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The Simplest Case: One-Way Treatment Structure
in a Completely Randomized Design Structure with
Homogeneous Errors

Suppose an experimenter wants to compare the effects of several different treatments,
such as the effects of different drugs on people’s heart rates or the yields of several differ-
ent varieties of wheat. Often the first step in analyzing the data from such experiments
is to use a statistical method, known as a one-way analysis of variance model, to describe
the data. The model on which the one-way analysis of variance is based is one of the most
useful models in the field of statistics. Many experimental situations are simply special
cases of this model. Other models that appear to be much more complicated can often be
considered as one-way models. This chapter is divided into several sections. In the first
two sections, the one-way model is defined and the estimation of its parameters is
discussed. In Sections 1.3 and 1.5, inference procedures for specified linear combinations
of the treatment effects are provided. In Sections 1.7 and 1.9, we introduce two basic meth-
ods for developing test statistics. These two methods are used extensively throughout
the remainder of the book. Finally, in Section 1.11, we discuss readily available computer
analyses that use the above techniques. An example is used to demonstrate the concepts
and computations described in each section.

1.1 Model Definitions and Assumptions

Assume that a sample of N experimental units is selected completely at random from a
population of possible experimental units. An experimental unit is defined as the basic
unit to which a treatment will be applied and independently observed. A more complete
description of experimental units can be found in Chapters 4 and 5.

In order to compare the effects of t different treatments, the sample of N experimental
units is randomly divided into ¢ groups so that there are n; experimental units in the ith

1
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group, wherei=1,2,...,t,and N= 3on,. Grouping the experimental units at random into
t groups should remove any systematic biases. That is, randomness should ensure that
the t groups of experimental units are similar in nature before the treatments are applied.
Finally, one of the t treatments should be randomly assigned to each group of experi-
mental units. Equivalently, the experimental units could be randomly assigned to the
t treatment groups using some randomization device such as placing 1, tags in a bowl
with treatment 1, #, tags in a bowl with treatment 2, ..., n, tags in a bowl with treatment ¢,
mixing the tags and then randomly selecting tags from the bowl to determine the
treatment assigned to each experimental unit. This process of using tags in a bowl
can obviously be carried out using software that has random number generation
possibilities.

Lety; denote a response from the jth experimental unit assigned to the ith treatment. The
values vy, Yy, ..., Y1, can be thought of as being a random sample of size #, from a popula-
tion with mean y, and variance G the values y,;, Yo, ..., Y, can be thought of as being a
random sample of size n, from a populatlon with mean y, and variance G and similarly
fori=3,4,...,t. The parameters y; and G represent the population mean and population
variance if one applied treatment i to the whole population of experimental units.

The simplest case is considered in this chapter in that the variances are assumed to be
homogeneous or equal across treatments or 6> =05 =--- = 0% That is, it is assumed that
the application of the ith treatment to the experimental units may affect the mean of the
responses but not the variance of the responses. The equal variance assumption is
discussed in Chapter 2 as well as the analysis of variance with unequal variances.

The basic objectives of a good statistical analysis are to estimate the parameters of the
model and to make inferences about them. The methods of inference usually include
testing hypotheses and constructing confidence intervals.

There are several ways to write a model for data from situations like the one described
above. The first model to be used is called the u; model or the means model. The means
model is:

yi=Mi+g i=12,t j=12,...,n
where it is assumed that
g ~iid. NO,0%) i=12,..,tj=12,..n (1.1)
The notation g; ~ i.i.d. N(0, 0?) is used extensively throughout this book. It means that the
g (=12,..,tj=12,..,n) are independently and identically distributed and that the

sampling distribution of each ¢; is the normal distribution with mean equal to zero and
variance equal to o2.

1.2 Parameter Estimation

The most important aspect of a statistical analysis is to get a good estimate of the error
variance per experimental unit, namely o2 The error variance measures the accuracy of an
experiment—the smaller the 62, the more accurate the experiment. One cannot make any
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statistically valid inferences in any experiment or study without some knowledge of the
experimental error variance.

In the above situation, the ith sample, i =1,2,...,¢t, provides an estimate of 6> when n,; > 1.
The estimate of 02 obtained from the data from the ith treatment is

o (-7
2 _ Ll !
% = 2 n,—1

j=1

which is an unbiased estimate of 62 where

1;
QY i
_

v ="

The estimate of 02 from the ith treatment is 6'?, which is based on 1, — 1 degrees of freedom,
and the sampling distribution of (1,— 1) 67/c%isa chi-square distribution with n; — 1 degrees
of freedom.

A weighted average of these t independent estimates of o2 provides the best estimate for

o2 possible for this situation, where each estimate of the variance is weighted by its corre-
sponding degrees of freedom. The best estimate of 62 is

t t
=Y (n,-1)67 /Y (n,-1)
i1 i1
For computational purposes, each variance times its weight can be expressed as
t
1’1 1)6 Z(yz] yl) _2]/1; 1’1 yl zyl'zj_(yi-)z/nizssi
i=1

where y, =3, y;. Then the pooled estimate of the variance is

S,
52 = 5SS, +SS, +---+ S5, _; !
(n,-1) + (n,=1) + -+ (n,—=1)  N-t

The pooled estimate of the variance 62 is based on N — t degrees of freedom and the
sampling distribution of (N-t)62/0? is a chi-square distribution with N — t degrees of
freedom; that is, (N-1)62/0? ~ )521\1 -

The best estimate of each y;is f;=7,,i=1,2,.

Under the assumption given in Equation 1. 1 the sampling distribution of f;is normal
with mean y; and variance o?/n;. That is,

0_2
L ~N(/¢i,nj i=1,2,..t (1.2)

i
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Using the sampling distributions of fi; and 67 then

i=12,..t (1.3)

That is, the sampling distribution of ¢, is the t-distribution with N — t degrees of freedom.
In addition, f, [, ..., [} and o are statistically independent.

1.3 Inferences on Linear Combinations—Tests and Confidence Intervals

This section provides tests of hypotheses and confidence intervals for linear functions of
the parameters in the means model. The results in the previous section can be used to test
hypotheses about the individual g;. Those results can also be used to test hypotheses about
linear combinations of the y; or to construct confidence intervals for linear combinations
of the ..

For an experiment involving several treatments, the investigator selects the treatments
to be in the study because there are interesting hypotheses that need to be studied. These
interesting hypotheses form the objectives of the study. The hypotheses involving the
treatment means most likely will involve specific linear combinations of the means. These
linear combinations will enable the investigator to compare the effects of the different
treatments or, equivalently, the means of the different treatments or populations. The
hypotheses about the means the experimenter has selected can be of the following types
of hypotheses:

t
H,: ZCi,ui =avs H,: (not H;:)

i=1
for some set of known constants ¢;, ¢,, ...,¢; and 4,
Hop: tty =y =-+- = 11, vs H,5: (not Hyy)
and
Hy,: ;= W, for some i #i’ vs H,5: (not Hyy)

For a linear combination such as that given in H,, one can show that
t t
2 Gl — 2 Cil;
i=1 i=1

; ~tven
162y ci/n;
i=1

This result can be used to make inferences about linear combinations of the form ¥, , c; ;.
Since the hypothesis in Hy; can be written as Hy,: y; — y = 0, it is a special case of Hj, with

(1.4)
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¢;=1,¢cp,=-1,and ¢, =0if k #7 ori". A test for H, is given in Section 1.5. The estimated stan-
dard error of ¥ c; fi; is given by

2
— ~ ~ C
se.(dcf1;) = Gzzn—’ (1.5)
To test Hy;: 2., ¢; t;=a vs H,;: (not Hy;)) compute the t-statistic

b= ; Cild; _Aa (1.6)
secil;)

If |t.|>t,/,,, where v=N —t, then Hy, is rejected at the ot = 100% significance level, where
t.nvis the upper /2 critical point of a t-distribution with v degrees of freedom. A (1 — &)
100% confidence interval for X, c;i; is provided by

zcilai i ta/z,v S/E\(ZC“[}I) (17)

1.4 Example—Tasks and Pulse Rate

The data in Table 1.1 came from an experiment that was conducted to determine how
six different kinds of work tasks affect a worker’s pulse rate. In this experiment, 78 male
workers were assigned at random to six different groups so that there were 13 workers in
each group. Each group of workers was trained to perform their assigned task. On a
selected day after training, the pulse rates of the workers were measured after they had
performed their assigned tasks for 1 h. Unfortunately, some individuals withdrew from
the experiment during the training process so that some groups contained fewer than
13 individuals. The recorded data represent the number of heart pulsations in 20 s where
there are N = 68 observations and the total is y = 2197.
For the tasks data, the best estimate of 02 is

6
6> =Y'ss, /(N—t) = 1,916.0761/62 = 30.9045
i=1

which is based on 62 degrees of freedom. The best estimates of the u; are fI;, = 31.923,
f, = 31.083, [1, = 35.800, {1, =38.000, fis = 29.500, and fi, = 28.818.

For illustration purposes, suppose the researcher is interested in answering the follow-
ing questions about linear combinations of the task means:

a) Test Hy uy=30vs H,: iy # 30.

b) Find a 95% confidence interval for ;.
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TABLE 1.1
Pulsation Data and Summary Information for Six Tasks
Task
1 2 3 4 5 6

27 29 34 34 28 28
31 28 36 34 28 26
26 37 34 43 26 29
32 24 41 44 35 25
39 35 30 40 31 35
37 40 44 47 30 34
38 40 44 34 34 37
39 31 32 31 34 28
30 30 32 45 26 21
28 25 31 28 20 28
27 29 41 26
27 25 21
34

.. 415 373 358 380 354 317

n; 13 12 10 10 12 11

Y. 31.9231 31.0833 35.8000 38.0000 29.5000 28.8182

SS; 2949231 3529167  253.6000  392.0000  397.0000  225.6364

c) Test Hy: py = ts vs Hy: iy # s,
d) Test Hy: = (U + M5 + 14)/3 vs Hy: ty # (ty + Uy +144)/3.
e) Obtain a 90% confidence interval for 4y, — s — Uy — ts — U

These questions can be answered by applying the results of this section.
Part a result: A t-statistic for testing Hj: u; =30 is obtained by substituting into
Equation 1.6 to obtain

_ f,-30  {2,-30  358-300
©ose(f,) (J6/n, +/30.9045/10

t

The significance probability of this calculated value of t is &= Pr{|f.|>3.30} = 0.0016
where Pri{|t.|>3.30} is the area to the right of 3.30 plus the area to the left of —3.30 in a
t-distribution with 62 degrees of freedom. The above value of ¢ was obtained from com-
puter output, but it can also be obtained from some special hand-held calculators. Readers
of this book who lack access to a computer or a calculator should compare t,=3.30 to £, ¢, for
their choice of a.

Part b result: A 95% confidence interval for y, is given by

f1y % tyons > S€i1;) = 31.923 + 2.00,/30.9045/13
= 31.923 + 2.00 x 1.542
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Thus the 95% confidence interval about y, is 28.839 < y, < 35.007 and we are 95% confi-
dent that this interval contains the true, but unknown value of ;.
Part c result: To test Hy: i, = us, let [, = y, — us, then [, = {i,— fi; = 38.0 — 29.5 = 8.5 and

—~ A P 1 1
e(ll)= 6"y c/n, = 30.9045( + j =2.380
s.e(l,) \/0' ;c,/nl \/ TRET

sincec,=¢,=c;=¢,=0,¢,=1,and ¢c5=-1.
The t-statistic for testing H: 1, = U5 is

-85 _
t.= 5380 =3.57

The significance probability for this test is &= 0.0007.

Part d result: A test of Hy: 1y = (4, + U5 + 1)/ 3 is equivalent to testmg Hy: py =3 uz
3 u3 3 Lu,=0or testing Hy: 31, — i, — s — iy = 0. By choosing the last version, the computa-
tions are somewhat easier and the value of the ¢, test statistic is invariant with respect to a

constant multiplier.
Let ], =3 — t,— f15 — ly, then

I, =30 - fi,— fls— f, = 3(31.923) — 31.083 — 35.8 — 38.0 = —9.114

The estimate of the standard error of [, is

se.(l,) = 30.9045(9 s Lyl +1) =5.491
13 12 10 10
A t-statistic for testing Hy: 3, — 4, — s — 1, =0 is

-9.114
te=5401 ~ 166

The significance probability corresponding to t, is &= 0.1020.
Part e result: Let [; =41, — 1y — py — s — U Then I,=-4.426 and s.e. (lg) 7.0429. A 90%
confidence interval for 5 is

[+ tyose se. (I;) = —4.426 + 1.671 x 7043 = —4.426 + 11.769

Thus, a 90% confidence interval is —16.195 < 41, — L, — i, — Us — L < 7.343.

1.5 Simultaneous Tests on Several Linear Combinations

For many situations the researcher wants to test a simultaneous hypothesis about
several linear combinations of the treatment’s effects or means. For example, the general
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hypothesis involving k linearly independent linear combinations of the treatment means
can be expressed as

Cpfly +Cply + - Oty = 04

Colly +Coplly -+ C 1y, = a,

H, vs H, (not H,) (1.8)

Crally + Gy +- -+ Cully = a4,

The results presented in this section are illustrated using vectors and matrices. However,
knowledge of vectors and matrices is not really necessary for readers having access a com-
puter with matrix manipulation software, since most computers allow even novice users
to easily carry out matrix computations.

The hypothesis in Equation 1.8 can be written in matrix notation as

HyCu=avsH;:Cu+a 1.9
where
Cll ClZ Clt lLtl al
C,y C c a
C — 21 ?2 2t i u — :LL:Z , and a= :2 (110)
Cii Cr2 o My [

It is assumed that the k rows in C were chosen such that they are linearly independent,
which means that none of the rows in C can be expressed as a linear combination of the
remaining rows. If the k rows in C are not linearly independent, a subset of the rows that
are linearly independent can always be selected so that they contain all the necessary
information about the required hypothesis.

For example, suppose you have three treatments and you wish to test

Hy =ty =0,y —p5=0 and i, — ;=0

the corresponding C matrix is

1 -1 0
c=|1 0 -1
01 -1

but the third row of C is the difference between the second row and the first row, hence
the three rows are not linearly independent. In this case, an equivalent hypothesis can be
stated as Hy: 4, — i, =0 and y; — y; =0, since if y; — u, =0 and p; — p; =0, then w, — y; must
be equal to 0. The following discussion uses the assumption that the rows of C are linearly
independent.
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Denote the vector of sample means by [, then the sampling distribution of i in matrix
notation is

n, 0 - 0

. o 1n, - 0

Ui ~N(p, 0°D) where D= . - .
0 0 - 1In,

This equation is read as follows: The elements of the ¢ x 1 vector ft have a joint sampling
distribution that is the t-variate normal distribution with means given by the vector p and
with variances and covariances given by the elements in the matrix 62D. The ith diagonal
element of 62D is the variance of I, and the (i, j)th i # j off-diagonal element gives the
covariance between £, and f.

The sampling distribution of Cfis

Cji ~ N,(Cu, 6°CDC’)

The sum of squares due to deviations from H, or the sum of squares for testing Hy: Ciu=a
is given by

SSio = (CA— a)(CDC') (Ca— a) (1.11)

and is based on k degrees of freedom, the number of linearly independent rows of C. Using
the assumption of normality, the sampling distribution of S5;;,/0? is that of a noncentral chi-
square with k degrees of freedom. If H; is true, then SS;;,/02 ~ x . The statistic for testing H, is

5S,0/k
R =
The hypothesis Hy: Ct= a is rejected at the significance level of aif F, > F,,; \, where F,,
is the upper o critical point of the F-distribution with k numerator degrees of freedom and
N —t denominator degrees of freedom. The result given here is a special case of Theorem
6.3.1 in Graybill (1976).

When H,, is true, then 5S,,/k is an unbiased estimate of 0%, which is then compared with
62, which in turn is an unbiased estimate of ¢?2 regardless of whether H, is true or not.
Thus the F-statistic given above should be close to 1 if H, is true. If H, is false, the statistic
5S0/k is an unbiased estimate of

o>+ L (Cu-ay(CDC) (Cp-a)

Thus, if H, is false, the value of the F-statistic should be larger than 1. The hypothesis H,, is
rejected if the calculated F-statistic is significantly larger than 1.

1.6 Example—Tasks and Pulse Rate (Continued)

The following is a summary of the information from the example in Section 1.4 with the
sample size and mean for each of the six tasks.
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Task i 1 2 3 4 5 6
n; 13 12 10 10 12 11
Vi 31.9231 31.0833 35.8000 38.0000 29.5000  28.8182

The pooled estimate of the variance is 62 = 30.9045 and it is based on 62 degrees of freedom.
The D matrix associated with the sampling distribution of vector of estimated means is

1
13
0
0
0
0
0

© o o ok o
© o ogr o o

o oZ o o o
o © o o o
A o o o o o

Suppose the researcher is interested in simultaneously testing the following hypothesis
involving two linear combinations of the task means:

Hy: py— s =4 and 3, — W, — s — py = 0 vs H,: (not Hy)

The C matrix consists of two rows, one for each of the linear combinations in H,, and the
vector a has two elements as

|00 0 1 -10 d az 4
31110 0o ™ "o
Preliminary computations needed to provide the value of S5y, are:

854 4.500
Ci-a= [9114 0 —9.114

1 1
cDC’ = 70 T 10
1.1 1
E 12710 10
0.1833 —0.1000
{01000 0.9756}
., [57776 05922
(€DC) {o 5922 10856}
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and
SSu0 = (Ci— a)'(CDC") (Ci— a) = 158.602
with 2 degrees of freedom. The test statistic is

_ 158.602/2

= = 2.566
30.9045

The significance probability of this F-statistic is & = Pr{F > 2.566} = 0.0850.

1.7 Testing the Equality of All Means

Often the first hypothesis of interest to most researchers is to test that the means are simul-
taneously equal. The hypothesis is Hy: i = t, = -+ = 11, vs H,: (not H). Two basic procedures
are examined for testing the equal means hypothesis. For the particular situation dis-
cussed in this chapter, the two procedures give rise to the same statistical test. However,
for most messy data situations (for treatment structures other than one-way), the two pro-
cedures can give rise to different tests. The first procedure is covered in this section, while
the second is introduced in Section 1.9.

The equal means hypothesis, Hy: u; = 1, = -+ = 11, is equivalent to a hypothesis of the
form, Hy: pt; — U, =0, t; — =0, ..., 1y — y4, = 0, or any other hypothesis that involves t — 1
linearly independent linear combinations of the y;. The C matrix and a vector correspond-
ing to the set of t — 1 pairwise differences are:

The C matrix corresponding to following set of ¢ — 1 linearly independent linear combinations
of the u; Hy:pty — 1, =0, ty + 1y — 20, =0, g + 1y + 5 — 3, =0, ..., 1y + ty+ - =t =1) g, =0is:

1 -1 0 0 0 0
10 -1 0 0 0
o |t o0 of |0
“11 0 0 o o ¢ “Zlo
10 0 0 1] 0]

1 -1 0 0 0 ] (0]
1 1 -2 0 0 0
c=(1 1 1 -3 0 and a=|0
Do : 0 :
1 1 1 1 t—1] 10]
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Many other matrices exist, so that Cu =0 if and only if u; = u, =--- = u,; however, all such
matrices produce the same sum of squares for deviations from H, and the same degrees of
freedom, t — 1, and hence the same F-statistic. For this special case Equation 1.11 always
reduces to

t t 2 2
- = =N Y |_ Y-
SSHO =ty = =11 —;nz ©.-y.) Zl( n,) N (1.12)
|
1.8 Example—Tasks and Pulse Rate (Continued)
For the task and pulse rate data in Section 1.4, the SSHO;M: ==y is computed using

Equations 1.11 and 1.12.
Using the formula in Equation 1.12, provides

415* 373> 358* 380> 354 317* 21977
S5, = + + + + + -

13 12 10 10 12 11 68
= 694.4386

with f — 1 =5 degrees of freedom. The value of the F, statistic is

- 694.4386/5 449
¢ 30.9045

and the significance probability is ¢& = 0.0015.
Next, using Equation 1.11, the matrix C, vector a4, and matrix D are

1 -1 0 0 0 0] 0
1 0 -1 0 0 O 0
c=|1 0 0 -1 0 0], a=|0
1 0 0 0 -1 0 0
1 0 0 0 0 -1] 0]
and
- -
13 0O 0 O 0 O
1
0 17 0O 0 0 O
1
o-lo 0 0 10 0O 0 O
h 1
0O 0 0 10 0 O
1
0O 0 0 O iy 0
1
I 0O 0 0O 0 O 11
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Next compute the individual quantities in Equation 1.11 as

% B 1B B O

0844 1023 1 1 1

-3.877 13 130 13 13 13
s 11 11
Ci-a=|-6077| and cDC'=| & & 2 L X
2.423 1 1 1 25 1

3105 i3 15 13 15 13

101 1 1 24

L 13 13 13 13 143

The inverse of CDC’ is

[ 9.882 -1.765 -1.765 -2.118 -1.941]
-1.765 8529 -1471 -1.765 -1.618
(CDC)H™" =|-1.765 -1.471 8529 -1.765 -1.618
-2.118 -1.765 -1.765 9.882 -1.941
|-1.941 -1.618 -1.618 -1.941 9.221

Finally, the value of the sum of squares is
S5m0 =(Cfi —a)’ (CDC’)™ (CA - a) = 6944386

which is the same as the sum of squares computed using Equation 1.12.

Clearly, this formula is not easy to use if one must do the calculations by hand. However,
in many messy data situations, formulas such as this one are necessary in order to obtain
the statistic to test meaningful hypotheses. Fortunately, by utilizing computers, C matrices
can be constructed for a specific hypothesis and then one can allow the computer to do the
tedious calculations.

1.9 General Method for Comparing Two Models—The Principle of
Conditional Error

A second procedure for computing a test statistic compares the fit of two models. In this
section, the two models compared arey; = u; + €;, which is the general or unreduced model,
and y; = 1+ g, which is the model one would have if Hy: y; =y, =--- = i, = u (say) were
true. The first model is called the full model or the unrestricted model, while the second
model is called the reduced model or the restricted model.

The principle known as the principle of conditional error is used to compare two models
where one model is obtained by placing restrictions upon the parameters of another model.
The principle is very simple, requiring that one obtain the residual or error sums of squares
for both the full model and the reduced model. Let ESS; denote the error sum of squares
after fitting the full model and ESS; denote the error sum of squares after fitting the
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reduced model. Then the sum of squares due to the restrictions given by the hypothesis or
deviations from the null hypothesis is 55, = ESS; — ESS;. The degrees of freedom for both
ESSg and ESS; are given by the difference between the total number of observations in the
data set and the number of (essential) parameters to be estimated (essential parameters
will be discussed in Chapter 6). Denote the degrees of freedom corresponding to ESS; and
ESS; by dfy and df, respectively. The number of degrees of freedom corresponding to 55,
is df o = dfr — dfr. An F-statistic for testing H,, is given by

= M
" ESS,/df,

One rejects H,, at the significance level if F. > F 4 4.
For the case discussed above, y; = u; + €; is the full model and y;; = 1t + ¢; is the reduced
model. The error sum of squares for the full model is

t n;
ESS, =3 ¥ (y;-7.) =(N-t)6°

i=1 j=1

with df; = N — t, and the error sum of squares for the reduced model is

ton
ESS, =Y > (v, -7.)

i=1 j=1

with dfy = N — 1. Thus the sum of squares due to deviations from H, is

'
SShou=y=-my, = ESSg —ESSp = Z”f(yi-_y--)z

i=1

with t -1 degrees of freedom. This is the same sum of squares as was obtained in
Equation 1.12.

The sums of squares that are of interest in testing situations are often put in a table called
an analysis of variance table. Such a table often has a form similar to that in Table 1.2. The
entries under the column “Source of variation” are grouped into sets. In a given situation
only one of the labels in each set is used, with the choice being determined entirely by the
experimenter.

TABLE 1.2

Analysis of Variance Table for One-Way Model to Test Equality of the Means
Source of Variation df SS MS F-test
Hylty =ty =+ I -1 5S40 SSHo SSim/t=1
Treatments t-1 6?
between samples

Error N-t SS 62= ;S\IS_S};

within samples

Note: df=degrees of freedom, SS=sum of square, and MS=mean square. These
standard abbreviations are used throughout the book.



The Simplest Case: One-Way Treatment Structure 15

The principle of conditional error is also referred to as the model comparison procedure
and the process is quite flexible. For example, if you are interested in testing a hypothesis
for the task and pulse rate data, like Hy: u; = t, = i3 vs H;: (not Hy), then the model under
the conditions of H,, has the form

Yi=MUo+ &; fori=1,2,3
Yi= Wi+ E fori=4,56

that is, the model has equal means for the first three tasks and different means for the last
three treatments. Such a model can be fit using most software packages where a qualitative
or class variable is defined to have the value of 0 for tasks 1, 2, and 3 and the value of task
for tasks 4, 5, and 6.

1.10 Example—Tasks and Pulse Rate (Continued)

The principle of conditional error is applied to the task and pulse rate data of Section 1.4 to
provide a test of the equal means hypothesis, Hy: t; = 4, = ls = 1y = Us = U4 vs H,: (not Hy).
The error sum of squares for the full model is ESS; = 1916.076 with df. = 62. The error sum
of squares for the reduced model is ESS; =73,593 — (2197)*/68 = 2610.545 with df = 67.
Hence 55, = 2610.545 — 1916.076 = 694.439 with dfy, = 67 — 62 = 5. The analysis of variance
table summarizing these computations is displayed in Table 1.3.

1.11 Computer Analyses

This chapter concludes with some remarks about utilizing computers and statistical
computing packages such as SAS®, BMDP®, SYSTAT®, JMP®, and SPSS®. All of the methods
and formulas provided in the preceding sections can easily be used on most computers. If
the computer utilizes a programming language such as MATLAB, SAS-IML, or APL, the
required matrix calculations are simple to do by following the matrix formulas given in
the preceding sections. SAS, JMP, BMDP, SYSTAT, and SPSS each contain procedures that
enable users to generate their own linear combinations of treatment means about which to
test hypotheses. In addition, these packages all provide an analysis of variance table, treat-
ment means, and their standard errors. Table 1.4 contains SAS-GLM code with estimate
and contrast statements needed to test hypotheses described for the task and pulse data.
The estimate statement is used to evaluate one linear combination of the means and the

TABLE 1.3

Analysis of Variance Table for Test Equality of the Means for the Task and Pulse Rate Data
Source of Variation df SS MS F a
Due to H, 5 694.439 138.888 4.49 0.0015

Error 62 1,916.076 30.9045
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TABLE 1.4

Proc GLM Code to Fit the Task and Pulse Rate Data with Estimate and Contrast
Statements Needed to Provide the Analysis Described in the Text

PROC GLM DATA=EX1l; CLASS TASK;
MODEL PULSE20=TASK/NOINT SOLUTION E;
ESTIMATE ‘Ho: M4=M5’' TASK 0 0 0 1 -1 O;
ESTIMATE ‘Ho: 3M1=M2+M3+M4’ TASK 3 -1 -1 -1 0 0;
ESTIMATE ‘Ho: 3M1=M2+M3+M4 mn’ TASK 3 -1 -1 -1 0 0/DIVISOR=3;
ESTIMATE ‘4M1-M3-M4-M5-M6_mn’ TASK 4 0 -1 -1 -1 —1/DIVISOR=4;
CONTRAST ‘4M1-M3-M4-M5-M6 mn’ TASK 4 0 -1 -1 -1 —1;
CONTRAST ‘M4=M5 & 3M1=M2+M3+M4’' TASK 0 0 0 1 -1 0, TASK 3 -1 -1 -1 0 0;
CONTRAST ‘EQUAL MEANS 1’

TASK 1 -1 0 0 0 0, TASK 1 0 -1 0 0 0, TASK 1 0 0 -1 0 O,

TASK 1 0 0 0 -1 0, TASK 1 0 0 0 0 —1;

TABLE 1.5
Proc IML Code to Carry Out the Computations for the Task and Pulse Data in Section 1.6

proc iml;

dd={13 12 10 10 12 11};

d=diag(dd) ;

c={0 001-10, 3-1-1-10 0};
muhat:{3L9231 31.0833 35.8000 38.0000 29.5000 2&8182}‘;
52=30.90445;

a={4,0},~

cmua=C*muhat - a;

cde=c*inv (D) *c';

cdci=inv (cdc) ;

ssho=cmua' *cdci*cmua;

f=ssho/ (2*s2) ;al=1-probf (f,2,62);
print dd d cmua cdc cdci ssho f al;

provided results are the estimate of the contrast, its estimated standard error, and the
resulting t-statistic with its corresponding significance level. The contrast statement is
used to evaluate one or more linear combinations of the means and the provided results
are the sums of squares, degrees of freedom, and the resulting F-statistic. For both the
estimate and contrast statements in SAS-GLM, the only values of a in the hypotheses are
zero, that is, one can only test the linear combinations of means that are equal to zero.

Table 1.5 contains SAS-IML code to provide the computations for the hypotheses being
tested in Section 1.6. By constructing the code in a matrix language, one can obtain a test
of any hypothesis of the form Cu=a.

1.12 Concluding Remarks

In this chapter, the analysis of the one-way analysis of variance model was described.
General procedures for making statistical inferences about the effects of different treatments
were provided and illustrated for the case of homogeneous errors. Two basic procedures
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for obtaining statistical analyses of experimental design models were introduced. These
procedures are used extensively throughout the remainder of the book for more complex
models used to describe designed experiments and for messier data situations. A test for
comparing all treatment effect means simultaneously was also given. Such a test may be
considered an initial step in a statistical analysis. The procedures that should be used to
complete the analysis of a data set could depend on whether the hypothesis of equal treat-
ment means is rejected.

1.13 Exercises

1.1 A company studied five techniques of assembling a part. Forty workers were
randomly selected from the worker population and eight were randomly
assigned to each technique. The worker assembled a part and the measurement
was the amount of time in seconds required to complete the assembly. Some
workers did not complete the task.

Data for Comparing Techniques of Assembling a Part for Exercise 1.1

Technique 1 Technique 2 Technique 3 Technique 4 Technique 5
Worker Time  Worker Time Worker Time Worker Time Worker Time
1 45.6 7 41.0 12 51.7 19 67.5 26 57.1
2 41.0 8 49.1 13 60.1 20 57.7 27 69.6
3 46.4 9 49.2 14 52.6 21 58.2 28 62.7
4 50.7 10 54.8 15 58.6 22 60.6
5 479 11 45.0 16 59.8 23 57.3
6 44.6 17 52.6 24 58.3

18 53.8 25 54.8

1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.

2) Estimate the parameters of the model in part 1.
3) Construct a 95% confidence interval about y; — u,.
4) Use a t-statistic to test Hy: yy + 1, — s — 1, = 0 vs H,: (not Hy).
5) Use a F-statistic to test Hy: y; + W, — 1y — ts = 0 vs H,: (not Hy).
6) Use a t-statistic to test Hy: (1, + t, + U5)/3 = (1, + Us)/2 vs H,: (not Hy).
7) Use a F-statistic to test Hy: 1, = U, = 5 vs H,: (not Hy).
8) Use a F-statistic to test Hy (W +tp+ Us)/3= (W +Us)/2, (W + tp+ Ue)/3=
(U5 + iy + Us)/3, and (U + Uy + 15)/3 = (Us + 1e)/2 vs H,: (not Hy).
1.2 Five rations were evaluated as to their ability to enable calves to grow. Thirty-one
calves were used in the study. A mistake in the feeding of the rations produced

unbalanced distributions of the calves to the rations. The data recorded was the
number of pounds of weight gained over the duration of the study.

1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.
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Gain Data for Comparing Rations of Exercise 1.2

Ration 1 Ration 2 Ration 3 Ration 4 Ration 5
Calf Gain Calf Gain Calf Gain Calf Calf Calf Gain
1 825 10 874 19 861 21 829 23 837
2 801 11 854 20 856 22 814 24 851
3 790 12 883 25 824
4 809 13 839 26 781
5 830 14 836 27 810
6 825 15 839 28 847
7 839 16 840 29 826
8 835 17 834 30 832
9 872 18 894 31 830

2) Estimate the parameters of the model in part 1.

3) Construct a 95% confidence interval about u, + u, — 2.

4) Use a t-statistic to test Hy: yy + 1, — 21, =0 vs H,: (not H).

5) Use an F-statistic to test Hy: 2u, — u, — s =0 vs H,: (not Hy).

6) Use a t-statistic to test Hy: (1 + Uy + 13)/3 = (Uy + U5)/2 vs H,: (not Hy).

7) Use an F-statistic to test Hy: i, = 4, and u; = i, vs H,: (not Hy).

8) Use an F-statistic to test Hy: p; + ty — 21y =0, 2, — g — s =0, (g + ty + H5)/3 =
(uy + Us)/2 vs Hy: (not Hy).

A study was conducted to evaluate the effect of elevation on the lung volume of
birds raised at specified elevations. Thirty-five environmental chambers which
could simulate elevations by regulating the air pressure were used. The five
effective elevations were each randomly assigned to seven chambers and 35
baby birds were randomly assigned to the chambers, one per chamber. When
the birds reached adult age, their lung volumes were measured. The data table
contains the effective elevations and the volumes of the birds. Three birds did
not survive the study, thus producing missing data.

Lung Volumes for Birds Raised at Different Simulated Elevations

Elevation 1000 ft  Elevation 2000ft Elevation 3000ft Elevation 4000ft Elevation 5000 ft

Bird Volume  Bird Volume Bird Volume Bird Volume Bird  Volume

1 156 8 160 15 156 22 168 29 177
2 151 9 160 16 173 23 167 30 170
3 161 12 154 18 165 24 171 31 169
4 152 13 152 19 172 25 173 32 176
5 164 14 153 20 169 26 167 33 183
6 153 21 168 27 167 34 178
7 163 28 173 35 174

1) Write down a model appropriate to describe the data. Describe each compo-
nent of the model.

2) Estimate the parameters of the model in part 1.
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3)

4)

5)

6)
7)

Determine if there is a linear trend in the lung volume as elevation increases
by testing Hy: 21, — t, — Opty + py + 245 = 0 vs H,: (not Hy) (coefficients were
obtained from a table of orthogonal polynomials for equally spaced values
(Beyer, 1966, p. 367)).

Determine if there is a quadratic trend in the lung volume as elevation
increases by testing H: 24, — 1, — 2143 — fy + 215 = 0 vs H,: (not Hy).
Determine if the assumption of a linear/quadratic response to elevation is
appropriate by simultaneously testing the cubic and quadratic trends to be
zero by testing Hy: =14, + 20, + Oty — 2, + 15 = 0, 1pt, — 41, + 65— 4, + 115 =0
vs H,: (not Hy).

Use a t-statistic to test Hy: (1 + Uy + 13)/3 = (U + Us)/2 vs H,: (not Hy).

Use a F-statistic to test Hy: y; = 4, = iy and p, = s vs H,: (not Hy).

19
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One-Way Treatment Structure in a
Completely Randomized Design Structure
with Heterogeneous Errors

In this chapter, the case is considered where the treatments assigned to the experimental
units may affect the variance of the responses as well as the mean. Start with the one-way
means model, Y=+ € fori=1,2,...,t,j=1,2,...,n,. In Chapter 1 it was assumed that
the experimental errors all had the same variance; that is, the treatments were expected to
possibly change the mean of the population being sampled, but not the variance. In this
chapter, some methods are described for analyzing data when the treatments affect the
variances as well as the mean. The types of questions that the experimenter should want to
answer about the means in this setting are similar to those in Chapter 1. That is,

1) Are all means equal?
2) Can pairwise comparisons among the means be made?

3) Can a test of the hypothesis of the form ¥ c;u; = a be tested and can confidence
intervals be constructed about X, c;u?

In addition, there are also questions about the variances that may be of interest, such as

1) Are all of the variances equal?

2) Are there groupings of the treatments where within a group the variances are
equal and between groups the variances are not equal?

Before questions about the means of the model can be answered, an appropriate descrip-
tion of the variances of the treatments must be obtained.

Tests of homogeneity of variances are used to answer questions about the variances
of the data from the respective treatments. If there are two treatments, the problem of
comparing means when there are unequal variances is usually known as the Behrens-
Fisher problem. Also, heterogeneous error variances pose a much more serious problem

21
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when ignored than non-normality of the error variances. The procedures in Chapter 1 are
robust with respect to non-normality, but not quite so robust with respect to heterogeneous
error variances. In the analyses previously considered, it was assumed that the population
variances were all equal, which is a reasonable assumption in many cases. One method for
analyzing data when variances are unequal is simply to ignore the fact that they are unequal
and calculate the same F-statistics or t-tests that are calculated in the case of equal vari-
ances. Surprisingly perhaps, simulation studies have shown that these usual tests are quite
good, particularly if the sample sizes are all equal or almost equal. Also, if the larger sam-
ple sizes correspond to the treatments or populations with the larger variances, then the
tests computed with the equal variance assumption are also quite good. The usual tests are
so good, in fact, that many statisticians do not even recommend testing for equal variances.
Others attempt to find a transformation that will stabilize the treatment variances, that is,
transform the data such that the treatment variances are equal. When the variances are not
equal, there are techniques to make comparisons about the means in the framework of the
unequal variance model.

Procedures for testing the equality of treatment variances are described for the one-way
model and procedures for analyzing the treatment means when the variances are unequal
are described in the following sections. These procedures should be used when the usual
techniques are suspect. The unequal variance model is described next.

2.1 Model Definitions and Assumptions

The unequal variance model is

yi=u+¢g fori=12,...,t j=12,..,n and ¢g;~independent N(0, Giz) 2.0
The notation el-]-—independent N(O, 0'1.2) means that the errors, €;, are all independent, nor-
mally distributed and the variance of each normal distribution depends on i and may be
different for each population or treatment.

2.2 Parameter Estimation

The best estimates of the parameters in the model are:
ﬁi= Zyij/niz Vi, i=12,..,t
j=1

and

Z(yij_yi)z
65:%, i=1,2,...,t
n —

1
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The sampling distributions associated with the parameter estimates are
f, ~independent N(u,, 67 /n,;), i=1,2,...t

and

—1)6? .
% ~independent y, |, i=12,...,t

i

These sampling distributions are used as the basis for establishing tests for equality of
variances and for providing the analysis of the means when the variances are unequal.

2.3 Tests for Homogeneity of Variances

In this section, five procedures are described for testing the equal variances hypothesis,

Hy o0 =0, =--=o0; vs H,: (not Hy)

Before the analysis of the means is attempted, the equal variance hypothesis should be
investigated. If there is not enough evidence to conclude the variances are not equal, then
the equal variance model in Chapter 1 can be used to investigate the means. If there is
sufficient evidence to believe the variances are unequal, then the procedures described in
Section 2.5 should be used to provide an analysis of the means in the unequal variance
framework. The recommendation is to use the unequal variance model when the equal
variance hypothesis is rejected at o< 0.01.

2.3.1 Hartley’s F-Max Test

The first test described is known as Hartley’s F-max test (1950). This test requires that all
samples be of the same size, that is, n, =n, = ---=n,. The test is based on the statistic

Percentage points of F,_,, are provided in the Appendix in Table A.1 for ot=0.05 and 0.01.
The null hypothesis, H,, is rejected if F,,,,, > Fpay o.vx Where v=n — 1, the degrees of freedom
associated with each of the k individual treatment variances. If the n; are not all equal, a
“liberal” test of H, vs H, can be obtained by taking v=max,{n,;} — 1. This test is liberal in the
sense that one is assuming all treatments have the same (maximum) sample size and so you
are going to reject the null hypothesis more often than specified by the choice of . When the
sample sizes are not too unequal, this process provides a reasonable test. It also protects one
from doing the usual analysis of variance when there is even a remote chance of it being inap-
propriate. An example illustrating the use of this test is found in Section 2.4.
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2.3.2 Bartlett’s Test

A second test for testing for homogeneity of variances is a test proposed by Bartlett (1937),
which has the advantage of not requiring the 7, to be equal. Bartlett’s test statistic is

U= viog. ()~ S 11056 22

where

and

T {Z{v_}

The hypothesis of equal variances is rejected if U > X3, ;. One of the disadvantages of the
preceding two tests for homogeneity of variance is that they are quite sensitive to depar-
tures from normality as well as to departures from the equal variances assumption. Most
of the following tests are more robust to departures from normality.

2.3.3 Levene’s Test

Levene (1960) proposed doing a one-way analysis of variance on the absolute values of
the residuals from the one-way means or effects model. The absolute values of the residu-
als are given by zZ; = |y,.]» -v.l,i=12,...,t;j=1,2,...,n,. The F-test from the analysis of vari-
ance is providing a test of the equality of the treatment means of the absolute values of
the residuals. If the means are different, then there is evidence that the residuals for one
treatment are on the average larger than the residuals for another treatment. The means
of the absolute values of the residuals can provide a guide as to which variances are
not equal and a multiple comparison test (see Chapter 3) can be used to make pairwise
comparisons among these means. One modification of Levene’s test is to use the squared
residuals in the analysis of variance.

2.3.4 Brown and Forsythe’s Test

Brown and Forsythe (1974) used Levene’s process and modified it by doing a one-way
analysis of variance on the absolute values of the deviations of the observations from
the median of each treatment. The absolute values of the deviations from the medians are
given by u; = |y,~j ~VYimeal, 1=12,...,5 j=1,2,...,n. The F-test from the analysis of vari-
ance provides a test of the equality of the treatment means of the absolute values of the
deviations. If the means are different, then there is evidence that the deviations for one
treatment are on the average larger than the deviations for another treatment. The means
of the absolute values of the deviations from the medians can provide a guide as to which
variances are not equal as a multiple comparison tests can be used to make pairwise com-
parisons among these means. This use of the deviations from the medians provides more
powerful tests than Levene’s when the data are not symmetrically distributed.
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2.3.5 O’Brien’s Test

O’Brien (1979) computed scores as
r=lw+n, = 2)n(y; - 9,)° — w67 (n; = DI/[(n; = D(n; - 2)] 2.3)

where w is a weight parameter. The procedure is to carry out an analysis of variance on the
computed score values. When w = 0.5, the means of the scores are the sample variances,
67, thus the comparison of the means of the scores is a comparison of the variances of
the data.

There are several other procedures that can be used to test the equality of variances or
the equality of scale parameters using parametric and nonparametric methods (Conover
et al, 1981; Olejnik and Algina, 1987). McGaughey (2003) proposes a test that uses the con-
cept of data depth and applies the procedure to univariate and multivariate populations.
Data depth is beyond the scope of this book.

2.3.6 Some Recommendations

Conover et al. (1981) and Olejnik and Algina (1987) conducted simulation studies of homo-
geneity of variance tests that included the ones above as well as numerous others. The
studies indicate that no test is robust and most powerful for all situations. Levene’s test
was one of the better tests studied by Conover et al. O’Brien’s test seems to provide an
appropriate size test without losing much power according to Olejnik and Algina. The
Brown-Forsythe test seems to be better when distributions have heavy tails. Based on
their results, we make the following recommendations:

1) If the distributions have heavy tails, use the Brown—Forsythe test.
2) If the distributions are somewhat skewed, use the O’Brien test.

3) If the data are nearly normally distributed, then any of the tests are appropriate,
including Bartlett’s and Hartley’s tests.

Levene’s and O’Brien’s tests can easily be tailored for use in designed experiments that
involve more than one factor, including an analysis of covariance (Milliken and Johnson,
2002). Levene’s, O’Brien’s and Brown-Forsythe’s tests were shown to be nearly as good as
Bartlett’s and Hartley’s tests for normally distributed data, and superior to them for non-
normally distributed data. Conover et al. and Olejnik and Algina discuss some nonpara-
metric tests, but they are more difficult to calculate and the above recommended tests
perform almost as well. An example follows where each of the tests for equality of vari-
ances is demonstrated.

2.4 Example—Drugs and Errors

The data in Table 2.1 are from a paired-association learning task experiment performed on
subjects under the influence of two possible drugs. Group 1 is a control group (no drug),
group 2 was given drug 1, group 3 was given drug 2, and group 4 was given both drugs.
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TABLE 2.1
Data from Paired-Association Learning Task Experiment
No Drug Drug 1 Drug 2 Drugs 1 and 2

1 12 12 13

8 10 4 14

9 13 11 14

9 13 7 17

4 12 8 11

0 10 10 14

1 — 12 13

— — 5 14

n 7 6 8 8
Sum 32 70 69 110
Median 4 12 9 14
Mean 4.5714 11.6667 8.6250 13.750
Variance 16.2857 1.8667 9.6964 2.786

The sample sizes, sums, medians, means and variances of each group’s data are included

in Table 2.1.
The F-max statistic is F,

=16.286/1.867 = 8.723. The liberal 5% critical point is obtained

max

from Table A.1 with k=t =4 and v="7. The critical point is 8.44 and since 8.723 > 8.44, one
rejects Hy: 02 =0, =-+- =0 versus H,:(not Hy) with significance level 0.05, but cannot
reject at the or=0.01 level.

The computations for Bartlett’s test are:

and

Thus

C=1+1(1+;+1+1—1J

42  6(16.2857) + 5(1.8667) + 7(9.6964) + 7(2.7860)
25

=7.7769

4
U= é(v log .67 - Y v, logeéf)
-1

- ﬁ [25 log,(7.7769) - 6 log (16.2857) - 5 log (1.8667)

— 7 10g (9.6964) — 7 log (2.7860)]
=7.8111

The asymptotic sampling distribution associated with U is a that of a chi-square
distribution based on three degrees of freedom. The significance level of the test is 0.0501
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and one would again conclude that the variances are unequal at an approximate 5%
significance level.

The computations for Levene’s test begin with the computation of the residuals or the
deviations of the observations from the treatment means. Next the absolute values of the
residuals are computed as illustrated in Table 2.2. Finally, a one-way analysis of variance is
carried out on these absolute values of the residuals. The value of the resulting F-statistic
is 6.97, which is based on 3 and 25 degrees of freedom. The observed significance level of
Levene’s test is 0.0015. The squared deviations or squared residuals version of Levene’s test
can be obtained by squaring the items in Table 2.2 before doing the analysis of variance. In
this case, the value of the F-statistic is 7.36 and the observed significance level is 0.0011 (also
based on 3 and 25 degrees of freedom).

The Brown-Forsythe test statistic is obtained by computing the absolute value of
the deviations of the observations from the treatment median (medians are in Table 2.1).
Table 2.3 contains the absolute values of the deviations from the medians. Next, the one-
way analysis of variance provides an F-statistic of 549 and the observed significance level
is 0.0049 (also based on 3 and 25 degrees of freedom).

Table 2.4 contains the values of r; computed using Equation 2.3 with w = 0.5. The O’Brien
test statistic is obtained by carrying out an analysis of variance. The value of the F-statistic

TABLE 2.2

Values of z; = |y;; — ;.| for Computing Levene’s Test Where
y;; Values are from Table 2.1

No Drug Drug1 Drug 2 Drugs 1 and 2
3.571 0.333 3.375 0.750
3.429 1.667 4.625 0.250
4.429 1.333 2.375 0.250
4.429 1.333 1.625 3.250
0.571 0.333 0.625 2.750
4.571 1.667 1.375 0.250
3.571 — 3.375 0.750
— — 3.625 0.250
TABLE 2.3

Absolute Values of Deviations of the Observations
from the Treatment Medians

No Drug Drug1 Drug 2 Drugs 1 and 2
3 0 3 1
4 2 5 0
5 1 2 0
5 1 2 3
0 0 1 3
4 2 1 0
3 — 3 1
— — 4 0
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TABLE 2.4

Scores Using w = 0.5 for O’Brien’s Test

Obrl Obr2 Obr3 Obr4
14.740 -0.083 13.295 0.464
13.457 3.517 25.676 -0.155
23.540 2.167 6.176 -0.155
23.540 2.167 2.461 12.845
-1.210 -0.083 —0.324 9.131
25.190 3.517 1.533 -0.155
14.740 — 13.295 0.464
— — 15.461 -0.155

is 6.30 and the observed significance level is 0.0025. The value of the F-statistic using
w = 0.7 (computations not shown) is 590 and the observed significance level is 0.0035.
There are 3 and 25 degrees of freedom associated with each of O’Brien’s tests.

Each of the test statistics indicates that there is sufficient evidence to conclude that the
variances are not equal. The group means of the absolute values of the residuals are shown
in Table 2.5. Pairwise comparisons among these treatment absolute residual means are
shown in Table 2.6. The means of the absolute values of the residuals for no drug and drug 2
are not different, for drug 1 and drugs 1 and 2 are not different, but there are differences
between these two sets. A simple model with two variances could be used to continue the
analysis of the treatment means. Using a simple variance model will improve the power
of some of the tests about the means. The two variance model and the corresponding
comparisons of means will follow the discussion of the analysis using four variances.

TABLE 2.5

Means of the Absolute Values of the Residuals

Group Estimate  Standard Error df  #-Value Pr>|t|
Both drugs 1.0625 0.4278 25 2.48 0.0201
Drug1 1.1111 0.4940 25 2.25 0.0336
Drug 2 2.6250 0.4278 25 6.14 <0.0001
No drug 3.5102 0.4574 25 7.67 <0.0001

TABLE 2.6

Pairwise Comparisons between the Group Means of the Absolute Values of the Residuals
Group _Group Estimate Standard Error  df t-Value Pr > |t|
Both drugs Drug 1 -0.04861 0.6535 25 -0.07 0.9413
Both drugs Drug 2 -1.5625 0.6050 25 -2.58 0.0161
Both drugs No drug —2.4477 0.6263 25 -3.91 0.0006
Drug 1 Drug 2 -1.5139 0.6535 25 —2.32 0.0290
Drug 1 No drug -2.3991 0.6732 25 -3.56 0.0015

Drug 2 No drug -0.8852 0.6263 25 -1.41 0.1699
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2.5 Inferences on Linear Combinations

The problems of testing hypotheses about and constructing confidence intervals for an
arbitrary linear combination of the treatment means, Zle ¢; 1;, are discussed in this section
when the variances o7 are too unequal to apply the tests and confidence intervals
discussed in Chapter 1. It is recommended that you use the procedures in this section and
the next if the equality of variance hypothesis is rejected at the 0.01 or 1% level. If there is
not sufficient evidence to believe that the variances are unequal, then one can use the
results in Chapter 1 to make inferences about the treatment means.
The best estimate of Zle cil;is Zle c;fi; and the sampling distribution is

icinai - N(ici“i’icfzo-fz/nij
i=1 i=1 i=1
and thus,

t t
Z CiH;— Z C:H;
7 = i=1 i=

S~ N(0,1)
(| 2cioi/m,
i=1

An obvious statistic to use for making inferences about Y., ¢
known and are unequal, is

U;, when the variances are not

i

If the n; corresponding to nonzero c; are all very large, one can reasonably assume that
Z has an approximate N(0, 1) distribution, and hence Z can be used to make inferences
about X/_ c;i;. In this case, an approximate (1 — @)100% confidence interval for >/_ c;u, is

provided by
t t
zcilji 2y W/ZC,‘Z&?/”,'
i-1 i=1

where z,,, is the upper o//2 critical point of the standard normal probability distribution.
To test Hy X c;u;=avsHy: X c;u;#a, where a is a specified constant, one could
calculate

:
Z GH; —a
_ i

7z = =
t

Y ci6i/n,
i=1

and if |z| > z,,, then reject H, at a significance level of c.
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In other instances, note that z can be written as
t t t
(Z Cilai_zchuij ZC;ZGiZ/ni
_\i=l i=1 i=1

- t t
\/2 c:67/n, /\/2 ciol/n,
i=1 i=1

The numerator of z has a standard normal distribution and the numerator and denomina-
tor of z are independently distributed. The distribution of z could be approximated by a
t(v) distribution if v could be determined such that

t
2.6/,

_ i=1

V=vx=:

Y ciol/n,

i=1

is approximately distributed as y*(v). In order to get a good chi-square approximation to
the distribution of V when the variances are unequal, select a chi-square distribution that
has the same first two moments as V. That is, to find v for the case of unequal variances,
find v so that the moments of V are equal to the first two moments of a ¥*(v) distribution
(this is known as Satterthwaite’s method). This results in determining that the approxi-
mate number of degrees of freedom is

; 2
[chof/n,.j
=1
Y [t /i (n,~ )]

i=1

VvV =

Unfortunately, since v depends on 0'%, 0'5, ey O't2 it cannot be determined exactly. The usual
procedure is to estimate v by

¢ 2
24,2
(E c;0; /nl)
i=1

[c!6} /i (n,~1)]

‘7:

(2.4)

Mw

[§

I
_

Summarizing, one rejects Hy: X/ c;u;=avs H: X/ c; i, # a, if

c‘ = tasao
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where V is determined using Equation 2.4. An approximate (1 — )100% confidence inter-

val for X_c;1; is given by
t t
~ 2 A2
zci:ui Tt zci o;/n,
i=1 i=1

Unfortunately, every time one wants to test a new hypothesis or construct another
confidence interval, the degrees of freedom V must be re-estimated. It can be shown
that n,—-1<V<tmn*—1) where n,=min{n,n,,...,n} and n*=max{ny,n,,...,n}. Thus,
if |t.| >t,,, 1, 0necanbeassured that |t.| >t,,,,,andif |t | <t/ ), One canbe assured
that |t.| <t,/,;. In these cases, one can avoid calculating V. When t,5 1)< | t.| <tg/24
the value of ¥ must be calculated in order to be sure whether one should reject or fail to
reject the null hypothesis being tested. For confidence intervals, ¥ should always be
calculated. Next, the preceding results are demonstrated with the drug errors example.

2.6 Example—Drugs and Errors (Continued)

Consider the data in Table 2.1, and suppose the experimenter is interested in answering
the following questions:

1) On average, do drugs have any effect on learning at all?
2) Do subjects make more errors when given both drugs than when given only one?
3) Do the two drugs differ in their effects on the number of errors made?

To answer the first question, one might test the hypothesis that the mean of the three
drug groups is equal to the control mean. That is, one would test

C(y + s+ 1)

Hy:l= 1y 3

=0vsH L#0
The estimate of this linear combination is
7 laz + .as + la4

=4.571 - %(34.042) =-6.776

and the estimate of the corresponding standard error of I, is

A2 A2 A2 A2
- \/671 + 1(“Zj + 1(G3j + ;(‘;4) = \/2.535 = 1.592
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The approximate degrees of freedom associated with this estimated standard error are
obtained by using

4

4 ~4
3 9%~ 09052

i=1 ni2 (n,-1)
so that
2
V= (2.535) =7.10
0.9052

The value of the test statistic is t, = —6.776/1.992 = —4.256 with the observed significance
level & =0.0038.
A 95% confidence interval for [, is

I tt,,, xse(l)=—6.776*(2.365)(1.592)

which simplifies to

Myt s+ 1y

-10.54 < u, - <=3.01

Next test to see if the mean of the group given both drugs is equal to the mean of the
average of the means of the two groups given a single drug. That is, test

+
H,, zzzm—%:()vs H,L#0

The estimate of this linear combination is
N R (L. +
L=q,- % = 3.6042

and its estimated standard error is

sel) - i(q‘z S j

-1\ 1

i

A2 A2 A2
- Jl(%j + 1("3] + [‘;4] = J0.7290 = 0.8538

4\ 6 4\ 8

The value of the test statistic is t, = 3.6042/0.8538 = 4.221, which is significant at or=0.01
since |f.| > tq055 In this case, the value of V need not be computed using 7, —1 as the
approximating degrees of freedom. The computed value of V is 16.8, which would be
needed if one wanted to construct a confidence interval about I,.
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Finally, to test the hypothesis to see if the two drug means differ, test H: I; = 1, — ;=0 vs
H,;: 1y = g, — u3#0. The estimate of this linear combination is ;= fi, — fi;=3.042 and its
estimated standard error is

R 4 (252 ~2 A2
se(l,) = \/Z(C:) = J(Gg] + (‘;3] = J1.523 =1.234
i=1 i

The approximate number of degrees of freedom is computed using

4 4 ~4
> =029
i1 1 (ni _1)
so that
2
b= (1.523) —101
0.229

Thus, ¢, = 3.042/1.234 = 2.465, which has an observed significance level of & = 0.0334.

2.7 General Satterthwaite Approximation for Degrees of Freedom

The Satterthwaite approximation to the number of degrees of freedom associated with
estimated standard error is obtained from

2*(E se(l)] 1?
Var{[s.e.()I*}

where [se. (l )I? is used to estimate E[s.e. (l )F and the Varl[se. (l ) is estimated by 2’ ct6l/
[n3(n; — 1)]. For more complex models, Var[s.. (D can be approximated by using a first-
order Taylor’s series (Kendall and Stuart, 1952) as g'Mg where M is the estimated asymp-
totic covariance matrix of the estimates of the variances and the elements of the vector g are
the first derivatives of E[s.e. (l)]2 with respect to the individual variances, that is,

7\12
1:7]5[(;&2[)] =12,
o

1

et

The g; are evaluated at the estimated values of each treatment’s variances (Montgomery and
Runger, 1993, 1994). When the data from each of the samples are normally distributed, then

(ni — 1) 6-[2
o?
is distributed as a central chi-square random variable. Thus E(G; ) G and Var(6; )—
264/(11 —1). Let the linear combination of interest be l—Z[_l clL,, which has variance

o’ =3 c’o; /n, The partial derivative of 67 with respect to o7 is
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Jdo}
do?

i i

The approximate variance of o7 obtained using the Taylor’s series first-order approxi-

mation is
2 2 26* :
Var(c?) = L i
ar(er) ; {”z} Li_l}

The next step is to replace the population variances with their corresponding sample
estimates providing the approximating degrees of freedom

_ 2+ (Ellse )1}y (Zc,. oij

Var{se.()F) _i 2(n,—1)]

i=1

<>

the same as that provided by the Satterthwaite approximation above.

2.8 Comparing All Means

As previously stated, the usual F-test is very robust when the variances are unequal,
provided that the sample sizes are nearly equal or provided that the larger sample sizes
correspond to the samples from populations with the larger differences of variances. In
this section, two additional tests of the hypothesis of equal means are provided. The first
test of the equal means hypothesis, Hy: y, = tt, = -+ = i, vs H;: (not Hy), is given by Welch
(1951), and is known as Welch’s test. Define welghts W, =n,/67, let j* = Wy /X W, bea
weighted average of the sample means, and let

1- W/W
;( )’

where W. =X, W, Then Welch’s test statistic is

t

(7. —
Z Lot- 1)

i=1

F —
CT 1+ 2t-1)AAE 1)

2.5)

which has an approximate F-distribution with numerator and denominator degrees of
freedom, vy =t—-1 and v, = (#* - 1)/3A, respectively. Thus, the null hypothesis H;: u, =
My =--- = U is rejected if F. > F,, . The numerator of Equation 2.5 can also be computed as
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TABLE 2.7
Quantities for Computing Welch’s Test

i Drug1 Drug 2 Drug 3 Drug 4
n; 7 6 8 8

Vi 45714 11.6667 8.62500  13.7500
67 16.2857 1.8667 9.69643 2.7857
w; 0.4298 3.2143 0.82505 2.8718

[Zle(W,- %) — Wyl/(t — 1). The procedure is demonstrated using the data from Section 2.4
and the preliminary computations are provided in Table 2.7.
From the above information compute W.=7.341, 7* = 11.724,

o (1-0430/7.3417  (1-3214/7.341)° (1-0.825/7341)"  (1-2.872/7.341)

=0.376
6 5 7 7

and Zf-:lWi YA - w 72 =1050.8069 — 1009.0954 = 43.7114.
The value of Welch’s test statistic is

41.7114/3 _13.9038

- - = 12.6355
1+2x2x0.376/15 11003

with v, =3 and v, =15/(3 x 0.376) = 13.283 degrees of freedom. The observed significance
probability corresponding to F, is &= 0.00035. For comparison purposes, the usual F-statistic
is F,=14.91 with 3 and 25 degrees of freedom. Welch'’s test can be obtained using SAS®-
GLM by specifying WELCH as an option on the MEANS statement. Table 2.8 contains the

TABLE 2.8

SAS-GLM Code to Provide the Brown-Forsythe’s Test of Equality of Variances
and to Provide the Welch Test of Equal Means with the Unequal Variance Model

proc glm data=task;

class group;

model errors=group;

means group/HOVTEST=BF WELCH;
format group druggrps.;

Welch’s Test

Source df F-Value Pr>F
Group 3 12.64 0.0003
Error 13.2830

Brown and Forsythe’s Test for Homogeneity of Errors Variance
ANOVA of Absolute Deviations from Group Medians

Source df Sum of Squares Mean Square  F-Value Pr>F

Group 3 31.3762 10.4587 5.49 0.0049
Error 25 47.5893 1.9036
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GLM code used to provide BF test for equality of variances and Welch’s test for equality of
means. The important parts of the output are in the second part of Table 2.8. Other tests for
equality of variances can be obtained by specifying O’Brien, Levene or Bartlett.

The second procedure for testing the equality of the treatment means is obtained from
generalizing the process of testing a hypothesis about a set of linear combinations of the ;.
Suppose a hypothesis is formed involving r independent linear combinations of the y;,
such as Hy: X i1, =0, X ;i ft;=0,..., X0 ¢, it; = 0 vs H,: (not Hy). Let C be a r x t matrix
where the kth row contains the coefficients of the kth linear combination. If one assumes the
data from each of the populations or treatments are normally distributed, then the joint
sampling distribution of the vector of treatment means is i ~ N[ 4, V] where Vs a diagonal
matrix whose ith diagonal element is 67 /n;. The joint sampling distribution of the set of
linear combinations Cu is Cli~ N[Cu, CVC']. The sum of squares due to deviations from
the null hypothesis is SSH,, = [Cf]'[CVC'][Cfl], which is asymptotically distributed as a chi-
square distribution with r degrees of freedom. An approximate small sample size statistic
is F, = SSH,/r with the approximating distribution being F with r and v degrees of freedom
where vneeds to be approximated (Fai and Cornelius, 1996; SAS Institute, Inc., 1999, p. 2118).
The computation of the approximate degrees of freedom starts with carrying out a spectral
decomposition on CVC’ = QDQ’ where D is an r x r diagonal matrix having the characteri-
stic roots of CVC’ as diagonal elements and where Q is a 7 x r orthogonal matrix of the
corresponding characteristic vectors of CVC'. Let z; be the kth row of QC, and let

where d, is the kth diagonal element of D, b, contains the partial derivatives of z;Vz, with
respect to each of the variance parameters in V evaluated at the estimates of the variances,
and M is the asymptotic covariance of the vector of variances. Let

r

Vv
S:Z kzl[\/k>2]

k=1 Vi ™

where I[v, > 2] is an indicator function with the value of 1 when v, > 2 and 0 otherwise. The
approximate denominator degrees of freedom for the distribution of F, are

25 ifS>r
V= S—r
0 ifS<r

The above process can be used to provide a test of the equal means hypothesis by selecting
a set of t — 1 linearly independent contrasts of the ;.

The SAS-Mixed procedure implements a version of this approximation to the denomina-
tor degrees of freedom associated with an approximate F statistic with multiple degrees of
freedom in the numerator. SAS-Mixed can be used to fit models with unequal variances
per treatment group or unequal variances in some other prespecified pattern using the
REPEATED statement and specifying the GROUP = option. The Mixed code in Table 2.9
was used to fit the unequal variance model to the data in Table 2.1. The REPEATED state-
ment is used to specify that a different variance (each value of group) is to be estimated for
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TABLE 2.9

SAS-Mixed Code to Fit the Unequal Variance Model to the Data in Table 2.1

proc mixed cl covtest data=task;

class group;

model errors=group/ddfm=kr;
repeated/group=group;
estimate “part(l)” group —1 -1 -1 3/divisor=3 cl alpha=0.05;

estimate “part (2

)" group 2 -1 -1 0/divisor=2 cl alpha=0.05;

estimate “part(3)” group 0 1 -1 0/cl alpha=0.05;
lsmeans group/diff cl;
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each treatment. The three Estimate statements are used to provide the computations
corresponding to the three questions in Section 2.6.

The results from the Mixed procedure are given in Table 2.10, where the Covariance
Parameter Estimates are the estimates of the four treatment variances, AIC in the Fit Statistics
is the Akaike Information Criteria (Akaike, 1974), the Null Model Likelihood Ratio Test
provides a test of the equal variance hypothesis, the type III tests of fixed effects provides
the test of the equal means hypothesis using the second statistic and the corresponding

TABLE 2.10

Results of Fitting the Unequal Variance Model to the Data in Table 2.1

Covariance Parameter Estimates

Covariance Standard

Parameter Group Estimate Error Z-Value Prz o Lower Upper

Residual Both drugs 2.7857 1.4890 1.87 0.0307 0.05 1.2178 11.5394
Residual Drug1 1.8667 1.1806 1.58 0.0569 0.05 0.7273 11.2286
Residual Drug 2 9.6964 5.1830 1.87 0.0307 0.05 4.2388 40.1658
Residual No drug 16.2857 9.4026 1.73 0.0416 0.05 6.7625 78.9710
Fit Statistics

AIC (smaller is better) 129.8

Null Model Likelihood Ratio Test

df Chi-Square  Pr> Chi-Square

3 8.34 0.0394

Type III Tests of Fixed Effects

Effect Numdf  Dendf  F-Value Pr>F

group 3 11.8 12.53 0.0006

Estimates

Label Estimate Standard Error df t-Value Pr > || o Lower Upper

Part 1 —6.7758 1.5920 7.1 -4.26 0.0036 0.05 -10.5299 -3.0217
Part 2 3.6042 0.8538 16.8 4.22 0.0006 0.05 1.8011 5.4073
Part 3 3.0417 1.2342 10.1 2.46 0.0332 0.05 0.2962 5.7871




38 Analysis of Messy Data Volume 1: Designed Experiments

TABLE 2.11

Estimates of the Drug Group Means and Pair Wise Comparisons Using the Unequal
Variance Model

Least Squares Means

Effect Group Estimate Standard Error df t-Value Pr> |t| o Lower Upper

Group  Both drugs 13.7500 0.5901 7 2330  <0.0001 0.05 12.3546 15.1454
Group Drugl 11.6667 0.5578 5 2092  <0.0001 0.05  10.2329 13.1005
Group Drug?2 8.6250 1.1009 7 7.83 0.0001  0.05 6.0217 11.2283
Group Nodrug 4.5714 1.5253 6 3.00 0.0241  0.05 0.8392 8.3037
Differences of Least Squares Means

Standard

Effect Group _Group  Estimate Error df t-Value Pr> |t| o Lower  Upper
Group Bothdrugs Drugl 2.0833 0.8120 119 2.57 0.0249 0.05 0.3117 3.8550
Group Bothdrugs Drug?2 5.1250 12491 107 4.10 0.0018 0.05 2.3668 7.8832
Group Bothdrugs Nodrug 9.1786 1.6355 778  5.61 0.0006 0.05 53886  12.9685
Group Drugl Drug 2 3.0417 1.2342  10.1 2.46 0.0332  0.05 0.2962 5.7871
Group Drugl No drug 7.0952 1.6241 755 437 0.0027  0.05 3.3109 10.8796
Group Drug?2 No drug 4.0536 1.8811 11.3 2.15 0.0536  0.05 -0.07507  8.1822

approximate degrees of freedom for the denominator, and the Estimates contain the results
corresponding to the three questions in Section 2.6, where t-statistics, approximate denom-
inator degrees of freedom, and 95% confidence intervals are provided. Table 2.11 contains
the estimated treatment means with their corresponding estimated standard errors. The
denominator degrees of freedom are the degrees of freedom corresponding to their
respective variances. The second part of Table 2.11 contains the pairwise comparisons of the
treatment means including the approximate denominator degrees of freedom for each com-
parison. This model could be simplified by using one variance for drug 1 and both drugs
and one variance for drug 2 and no drug. This can be accomplished by defining a variable,
say T, to be 1 for drug 1 and both drugs and 0 for the other two treatments. Then place T in
the class statement and use Repeated/Group = T; in the model specification. The estimates
of the two variances are 2.4028 and 12.7376 and the AIC is 126.4, which is a smaller AIC
value than that for the four variance model, indicating the two variance model is adequate
to describe the data. Using a model with fewer variances in the model specification
provides more degrees of freedom for the respective standard errors and thus provides
more powerful tests of hypotheses concerning the fixed effects in the model.

2.9 Concluding Remarks

In summary, for comparing all means, the following are recommended:

1) If the homogeneity of variance test is not significant at the 1% level, do the usual
analysis of variance test.
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2) If the homogeneity of variance test is significant at the 1% level use either Welch’s
test or the mixed models test and the corresponding approximate denominator
degrees of freedom.

3) If the homogeneity of variance is significant at the 1% level, use the AIC to deter-
mine if a simpler or fewer number of variances can be used to adequately describe
the data in order to increase the power of tests concerning the means.

Many text books and articles have been written about using transformations on data in
order to achieve equal treatment variances so that the usual analysis of variance can be used
to compare the treatments. With the ability to fit an unequal variance model to provide
estimated standard errors of means and comparisons of means, many situations will not
require the use of transformations. One major benefit of not having to use a transformation
to achieve equal variances is that the units of the means are in the units of measurement,
thus simplifying interpretations.

This chapter contains discussion about the statistical analysis of a one-way analysis of
variance model with heterogeneous errors. The discussion included several statistical tests
for determining homogeneity of the error variances and recommendations on when to use
each test. Procedures appropriate for making statistical inferences about the effects of
different treatments upon discovering heterogeneous error variances as well as examples
illustrating the use of these procedures were also reviewed.

2.10 Exercises

2.1 The following data are body temperatures of calves that were vaccinated and
then challenged to determine if the vaccination protected the animal. Test the
equality of variances of the treatment groups using two or more techinques.
Based on the results of the test of equality of variances, test the equality of the
treatment means using both Welch’s and the mixed model F-statistics and make
all pairwise comparisons.

Data for Exercise 2.1

Vaccine A Vaccine B Vaccine C Vaccine D Vaccine E Vaccine F  Vaccine G

101.5 96.3 101.8 97.3 97.5 96.9 97.3
100.5 97.2 97.4 96.8 96.4 97.1 100.7
104.5 99.3 104.9 97.1 98.6 96.8 103.3
102.3 98.0 104.0 97.0 96.6 97.0 100.2
100.6 97.6 103.7 97.1 96.2 103.5
97.7 96.8 104.5 96.9 96.6

99.1 100.4 96.1

96.7 102.2 96.3

96.4 100.2 96.7

97.1

2.2 Use the data in Table 1.1 and test the equality of variances using several of the
methods described in Section 2.2. What is your conclusion?

2.3 The data in the following table are times required for a student to dissolve a
piece of chocolate candy in their mouth. Each time represents one piece of candy
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dissolved by one student. Provide a detailed analysis of the data set and provide
tests of the following hypotheses:

1) The mean of the Blue Choc = the mean of the Red Choc.

2) The mean of the Buttons = the mean of the means of the Blue Choc and
Red Choc.

3) The mean of the ChocChip = the mean of the WchocChip.

4) The mean of the Small Choc = %2 the mean of the means of the Blue Choc and
Red Choc.

5) The mean of the Blue Choc and Red Choc = the mean of the ChocChip and
WchocChip.

Data for Exercise 2.3

Buttons Blue Choc  Small Choc  ChocChip  WChocChip Red Choc

69 57 28 52 35 47
76 41 27 50 37 70
59 70 28 60 38 48
55 66 30 55 40 51
68 48 29 57 34 42
34 62 28 49 35

35 24 36

2.4 The following data are the amount of force (kg) required to fracture a concrete
beam constructed from one of three beam designs. Unequal sample sizes
occurred because of problems with the pouring of the concrete into the forms for
each of the designs.

1) Write out an appropriate model to describe the data and describe each
component of the model.

2) Estimate the parameters of the model in part 1.

3) Use Levene’s, O'Brien’s, and Brown-Forsythe’s methods to test the equality
of the variances.

4) Use Welch'’s test to test Hy: y; = i, = t; vs H,: (not Hy).
5) Use the mixed model F-test to test Hy: 1, = W, = 5 vs H,: (not Hy).

Data for Exercise 2.4

Design Beam1 Beam2 Beam3 Beam4 Beam5 Beam 6 Beam7 Beam 8 Beam9 Beam 10

1 195 232 209 201 216 211 205
2 231 215 230 221 218 227 218 219
3 223 226 223 224 224 226 227 224 226 226

2.5 Four rations with different amounts of celluose were evaluated as to the amount
of feed required for a chicken to gain one pound during the trial. Twenty-four
chickens were randomly assigned to the four rations (six chickens per ration)
and the chickens were raised in individual cages.

1) Write out an appropriate model to describe the data and describe each
component of the model.
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2)
3)

4)
5)
6)

Estimate the parameters of the model in part 1.

Use Levene’s, O’'Brien’s, and Brown-Forsythe’s methods to test the equality
of the variances.

Use Welch'’s test to test Hy: 1y = 4, = 3 =y, vs H,: (not Hy).
Use the mixed model F test to test Hy: i, = 1, = 1y = W, vs H,: (not Hy).

Construct 90% confidence intervals about c;, ¢,, and ¢; where ¢, =, — 1, +
My = My Co =y + = U — My, and ¢3 = [y — [y — Uz + Hy.

Data for Exercise 2.5

Chick1 Chick2 Chick3 Chick4 Chick5 Chick 6

Ration 1 2.60 2.54 2.87 2.33 245 2.77
Ration 2 3.87 3.18 2.59 3.62 271 3.08
Ration 3 2.69 531 2.08 4.00 3.12 4.19
Ration 4 443 5.59 5.06 4.17 5.17 4.47
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3

Simultaneous Inference Procedures and
Multiple Comparisons

Often an experimenter wants to compare several functions of the y; in the same experi-
ment, leading to a multiple testing situation. Experimenters should consider all functions of
the y; that are of interest; that is, they should attempt to answer all questions of interest
about relationships among the treatment means. The overriding reason to include more
than two treatments in an experiment or study is to be able to estimate and/or test hypo-
theses about several relationships among the treatment means. Often the treatments are
selected to provide a structure of comparisons of interest (see, for example, the drug experi-
ment in Section 2.4). At other times, the experimenter may be interested in comparing each
treatment to all other treatments, that is, making all pairwise comparisons. This would be
the case, for example, when one is comparing the yields of several varieties of wheat or for
any other set of treatments that have been selected for a comparative study.

One concern when making several comparisons in a single experiment is whether
significant differences observed are due to real differences or simply to making a very
large number of comparisons. Making a large number of comparisons increases the chance
of finding differences that appear to be significant when they are not. For example, if an
experimenter conducts 25 independent tests in an experiment and finds one significant
difference at the 0.05 level, she should not put too much faith in the result because, on aver-
age, she should expect to find (0.05)(25) = 1.25 significant differences just by chance alone.
Thus, if an experimenter is answering a large number of questions with one experiment
(which we believe one should do), it is desirable to have a procedure that indicates whether
the differences might be the result of chance alone. Fisher (1949) addressed this problem
when he put forward the protected least significant difference (LSD) procedure. Since then,
many authors have contributed to the area of multiple testing where procedures for
numerous settings have been developed.

In this chapter, several well-known and commonly used procedures for making multiple
inferences are discussed and compared. Some of the procedures are primarily used for
testing hypotheses, while others can also be used to obtain simultaneous confidence inter-
vals; that is, a set of confidence intervals for a set of functions of the y; can be derived for
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which one can be 95% confident that all the confidence intervals simultaneously contain
their respective functions of the p;.

3.1 Error Rates

One of the main ways to evaluate and compare multiple comparison procedures is to
calculate error rates. If a given confidence interval does not contain the true value of the
quantity being estimated, then an error occurs. Similarly, if a hypothesis test is used, an
error is made whenever a true hypothesis is rejected or a false hypothesis is not rejected.
Next four kinds of error rates are defined.

Definition 3.1: The comparisonwise error rate is equal to the ratio of the number of incor-
rect inferences made to the total number of inferences made in all experiments analyzed.

Definition 3.2: The experimentwise error rate (EER) is equal to the ratio of the number
of experiments in which at least one error is made to the total number of experiments ana-
lyzed. It is the probability of making at least one error in an experiment when there are no
differences between the treatments. The EER is also referred to as the experimentwise
error rate under the complete null hypothesis (EERC).

Definition 3.3: The familywise error rate (FWER) (Westfall et al., 1999) is the probability
of making at least one erroneous inference for a predefined set of k comparisons or confi-
dence intervals. The set of k comparisons or confidence intervals is called the family of
inferences.

Definition 3.4: The false discovery rate (FDR) (Benjamini and Hochberg, 1995) is the
expected proportion of falsely rejected hypotheses among those that were rejected.

The EER controls the error rate when the null hypothesis is that all of the treatments are
equally effective, that is, there are no differences among the treatment means. But many
experiments involve a selected set of treatments where there are known differences among
some treatments. Instead of an all means equal null hypothesis, there may be a collection
of k null hypotheses, Hy, H,, ..., Hy about the set of t means. These k null hypotheses are
called partial null hypotheses and the error rate is controlled by using a method that
controls the FWER (Westfall et al., 1999). For example, the set of treatments in Exercise 2.3
are six candy types, buttons, blue choc, red choc, small choc, chocChip and WchocChip. It
is known at the start of the study that the time required to dissolve the small choc is much
less than the time required to dissolve any of the other candies. The null question could be:
Is the time it takes to dissolve a small choc equal to one-half of the mean times to dissolve
the red and blue chocs? In this case a method that controls the FWER is in order since the
condition of using a method that controls the EER does not hold; that is, it is known that
the mean times are not all equal from the start. The FDR is very useful in the context of
microarray experiments in genetics.

In order to avoid finding too many comparisons significant by chance alone in a single
experiment, one quite often attempts to fix the experimentwise error rate, when applicable,
or the FWER when needed at some prescribed level, such as 0.05. Whenever an experi-
menter is trying to answer many questions with a single experiment, it is a good strategy
to control the FWER.
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3.2 Recommendations

There are five basic types of multiple comparison problems: 1) comparing a set of treatments
to a control or standard; 2) making all pairwise comparisons among a set of t means; 3) con-
structing a set of simultaneous confidence intervals or simultaneous tests of hypotheses;
4) exploratory experiments where there are numerous tests being conducted; and 5) data
snooping where the comparisons are possibly data-driven. In the first four situations, the
number of comparisons or confidence intervals or family of inferences is known before the
data are analyzed. In the last situation, there is no set number of comparisons of interest and
the final number can be very large. The recommendations given in this chapter are based on
information from Westfall et al. (1999), SAS Institute, Inc. (1999), and Westfall (2002).

1) If the experiment is an exploratory or discovery study and the results are going to
be used to design a follow-up or confirmatory study, then possibly no adjustment
for multiplicity is necessary, thus use t-tests or unadjusted confidence intervals
based on LSD values.

2) Use Dunnett’s procedure for comparing a set of treatments with a control. There
are two-sided and one-side versions of Dunnett’s procedure, so one can select a
version to fit the situation being considered.

3) For pairwise comparisons, if there is an equal number of observations per treat-
ment group, use Tukey’s method. If the data are unbalanced, then use the method
that simulates (Westfall et al., 1999) a percentage point, taking into account the
pattern of unequal numbers of observations.

4) If the set of linear combinations is linearly independent, then the multivariate t can
be used to construct confidence intervals or to test hypotheses. If the linear combi-
nations are uncorrelated or orthogonal, the multivariate t works well. If the linear
combinations are not uncorrelated, then a simulation method that incorporates the
correlation structure should be used instead of the multivariate t. Most cases with
unequal numbers of observations per treatment group provide correlated linear
combinations and the simulation method should be used.

5) The Bonferroni method can be used to construct simultaneous confidence inter-
vals or tests about a selected number of linear combinations of the means, but if
the number of combinations of interest is large (say 20 or more), the Scheffé
procedure can often produce shorter confidence intervals, so check it out. For a
set of hypotheses, the methods of Sidak (1967), Holm (1979), or Sidak-Holm can
be used effectively. When the linear combinations are uncorrelated these
bounds are quite good, but when there are correlations among the linear com-
binations, the realized FWER can be much less than desired. SAS®-MULTTEST
can be used carry out bootstrap and simulated percentage points for a given set
of comparisons that takes into account the correlation among the comparisons
within the set.

6) For data snooping or for data-driven comparisons or hypotheses, use Scheffé’s
procedure as one can make as many comparisons as one wants and still control
the EER or FWER.

7) For studies such as genetic studies that involve thousands of comparisons, use a
method that controls the FDR, such as the method suggested by Benjamini and
Hochberg (1995).
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8) For studies that involve evaluating the safety of a treatment as compared with a
control or placebo for possible adverse effects, use a method that does not correct
for multiple tests or comparisons. Adjustment for multiplicity may not be needed
for safety studies, where it is much more serious to make a type II error than it is
to make a type I error.

9) Once the type of comparison is determined and the desired level of error rate con-
trol is specified, select the method satisfying these conditions that provides the
smallest p-values or smallest critical differences or shortest confidence interval
widths.

Each of the recommended multiple comparison procedures as well as a few other popu-
lar procedures available for the one-way treatment structure of Chapter 1 are examined in
the following discussion. Each of the procedures can also be used in much more complex
situations, as will be illustrated throughout the remainder of this book. The parameter v
used during the remainder of this book represents the degrees of freedom corresponding
to the estimator of 2. For the one-way case of Chapter 1, the error degrees of freedom are
v=N-t.

3.3 Least Significant Difference

The LSD multiple comparison method has possibly been used more than any other method,
perhaps because it is one of the easiest to apply. It is usually used to compare each treat-
ment mean with every other treatment mean, but it can be used for other comparisons as
well. The LSD at the 100% significance level for comparing y; to u; is

~ |1 1
LSDa = ta/Z/VO- ;/T + 7’17 (31)
i j
One concludes that 1y; # y; if | {; - (| > LSD,. This procedure has a comparisonwise error
rate equal to . A corresponding (1 — 0)100% confidence interval for g, — u; is

~ ~ A

1 1
M= * ta/Z,VG —+— 3.2
/ n, m

If all sample sizes are equal (to 7, say), then a single LSD value can be used for all pair-
wise comparisons. In this case, the single LSD, value is given by

LSD,=t,,, c}\F (3.3)
! n

Suppose a study includes t treatment means and that all possible pairwise comparisons
at the 5% significance level are going to be made. Comparisons of the comparisonwise and
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TABLE 3.1

Simulated Error Rates for the LSD Procedure

Number of treatments 2 3 4 5 6 8 10 20
Comparisonwise error rate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Experimentwise error rate 0.05 0.118 0.198 0.280 0.358 0.469 0.586 0.904

experimentwise error rates for experiments with different values of ¢ are displayed in
Table 3.1. The information in the table applies to cases where all treatment means are equal.
Table 3.1 shows that, in an experiment involving six treatments, 35.8% of the time one
would find at least one significant difference, even when all the treatment means were
equal to one another. Obviously, using the LSD procedure could be very risky without
some additional protection. When there is more than one test or parameter or linear
combination of parameters of interest, meaning there is a multiplicity problem, some
adjustment should be taken into account in order to eliminate discovering false results.
Westfall et al. (1999) present an excellent discussion of all of the problems associated with
the multiplicity problem and/or the multiple comparison problem. The following discus-
sion attempts to describe those procedures that are useful or have been used in the analysis
and interpretation of the results from designed experiments.

3.4 Fisher’s LSD Procedure

Fisher’s recommendation offers some protection for the LSD procedure discussed in the
preceding section. In Fisher’s procedure, LSD tests are made at the «100% significance
level by utilizing Equation 3.1, but only if Hy: u; = y, = - -- = 1, is first rejected at that level of
o by the F-test discussed in Chapter 1.

This gives a rather large improvement over the straight LSD procedure since the
experimentwise error rate is now approximately equal to a. However, it is possible to
reject Hy: 1 = 4, = -+~ = g, and not reject any of Hy: ;= g, for i #j. It is also true that this
procedure may not detect some differences between pairs of treatments when differ-
ences really exist. In other words, differences between a few pairs of treatments may
exist, but equality of the remaining treatments may cause the F-test to be nonsignificant,
and this procedure does not allow the experimenter to make individual comparisons
without first obtaining a significant F-statistic. The other problem with this procedure
is that many experiments contain treatments where it is known there are unequal means
among some subsets of the treatments. In this case, one expects to reject the equal
means hypothesis and the LSD would be used to make all pairwise comparisons. If a
subset of the treatments has equal means, then more of the pairwise comparisons will
detected as being significantly different than expected. Thus the FWER is not main-
tained. Fisher’s LSD can be recommended only when the complete null hypothesis is
expected to be true.

These two LSD procedures are not recommended for constructing simultaneous confi-
dence intervals on specified contrasts of the ; because the resulting confidence intervals
obtained will generally be too narrow.
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Each of the above LSD procedures can be generalized to include several contrasts of the
treatment means. The generalization is: conclude that ¥ ¢, # 0 if

t
> ta/z,vo,\-q ZCiZ/ni (34)
i=1

Examples are given in Sections 3.10, 3.12, 3.14, and 3.16.

t
Z CH;
i1

3.5 Bonferroni’s Method

Although this procedure may be the least used, it is often the best. It is particularly good
when the experimenter wants to make a small number of comparisons. This procedure is
recommended for planned comparisons whenever it is necessary to control the FWER.
Suppose the experimenter wants to make p such comparisons. She would conclude that
the gth comparison ¥, c,.t; #0,4=1,2,...,p, if

t C2
> ta/Zp,vG niq (35)
i=1 "%

These p-tests will give a FWER less than or equal to a and a comparisonwise error rate
equal to a/p. Usually the FWER is much less than ¢. Unfortunately, it is not possible to
determine how much less. Values of t,,,,, for selected values of ¢, p, and v are given in the
Appendix in Table A.2. For example, if a=0.05, p =5, and v =24, then from Table A.2 one
gets t,5,,=2.80. The examples in Sections 3.10, 3.12, 3.14, and 3.16 demonstrate the use of
the Bonferroni method. The tables m is equivalent to our p.

Simultaneous confidence intervals obtained from the Bonferroni method, which can be
recommended, have the form:

t
2 Ciquai
i=1

roA2

t R R Ci
Yol £t,,, 6 Zn—q , q=12,..,p (3.6)
i-1

i=1 "4

The Bonferroni method can be applied to any set of functions of the parameters of a
model, including variances as well as means.

3.6 Scheffé’s Procedure

This procedure is recommended whenever the experimenter wants to make a large
number of “unplanned” comparisons. Unplanned comparisons are comparisons that the
experimenter had not thought of making when planning the experiment. These arise
frequently, since the results of an experiment frequently suggest certain comparisons to
the experimenter. This procedure can also be used when there are a large number of
planned comparisons, but the widths of the confidence intervals are generally wider than
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for other procedures, although not always. Consider testing Hy: X, c; = 0 for a given
contrast vector c. It is true that

t t 2
(z Cilai _z Ciluz)
i=1 i=1
zt: c/n,
i=1

Pr

< (t-1)F,,,,6° forall contrast vectorscp=1- ¢

Thus a procedure with an FWER equal to o for comparing all possible contrasts of the y; to
zero is as follows: Reject Hy: X, cit; = 0 if

cfi| >t -1)F, 6 /ZCZ/TI (3.7)

This procedure allows one to compare an infinite number of contrasts to zero while
maintaining an experimentwise error rate equal to o. However, most experimenters will
usually not be interested in an infinite number of comparisons; that is, only a finite number
of comparisons are of interest. Scheffé’s procedure can still be used, but in this case, the
FWER will generally be much smaller than «. Bonferroni’s method or the multivariate
t-method when appropriate will often be better (narrower confidence interval or more
powerful test) than Scheffé’s procedure for a finite number of comparisons. That is, a
smaller value of Y, ¢;J; can often enable one to declare that Y, c,t4; is significantly different
from zero using Bonferroni’s method or the multivariate t-method than can be declared
significant by Scheffé’s method. However, if one is going to “muck around” in the data to
see if anything significant turns up, then one should use Scheffé’s method, since such com-
parisons are really unplanned comparisons rather than planned comparisons. It should be
noted that Scheffé’s method will not reveal any contrasts significantly different from zero
unless the F-test discussed in Chapter 1 rejects H: i, = i, = - -+ = l,. Scheffé’s procedure can
also be used to obtain simultaneous confidence intervals for contrasts of the y;. The result
required is that, for any set of contrasts c;,¢,,..., one can be at least (1 — &)100% confident
that Y, ¢;it; will be contained within the interval given by

Zczq#z JE-DE, ., 6 Zc,q/n forall g=1,2,... (3.8)

If one wants to consider all linear combinations of the y; rather than just all contrasts,
then V[(t — 1)F, ,; ,] must be replaced by +[tF,, ] in Equations 3.7 and 3.8.
Examples can be found in Sections 3.10, 3.12, and 3.14.

3.7 Tukey-Kramer Method

The preceding procedures can be used regardless of the values of the n;. Tukey’s (Tukey,
1952, 1953; Kramer, 1956) honest significant difference (HSD) procedure was designed to
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make all pairwise comparisons among a set of means. The procedure, however, requires
equal n;. Tukey (1953) and Kramer (1956) provided a modification for the case where one
has unequal sample sizes. Hayter (1984) provided proof that the Tukey—Kramer method
provides FWER protection, although an approximate procedure can be used if the n; are
not too unequal. The Tukey-Kramer method is to reject Hy: p; = u; for i =i if

39)

:ui_»ui' > qa,t,v

where q,,, is the upper percentile of the distribution of the Studentized range statistic.
Values of q,,, , for selected values of ¢, t, and v are given in Appendix Table A 4.
If the sample sizes are all equal to 7, then the decision is to reject H: u; = u;, for i # i’ if

62

‘lai_/:li" > qa,t,v 7

Tukey’s general procedure for equal sample sizes is to reject Hy: X c;u; = 0 for a con-
trast if

3.8 Simulation Methods

For unequal sample size problems, for problems where the comparisons are other than
pairwise comparisons, and for problems where the comparisons are not linearly indepen-
dent, the above methods provide FWER significance levels that are less than desired. In
this case, the percentage points for the appropriate set of comparisons can be simulated.

Suppose you are interested in p linear combinations of the y; such as ¥, Ciglliy =
1,2,...,p and it is desired to provide a procedure that controls the FWER for either the set
of hypotheses Hy: ¥, colti =0,9=1,2,...,p or a set of simultaneous confidence intervals
for X, c;,it;. The process is:

1) Generate a sample of data in the same structure of the data set at hand. If there are
five treatments with sample sizes, 5, 9, 3, 6, and 7, generate data with those sample
sizes.

2) Carry out the analysis of the generated data set as is to be done with the actual
data set and compute the p t-statistics:

t
zciqlai
t — i=1

= g=1,2..p
~2 2
|6 ;ciq/ni
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3) Compute the maximum of the absolute values of the f,, T,= max(|t,|, |t,],..., |,]).

4) Repeat steps 1, 2 and 3 a very large number of times, keeping track of the com-
puted values of T,. Determine the upper 100 percentile of the distribution of the
T,, and denote this percentile by T,.

5) For the actual data set, compute ¢, 4=1,2,...,p and reject the gth hypothesis if
| t, | >T,9=1,2,..., p or construct simultaneous confidence intervals as

t t
N £T,, 67 c/n, q=1,2,...p
i=1 i=1

The accuracy of the simulation can be specified by using the method of Edwards and Berry
(1987). SAS-MULTTEST can be used to obtain simultaneous inferences using the bootstrap
method (Westfall et al., 1999). Bootstrap methodology is beyond the scope of this book.

3.9 Siddk Procedure

Sidak (1967) provided a modification of the Bonferroni method by using a different per-
centage point for each of the comparisons. The process is to compute a t-statistic for each
of the comparisons:

t
z Ciquai
t = i=1

= g=12,..p
162y ci/n,
i=1

Compute the significance level for each comparison and order the significance levels
from smallest to largest as p;, p,, ..., p,- For a FWER of ¢, reject the individual comparison
if p, <1 - (1 - @)'¥ or equivalently if > 1~ (1 —p,).

3.10 Example—Pairwise Comparisons

The task data in Section 1.6 is used to demonstrate the results of the above multiple com-
parisons procedures. Table 3.2 contains the SAS-Mixed code to fit the one-way means
model and the LSMeans statements are used to extract several of the multiple comparison
procedures. Table 3.3 contains the percentage points used to provide confidence differ-
ences or significant differences for the simulate, Tukey—Kramer, Bonferroni, Sidak, Scheffé,
and ¢ (unadjusted) methods. Excluding the unadjusted t, the other methods provide 0.05
type I FWER for all pairwise comparisons. The simulate and Tukey—Kramer methods use
the smallest quantiles with the Siddk and Bonferroni methods in the middle, while the
Scheffé method is largest. Table 3.4 contains the critical significant differences for each of
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TABLE 3.2

SAS System Code Using Proc Mixed to Request the Computation of
Several Multiple Comparisons Procedures for All Pairwise Comparisons

PROC mixed DATA=EX1l; CLASS TASK;

MODEL PULSE20=TASK/NOINT SOLUTION;

LSMEANS TASK/ DIFF CL;

LSMEANS TASK/ DIFF ADJUST=TUKEY CL;

LSMEANS TASK/ DIFF ADJUST=BON CL;

LSMEANS TASK/ DIFF ADJUST=SCHEFFE CL;

LSMEANS TASK/ DIFF ADJUST=SIDAK CL;

LSMEANS TASK/ DIFF ADJUST=SIMULATE (REPORT SEED=4938371) CL;

TABLE 3.3

Percentage Points Used for All Pairwise Comparisons of the Six
Task Means

Simulation Results

Method 95% Quantile  Estimated ¢  99% Confidence Limits
Simulate 2.932480 0.0500 0.0450 0.0550
Tukey-Kramer 2.940710 0.0486 0.0436 0.0535
Bonferroni 3.053188 0.0359 0.0316 0.0401
Sidak 3.044940 0.0370 0.0326 0.0413
Scheffé 3.437389 0.0131 0.0105 0.0157
t 1.998972 0.3556 0.3446 0.3666

TABLE 3.4

Critical Differences Used to Compare the Differences between Pairs of Means for the Unadjusted
t and Several Multiple Comparison Procedures

Standard Tukey— )
TASK _TASK Estimate Error t Bonferroni Kramer Scheffé Siddk Simulate
1 2 0.840 2.225 4.449 6.795 6.544 7.650 6.776 6.526
1 3 -3.877 2.338 4.674 7.139 6.876 8.038 7.120 6.857
1 4 -6.077 2.338 4.674 7.139 6.876 8.038 7.120 6.857
1 5 2423 2.225 4.449 6.795 6.544 7.650 6.776 6.526
1 6 3.105 2277 4.553 6.953 6.697 7.828 6.935 6.679
2 3 -4.717 2.380 4.758 7.267 7.000 8.182 7.248 6.980
2 4 -6.917 2.380 4.758 7.267 7.000 8.182 7.248 6.980
2 5 1.583 2.270 4.537 6.929 6.674 7.801 6.911 6.655
2 6 2.265 2.321 4.639 7.085 6.824 7.977 7.066 6.805
3 4 -2.200 2.486 4970 7.591 7.311 8.546 7.570 7.291
3 5 6.300 2.380 4758 7.267 7.000 8.182 7.248 6.980
3 6 6.982 2.429 4.855 7.416 7.143 8.349 7.396 7.123
4 5 8.500 2.380 4.758 7.267 7.000 8.182 7.248 6.980
4 6 9.182 2.429 4.855 7.416 7.143 8.349 7.396 7.123
5 6 0.682 2.321 4.639 7.085 6.824 7.977 7.066 6.805
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TABLE 3.5

Adjusted Significance Levels to Test the Equality of All Pairwise Comparisons of TASK Minus
_TASK Obtained from Six Procedures Where t Corresponds to the Unadjusted ¢

TASK _TASK t Bonferroni = Tukey-Kramer Scheffé Sidak Simulate
1 2 0.7072 1.0000 0.9990 0.9996 1.0000 0.9990
1 3 0.1024 1.0000 0.5642 0.7378 0.8021 0.5646
1 4 0.0117 0.1751 0.1129 0.2552 0.1615 0.1111
1 5 0.2805 1.0000 0.8840 0.9446 0.9928 0.8804
1 6 0.1777 1.0000 0.7484 0.8661 0.9469 0.7501
2 3 0.0520 0.7795 0.3645 0.5642 0.5509 0.3657
2 4 0.0051 0.0761 0.0546 0.1506 0.0735 0.0545
2 5 0.4880 1.0000 0.9815 0.9923 1.0000 0.9813
2 6 0.3328 1.0000 0.9238 0.9651 0.9977 0.9234
3 4 0.3796 1.0000 0.9488 0.9772 0.9992 0.9474
3 5 0.0103 0.1543 0.1014 0.2364 0.1437 0.0985
3 6 0.0055 0.0831 0.0590 0.1596 0.0799 0.0584
4 5 0.0007 0.0104 0.0087 0.0366 0.0104 0.0090
4 6 0.0004 0.0053 0.0046 0.0219 0.0053 0.0052
5 6 0.7699 1.0000 0.9997 0.9999 1.0000 0.9998

the pairwise comparisons. The observed differences for task 1 to task 4, task 2 to task 4,
task 3 to task 4, task 3 to task 5, task 3 to task 6, task 4 to task 5 and task 4 to task 6 all exceed
the critical differences for the ¢t or LSD, which controls the comparisonwise error rate, but
not the experimentwise error rate. Only the comparisons of task 4 to task 5 and task 4 to
task 6 exceed the critical differences for the other five methods, all of which provide exper-
iment wise error rate protection. The magnitudes of the critical differences are smallest for
the uncorrected t or LSD method. The simulate and Tukey—Kramer critical differences are
similar in magnitude while the simulate values are a little smaller. The Sidak and Bonferroni
differences are similar in magnitude, with the Sidék values slightly smaller. The Scheffé
critical differences are largest, as is expected since they control the FWER for an infinite
number of comparisons and only 15 pairwise comparisons are made. A set of simultane-
ous confidence intervals about all pairwise comparisons can be constructed by adding and
subtracting the critical difference from the estimated difference. For example, the simulta-
neous 95% confidence interval about p,—u, using the simulate method is 0.840 % 6.526.
Table 3.5 contains the adjusted p-values for each of the methods. The p-values provide the
same decision as the 5% critical differences in Table 3.4.

3.11 Dunnett’s Procedure

One really interesting case is that of comparing all treatments with a control. This type of
inference is important in safety studies, where it is of interest to compare different doses
of a treatment with the control or placebo. Dunnett’s test is to declare a treatment mean y;
to be significantly different from the mean of the control i if

lai_nao‘ > datv 62[1—'— 1}
v ni 7’10
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where d,, , is the upper o100 percentile of the “many-to-one t-statistic” (Miller, 1967).
Dunnett’s method controls the FWER. If the sample sizes are unequal, a simulate procedure
can take into account the sample size structure and possibly provide a shorter bound.

3.12 Example—Comparing with a Control

The task data in Section 1.6 is used to demonstrate the process of comparing each treat-
ment with a control. In this study, assume that task 2 is the control task and the other five
tasks are the experimental tasks. Table 3.6 contains the SAS-Mixed code to use the unad-
justed t, Bonferroni, Dunnett, Scheffé, Sid4k, and Simulate methods to compare all of the
other tasks with task 2. The option on the LSMean statement DIFF=CONTROL(2") requests
that task 2 be considered as the control and is compared with each of the other tasks in the
study. Table 3.7 contains the 95% quantiles for each of the methods. The Dunnett quantile
is less than the others (except for the unadjusted ) with the simulate method very close.
There are five comparisons being made, which dictates the magnitude of the Bonferroni
and Sidak quantiles. The Scheffé quantile is the same as in Table 3.4, which is useful for an
infinite number of comparisons. The only comparison where the observed difference
exceeds the critical difference is for comparing task 4 to the control or task 2. A set of
simultaneous confidence intervals about all differences between the treatment and control
means can be constructed by adding and subtracting the critical difference in Table 3.8

TABLE 3.6

SAS System Code Using Proc Mixed to Request the Computation of Several Multiple
Comparisons Procedures for Comparing Each Task to the Means of Task 2 (Control)

PROC mixed DATA=EX1l; CLASS TASK;
MODEL PULSE20=TASK/NOINT;

LSMEANS TASK/ DIFF=CONTROL
LSMEANS TASK/ DIFF=CONTROL
LSMEANS TASK/ DIFF=CONTROL
LSMEANS TASK/ DIFF=CONTROL
LSMEANS TASK/ DIFF=CONTROL
LSMEANS TASK/ DIFF=CONTROL

CL;

ADJUST=BON CL;

ADJUST=DUNNETT CL;

ADJUST=SIDAK CL;

ADJUST=SIMULATE (REPORT SEED=4938371) CL;
ADJUST=scheffe CL;

v

\

TABLE 3.7

Percentage Points Used for Comparing Each Task Mean
to the Mean of Task 2 (Control)

Simulation Results

Method 95% Quantile Exact
Simulate 2.590707 0.0494
Dunnett, two-sided 2.585505 0.0500
Bonferroni 2.657479 0.0418
Sidak 2.649790 0.0427
Scheffé 3.437389 0.0048

t 1.998972 0.1831




