selected so that they contain all the necessary 
information about the required hypothesis.

For example, suppose you have three treatments and you wish to test

 H0: ml - m2 = 0, ml - m3 = 0 and m2 - m3 = 0

the corresponding C matrix is

 

1 1 0

1 0 1

0 1 1

-È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

C

but the third row of C is the difference between the second row and the fi rst row, hence 
the three rows are not linearly independent. In this case, an equivalent hypothesis can be 
stated as H0: ml - m2 = 0 and ml - m3 = 0, since if ml - m2 = 0 and ml - m3 = 0, then m2 - m3 must 
be equal to 0. The following discussion uses the assumption that the rows of C are linearly 
independent.
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The Simplest Case: One-Way Treatment Structure 9

Denote the vector of sample means by m̂, then the sampling distribution of m̂ in matrix 
 notation is

 

m̂ ~ Nt( m, ss 2D) where

 

1

2

1 0 0

0 1 0

0 0 1 t

/n

/n

/n

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Î ˚

�
�

� � � �
�

D

This equation is read as follows: The elements of the t ¥ 1 vector m̂ have a joint sampling 
distribution that is the t-variate normal distribution with means given by the vector m and 
with variances and covariances given by the elements in the matrix s 2D. The ith diagonal 
element of s s 2D is the variance of m̂i and the (i, j)th i π j off-diagonal element gives the 
 covariance between m̂i and m̂j.

The sampling distribution of Cm̂ is

 Cm̂ ~ Nk(Cm, ss 2CDC¢)

The sum of squares due to deviations from H0 or the sum of squares for testing H0: Cm = a 
is given by

 SSH0 = (Cm̂̂ - a)’(CDC’)-1 (Cm̂ - a) (1.11)

and is based on k degrees of freedom, the number of linearly independent rows of C. Using 
the assumption of normality, the sampling distribution of SSH0/s 2 is that of a noncentral chi-
square with k degrees of freedom. If H0 is true, then SSH0/s 2 ~  c  k  2 . The statistic for testing H0 is

 

0

2

/

ˆ
H

c

SS k
F

s
=

The hypothesis H0: Cmm = a is rejected at the signifi cance level of a if Fc > Fa,k,N-t where Fa,k,N-t 
is the upper a critical point of the F-distribution with k numerator degrees of freedom and 
N - t denominator degrees of freedom. The result given here is a special case of Theorem 
6.3.1 in Graybill (1976).

When H0 is true, then SSH0/k is an unbiased estimate of s 2, which is then compared with 
ŝ 2, which in turn is an unbiased estimate of s 2 regardless of whether H0 is true or not. 
Thus the F-statistic given above should be close to 1 if H0 is true. If H0 is false, the statistic 
SSH0/k is an unbiased estimate of

 s2 +   1 __ 
k
    (Cm - a)’(CDC’)-1(Cm - a) 

Thus, if H0 is false, the value of the F-statistic should be larger than 1. The hypothesis H0 is 
rejected if the calculated F-statistic is signifi cantly larger than 1.

1.6 Example—Tasks and Pulse Rate (Continued)

The following is a summary of the information from the example in Section 1.4 with the 
sample size and mean for each of the six tasks.
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10 Analysis of Messy Data Volume 1: Designed Experiments

Task i 1 2 3 4 5 6

ni 13 12 10 10 12 11

ȳi. 31.9231 31.0833 35.8000 38.0000 29.5000 28.8182

The pooled estimate of the variance is ŝ 2 = 30.9045 and it is based on 62 degrees of  freedom. 
The D matrix associated with the sampling distribution of vector of estimated means is

 

1 0 0 0 0 0
13

10 0 0 0 0
12

10 0 0 0 0
10

10 0 0 0 0
10

10 0 0 0 0
12

10 0 0 0 0
11

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

D

Suppose the researcher is interested in simultaneously testing the following hypothesis 
involving two linear combinations of the task means:

 H0: m4 - m5 = 4  and 3m1 - m2 - m3 - m4 = 0 vs Ha: (not H0)

The C matrix consists of two rows, one for each of the linear combinations in H0, and the 
vector a has two elements as

 

0 0 0 1 1 0 4
and

3 1 1 1 0 0 0

-È ˘ È ˘
= =Í ˙ Í ˙- - -Î ˚ Î ˚

C a

Preliminary computations needed to provide the value of SSH0 are:

 Cm̂ - a =  [    8.5 - 4      -9.114 - 0
  ]   =   [   4.500      -9.114

   ] 

 

1

1 1 1

10 12 10

1 9 1 1 1

10 13 12 10 10

0.1833 0.1000

0.1000 0.9756

5.7776 0.5922
( )

0.5922 1.0856

'

-

È ˘+ -Í ˙
= Í ˙

Í ˙- + + +Í ˙Î ˚
-È ˘

= Í ˙-Î ˚
È ˘

= Í ˙
Î ˚

CDC

CDC'
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The Simplest Case: One-Way Treatment Structure 11

and

 SSH0 = (Cm̂ - a)�(CDC�)-1 (Cm̂ - a) = 158.602

with 2 degrees of freedom. The test statistic is

 

158.602/2
2.566

30.9045
cF = =

The signifi cance probability of this F-statistic is â = Pr{F > 2.566} = 0.0850.

1.7 Testing the Equality of All Means

Often the fi rst hypothesis of interest to most researchers is to test that the means are simul-
taneously equal. The hypothesis is H0: ml = m2 = º = mt vs Ha: (not H0). Two basic procedures 
are examined for testing the equal means hypothesis. For the particular situation dis-
cussed in this chapter, the two procedures give rise to the same statistical test. However, 
for most messy data situations (for treatment structures other than one-way), the two pro-
cedures can give rise to different tests. The fi rst procedure is covered in this  section, while 
the second is introduced in Section 1.9.

The equal means hypothesis, H0: m1 = m2 = º = mt is equivalent to a hypothesis of the 
form, H0: m1 - m2 = 0, m1 - m3 = 0, º , m1 - mt = 0, or any other hypothesis that involves t - 1 
 linearly independent linear combinations of the mi. The C matrix and a vector correspond-
ing to the set of t - 1 pairwise differences are:

 

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0
and

1 0 0 0 0 0

1 0 0 0 1 0

-È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-

= =Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙

-Í ˙ Í ˙Î ˚ Î ˚

�
�
�
�

� � � � � � �
�

C a

The C matrix corresponding to following set of t - 1 linearly independent linear combinations 
of the mi; H0: m1 - m2 = 0, m1 + m2 - 2m3 = 0, m1 + m2 + m3 - 3m4 = 0, º , m1 + m2 + º - (t - 1) mt = 0 is:

 

1 1 0 0 0 0

1 1 2 0 0 0

1 1 1 3 0 0and

0

1 1 1 1 1 0t

-È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-= =
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

�
�
�

� � � � � �
�

C a
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12 Analysis of Messy Data Volume 1: Designed Experiments

Many other matrices exist, so that Cm = 0 if and only if m1 = m2 = · · · = mt; however, all such 
matrices produce the same sum of squares for deviations from H0 and the same degrees of 
freedom, t - 1, and hence the same F-statistic. For this special case Equation 1.11 always 
reduces to

 
m m m

= =
= = =

Ê ˆ ◊◊◊= - = -◊◊◊ Á ˜Ë ¯Â Â
2 2

2

1 1

...0: 1 2
( )i

t t
i

i
i i i

H t

y y
SS n y y

n N
 

(1.12)

1.8 Example—Tasks and Pulse Rate (Continued)

For the task and pulse rate data in Section 1.4, the SSH0:m1 = m2 = · · · = mt
 is computed using 

Equations 1.11 and 1.12.
Using the formula in Equation 1.12, provides

 

= + + + + + -

=

2 2 2 2 2 2 2

0

415 373 358 380 354 317 2197

13 12 10 10 12 11 68

694.4386

HSS

 

with t - 1 = 5 degrees of freedom. The value of the Fc statistic is

 

694.4386/5
4.49

30.9045
cF = =

and the signifi cance probability is â = 0.0015.
Next, using Equation 1.11, the matrix C, vector a, and matrix D are

 

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0,

1 0 0 0 1 0 0

1 0 0 0 0 1 0

-È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-= =
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

C a

and

 

1 0 0 0 0 0
13

10 0 0 0 0
12

10 0 0 0 0
10

0
10 0 0 0 0

10
10 0 0 0 0

12
10 0 0 0 0
11

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

D
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The Simplest Case: One-Way Treatment Structure 13

Next compute the individual quantities in Equation 1.11 as

 

Cm̂ - a

 

25 1 1 1 1
13 13 13 13156

0.844
1 23 1 1 1

13 13 13 131303.877
1 1 23 1 16.077 and

13 13 13 13130
2.423 1 1 1 25 1

13 13 13 131563.105
1 1 1 1 24

13 13 13 13 143

È ˘
Í ˙È ˘ Í ˙Í ˙- Í ˙Í ˙ Í ˙Í ˙-= =¢ Í ˙Í ˙ Í ˙Í ˙ Í ˙Í ˙Î ˚ Í ˙
Í ˙Î ˚

CDC

 

The inverse of CDC¢ is

 

1

9.882 1.765 1.765 2.118 1.941

1.765 8.529 1.471 1.765 1.618

1.765 1.471 8.529 1.765 1.618( )

2.118 1.765 1.765 9.882 1.941

1.941 1.618 1.618 1.941 9.221

-

- - - -È ˘
Í ˙- - - -Í ˙
Í ˙- - - -=¢
Í ˙- - - -Í ˙
Í ˙- - - -Î ˚

CDC

Finally, the value of the sum of squares is

 SSH0 = (Cm̂ - a)¢ (CDC¢)-1 (Cm̂ - a) = 694.4386

which is the same as the sum of squares computed using Equation 1.12.
Clearly, this formula is not easy to use if one must do the calculations by hand. However, 

in many messy data situations, formulas such as this one are necessary in order to obtain 
the statistic to test meaningful hypotheses. Fortunately, by utilizing computers, C matrices 
can be constructed for a specifi c hypothesis and then one can allow the computer to do the 
tedious calculations.

1.9  General Method for Comparing Two Models—The Principle of 

Conditional Error

A second procedure for computing a test statistic compares the fi t of two models. In this 
section, the two models compared are yij = mi + eij, which is the general or unreduced model, 
and yij = m + eij, which is the model one would have if H0: m1 = m2 = · · · = mt = m (say) were 
true. The fi rst model is called the full model or the unrestricted model, while the second 
model is called the reduced model or the restricted model.

The principle known as the principle of conditional error is used to compare two models 
where one model is obtained by placing restrictions upon the parameters of another model. 
The principle is very simple, requiring that one obtain the residual or error sums of squares 
for both the full model and the reduced model. Let ESSF denote the error sum of squares 
after fi tting the full model and ESSR denote the error sum of squares after fi tting the 
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14 Analysis of Messy Data Volume 1: Designed Experiments

reduced model. Then the sum of squares due to the restrictions given by the hypothesis or 
deviations from the null hypothesis is SSH0 = ESSR - ESSF . The degrees of freedom for both 
ESSR and ESSF are given by the difference between the total number of observations in the 
data set and the number of (essential) parameters to be estimated (essential parameters 
will be discussed in Chapter 6). Denote the degrees of freedom corresponding to ESSR and 
ESSF by dfR and dfF , respectively. The number of degrees of freedom corresponding to SSH0 
is dfH0 = dfR - dfF . An F-statistic for testing H0 is given by

 

0 0

/
H H

c
f F

SS df
F

ESS df
=

/

One rejects H0 at the signifi cance level if Fc > Fa,dfH0,dfF
.

For the case discussed above, yij = mi + eij is the full model and yij = m + eij is the reduced 
model. The error sum of squares for the full model is

 

22

1 1

ˆ( ) ( )
int

F ij i
i j

ESS y y N t s
= =

= - = -◊ÂÂ

with dfF = N - t, and the error sum of squares for the reduced model is

 

2

1 1

( )..
int

R ij
i j

ESS y y
= =

= -ÂÂ

with dfR = N - 1. Thus the sum of squares due to deviations from H0 is

 
1 2

2
0:

1

( ). ..t

t

H R F i i
i

SS ESS ESS n y ym m m= = =
=

= - = -Â�

with t  -  1 degrees of freedom. This is the same sum of squares as was obtained in 
Equation 1.12.

The sums of squares that are of interest in testing situations are often put in a table called 
an analysis of variance table. Such a table often has a form similar to that in Table 1.2. The 
entries under the column “Source of variation” are grouped into sets. In a given situation 
only one of the labels in each set is used, with the choice being determined entirely by the 
experimenter.

TABLE 1.2

Analysis of Variance Table for One-Way Model to Test Equality of the Means

Source of Variation df SS MS F-test

H0 m1 = m2 = · · · m1  

Treatments
between samples

t - 1 SSH0   
SSH0 ____ t - 1

    
SSH0/t - 1

 _________ ŝ 2
  

Error
within samples

N - t SSF ŝ 2 =   
ESSF  _____ N - t  

Note: df = degrees of freedom, SS = sum of square, and MS = mean square. These 

standard abbreviations are used throughout the book.
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The Simplest Case: One-Way Treatment Structure 15

The principle of conditional error is also referred to as the model comparison procedure 
and the process is quite fl exible. For example, if you are interested in testing a hypothesis 
for the task and pulse rate data, like H0: m1 = m2 = m3 vs Ha: (not H0), then the model under 
the conditions of H0 has the form

 yij = m0 + eij for i = 1, 2, 3
 yij = mi + eij for i = 4, 5, 6

that is, the model has equal means for the fi rst three tasks and different means for the last 
three treatments. Such a model can be fi t using most software packages where a qualitative 
or class variable is defi ned to have the value of 0 for tasks 1, 2, and 3 and the value of task 
for tasks 4, 5, and 6.

1.10 Example—Tasks and Pulse Rate (Continued)

The principle of conditional error is applied to the task and pulse rate data of Section 1.4 to 
provide a test of the equal means hypothesis, H0: m1 = m2 = m3 = m4 = m5 = m6 vs Ha: (not H0). 
The error sum of squares for the full model is ESSF = 1916.076 with dfF = 62. The error sum 
of squares for the reduced model is ESSR = 73,593 - (2197)2/68 = 2610.545 with dfR = 67. 
Hence SSH0 = 2610.545 - 1916.076 = 694.439 with dfH0 = 67 - 62 = 5. The analysis of variance 
table summarizing these computations is displayed in Table 1.3.

1.11 Computer Analyses

This chapter concludes with some remarks about utilizing computers and statistical 
 computing packages such as SAS®, BMDP®, SYSTAT®, JMP®, and SPSS®. All of the methods 
and formulas provided in the preceding sections can easily be used on most computers. If 
the computer utilizes a programming language such as MATLAB, SAS-IML, or APL, the 
required matrix calculations are simple to do by following the matrix formulas given in 
the preceding sections. SAS, JMP, BMDP, SYSTAT, and SPSS each contain procedures that 
enable users to generate their own linear combinations of treatment means about which to 
test hypotheses. In addition, these packages all provide an analysis of variance table, treat-
ment means, and their standard errors. Table 1.4 contains SAS-GLM code with estimate 
and contrast statements needed to test hypotheses described for the task and pulse data. 
The estimate statement is used to evaluate one linear combination of the means and the 

TABLE 1.3

Analysis of Variance Table for Test Equality of the Means for the Task and Pulse Rate Data

Source of Variation df SS MS F â

Due to H0 5 694.439 138.888 4.49 0.0015

Error 62 1,916.076 30.9045
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16 Analysis of Messy Data Volume 1: Designed Experiments

provided results are the estimate of the contrast, its estimated standard error, and the 
resulting t-statistic with its corresponding signifi cance level. The contrast statement is 
used to evaluate one or more linear combinations of the means and the provided results 
are the sums of squares, degrees of freedom, and the resulting F-statistic. For both the 
estimate and contrast statements in SAS-GLM, the only values of a in the hypotheses are 
zero, that is, one can only test the linear combinations of means that are equal to zero.

Table 1.5 contains SAS-IML code to provide the computations for the hypotheses being 
tested in Section 1.6. By constructing the code in a matrix language, one can obtain a test 
of any hypothesis of the form Cm = a.

1.12 Concluding Remarks

In this chapter, the analysis of the one-way analysis of variance model was described. 
General procedures for making statistical inferences about the effects of different treatments 
were provided and illustrated for the case of homogeneous errors. Two basic procedures 

TABLE 1.4

Proc GLM Code to Fit the Task and Pulse Rate Data with Estimate and Contrast 
Statements Needed to Provide the Analysis Described in the Text

PROC GLM DATA=EX1; CLASS TASK;
MODEL PULSE20=TASK/NOINT SOLUTION E;
ESTIMATE ‘Ho: M4=M5’ TASK 0 0 0 1 -1 0;
ESTIMATE ‘Ho: 3M1=M2+M3+M4’ TASK 3 -1 -1 -1 0 0;
ESTIMATE ‘Ho: 3M1=M2+M3+M4_mn’ TASK 3 -1 -1 -1 0 0/DIVISOR=3;
ESTIMATE ‘4M1-M3-M4-M5-M6_mn’ TASK 4 0 -1 -1 -1 -1/DIVISOR=4;
CONTRAST ‘4M1-M3-M4-M5-M6_mn’ TASK 4 0 -1 -1 -1 -1;
CONTRAST ‘M4=M5 & 3M1=M2+M3+M4’ TASK 0 0 0 1 -1 0, TASK 3 -1 -1 -1 0 0;
CONTRAST ‘EQUAL MEANS 1’
 TASK 1 -1 0 0 0 0, TASK 1 0 -1 0 0 0, TASK 1 0 0 -1 0 0, 
  TASK 1 0 0 0 -1 0, TASK 1 0 0 0 0 -1;

TABLE 1.5

Proc IML Code to Carry Out the Computations for the Task and Pulse Data in Section 1.6

proc iml;
dd={13 12 10 10 12 11};
d=diag(dd);
c={0 0 0 1 -1 0, 3 -1 -1 -1 0 0};
muhat={31.9231 31.0833 35.8000 38.0000 29.5000 28.8182}‘;
s2=30.90445;
a={4,0};
cmua=C*muhat - a;
cdc=c*inv(D)*c‘;
cdci=inv(cdc);
ssho=cmua‘*cdci*cmua;
f=ssho/(2*s2);al=1-probf(f,2,62);
print dd d cmua cdc cdci ssho f al;

C3340_C001.indd   16C3340_C001.indd   16 1/23/2009   12:27:45 PM1/23/2009   12:27:45 PM



The Simplest Case: One-Way Treatment Structure 17

for obtaining statistical analyses of experimental design models were introduced. These 
procedures are used extensively throughout the remainder of the book for more complex 
models used to describe designed experiments and for messier data situations. A test for 
comparing all treatment effect means simultaneously was also given. Such a test may be 
considered an initial step in a statistical analysis. The procedures that should be used to 
complete the analysis of a data set could depend on whether the hypothesis of equal treat-
ment means is rejected.

1.13 Exercises

 1.1 A company studied fi ve techniques of assembling a part. Forty workers were 
randomly selected from the worker population and eight were randomly 
assigned to each technique. The worker assembled a part and the measurement 
was the amount of time in seconds required to complete the assembly. Some 
workers did not complete the task.

  

Data for Comparing Techniques of Assembling a Part for Exercise 1.1

Technique 1 Technique 2 Technique 3 Technique 4 Technique 5

Worker Time Worker Time Worker Time Worker Time Worker Time

1 45.6  7 41.0 12 51.7 19 67.5 26 57.1

2 41.0  8 49.1 13 60.1 20 57.7 27 69.6

3 46.4  9 49.2 14 52.6 21 58.2 28 62.7

4 50.7 10 54.8 15 58.6 22 60.6

5 47.9 11 45.0 16 59.8 23 57.3

6 44.6 17 52.6 24 58.3

18 53.8 25 54.8

 1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.

 2) Estimate the parameters of the model in part 1.

 3) Construct a 95% confi dence interval about m1 - m2.

 4) Use a t-statistic to test H0: m1 + m2 - m3 - m4 = 0 vs Ha: (not H0).

 5) Use a F-statistic to test H0: m1 + m2 - m3 - m5 = 0 vs Ha: (not H0).

 6) Use a t-statistic to test H0: (m1 + m2 + m3)/3 = (m4 + m5)/2 vs Ha: (not H0).

 7) Use a F-statistic to test H0: m1 = m2 = m3 vs Ha: (not H0).

 8) Use a F-statistic to test H0: (m1 + m2 + m3)/3 = (m4 + m5)/2, (m1 + m2 + m6)/3 = 
(m3 + m4 + m5)/3, and (m1 + m4 + m5)/3 - (m3 + m6)/2 vs Ha: (not H0).

 1.2 Five rations were evaluated as to their ability to enable calves to grow. Thirty-one 
calves were used in the study. A mistake in the feeding of the rations produced 
unbalanced distributions of the calves to the rations. The data recorded was the 
number of pounds of weight gained over the duration of the study.

 1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.
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18 Analysis of Messy Data Volume 1: Designed Experiments

 2) Estimate the parameters of the model in part 1.

 3) Construct a 95% confi dence interval about m1 + m2 - 2m5.

 4) Use a t-statistic to test H0: m1 + m2 - 2m3 = 0 vs Ha: (not H0).

 5) Use an F-statistic to test H0: 2m2 - m4 - m5 = 0 vs Ha: (not H0).

 6) Use a t-statistic to test H0: ( m1 + m2 + m3)/3 = ( m4 + m5)/2 vs Ha: (not H0).

 7) Use an F-statistic to test H0: m1 = m2 and m3 = m4 vs Ha: (not H0).

 8) Use an F-statistic to test H0: m1 + m2 - 2m3 = 0, 2m2 - m4 - m5 = 0, ( m1 + m2 + m3)/3 = 
( m4 + m5)/2 vs Ha: (not H0).

 1.3 A study was conducted to evaluate the effect of elevation on the lung volume of 
birds raised at specifi ed elevations. Thirty-fi ve environmental chambers which 
could simulate elevations by regulating the air pressure were used. The fi ve 
effective elevations were each randomly assigned to seven chambers and 35 
baby birds were randomly assigned to the chambers, one per chamber. When 
the birds reached adult age, their lung volumes were measured. The data table 
contains the effective elevations and the volumes of the birds. Three birds did 
not survive the study, thus producing missing data.

  

Lung Volumes for Birds Raised at Different Simulated Elevations

Elevation 1000 ft Elevation 2000 ft Elevation 3000 ft Elevation 4000 ft Elevation 5000 ft

Bird Volume Bird Volume Bird Volume Bird Volume Bird Volume

1 156 8 160 15 156 22 168 29 177

2 151 9 160 16 173 23 167 30 170

3 161 12 154 18 165 24 171 31 169

4 152 13 152 19 172 25 173 32 176

5 164 14 153 20 169 26 167 33 183

6 153 21 168 27 167 34 178

7 163 28 173 35 174

 1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.

 2) Estimate the parameters of the model in part 1.

Gain Data for Comparing Rations of Exercise 1.2

Ration 1 Ration 2 Ration 3 Ration 4 Ration 5

Calf Gain Calf Gain Calf Gain Calf Calf Calf Gain

1 825 10 874 19 861 21 829 23 837

2 801 11 854 20 856 22 814 24 851

3 790 12 883 25 824

4 809 13 839 26 781

5 830 14 836 27 810

6 825 15 839 28 847

7 839 16 840 29 826

8 835 17 834 30 832

9 872 18 894 31 830
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The Simplest Case: One-Way Treatment Structure 19

 3) Determine if there is a linear trend in the lung volume as elevation increases 
by testing H0: -2m1 - m2 - 0m3 + m4 + 2m5 = 0 vs Ha: (not H0) (coeffi cients were 
obtained from a table of orthogonal polynomials for equally spaced values 
(Beyer, 1966, p. 367)).

 4) Determine if there is a quadratic trend in the lung volume as elevation 
increases by testing H0: 2m1 - m2 - 2m3 - m4 + 2m5 = 0 vs Ha: (not H0).

 5) Determine if the assumption of a linear/quadratic response to elevation is 
appropriate by simultaneously testing the cubic and quadratic trends to be 
zero by testing H0: -1m1 + 2m2 + 0m3 - 2m4 + 1m5 = 0, 1m1 - 4m2 + 6m3 - 4m4 + 1m5 = 0 
vs Ha: (not H0).

 6) Use a t-statistic to test H0: ( m1 + m2 + m3)/3 = ( m4 + m5)/2 vs Ha: (not H0).

 7) Use a F-statistic to test H0: m1 = m2 = m3 and m4 = m5 vs Ha: (not H0).
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2
One-Way Treatment Structure in a 
Completely Randomized Design Structure 
with Heterogeneous Errors

In this chapter, the case is considered where the treatments assigned to the experimental 
units may affect the variance of the responses as well as the mean. Start with the one-way 
means model, yij = mi + eij, for i = 1, 2, º , t, j = 1, 2, º , ni. In Chapter 1 it was assumed that 
the experimental errors all had the same variance; that is, the treatments were expected to 
possibly change the mean of the population being sampled, but not the variance. In this 
chapter, some methods are described for analyzing data when the treatments affect the 
variances as well as the mean. The types of questions that the experimenter should want to 
answer about the means in this setting are similar to those in Chapter 1. That is,

 1) Are all means equal?

 2) Can pairwise comparisons among the means be made?

 3) Can a test of the hypothesis of the form  Âi=1
  t

    ci mi = a be tested and can confi dence 
intervals be constructed about  Âi=1

  t
   ci mi? 

In addition, there are also questions about the variances that may be of interest, such as

 1) Are all of the variances equal?

 2) Are there groupings of the treatments where within a group the variances are 
equal and between groups the variances are not equal?

Before questions about the means of the model can be answered, an appropriate descrip-
tion of the variances of the treatments must be obtained.

Tests of homogeneity of variances are used to answer questions about the variances 
of the data from the respective treatments. If there are two treatments, the problem of 
 comparing means when there are unequal variances is usually known as the Behrens–
Fisher problem. Also, heterogeneous error variances pose a much more serious problem 
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22 Analysis of Messy Data Volume 1: Designed Experiments

when ignored than non-normality of the error variances. The procedures in Chapter 1 are 
robust with respect to non-normality, but not quite so robust with respect to  heterogeneous 
error variances. In the analyses previously considered, it was assumed that the population 
variances were all equal, which is a reasonable assumption in many cases. One method for 
analyzing data when variances are unequal is simply to ignore the fact that they are unequal 
and calculate the same F-statistics or t-tests that are calculated in the case of equal vari-
ances. Surprisingly perhaps, simulation studies have shown that these usual tests are quite 
good, particularly if the sample sizes are all equal or almost equal. Also, if the larger sam-
ple sizes correspond to the treatments or populations with the larger variances, then the 
tests computed with the equal variance assumption are also quite good. The usual tests are 
so good, in fact, that many statisticians do not even recommend testing for equal variances. 
Others attempt to fi nd a transformation that will stabilize the treatment variances, that is, 
transform the data such that the treatment variances are equal. When the variances are not 
equal, there are techniques to make comparisons about the means in the framework of the 
unequal variance model.

Procedures for testing the equality of treatment variances are described for the one-way 
model and procedures for analyzing the treatment means when the variances are unequal 
are described in the following sections. These procedures should be used when the usual 
techniques are suspect. The unequal variance model is described next.

2.1 Model Definitions and Assumptions

The unequal variance model is

 yij = mi + eij for i = 1, 2, º , t, j = 1, 2, º , ni and eij ~ independent N(0, s  2   i  )   (2.1)

The notation eij-independent N(0, s  2   i  ) means that the errors, eij , are all independent, nor-
mally distributed and the variance of each normal distribution depends on i and may be 
different for each population or treatment.

2.2 Parameter Estimation

The best estimates of the parameters in the model are:
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One-Way Treatment Structure in a Completely Randomized Design Structure 23

The sampling distributions associated with the parameter estimates are
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These sampling distributions are used as the basis for establishing tests for equality of 
variances and for providing the analysis of the means when the variances are unequal.

2.3 Tests for Homogeneity of Variances

In this section, fi ve procedures are described for testing the equal variances hypothesis,

 
2 2 2

0 1 2 0: vs : (not :)t aH H Hs s s= = =�
 

Before the analysis of the means is attempted, the equal variance hypothesis should be 
investigated. If there is not enough evidence to conclude the variances are not equal, then 
the equal variance model in Chapter 1 can be used to investigate the means. If there is 
 suffi cient evidence to believe the variances are unequal, then the procedures described in 
Section 2.5 should be used to provide an analysis of the means in the unequal variance 
framework. The recommendation is to use the unequal variance model when the equal 
variance hypothesis is rejected at a £ 0.01.

2.3.1 Hartley’s F-Max Test

The fi rst test described is known as Hartley’s F-max test (1950). This test requires that all 
samples be of the same size, that is, nl = n2 = º = nt. The test is based on the statistic
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ii

ii
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s
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Percentage points of Fmax are provided in the Appendix in Table A.1 for a = 0.05 and 0.01. 
The null hypothesis, H0, is rejected if Fmax > Fmax,a,n,k where n = n - 1, the degrees of freedom 
associated with each of the k individual treatment variances. If the ni are not all equal, a 
“liberal” test of H0 vs Ha can be obtained by taking n = maxi{ni} - 1. This test is liberal in the 
sense that one is assuming all treatments have the same (maximum) sample size and so you 
are going to reject the null hypothesis more often than specifi ed by the choice of a. When the 
sample sizes are not too unequal, this process provides a reasonable test. It also protects one 
from doing the usual analysis of variance when there is even a remote chance of it being inap-
propriate. An example illustrating the use of this test is found in Section 2.4.
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24 Analysis of Messy Data Volume 1: Designed Experiments

2.3.2 Bartlett’s Test

A second test for testing for homogeneity of variances is a test proposed by Bartlett (1937), 
which has the advantage of not requiring the ni to be equal. Bartlett’s test statistic is
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The hypothesis of equal variances is rejected if U > c 2a,t-1. One of the disadvantages of the 
preceding two tests for homogeneity of variance is that they are quite sensitive to depar-
tures from normality as well as to departures from the equal variances assumption. Most 
of the following tests are more robust to departures from normality.

2.3.3 Levene’s Test

Levene (1960) proposed doing a one-way analysis of variance on the absolute values of 
the residuals from the one-way means or effects model. The absolute values of the residu-
als are given by zij =  |yij -  

_
 y i·|, i = 1, 2, º , t; j = 1, 2, º , ni. The F-test from the analysis of vari-

ance is providing  a test of the equality of the treatment means of the absolute values of 
the residuals. If the means are different, then there is evidence that the residuals for one 
 treatment are on the average larger than the residuals for another treatment. The means 
of the absolute values of the residuals can provide a guide as to which variances are 
not equal and a multiple comparison test (see Chapter 3) can be used to make pairwise 
comparisons among these means. One modifi cation of Levene’s test is to use the squared 
residuals in the analysis of variance.

2.3.4 Brown and Forsythe’s Test

Brown and Forsythe (1974) used Levene’s process and modifi ed it by doing a one-way 
analysis of variance on the absolute values of the deviations of the observations from 
the median of each treatment. The absolute values of the deviations from the medians are 
given by uij  = |yij - yi med|, i = 1, 2, º , t; j = 1, 2, º , ni. The F-test from the analysis of vari-
ance provides a test of the equality of the treatment means of the absolute values of the 
deviations. If the means are different, then there is evidence that the deviations for one 
treatment are on the average larger than the deviations for another treatment. The means 
of the absolute values of the deviations from the medians can provide a guide as to which 
variances are not equal as a multiple comparison tests can be used to make pairwise com-
parisons among these means. This use of the deviations from the medians provides more 
powerful tests than Levene’s when the data are not symmetrically distributed.
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2.3.5 O’Brien’s Test

O’Brien (1979) computed scores as

 
2 2ˆ[( 2) ( ) ( 1)]/[( 1)( 2)].ij i i ij i i i i ir w n n y y w n n ns= + - - - - - -

 
(2.3)

where w is a weight parameter. The procedure is to carry out an analysis of variance on the 
computed score values. When w = 0.5, the means of the scores are the sample variances, 
ŝ  

2
 
  i  , thus the comparison of the means of the scores is a comparison of the  variances of 

the data.
There are several other procedures that can be used to test the equality of variances or 

the equality of scale parameters using parametric and nonparametric methods (Conover 
et al., 1981; Olejnik and Algina, 1987). McGaughey (2003) proposes a test that uses the con-
cept of data depth and applies the procedure to univariate and multivariate populations. 
Data depth is beyond the scope of this book.

2.3.6 Some Recommendations

Conover et al. (1981) and Olejnik and Algina (1987) conducted simulation studies of homo-
geneity of variance tests that included the ones above as well as numerous others. The 
studies indicate that no test is robust and most powerful for all situations. Levene’s test 
was one of the better tests studied by Conover et al. O’Brien’s test seems to provide an 
appropriate size test without losing much power according to Olejnik and Algina. The 
Brown–Forsythe test seems to be better when distributions have heavy tails. Based on 
their results, we make the following recommendations:

 1) If the distributions have heavy tails, use the Brown–Forsythe test.

 2) If the distributions are somewhat skewed, use the O’Brien test.

 3) If the data are nearly normally distributed, then any of the tests are appropriate, 
including Bartlett’s and Hartley’s tests.

Levene’s and O’Brien’s tests can easily be tailored for use in designed experiments that 
involve more than one factor, including an analysis of covariance (Milliken and Johnson, 
2002). Levene’s, O’Brien’s and Brown–Forsythe’s tests were shown to be nearly as good as 
Bartlett’s and Hartley’s tests for normally distributed data, and superior to them for non-
normally distributed data. Conover et al. and Olejnik and Algina discuss some nonpara-
metric tests, but they are more diffi cult to calculate and the above recommended tests 
perform almost as well. An example follows where each of the tests for equality of vari-
ances is demonstrated.

2.4 Example—Drugs and Errors

The data in Table 2.1 are from a paired-association learning task experiment performed on 
subjects under the infl uence of two possible drugs. Group 1 is a control group (no drug), 
group 2 was given drug 1, group 3 was given drug 2, and group 4 was given both drugs. 
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26 Analysis of Messy Data Volume 1: Designed Experiments

The sample sizes, sums, medians, means and variances of each group’s data are included 
in Table 2.1.

The F-max statistic is Fmax = 16.286/1.867 = 8.723. The liberal 5% critical point is obtained 
from Table A.1 with k = t = 4 and n = 7. The critical point is 8.44 and since 8.723 > 8.44, one 
rejects H0: s  2   

1
  = s  2   

2
   = · · · = s  2   t   versus Ha: (not H0:) with signifi cance level 0.05, but cannot 

reject at the a = 0.01 level.
The computations for Bartlett’s test are:
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The asymptotic sampling distribution associated with U is a that of a chi-square 
distribution based on three degrees of freedom. The signifi cance level of the test is 0.0501 

TABLE 2.1

Data from Paired-Association Learning Task Experiment

No Drug Drug 1 Drug 2 Drugs 1 and 2

1 12 12 13

8 10 4 14

9 13 11 14

9 13 7 17

4 12 8 11

0 10 10 14

1 — 12 13

— — 5 14

n 7 6 8 8

Sum 32 70 69 110

Median 4 12 9 14

Mean 4.5714 11.6667 8.6250 13.750

Variance 16.2857 1.8667 9.6964 2.786
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and one would again conclude that the variances are unequal at an approximate 5% 
signifi cance level.

The computations for Levene’s test begin with the computation of the residuals or the 
deviations of the observations from the treatment means. Next the absolute values of the 
residuals are computed as illustrated in Table 2.2. Finally, a one-way analysis of variance is 
carried out on these absolute values of the residuals. The value of the resulting F-statistic 
is 6.97, which is based on 3 and 25 degrees of freedom. The observed signifi cance level of 
Levene’s test is 0.0015. The squared deviations or squared residuals version of Levene’s test 
can be obtained by squaring the items in Table 2.2 before doing the analysis of variance. In 
this case, the value of the F-statistic is 7.36 and the observed signifi cance level is 0.0011 (also 
based on 3 and 25 degrees of freedom).

The Brown–Forsythe test statistic is obtained by computing the absolute value of 
the deviations of the observations from the treatment median (medians are in Table 2.1). 
Table 2.3 contains the absolute values of the deviations from the medians. Next, the one-
way analysis of variance provides an F-statistic of 5.49 and the observed signifi cance level 
is 0.0049 (also based on 3 and 25 degrees of freedom).

Table 2.4 contains the values of rij computed using Equation 2.3 with w = 0.5. The O’Brien 
test statistic is obtained by carrying out an analysis of variance. The value of the F-statistic 

TABLE 2.2

Values of zij = |yij - y–i·| for Computing Levene’s Test Where 
yij Values are from Table 2.1

No Drug Drug 1 Drug 2 Drugs 1 and 2

3.571 0.333 3.375 0.750

3.429 1.667 4.625 0.250

4.429 1.333 2.375 0.250

4.429 1.333 1.625 3.250

0.571 0.333 0.625 2.750

4.571 1.667 1.375 0.250

3.571 — 3.375 0.750

— — 3.625 0.250

TABLE 2.3

Absolute Values of Deviations of the Observations 
from the Treatment Medians

No Drug Drug 1 Drug 2 Drugs 1 and 2

3 0 3 1

4 2 5 0

5 1 2 0

5 1 2 3

0 0 1 3

4 2 1 0

3 — 3 1

— — 4 0
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is 6.30 and the observed signifi cance level is 0.0025. The value of the F-statistic using 
w = 0.7 (computations not shown) is 5.90 and the observed signifi cance level is 0.0035. 
There are 3 and 25 degrees of freedom associated with each of O’Brien’s tests.

Each of the test statistics indicates that there is suffi cient evidence to conclude that the 
variances are not equal. The group means of the absolute values of the residuals are shown 
in Table 2.5. Pairwise comparisons among these treatment absolute residual means are 
shown in Table 2.6. The means of the absolute values of the residuals for no drug and drug 2 
are not different, for drug 1 and drugs 1 and 2 are not different, but there are differences 
between these two sets. A simple model with two variances could be used to continue the 
analysis of the treatment means. Using a simple variance model will improve the power 
of some of the tests about the means. The two variance model and the corresponding 
 comparisons of means will follow the discussion of the analysis using four variances.

TABLE 2.4

Scores Using w = 0.5 for O’Brien’s Test

Obr1 Obr2 Obr3 Obr4

14.740 -0.083 13.295 0.464

13.457 3.517 25.676 -0.155

23.540 2.167 6.176 -0.155

23.540 2.167 2.461 12.845

-1.210 -0.083 -0.324 9.131

25.190 3.517 1.533 -0.155

14.740 — 13.295 0.464

— — 15.461 -0.155

TABLE 2.5

Means of the Absolute Values of the Residuals

Group Estimate Standard Error df t-Value Pr > |t|

Both drugs 1.0625 0.4278 25 2.48 0.0201

Drug 1 1.1111 0.4940 25 2.25 0.0336

Drug 2 2.6250 0.4278 25 6.14  <0.0001

No drug 3.5102 0.4574 25 7.67  <0.0001

TABLE 2.6

Pairwise Comparisons between the Group Means of the Absolute Values of the Residuals

Group __Group Estimate Standard Error df t-Value Pr  > |t|

Both drugs Drug 1  -0.04861 0.6535 25  -0.07 0.9413

Both drugs Drug 2  -1.5625 0.6050 25  -2.58 0.0161

Both drugs No drug  -2.4477 0.6263 25  -3.91 0.0006

Drug 1 Drug 2  -1.5139 0.6535 25  -2.32 0.0290

Drug 1 No drug  -2.3991 0.6732 25  -3.56 0.0015

Drug 2 No drug  -0.8852 0.6263 25  -1.41 0.1699
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2.5 Inferences on Linear Combinations

The problems of testing hypotheses about and constructing confi dence intervals for an 
arbitrary linear combination of the treatment means,  Âi=1

  t
   ci mi , are discussed in this section 

when the variances s  2   i   are too unequal to apply the tests and confi dence intervals 
discussed in Chapter 1. It is recommended that you use the procedures in this section and 
the next if the equality of variance hypothesis is rejected at the 0.01 or 1% level. If there is 
not suffi cient evidence to believe that the variances are unequal, then one can use the 
results in Chapter 1 to make inferences about the treatment means.

The best estimate of  Âi=1
  t

   ci mi  is  Âi=1
  t

   ci m̂i  and the sampling distribution is
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An obvious statistic to use for making inferences about  Âi=1
  t

   ci mi , when the variances are not 
known and are unequal, is
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If the ni corresponding to nonzero ci are all very large, one can reasonably assume that 
Z has an approximate N(0, 1) distribution, and hence Z can be used to make inferences 
about  Âi=1

  t
   ci mi . In this case, an approximate (1 - a)100% confi dence interval for  Âi=1

  t
   ci mi , is 

provided by

 

2 2
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where za/2 is the upper a/2 critical point of the standard normal probability distribution.
To test H0:   Âi=1

  t
   ci mi  = a vs Ha:  Âi=1

  t
   ci mi  π a, where a is a specifi ed constant, one could 

calculate
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and if |z| > za/2, then reject H0 at a signifi cance level of a.

C3340_C002.indd   29C3340_C002.indd   29 1/23/2009   12:29:35 PM1/23/2009   12:29:35 PM



30 Analysis of Messy Data Volume 1: Designed Experiments

In other instances, note that z can be written as
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The numerator of z has a standard normal distribution and the numerator and denomina-
tor of z are independently distributed. The distribution of z could be approximated by a 
t(n) distribution if n could be determined such that
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is approximately distributed as c2(n). In order to get a good chi-square approximation to 
the distribution of V when the variances are unequal, select a chi-square distribution that 
has the same fi rst two moments as V. That is, to fi nd n for the case of unequal variances, 
fi nd n so that the moments of V are equal to the fi rst two moments of a c2(n) distribution 
(this is known as Satterthwaite’s method). This results in determining that the approxi-
mate number of degrees of freedom is
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Unfortunately, since n depends on s  2   
1
 , s  2   

2
 , º , s  2   t   it cannot be determined exactly. The usual 

procedure is to estimate n by
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(2.4)

Summarizing, one rejects H0:  Âi=1
  t

  ci mi  = a vs Ha:  Âi=1
  t

  ci mi  π a, if
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where n̂ is determined using Equation 2.4. An approximate (1 - a)100% confi dence inter-
val for  Âi=1

  t
  ci mi  is given by
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Unfortunately, every time one wants to test a new hypothesis or construct another 
confi dence interval, the degrees of freedom n̂ must be re-estimated. It can be shown 
that n

*
 - 1 £ n̂ £ t(n* - 1) where n

*
 = min{n1, n2, º , nt} and n* = max{n1, n2, º , nt}. Thus, 

if |tc| > ta/2,n
*
-1, one can be assured that |tc| > ta/2,n̂ , and if |tc| < ta/2,t(n*-1), one can be assured 

that |tc| < ta/2,n̂ . In these cases, one can avoid calculating n̂. When ta/2,t(n*-1) < |tc| < ta/2,n*-1 
the value of n̂ must be calculated in order to be sure whether one should reject or fail to 
reject the null hypothesis being tested. For confi dence intervals, n̂ should always be 
 calculated. Next, the preceding results are demonstrated with the drug errors example.

2.6 Example—Drugs and Errors (Continued)

Consider the data in Table 2.1, and suppose the experimenter is interested in answering 
the following questions:

 1) On average, do drugs have any effect on learning at all?

 2) Do subjects make more errors when given both drugs than when given only one?

 3) Do the two drugs differ in their effects on the number of errors made?

To answer the fi rst question, one might test the hypothesis that the mean of the three 
drug groups is equal to the control mean. That is, one would test
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and the estimate of the corresponding standard error of l̂ 1 is
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The approximate degrees of freedom associated with this estimated standard error are 
obtained by using
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so that
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The value of the test statistic is tc = -6.776/1.992 = -4.256 with the observed signifi cance 
level â = 0.0038.

A 95% confi dence interval for l1 is
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which simplifi es to
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Next test to see if the mean of the group given both drugs is equal to the mean of the 
average of the means of the two groups given a single drug. That is, test
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The estimate of this linear combination is
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and its estimated standard error is
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The value of the test statistic is tc = 3.6042/0.8538 = 4.221, which is signifi cant at a = 0.01 
since |tc| > t0.005,5. In this case, the value of n̂ need not be computed using n

*
 - 1 as the 

approximating degrees of freedom. The computed value of n̂ is 16.8, which would be 
needed if one wanted to construct a confi dence interval about l2.
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Finally, to test the hypothesis to see if the two drug means differ, test H0: l3 = m2 - m3 = 0 vs 
Ha:  l3   =   m2  -  m3  π  0. The estimate of this linear combination is l̂ 3 = m̂2 - m̂3 = 3.042 and its 
estimated standard error is
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The approximate number of degrees of freedom is computed using
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Thus, tc = 3.042/1.234 = 2.465, which has an observed signifi cance level of â = 0.0334.

2.7 General Satterthwaite Approximation for Degrees of Freedom

The Satterthwaite approximation to the number of degrees of freedom associated with 
estimated standard error is obtained from
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where [�. .s e (l̂ )]2 is used to estimate E[s.e.(l̂ )]2 and the Var[�. .s e (l̂ )]2 is estimated by  Âi=1 
  t

   ci
4  ŝ i

4/
[ni

2(ni - 1)]. For more complex  models, Var[�. .s e (l̂ )]2 can be approximated by using a fi rst-
order Taylor’s series (Kendall and Stuart, 1952) as q�Mq  where M is the estimated asymp-
totic covariance matrix of the estimates of the variances and the elements of the vector q are 
the fi rst derivatives of E[s.e.(l̂)]2 with respect to the individual variances, that is,
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The qi are evaluated at the estimated values of each treatment’s variances (Montgomery and 
Runger, 1993, 1994). When the data from each of the samples are normally distributed, then
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is distributed as a central chi-square random variable. Thus E(ŝ   
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2s  4   i  /(ni - 1). Let the linear combination of interest be l =  Âi=1
  t

   cimi , which has variance
s  2   l    =  Âi=1

  t
   ci

2 s  2   i   /ni. The partial derivative of s  2   l    with respect to s  2   i   is
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The approximate variance of s  2   l   obtained using the Taylor’s series fi rst-order approxi-
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 estimates providing the approximating degrees of freedom

 

�
�

s
n

s

=

=

Ê ˆ
Á ˜Ë ¯

= =
-

Â

Â

2

2 2

2 2
1

2
4 4 2

1

ˆ
ˆ2 [ . .( )]*ˆ
ˆVar [ . .( )] ˆ /[ ( 1)]

{ }

{ }

( )

t

i i
i

t

i i i i
i

c
E s e l

s e l c n n
 

the same as that provided by the Satterthwaite approximation above.

2.8 Comparing All Means

As previously stated, the usual F-test is very robust when the variances are unequal, 
 provided that the sample sizes are nearly equal or provided that the larger sample sizes 
correspond to the samples from populations with the larger differences of variances. In 
this section, two additional tests of the hypothesis of equal means are provided. The fi rst 
test of the equal means hypothesis, H0: m1 = m2 = º = mt vs Ha: (not H0:), is given by Welch 
(1951), and is known as Welch’s test. Defi ne weights Wi = ni/ŝ  

2
 
  i  , let  

_
 y * =  Âi=1

  t
  Wi 

_
 y  i./ Âi=1

  t
  Wi  be a 

weighted average of the sample means, and let
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where W.. =  Âi=1
  t

  Wi . Then Welch’s test statistic is
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(2.5)

which has an approximate F-distribution with numerator and denominator degrees of 
freedom, n1 = t - 1 and n2 = (t2 - 1)/3�, respectively. Thus, the null hypothesis H0: m1 = 
m2 = · · · = mt is rejected if Fc > Fa,n1,n2

. The numerator of Equation 2.5 can also be  computed as 

C3340_C002.indd   34C3340_C002.indd   34 1/23/2009   12:29:37 PM1/23/2009   12:29:37 PM



One-Way Treatment Structure in a Completely Randomized Design Structure 35

[ Âi=1
  t

  (W i
 ȳ2

î.) - W.y- *2]/(t - 1). The procedure is demonstrated using the data from Section 2.4 
and the preliminary computations are provided in Table 2.7.

From the above information compute W. . = 7.341, y–* = 11.724,

 

2 2 2 2(1 0.430/7.341) (1 3.214/7.341) (1 0.825/7.341) (1 2.872/7.341)
0.376

6 5 7 7

- - - -
L = + + + =

 

and  Âi=1
  t

  Wi  
_
 y i.
2  -  

__
 W   
_
 y *2 = 1050.8069 - 1009.0954 = 43.7114.

The value of Welch’s test statistic is

 

41.7114/3 13.9038
12.6355

1 2 2 0.376/15 1.1003
cF = = =

+ ¥ ¥
 

with n1 = 3 and n2 = 15/(3 ¥ 0.376) = 13.283 degrees of freedom. The observed signifi cance 
probability corresponding to Fc is â = 0.00035. For comparison purposes, the usual F-statistic 
is Fc = 14.91 with 3 and 25 degrees of freedom. Welch’s test can be obtained using SAS®-
GLM by specifying WELCH as an option on the MEANS statement. Table 2.8 contains the 

TABLE 2.7

Quantities for Computing Welch’s Test

i Drug 1 Drug 2 Drug 3 Drug 4

ni 7 6 8 8

y–i. 4.5714 11.6667 8.62500 13.7500

ŝ i
2 16.2857 1.8667 9.69643 2.7857

Wi 0.4298 3.2143 0.82505 2.8718

TABLE 2.8

SAS-GLM Code to Provide the Brown–Forsythe’s Test of Equality of Variances 
and to Provide the Welch Test of Equal Means with the Unequal Variance Model

proc glm data=task;
class group;
model errors=group;
means group/HOVTEST=BF WELCH;
format group druggrps.;

Welch’s Test
Source df F-Value Pr > F

Group 3 12.64 0.0003

Error 13.2830

Brown and Forsythe’s Test for Homogeneity of Errors Variance 
ANOVA of Absolute Deviations from Group Medians

Source df Sum of Squares Mean Square F-Value Pr > F

Group 3 31.3762 10.4587 5.49 0.0049

Error 25 47.5893  1.9036
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GLM code used to provide BF test for equality of variances and Welch’s test for equality of 
means. The important parts of the output are in the second part of Table 2.8. Other tests for 
equality of variances can be obtained by specifying O’Brien, Levene or Bartlett.

The second procedure for testing the equality of the treatment means is obtained from 
generalizing the process of testing a hypothesis about a set of linear combinations of the mi. 
Suppose a hypothesis is formed involving r independent linear combinations of the mi , 
such as H0:  Âi=1

  t
   c1i mi = 0 ,  Âi=1

  t
   c2i mi = 0 , º ,  Âi=1

  t
   cri mi = 0  vs Ha: (not H0). Let C be a r ¥ t matrix 

where the kth row contains the coeffi cients of the kth linear combination. If one assumes the 
data from each of the populations or treatments are normally distributed, then the joint 
sampling distribution of the vector of treatment means is m̂ ~ N[ m, V ] where V is a diagonal 
matrix whose ith diagonal element is s  2   i  /ni. The joint sampling distribution of the set of 
linear combinations Cm is Cm̂ ~ N[Cm, CVC�]. The sum of squares due to deviations from 
the null hypothesis is SSH0 = [Cm̂]�[CV̂C�]-1[Cm̂], which is asymptotically distributed as a chi-
square distribution with r degrees of freedom. An approximate small sample size statistic 
is Fc = SSH0/r with the approximating distribution being F with r and n degrees of freedom 
where n needs to be approximated (Fai and Cornelius, 1996; SAS Institute, Inc., 1999, p. 2118). 
The computation of the approximate degrees of freedom starts with carrying out a spectral 
decomposition on CV̂C� = QDQ� where D is an r ¥ r diagonal matrix having the characteri-
stic roots of CV̂C� as diagonal elements and where Q is a r ¥ r orthogonal matrix of the 
 corresponding characteristic vectors of CV̂C�. Let zk� be the kth row of QC, and let
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where dk is the kth diagonal element of D, bk contains the partial derivatives of zk�Vzk with 
respect to each of the variance parameters in V evaluated at the estimates of the variances, 
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where I[nk > 2] is an indicator function with the value of 1 when nk > 2 and 0 otherwise. The 
approximate denominator degrees of freedom for the distribution of Fc are
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The above process can be used to provide a test of the equal means hypothesis by  selecting 
a set of t - 1 linearly independent contrasts of the mi.

The SAS-Mixed procedure implements a version of this approximation to the denomina-
tor degrees of freedom associated with an approximate F statistic with multiple degrees of 
freedom in the numerator. SAS-Mixed can be used to fi t models with unequal  variances 
per treatment group or unequal variances in some other prespecifi ed pattern using the 
REPEATED statement and specifying the GROUP = option. The Mixed code in Table 2.9 
was used to fi t the unequal variance model to the data in Table 2.1. The REPEATED state-
ment is used to specify that a different variance (each value of group) is to be estimated for 
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each treatment. The three Estimate statements are used to provide the computations 
corres ponding to the three questions in Section 2.6.

The results from the Mixed procedure are given in Table 2.10, where the Covariance 
Parameter Estimates are the estimates of the four treatment variances, AIC in the Fit Statistics 
is the Akaike Information Criteria (Akaike, 1974), the Null Model Likelihood Ratio Test 
 provides a test of the equal variance hypothesis, the type III tests of fi xed effects  provides 
the test of the equal means hypothesis using the second statistic and the  corresponding 

TABLE 2.9

SAS-Mixed Code to Fit the Unequal Variance Model to the Data in Table 2.1

proc mixed cl covtest data=task;
class group;
model errors=group/ddfm=kr;
repeated/group=group;
estimate “part(1)” group -1 -1 -1 3/divisor=3 cl alpha=0.05;
estimate “part(2)” group 2 -1 -1 0/divisor=2 cl alpha=0.05;
estimate “part(3)” group 0 1 -1 0/cl alpha=0.05;
lsmeans group/diff cl;

TABLE 2.10

Results of Fitting the Unequal Variance Model to the Data in Table 2.1

Covariance Parameter Estimates

Covariance 

Parameter Group Estimate

Standard 

Error Z-Value Pr Z α Lower Upper

Residual Both drugs  2.7857 1.4890 1.87 0.0307 0.05 1.2178 11.5394

Residual Drug 1  1.8667 1.1806 1.58 0.0569 0.05 0.7273 11.2286

Residual Drug 2  9.6964 5.1830 1.87 0.0307 0.05 4.2388 40.1658

Residual No drug 16.2857 9.4026 1.73 0.0416 0.05 6.7625 78.9710

Fit Statistics

AIC (smaller is better) 129.8

Null Model Likelihood Ratio Test

df Chi-Square Pr > Chi-Square

3 8.34 0.0394

Type III Tests of Fixed Effects

Effect Num df Den df F-Value Pr > F

group 3 11.8 12.53 0.0006

Estimates

Label Estimate Standard Error df t-Value Pr   > |t| a Lower Upper

Part 1 -6.7758 1.5920  7.1  -4.26 0.0036 0.05 -10.5299 -3.0217

Part 2 3.6042 0.8538 16.8 4.22 0.0006 0.05 1.8011 5.4073

Part 3 3.0417 1.2342 10.1 2.46 0.0332 0.05 0.2962 5.7871
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TABLE 2.11

Estimates of the Drug Group Means and Pair Wise Comparisons Using the Unequal 
Variance Model

Least Squares Means

Effect Group Estimate Standard Error df t-Value Pr  > |t| α Lower Upper

Group Both drugs 13.7500 0.5901 7 23.30 <0.0001 0.05 12.3546 15.1454

Group Drug 1 11.6667 0.5578 5 20.92 <0.0001 0.05 10.2329 13.1005

Group Drug 2  8.6250 1.1009 7  7.83  0.0001 0.05  6.0217 11.2283

Group No drug  4.5714 1.5253 6  3.00  0.0241 0.05  0.8392  8.3037

Differences of Least Squares Means

Effect Group __Group Estimate

Standard 

Error df t-Value Pr  > |t| α Lower Upper

Group Both drugs Drug 1 2.0833 0.8120 11.9 2.57 0.0249 0.05 0.3117  3.8550

Group Both drugs Drug 2 5.1250 1.2491 10.7 4.10 0.0018 0.05 2.3668  7.8832

Group Both drugs No drug 9.1786 1.6355 7.78 5.61 0.0006 0.05 5.3886 12.9685

Group Drug 1 Drug 2 3.0417 1.2342 10.1 2.46 0.0332 0.05 0.2962  5.7871

Group Drug 1 No drug 7.0952 1.6241 7.55 4.37 0.0027 0.05 3.3109 10.8796

Group Drug 2 No drug 4.0536 1.8811 11.3 2.15 0.0536 0.05 -0.07507  8.1822

approximate degrees of freedom for the denominator, and the Estimates contain the results 
 corresponding to the three questions in Section 2.6, where t-statistics, approximate denom-
inator degrees of freedom, and 95% confi dence intervals are provided. Table 2.11 contains 
the estimated treatment means with their corresponding estimated standard errors. The 
denom i nator degrees of freedom are the degrees of freedom corresponding to their 
respective variances. The second part of Table 2.11 contains the pairwise comparisons of the 
treatment means including the approximate denominator degrees of freedom for each com-
parison. This model could be simplifi ed by using one variance for drug 1 and both drugs 
and one variance for drug 2 and no drug. This can be accomplished by defi ning a variable, 
say T, to be 1 for drug 1 and both drugs and 0 for the other two treatments. Then place T in 
the class statement and use Repeated/Group  =  T; in the model specifi cation. The estimates 
of the two variances are 2.4028 and 12.7376 and the AIC is 126.4, which is a smaller AIC 
value than that for the four variance model, indicating the two variance model is  adequate 
to describe the data. Using a model with fewer variances in the model specifi cation 
provides more degrees of freedom for the respective standard errors and thus provides 
more powerful tests of hypotheses concerning the fi xed effects in the model.

2.9 Concluding Remarks

In summary, for comparing all means, the following are recommended:

 1) If the homogeneity of variance test is not signifi cant at the 1% level, do the usual 
analysis of variance test.
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 2) If the homogeneity of variance test is signifi cant at the 1% level use either Welch’s 
test or the mixed models test and the corresponding approximate denominator 
degrees of freedom.

 3) If the homogeneity of variance is signifi cant at the 1% level, use the AIC to deter-
mine if a simpler or fewer number of variances can be used to adequately describe 
the data in order to increase the power of tests concerning the means.

Many text books and articles have been written about using transformations on data in 
order to achieve equal treatment variances so that the usual analysis of variance can be used 
to compare the treatments. With the ability to fi t an unequal variance model to provide 
estimated standard errors of means and comparisons of means, many situations will not 
require the use of transformations. One major benefi t of not having to use a transformation 
to achieve equal variances is that the units of the means are in the units of measurement, 
thus simplifying interpretations.

This chapter contains discussion about the statistical analysis of a one-way analysis of 
variance model with heterogeneous errors. The discussion included several statistical tests 
for determining homogeneity of the error variances and recommendations on when to use 
each test. Procedures appropriate for making statistical inferences about the effects of 
 different treatments upon discovering heterogeneous error variances as well as examples 
illustrating the use of these procedures were also reviewed.

2.10 Exercises

 2.1 The following data are body temperatures of calves that were vaccinated and 
then challenged to determine if the vaccination protected the animal. Test the 
equality of variances of the treatment groups using two or more techinques. 
Based on the results of the test of equality of variances, test the equality of the 
treatment means using both Welch’s and the mixed model F-statistics and make 
all pairwise comparisons.

   

Data for Exercise 2.1

Vaccine A Vaccine B Vaccine C Vaccine D Vaccine E Vaccine F Vaccine G

101.5 96.3 101.8 97.3 97.5 96.9  97.3

100.5 97.2  97.4 96.8 96.4 97.1 100.7

104.5 99.3 104.9 97.1 98.6 96.8 103.3

102.3 98.0 104.0 97.0 96.6 97.0 100.2

100.6 97.6 103.7 97.1 96.2 103.5

 97.7 96.8 104.5 96.9 96.6

99.1 100.4 96.1

96.7 102.2 96.3

96.4 100.2 96.7

97.1

 2.2 Use the data in Table 1.1 and test the equality of variances using several of the 
methods described in Section 2.2. What is your conclusion?

 2.3 The data in the following table are times required for a student to dissolve a 
piece of chocolate candy in their mouth. Each time represents one piece of candy 
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dissolved by one student. Provide a detailed analysis of the data set and provide 
tests of the following hypotheses:

 1) The mean of the Blue Choc = the mean of the Red Choc.

 2) The mean of the Buttons = the mean of the means of the Blue Choc and 
Red Choc.

 3) The mean of the ChocChip = the mean of the WchocChip.

 4) The mean of the Small Choc = ½ the mean of the means of the Blue Choc and 
Red Choc.

 5) The mean of the Blue Choc and Red Choc = the mean of the ChocChip and 
WchocChip.

Data for Exercise 2.3

Buttons Blue Choc Small Choc ChocChip WChocChip Red Choc

69 57 28 52 35 47

76 41 27 50 37 70

59 70 28 60 38 48

55 66 30 55 40 51

68 48 29 57 34 42

34 62 28 49 35

35 24 36

 2.4 The following data are the amount of force (kg) required to fracture a concrete 
beam constructed from one of three beam designs. Unequal sample sizes 
occurred because of problems with the pouring of the concrete into the forms for 
each of the designs.

 1) Write out an appropriate model to describe the data and describe each 
 component of the model.

 2) Estimate the parameters of the model in part 1.

 3) Use Levene’s, O’Brien’s, and Brown–Forsythe’s methods to test the equality 
of the variances.

 4) Use Welch’s test to test H0: m1 = m2 = m3 vs Ha: (not H0).

 5) Use the mixed model F-test to test H0: m1 = m2 = m3 vs Ha: (not H0).

Data for Exercise 2.4

Design Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 Beam 6 Beam 7 Beam 8 Beam 9 Beam 10

1 195 232 209 201 216 211 205

2 231 215 230 221 218 227 218 219

3 223 226 223 224 224 226 227 224 226 226

 2.5 Four rations with different amounts of celluose were evaluated as to the amount 
of feed required for a chicken to gain one pound during the trial. Twenty-four 
chickens were randomly assigned to the four rations (six chickens per ration) 
and the chickens were raised in individual cages.

 1) Write out an appropriate model to describe the data and describe each 
 component of the model.
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 2) Estimate the parameters of the model in part 1.

 3) Use Levene’s, O’Brien’s, and Brown–Forsythe’s methods to test the equality 
of the variances.

 4) Use Welch’s test to test H0: m1 = m2 = m3 = m4 vs Ha: (not H0).

 5) Use the mixed model F test to test H0: m1 = m2 = m3 = m4 vs Ha: (not H0).

 6) Construct 90% confi dence intervals about c1, c2, and c3 where c1 = m1 - m2 + 
m3 - m4, c2 = m1 + m2 - m3 - m4, and c3 = m1 - m2 - m3 + m4.

Data for Exercise 2.5

Chick 1 Chick 2 Chick 3 Chick 4 Chick 5 Chick 6

Ration 1 2.60 2.54 2.87 2.33 2.45 2.77

Ration 2 3.87 3.18 2.59 3.62 2.71 3.08

Ration 3 2.69 5.31 2.08 4.00 3.12 4.19

Ration 4 4.43 5.59 5.06 4.17 5.17 4.47
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3
Simultaneous Inference Procedures and 
Multiple Comparisons

Often an experimenter wants to compare several functions of the mi in the same experi-
ment, leading to a multiple testing situation. Experimenters should consider all functions of 
the mi that are of interest; that is, they should attempt to answer all questions of interest 
about relationships among the treatment means. The overriding reason to include more 
than two treatments in an experiment or study is to be able to estimate and/or test hypo-
theses about several relationships among the treatment means. Often the treatments are 
selected to provide a structure of comparisons of interest (see, for example, the drug experi-
ment in Section 2.4). At other times, the experimenter may be interested in comparing each 
treatment to all other treatments, that is, making all pairwise comparisons. This would be 
the case, for example, when one is comparing the yields of several varieties of wheat or for 
any other set of treatments that have been selected for a comparative study.

One concern when making several comparisons in a single experiment is whether 
 signifi cant differences observed are due to real differences or simply to making a very 
large number of comparisons. Making a large number of comparisons increases the chance 
of fi nding differences that appear to be signifi cant when they are not. For example, if an 
experimenter conducts 25 independent tests in an experiment and fi nds one signifi cant 
difference at the 0.05 level, she should not put too much faith in the result because, on aver-
age, she should expect to fi nd (0.05)(25) = 1.25 signifi cant differences just by chance alone. 
Thus, if an experimenter is answering a large number of questions with one experiment 
(which we believe one should do), it is desirable to have a procedure that indicates whether 
the differences might be the result of chance alone. Fisher (1949) addressed this problem 
when he put forward the protected least signifi cant difference (LSD) procedure. Since then, 
many authors have contributed to the area of multiple testing where procedures for 
 numerous settings have been developed.

In this chapter, several well-known and commonly used procedures for making  multiple 
inferences are discussed and compared. Some of the procedures are primarily used for 
testing hypotheses, while others can also be used to obtain simultaneous confi dence inter-
vals; that is, a set of confi dence intervals for a set of functions of the mi can be derived for 
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which one can be 95% confi dent that all the confi dence intervals simultaneously contain 
their respective functions of the mi.

3.1 Error Rates

One of the main ways to evaluate and compare multiple comparison procedures is to 
 calculate error rates. If a given confi dence interval does not contain the true value of the 
quantity being estimated, then an error occurs. Similarly, if a hypothesis test is used, an 
error is made whenever a true hypothesis is rejected or a false hypothesis is not rejected. 
Next four kinds of error rates are defi ned.

Defi nition 3.1: The comparisonwise error rate is equal to the ratio of the number of incor-
rect inferences made to the total number of inferences made in all experiments analyzed.

Defi nition 3.2: The experimentwise error rate (EER) is equal to the ratio of the number 
of experiments in which at least one error is made to the total number of experiments ana-
lyzed. It is the probability of making at least one error in an experiment when there are no 
differences between the treatments. The EER is also referred to as the experimentwise 
error rate under the complete null hypothesis (EERC).

Defi nition 3.3: The familywise error rate (FWER) (Westfall et al., 1999) is the probability 
of making at least one erroneous inference for a predefi ned set of k comparisons or confi -
dence intervals. The set of k comparisons or confi dence intervals is called the family of 
inferences.

Defi nition 3.4: The false discovery rate (FDR) (Benjamini and Hochberg, 1995) is the 
expected proportion of falsely rejected hypotheses among those that were rejected.

The EER controls the error rate when the null hypothesis is that all of the treatments are 
equally effective, that is, there are no differences among the treatment means. But many 
experiments involve a selected set of treatments where there are known differences among 
some treatments. Instead of an all means equal null hypothesis, there may be a collection 
of k null hypotheses, H01, H02, º , H0k about the set of t means. These k null hypotheses are 
called partial null hypotheses and the error rate is controlled by using a method that 
 controls the FWER (Westfall et al., 1999). For example, the set of treatments in Exercise 2.3 
are six candy types, buttons, blue choc, red choc, small choc, chocChip and WchocChip. It 
is known at the start of the study that the time required to dissolve the small choc is much 
less than the time required to dissolve any of the other candies. The null question could be: 
Is the time it takes to dissolve a small choc equal to one-half of the mean times to dissolve 
the red and blue chocs? In this case a method that controls the FWER is in order since the 
condition of using a method that controls the EER does not hold; that is, it is known that 
the mean times are not all equal from the start. The FDR is very useful in the context of 
microarray experiments in genetics.

In order to avoid fi nding too many comparisons signifi cant by chance alone in a single 
experiment, one quite often attempts to fi x the experimentwise error rate, when applicable, 
or the FWER when needed at some prescribed level, such as 0.05. Whenever an experi-
menter is trying to answer many questions with a single experiment, it is a good strategy 
to control the FWER.
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3.2 Recommendations

There are fi ve basic types of multiple comparison problems: 1) comparing a set of treatments 
to a control or standard; 2) making all pairwise comparisons among a set of t means; 3) con-
structing a set of simultaneous confi dence intervals or simultaneous tests of hypotheses; 
4) exploratory experiments where there are numerous tests being conducted; and 5) data 
snooping where the comparisons are possibly data-driven. In the fi rst four situations, the 
number of comparisons or confi dence intervals or family of inferences is known before the 
data are analyzed. In the last situation, there is no set number of comparisons of interest and 
the fi nal number can be very large. The recommendations given in this chapter are based on 
information from Westfall et al. (1999), SAS Institute, Inc. (1999), and Westfall (2002).

 1) If the experiment is an exploratory or discovery study and the results are going to 
be used to design a follow-up or confi rmatory study, then possibly no adjustment 
for multiplicity is necessary, thus use t-tests or unadjusted confi dence intervals 
based on LSD values.

 2) Use Dunnett’s procedure for comparing a set of treatments with a control. There 
are two-sided and one-side versions of Dunnett’s procedure, so one can select a 
version to fi t the situation being considered.

 3) For pairwise comparisons, if there is an equal number of observations per treat-
ment group, use Tukey’s method. If the data are unbalanced, then use the method 
that simulates (Westfall et al., 1999) a percentage point, taking into account the 
pattern of unequal numbers of observations.

 4) If the set of linear combinations is linearly independent, then the multivariate t can 
be used to construct confi dence intervals or to test hypotheses. If the linear combi-
nations are uncorrelated or orthogonal, the multivariate t works well. If the linear 
combinations are not uncorrelated, then a simulation method that incorporates the 
correlation structure should be used instead of the multivariate t. Most cases with 
unequal numbers of observations per treatment group provide correlated linear 
combinations and the simulation method should be used.

 5) The Bonferroni method can be used to construct simultaneous confi dence inter-
vals or tests about a selected number of linear combinations of the means, but if 
the number of combinations of interest is large (say 20 or more), the Scheffé 
procedure can often produce shorter confi dence intervals, so check it out. For a 
set of hypotheses, the methods of Šidák (1967), Holm (1979), or Šidák–Holm can 
be used effectively. When the linear combinations are uncorrelated these 
bounds are quite good, but when there are correlations among the linear com-
binations, the realized FWER can be much less than desired. SAS®-MULTTEST 
can be used carry out bootstrap and simulated percentage points for a given set 
of comparisons that takes into account the correlation among the comparisons 
within the set.

 6) For data snooping or for data-driven comparisons or hypotheses, use Scheffé’s 
procedure as one can make as many comparisons as one wants and still control 
the EER or FWER.

 7) For studies such as genetic studies that involve thousands of comparisons, use a 
method that controls the FDR, such as the method suggested by Benjamini and 
Hochberg (1995).
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46 Analysis of Messy Data Volume 1: Designed Experiments

 8) For studies that involve evaluating the safety of a treatment as compared with a 
control or placebo for possible adverse effects, use a method that does not correct 
for multiple tests or comparisons. Adjustment for multiplicity may not be needed 
for safety studies, where it is much more serious to make a type II error than it is 
to make a type I error.

 9) Once the type of comparison is determined and the desired level of error rate con-
trol is specifi ed, select the method satisfying these conditions that provides the 
smallest p-values or smallest critical differences or shortest confi dence interval 
widths.

Each of the recommended multiple comparison procedures as well as a few other popu-
lar procedures available for the one-way treatment structure of Chapter 1 are examined in 
the following discussion. Each of the procedures can also be used in much more complex 
situations, as will be illustrated throughout the remainder of this book. The parameter n 
used during the remainder of this book represents the degrees of freedom corresponding  
to the estimator of s 2. For the one-way case of Chapter 1, the error degrees of freedom are 
n = N - t.

3.3 Least Significant Difference

The LSD multiple comparison method has possibly been used more than any other method, 
perhaps because it is one of the easiest to apply. It is usually used to compare each treat-
ment mean with every other treatment mean, but it can be used for other comparisons as 
well. The LSD at the 100% signifi cance level for comparing mi to mj is

 

/2,

1 1
ˆLSD

i j

t
n na a ns= +

 

(3.1)

One concludes that 1mi π mj if Ám̂i – m̂j Á >  LSDa. This procedure has a comparisonwise error 
rate equal to a. A corresponding (1 - α)100% confi dence interval for mi – mj is

 

/2,

1 1
ˆ ˆ ˆ

i j
i j

t
n na nm m s- ± +

 

(3.2)

If all sample sizes are equal (to n, say), then a single LSD value can be used for all pair-
wise comparisons. In this case, the single LSDa value is given by

 
/2,

2
ˆLSD t

na a n s=
 

(3.3)

Suppose a study includes t treatment means and that all possible pairwise comparisons 
at the 5% signifi cance level are going to be made. Comparisons of the comparisonwise and 
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experimentwise error rates for experiments with different values of t are displayed in 
Table 3.1. The information in the table applies to cases where all treatment means are equal. 
Table 3.1 shows that, in an experiment involving six treatments, 35.8% of the time one 
would fi nd at least one signifi cant difference, even when all the treatment means were 
equal to one another. Obviously, using the LSD procedure could be very risky without 
some additional protection. When there is more than one test or parameter or linear 
 combination of parameters of interest, meaning there is a multiplicity problem, some 
adjustment should be taken into account in order to eliminate discovering false results. 
Westfall et al. (1999) present an excellent discussion of all of the problems associated with 
the multiplicity problem and/or the multiple comparison problem. The following discus-
sion attempts to describe those procedures that are useful or have been used in the  analysis 
and interpretation of the results from designed experiments.

3.4 Fisher’s LSD Procedure

Fisher’s recommendation offers some protection for the LSD procedure discussed in the 
preceding section. In Fisher’s procedure, LSD tests are made at the a100% signifi cance 
level by utilizing Equation 3.1, but only if H0: m1 = m2 = · · · = mt is fi rst rejected at that level of 
a by the F-test discussed in Chapter 1.

This gives a rather large improvement over the straight LSD procedure since the 
experimentwise error rate is now approximately equal to a . However, it is possible to 
reject H0: m1 = m2 = · · · = mt and not reject any of H0: mi = mj for i π j. It is also true that this 
procedure may not detect some differences between pairs of treatments when differ-
ences really exist. In other words, differences between a few pairs of treatments may 
exist, but equality of the remaining treatments may cause the F-test to be nonsigni fi cant, 
and this procedure does not allow the experimenter to make individual comparisons 
without fi rst obtaining a signifi cant F-statistic. The other problem with this procedure 
is that many experiments contain treatments where it is known there are unequal means 
among some subsets of the treatments. In this case, one expects to reject the equal 
means hypothesis and the LSD would be used to make all pairwise comparisons. If a 
subset of the treatments has equal means, then more of the pairwise comparisons will 
detected as being signifi cantly different than expected. Thus the FWER is not main-
tained. Fisher’s LSD can be recommended only when the complete null hypothesis is 
expected to be true.

These two LSD procedures are not recommended for constructing simultaneous confi -
dence intervals on specifi ed contrasts of the mi because the resulting confi dence intervals 
obtained will generally be too narrow.

TABLE 3.1

Simulated Error Rates for the LSD Procedure

Number of treatments 2 3 4 5 6 8 10 20

Comparisonwise error rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experimentwise error rate 0.05 0.118 0.198 0.280 0.358 0.469 0.586 0.904

C3340_C003.indd   47C3340_C003.indd   47 1/23/2009   12:30:51 PM1/23/2009   12:30:51 PM



48 Analysis of Messy Data Volume 1: Designed Experiments

Each of the above LSD procedures can be generalized to include several contrasts of the 
treatment means. The generalization is: conclude that  Âi=1  

t
   cimi π 0  if 

 

2
/2,

1 1

ˆ ˆ /
t t

i i i i
i i

c t c na nm s
= =

>Â Â
 

(3.4)

Examples are given in Sections 3.10, 3.12, 3.14, and 3.16.

3.5 Bonferroni’s Method

Although this procedure may be the least used, it is often the best. It is particularly good 
when the experimenter wants to make a small number of comparisons. This procedure is 
recommended for planned comparisons whenever it is necessary to control the FWER. 
Suppose the experimenter wants to make p such comparisons. She would conclude that 
the qth comparison  Âi=1  

t
   ciqmi π 0 , q = 1, 2, . . . , p, if

 

2

/2 ,

1 1

ˆ ˆ
t t

iq
iq i p

i i i

c
c t

na nm s
= =

>Â Â
 

(3.5)

These p-tests will give a FWER less than or equal to a and a comparisonwise error rate 
equal to a/p. Usually the FWER is much less than a. Unfortunately, it is not possible to 
determine how much less. Values of ta/2p,n for selected values of a, p, and n are given in the 
Appendix in Table A.2. For example, if a = 0.05, p = 5, and n = 24, then from Table A.2 one 
gets ta/2p,n = 2.80. The examples in Sections 3.10, 3.12, 3.14, and 3.16 demonstrate the use of 
the Bonferroni method. The tables m is equivalent to our p.

Simultaneous confi dence intervals obtained from the Bonferroni method, which can be 
recommended, have the form:

 

2

/2 ,

1 1

ˆ ˆ
t t

iq
iq i p

i i i

c
c t

na nm s
= =

±Â Â , q = 1, 2, º , p
 

(3.6)

The Bonferroni method can be applied to any set of functions of the parameters of a 
model, including variances as well as means.

3.6 Scheffé’s Procedure

This procedure is recommended whenever the experimenter wants to make a large 
number of “unplanned” comparisons. Unplanned comparisons are comparisons that the 
experimenter had not thought of making when planning the experiment. These arise 
 frequently, since the results of an experiment frequently suggest certain comparisons to 
the experimenter. This procedure can also be used when there are a large number of 
planned comparisons, but the widths of the confi dence intervals are generally wider than 
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for other procedures, although not always. Consider testing H0:  Âi=1  
t
   cimi = 0  for a given 

 contrast vector c. It is true that
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Thus a procedure with an FWER equal to a for comparing all possible contrasts of the mi to 
zero is as follows: Reject H0:  Âi=1  

t
   cimi = 0  if

 

2
, 1,

1 1

ˆ ˆ( 1) /
t t

i i t i i
i i

c t F c na nm s-
= =

> -Â Â
 

(3.7)

This procedure allows one to compare an infi nite number of contrasts to zero while 
maintaining an experimentwise error rate equal to a. However, most experimenters will 
usually not be interested in an infi nite number of comparisons; that is, only a fi nite  number 
of comparisons are of interest. Scheffé’s procedure can still be used, but in this case, the 
FWER will generally be much smaller than a. Bonferroni’s method or the multivariate 
t-method when appropriate will often be better (narrower confi dence interval or more 
powerful test) than Scheffé’s procedure for a fi nite number of comparisons. That is, a 
smaller value of  Âi=1  

t
   cim̂i  can often enable one to declare that  Âi=1  

t
   cimi  is signifi cantly different 

from zero using Bonferroni’s method or the multivariate t-method than can be declared 
signifi cant by Scheffé’s method. However, if one is going to “muck around” in the data to 
see if anything signifi cant turns up, then one should use Scheffé’s method, since such com-
parisons are really unplanned comparisons rather than planned comparisons. It should be 
noted that Scheffé’s method will not reveal any contrasts signifi cantly different from zero 
unless the F-test discussed in Chapter 1 rejects H0: m1 = m2 = · · · = mt. Scheffé’s procedure can 
also be used to obtain simultaneous confi dence intervals for contrasts of the mi. The result 
required is that, for any set of contrasts c1, c2, . . . , one can be at least (1 - a)100% confi dent 
that  Âi=1  

t
   ciqmi  will be contained within the interval given by

 

2
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1 1
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t t

iq i t iq i
i i

c t F c n qa nm s-
= =

± - =Â Â …
 

(3.8)

If one wants to consider all linear combinations of the mi rather than just all contrasts, 
then ÷[(t - 1)Fa,t-1,n] must be replaced by ÷[tFa,t,n] in Equations 3.7 and 3.8.

Examples can be found in Sections 3.10, 3.12, and 3.14.

3.7 Tukey–Kramer Method

The preceding procedures can be used regardless of the values of the ni. Tukey’s (Tukey, 
1952, 1953; Kramer, 1956) honest signifi cant difference (HSD) procedure was designed to 

C3340_C003.indd   49C3340_C003.indd   49 1/23/2009   12:30:52 PM1/23/2009   12:30:52 PM



50 Analysis of Messy Data Volume 1: Designed Experiments

make all pairwise comparisons among a set of means. The procedure, however, requires 
equal ni. Tukey (1953) and Kramer (1956) provided a modifi cation for the case where one 
has unequal sample sizes. Hayter (1984) provided proof that the Tukey–Kramer method 
provides FWER protection, although an approximate procedure can be used if the ni are 
not too unequal. The Tukey–Kramer method is to reject H0: mi = mi¢ for i π i¢ if
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ˆ ˆ

2
i i t

i i

q
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(3.9)

where qa,t,n is the upper percentile of the distribution of the Studentized range statistic. 
Values of qa,t,n for selected values of a, t, and n are given in Appendix Table A.4.

If the sample sizes are all equal to n, then the decision is to reject H0: mi = mi¢ for i π i¢ if
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Tukey’s general procedure for equal sample sizes is to reject H0:  Âi=1  
t
  cimi  = 0 for a con-

trast if
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3.8 Simulation Methods

For unequal sample size problems, for problems where the comparisons are other than 
pairwise comparisons, and for problems where the comparisons are not linearly indepen-
dent, the above methods provide FWER signifi cance levels that are less than desired. In 
this case, the percentage points for the appropriate set of comparisons can be simulated.

Suppose you are interested in p linear combinations of the mi such as  Âi=1  
t
   ciqmi,  q = 

1, 2, º , p and it is desired to provide a procedure that controls the FWER for either the set 
of hypotheses H0:  Âi=1  

t
   ciqmi  = 0, q = 1, 2, º , p or a set of simultaneous confi dence intervals 

for  Âi=1  
t
   ciqmi.  The process is:

 1) Generate a sample of data in the same structure of the data set at hand. If there are 
fi ve treatments with sample sizes, 5, 9, 3, 6, and 7, generate data with those sample 
sizes.

 2) Carry out the analysis of the generated data set as is to be done with the actual 
data set and compute the p t-statistics:
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 3) Compute the maximum of the absolute values of the tq, Ts� max(|t1|, |t2|, º , |tp|).

 4) Repeat steps 1, 2 and 3 a very large number of times, keeping track of the com-
puted values of Ts. Determine the upper a100 percentile of the distribution of the 
Ts, and denote this percentile by Ta.

 5) For the actual data set, compute tq, q = 1, 2, º , p and reject the qth hypothesis if 
|tq| > T, q = 1, 2, º , p or construct simultaneous confi dence intervals as

 

2 2
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t t
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The accuracy of the simulation can be specifi ed by using the method of Edwards and Berry 
(1987). SAS-MULTTEST can be used to obtain simultaneous inferences using the bootstrap 
method (Westfall et al., 1999). Bootstrap methodology is beyond the scope of this book.

3.9 Šidák Procedure

Šidák (1967) provided a modifi cation of the Bonferroni method by using a different per-
centage point for each of the comparisons. The process is to compute a t-statistic for each 
of the comparisons:
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Compute the signifi cance level for each comparison and order the signifi cance levels 
from smallest to largest as p1, p2, º , pp. For a FWER of a, reject the individual comparison 
if pq £ 1 - (1 - a)1/p or equivalently if a ≥ 1 - (1 - pq)

p.

3.10 Example—Pairwise Comparisons

The task data in Section 1.6 is used to demonstrate the results of the above multiple com-
parisons procedures. Table 3.2 contains the SAS-Mixed code to fi t the one-way means 
model and the LSMeans statements are used to extract several of the multiple comparison 
procedures. Table 3.3 contains the percentage points used to provide confi dence differ-
ences or signifi cant differences for the simulate, Tukey–Kramer, Bonferroni, Šidák, Scheffé, 
and t (unadjusted) methods. Excluding the unadjusted t, the other methods provide 0.05 
type I FWER for all pairwise comparisons. The simulate and Tukey–Kramer methods use 
the smallest quantiles with the Šidák and Bonferroni methods in the middle, while the 
Scheffé method is largest. Table 3.4 contains the critical signifi cant differences for each of 
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TABLE 3.2

SAS System Code Using Proc Mixed to Request the Computation of 
Several Multiple Comparisons Procedures for All Pairwise Comparisons

PROC mixed DATA=EX1; CLASS TASK;
MODEL PULSE20=TASK/NOINT SOLUTION;
LSMEANS TASK/ DIFF CL;
LSMEANS TASK/ DIFF ADJUST=TUKEY CL;
LSMEANS TASK/ DIFF ADJUST=BON CL;
LSMEANS TASK/ DIFF ADJUST=SCHEFFE CL;
LSMEANS TASK/ DIFF ADJUST=SIDAK CL;
LSMEANS TASK/ DIFF ADJUST=SIMULATE (REPORT SEED=4938371) CL;

TABLE 3.3

Percentage Points Used for All Pairwise Comparisons of the Six 
Task Means

Simulation Results

Method 95% Quantile Estimated a 99% Confi dence Limits

Simulate 2.932480 0.0500 0.0450 0.0550

Tukey–Kramer 2.940710 0.0486 0.0436 0.0535

Bonferroni 3.053188 0.0359 0.0316 0.0401

Šidák 3.044940 0.0370 0.0326 0.0413

Šcheffé 3.437389 0.0131 0.0105 0.0157

t 1.998972 0.3556 0.3446 0.3666

TABLE 3.4

Critical Differences Used to Compare the Differences between Pairs of Means for the Unadjusted 
t and Several Multiple Comparison Procedures

TASK _TASK Estimate

Standard 

Error t Bonferroni

Tukey–

Kramer Scheffé Šidák Simulate

1 2 0.840 2.225 4.449 6.795 6.544 7.650 6.776 6.526

1 3 -3.877 2.338 4.674 7.139 6.876 8.038 7.120 6.857

1 4 -6.077 2.338 4.674 7.139 6.876 8.038 7.120 6.857

1 5 2.423 2.225 4.449 6.795 6.544 7.650 6.776 6.526

1 6 3.105 2.277 4.553 6.953 6.697 7.828 6.935 6.679

2 3 -4.717 2.380 4.758 7.267 7.000 8.182 7.248 6.980

2 4 -6.917 2.380 4.758 7.267 7.000 8.182 7.248 6.980

2 5 1.583 2.270 4.537 6.929 6.674 7.801 6.911 6.655

2 6 2.265 2.321 4.639 7.085 6.824 7.977 7.066 6.805

3 4 -2.200 2.486 4.970 7.591 7.311 8.546 7.570 7.291

3 5 6.300 2.380 4.758 7.267 7.000 8.182 7.248 6.980

3 6 6.982 2.429 4.855 7.416 7.143 8.349 7.396 7.123

4 5 8.500 2.380 4.758 7.267 7.000 8.182 7.248 6.980

4 6 9.182 2.429 4.855 7.416 7.143 8.349 7.396 7.123

5 6 0.682 2.321 4.639 7.085 6.824 7.977 7.066 6.805
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the pairwise comparisons. The observed differences for task 1 to task 4, task 2 to task 4, 
task 3 to task 4, task 3 to task 5, task 3 to task 6, task 4 to task 5 and task 4 to task 6 all exceed 
the critical differences for the t or LSD, which controls the comparisonwise error rate, but 
not the experimentwise error rate. Only the comparisons of task 4 to task 5 and task 4 to 
task 6 exceed the critical differences for the other fi ve methods, all of which provide exper-
iment wise error rate protection. The magnitudes of the critical differences are smallest for 
the uncorrected t or LSD method. The simulate and Tukey–Kramer critical differences are 
similar in magnitude while the simulate values are a little smaller. The Šidák and Bonferroni 
differences are similar in magnitude, with the Šidák values slightly smaller. The Scheffé 
critical differences are largest, as is expected since they control the FWER for an infi nite 
number of comparisons and only 15 pairwise comparisons are made. A set of simultane-
ous confi dence intervals about all pairwise comparisons can be constructed by adding and 
subtracting the critical difference from the estimated difference. For example, the simulta-
neous 95% confi dence interval about m1–m2 using the simulate method is 0.840 ± 6.526. 
Table 3.5 contains the adjusted p-values for each of the methods. The p-values provide the 
same decision as the 5% critical differences in Table 3.4.

3.11 Dunnett’s Procedure

One really interesting case is that of comparing all treatments with a control. This type of 
inference is important in safety studies, where it is of interest to compare different doses 
of a treatment with the control or placebo. Dunnett’s test is to declare a treatment mean mi 
to be signifi cantly different from the mean of the control m0 if
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TABLE 3.5

Adjusted Signifi cance Levels to Test the Equality of All Pairwise Comparisons of TASK Minus 
_TASK Obtained from Six Procedures Where t Corresponds to the Unadjusted t

TASK _TASK t Bonferroni Tukey–Kramer Scheffé Šidák Simulate

1 2 0.7072 1.0000 0.9990 0.9996 1.0000 0.9990

1 3 0.1024 1.0000 0.5642 0.7378 0.8021 0.5646

1 4 0.0117 0.1751 0.1129 0.2552 0.1615 0.1111

1 5 0.2805 1.0000 0.8840 0.9446 0.9928 0.8804

1 6 0.1777 1.0000 0.7484 0.8661 0.9469 0.7501

2 3 0.0520 0.7795 0.3645 0.5642 0.5509 0.3657

2 4 0.0051 0.0761 0.0546 0.1506 0.0735 0.0545

2 5 0.4880 1.0000 0.9815 0.9923 1.0000 0.9813

2 6 0.3328 1.0000 0.9238 0.9651 0.9977 0.9234

3 4 0.3796 1.0000 0.9488 0.9772 0.9992 0.9474

3 5 0.0103 0.1543 0.1014 0.2364 0.1437 0.0985

3 6 0.0055 0.0831 0.0590 0.1596 0.0799 0.0584

4 5 0.0007 0.0104 0.0087 0.0366 0.0104 0.0090

4 6 0.0004 0.0053 0.0046 0.0219 0.0053 0.0052

5 6 0.7699 1.0000 0.9997 0.9999 1.0000 0.9998
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where da,t,n is the upper a100 percentile of the “many-to-one t-statistic” (Miller, 1967). 
Dunnett’s method controls the FWER. If the sample sizes are unequal, a simulate procedure 
can take into account the sample size structure and possibly provide a shorter bound.

3.12 Example—Comparing with a Control

The task data in Section 1.6 is used to demonstrate the process of comparing each treat-
ment with a control. In this study, assume that task 2 is the control task and the other fi ve 
tasks are the experimental tasks. Table 3.6 contains the SAS-Mixed code to use the unad-
justed t, Bonferroni, Dunnett, Scheffé, Šidák, and Simulate methods to compare all of the 
other tasks with task 2. The option on the LSMean statement DIFF=CONTROL(‘2’) requests 
that task 2 be considered as the control and is compared with each of the other tasks in the 
study. Table 3.7 contains the 95% quantiles for each of the methods. The Dunnett quantile 
is less than the others (except for the unadjusted t) with the simulate method very close. 
There are fi ve comparisons being made, which dictates the magnitude of the Bonferroni 
and Šidák quantiles. The Scheffé quantile is the same as in Table 3.4, which is useful for an 
infi nite number of comparisons. The only comparison where the observed difference 
exceeds the critical difference is for comparing task 4 to the control or task 2. A set of 
simultaneous confi dence intervals about all differences between the treatment and control 
means can be constructed by adding and subtracting the critical difference in Table 3.8 

TABLE 3.6

SAS System Code Using Proc Mixed to Request the Computation of Several Multiple 
Comparisons Procedures for Comparing Each Task to the Means of Task 2 (Control)

PROC mixed DATA=EX1; CLASS TASK;
MODEL PULSE20=TASK/NOINT;
LSMEANS TASK/ DIFF=CONTROL(‘2’) CL;
LSMEANS TASK/ DIFF=CONTROL(‘2’) ADJUST=BON CL;
LSMEANS TASK/ DIFF=CONTROL(‘2’) ADJUST=DUNNETT CL;
LSMEANS TASK/ DIFF=CONTROL(‘2’) ADJUST=SIDAK CL;
LSMEANS TASK/ DIFF=CONTROL(‘2’) ADJUST=SIMULATE (REPORT SEED=4938371) CL;
LSMEANS TASK/ DIFF=CONTROL(‘2’) ADJUST=scheffe CL;

TABLE 3.7

Percentage Points Used for Comparing Each Task Mean 
to the Mean of Task 2 (Control)

Simulation Results

Method 95% Quantile Exact a

Simulate 2.590707 0.0494

Dunnett, two-sided 2.585505 0.0500

Bonferroni 2.657479 0.0418

Šidák 2.649790 0.0427

Scheffé 3.437389 0.0048

t 1.998972 0.1831
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