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Preface

This book focuses on the methods and theory for statistical analysis of time se-

ries with mixed spectra. A time series is said to have a mixed spectrum if it com-

prises a finite number of sinusoids with different frequencies plus random noise.

The research on such time series has a long history, and it remains active to this

day, especially in the signal processing community where the interest is driven

in part by the everlasting desire for fast algorithms to reduce the computational

cost. Despite its importance, the subject often receives limited coverage in stan-

dard textbooks for understandable reasons. The objective of this book is to pro-

vide a more comprehensive and in-depth treatment of the subject. Needless to

say, it is impossible to cover every aspect of the subject, not only because of the

huge body of literature which keeps growing, but also due to the limited ability

and capacity of the author. The topics in this book are selected to reflect what

the author thinks are most interesting and relevant.

The intended audience of the book includes graduate students, researchers,

engineers, and other professionals who work in the fields of time series analysis

and signal processing. For the most part, the book only requires basic knowl-

edge of probability, statistics, and time series analysis. Some theoretical results,

especially their proofs, require more advanced knowledge of asymptotic analy-

sis. For this reason, the proofs are deferred to the last section of each chapter in

order not to interrupt the flow of intuitive interpretations which are more eas-

ily accessible to most readers. To serve the interests of a broader audience, the

book deals with both real- and complex-valued time series. Except for the treat-

ment of the proofs, the main style of the book is influenced by the highly suc-

cessful textbook of Brockwell and David (1991) entitled Time Series: Theory and

Methods. Other excellent textbooks that influenced the treatment of this book

include Spectral Analysis by Priestley (1984), Introduction to Fourier Analysis of

Time Series by Bloomfield (2000), Spectral Analysis by Stoica and Moses (1997),

and Modern Spectral Analysis by Kay (1987).

This book is not merely a survey of the existing literature — it also includes

original material which is either unavailable or cannot be easily found in the

literature. For example, many results for complex-valued time series are de-

rived in this book by extending the existing results developed in the literature for

the real case; some theoretical results, such as the asymptotic theory for closely

ix



x

spaced frequencies and the proof of the asymptotic normality of the nonlinear

least-absolute-deviations frequency estimator, are not available in the literature.

The book also contains the author’s most recent work on the quantile regression

method for spectral analysis.

The infancy of this book was a thesis proposal written in 1990 at the University

of Maryland in College Park. The idea of writing a book based on the material

came about in 1997 when I was on the faculty of the statistics department at

Texas A&M University in College Station. It became a prolonged undertaking as

priorities changed with my career moves from Texas A&M to the University of

California at Santa Barbara and then to the IBM T. J. Watson Research Center at

Yorktown Heights, New York. I am therefore very grateful to Bob Stern and his

successor David Grubbs, editors of CRC Press, for their infinite patience.

Over the years with the project, I received the unwavering support from Dr.

Benjamin Kedem and Dr. Emanuel Parzen, to whom I am deeply indebted. I am

also grateful for the help and encouragement from Dr. H. Joseph Newton, Dr.

Gerald R. North, Dr. Jerry D. Gibson, Dr. Keh-Shin Lii, Dr. David V. Hinkley, Dr.

Emmanuel Yashchin, Dr. David A. Harville, and Dr. Yasuo Amemiya. My espe-

cial thanks go to Dr. Kai-Sheng Song for his collaboration on several papers that

closed some important gaps in the literature and enriched the content of this

book. I would also like to express my gratitude to Dr. Hee-Seok Oh for many

helpful comments and suggestions on an earlier draft of the book. Last but not

least, I would like to thank Dr. Steve M. Kay for reviewing the proposal and the

first draft of the book, and an anonymous reviewer for reviewing the last draft

of the book with many thoughtful and constructive suggestions that have been

incorporated into the final product.

Ta-Hsin Li

Yorktown Heights, New York



Chapter 1

Introduction

A time series is a sequence of data points obtained over successive uniform time

intervals. The word “time” can also be interpreted loosely to mean a time-like

variable that provides the ordering and spacing for the data points. In this book,

we are mainly interested in a particular type of time series, known as time series

with mixed spectra, which can be expressed as a sum of sinusoids plus random

noise. Time series of this type are abundant in a variety of science and engi-

neering applications, including astronomy, biology, econometrics, geophysics,

meteorology, rotating machinery, radar, sonar, and telecommunications. A main

objective for spectral analysis of such time series is to detect and estimate the

hidden periodicities represented by the sinusoidal functions.

1.1 Periodicity and Sinusoidal Functions

Periodicity is one of the most important and useful natural phenomena, and

widely observable. The earth revolves periodically around its own axis and the

sun, giving us different days and seasons. The displacement of a vibrating string

or a swinging pendulum exhibits periodic patterns over time.

By definition, a periodic function repeats its values over intervals of a fixed

length called the period. Sinusoidal, or trigonometric, functions, i.e., sines and

cosines, are perfect examples of periodic functions. For any fixed constant f > 0,

the sinusoidal function sin(2π f t ), defined on the real line R := (−∞,∞), has a

period T := 1/ f , because

sin(2π f (t +T )) = sin(2π f t ) ∀ t ∈R.

The parameter f , measured in cycles per unit time, is called the frequency of the

sinusoidal function sin(2π f t ). The parameter ω := 2π f , measured in radians per

unit time, is called the angular frequency of the sinusoid.

Not only the sinusoidal functions are periodic, they can also be superimposed

to represent any periodic function. In fact, according to the theory of Fourier

1



2 Chapter 1. Introduction

series, any piecewise continuous function x(t ) with period T can be expressed

as a sum of sinusoids with frequencies fk := k/T (k = 1,2, . . . ), i.e.,

x(t ) = A0 +
∞
∑

k=1

{Ak cos(2π fk t )+Bk sin(2π fk t )}, (1.1.1)

where

A0 :=
1

T

∫T

0
x(t )d t ,

Ak :=
2

T

∫T

0
x(t )cos(2π fk t )d t ,

Bk :=
2

T

∫T

0
x(t )sin(2π fk t )d t .

The convergence of this infinite series takes place at every continuous point of

x(t ) for t ∈ R. Observe that the sinusoidal functions in (1.1.1) are orthogonal

to each other and to the constant function 1 (i.e., the cosine function with fre-

quency zero) in the sense that

∫T

0
cos(2π fk t )cos(2π fk ′ t )d t = 0 ∀k 6= k ′,

∫T

0
sin(2π fk t )sin(2π fk ′ t ) d t = 0 ∀k 6= k ′,

∫T

0
cos(2π fk t )sin(2π fk ′ t ) d t = 0 ∀k,k ′,

and
∫T

0
cos(2π fk t )d t =

∫T

0
sin(2π fk t )d t = 0 ∀k.

Therefore, the sinusoidal functions in (1.1.1), together with the constant func-

tion, form an orthogonal basis for T -periodic functions.

Although the sinusoidal representation (1.1.1) is an infinite sum in general, it

can be approximated by a finite sum when x(t ) is sufficiently smooth so that the

coefficients decay rapidly as k grows. Given such an approximation,

x̃(t ) := A0 +
K
∑

k=1

{Ak cos(2π fk t )+Bk sin(2π fk t )}, (1.1.2)

the total squared error can be expressed as

∫T

0
|x(t )− x̃(t )|2 d t =

∞
∑

k=K+1

1
2

T (A2
k +B 2

k ). (1.1.3)

An important reason why the sinusoids are the preferred basis for representing

periodic functions is that an approximation of the form (1.1.2) is time-invariant:
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for any constant τ, the function x̃(t +τ) remains a finite sum of sinusoids with

the same frequencies, and the error of x̃(t +τ) for approximating x(t +τ) is the

same as the error of x̃(t ) for approximating x(t ). In fact, it is easy to verify that

x̃(t +τ) = A0 +
K
∑

k=1

{A′
k cos(2π fk t )+B ′

k sin(2π fk t )},

where

A′
k := Ak cos(2π fkτ)+Bk sin(2π fkτ),

B ′
k := −Ak sin(2π fkτ)+Bk cos(2π fkτ).

A similar expression can be obtained for x(t +τ). Because A′2
k +B ′2

k = A2
k +B 2

k for

all k, the identity (1.1.3) remains true for the error
∫T

0 |x(t +τ)− x̃(t +τ)|2 d t .

1.2 Sampling and Aliasing

When continuous-time functions are observed only at discrete time instants,

the problem of aliasing arises. This may lead to difficulties in interpreting the

sinusoidal components of the resulting time series.

Consider the periodic function x(t ) in (1.1.1), for example. If samples are

taken with sampling interval ∆ at equally spaced time instants ∆t for t ∈ Z :=
{0,±1,±2, . . . }, where fs := 1/∆ is known as the sampling rate (measured in sam-

ples per unit time), then the resulting time series can be expressed as

xt := x(∆t ) = A0 +
∞
∑

k=1

{Ak cos(2π fk∆t )+Bk sin(2π fk∆t )} (t ∈Z). (1.2.1)

For any fk ∈ ( fs /2, fs ], define f ′
k := fs − fk ∈ [0, fs /2). The 2π-periodicity of the

sinusoidal functions implies that for all t ∈Z,

cos(2π f ′
k∆t ) = cos(2π fk∆t ), sin(2π f ′

k∆t ) =−sin(2π fk∆t ). (1.2.2)

Therefore, the frequency fk becomes indistinguishable from the frequency f ′
k

in the discrete-time representation (1.2.1). For this reason, the frequency f ′
k is

called an alias of fk . Similarly, for any fk > fs , there exists an integer u such that

f̃k := fk −u fs ∈ [0, fs ). Let f ′
k := fs − f̃k if f̃k ∈ ( fs /2, fs ), and let f ′

k := f̃k otherwise.

In the first case, (1.2.2) is true for all t ∈Z. In the second case, we have

cos(2π f ′
k∆t ) = cos(2π fk∆t ), sin(2π f ′

k∆t ) = sin(2π fk∆t ).
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In both cases, the frequency f ′
k is an alias of fk . As we can see, the aliasing effect

in the time series makes it impossible to correctly identify the original frequen-

cies which are greater than fs /2.

If the function x(t ) does not contain sinusoidal components whose frequen-

cies are greater than a known constant fc > 0, then an alias-free time series can

be obtained by setting the sampling rate fs higher than 2 fc so that fc < fs /2. The

lower bound 2 fc is known as the Nyquist rate for alias-free sampling, named af-

ter the American physicist and electrical engineer Harry Nyquist (1889–1976).

In many applications, the periodic functions of interest are smooth enough to

be well approximated by a finite sum of the form (1.1.2) with sufficiently large

K such that the approximation error is comparable to the noise in the mea-

surements. In this case, the aliasing problem can be ignored in the time se-

ries obtained with a sampling rate higher than the effective Nyquist rate 2 fK =
2K /T . In other applications, such as radar and telecommunications, where the

continuous-time signals are available, the aliasing problem can be mitigated by

filtering the continuous-time signals, before sampling at rate fs , with an analog

device to remove the frequency content higher than fc := fs /2, which is known

as the Nyquist frequency. Of course, the sampling rate fs needs to be sufficiently

high in order to minimize the distortion introduced by anti-alias filtering.

Instead of taking the instantaneous values, which leads to (1.2.1), one can also

take the average values of a continuous-time function over regular intervals of

length ∆. For the periodic function x(t ) in (1.1.1), this sampling technique leads

to a time series that can be expressed as

xt :=
1

∆

∫

∆(t+1/2)

∆(t−1/2)
x(s)d s = A0 +

∞
∑

k=1

{Ãk cos(2π fk∆t )+ B̃k sin(2π fk∆t )},

where Ãk := sinc(2π fk∆/2)Ak , B̃k := sinc(2π fk∆/2)Bk , and sinc(t ) := sin(t )/t . As

we can see, the time series retains the original form of x(t ) in (1.1.1) as a sum of

sinusoids. This is another advantage of the sinusoidal representation of periodic

functions. Because the time series takes the same form as that in (1.2.1), the

aliasing problem and the alias-free sampling condition remain the same.

1.3 Time Series with Mixed Spectra

The sinusoidal representation (1.1.1) can be generalized to include functions

that can be expressed as a sum of periodic functions with different periods. If

each periodic component is a finite sum of sinusoids, then, with a sufficiently
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high sampling rate, the resulting time series can be expressed as

yt = A0 +
q
∑

k=1

{Ak cos(2π fk t )+Bk sin(2π fk t )}+ǫt (t ∈Z),

where {ǫt } is a random process representing the noise in the observations and

{ fk } is a set of normalized frequencies in (0,1/2) which may not be harmonically

related as they are in (1.2.1). A time series of this form has a mixed-type spec-

trum, because the frequency content of the sinusoids concentrates on discrete

values in the interval (0,1/2) with infinite density, whereas the frequency con-

tent of the noise spreads over the interval with finite density.

Figure 1.1 shows an example of the sinusoid-plus-noise model for a real-world

time series. The time series, shown in the top panel, is known as the light curve.

It comprises 1,639 brightness measurements of a variable star over a period of

about 34 days. It is part of a large data set produced by the Kepler Mission∗ of the

National Aeronautics and Space Administration (NASA). In the Kepler Mission, a

spacecraft carrying a simple aperture photometer (SAP) was launched in March

2009 to monitor the brightness of stars in the Milky Way galaxy. The photometer

comprises an array of charge-coupled devices (CCDs), which convert light into

electrical signals, and measures the average flux of electrons per second over 30-

minute intervals (known as long cadence). The raw flux data are corrected for

systematic and other errors by a procedure called presearch data conditioning

(PDC) [398]. The measurements shown in the top panel of Figure 1.1 are the

corrected flux for a variable star with Kepler ID 8073767 (quarter 1).†

As we can see, the time series exhibits a strong sinusoid-like periodic pattern

which repeats approximately 19.5 times. A rough estimate for the periodicity is

therefore 1,639/19.5 ≈ 84.1 samples, or 84.1/2 = 42.05 hours. However, a single

sinusoid would not be able to capture the large variations of the peak values. The

middle panel of Figure 1.1 depicts a model which employs eight sinusoids plus

a constant. The frequencies in this model are estimated by a periodogram max-

imization technique to be discussed later in the book (Chapter 6). The revised

estimate for the dominating periodicity is 84.7 samples or 84.7/2 = 42.35 hours.

The coefficients of the resulting sinusoids are estimated by least-squares regres-

sion together with the constant term (Chapter 5). As we can see, the model is

able to capture the main oscillatory patterns of the time series, leaving just small

random-looking variation in the residuals (bottom panel). A further analysis of

the residual time series will be given in Chapter 7.

∗http://kepler.nasa.gov/.
†Available at http://archive.stsci.edu/kepler/ and http://exoplanetarchive.ipac.caltech.edu/.
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Figure 1.1. Brightness variation of a variable star obtained from NASA’s Kepler Mission.

Top to bottom: light curve of the variable star observed over 30-minute intervals, an eight-

sinusoid model for the time series, and the residuals.
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1.4 Complex Time Series with Mixed Spectra

A fundamental and useful property of sinusoidal functions is their invariance

to linear time-invariant (LTI) systems. An LTI system is a convolution operator

which transforms the input signal x(t ) into y(t ) given by

y(t ) :=
∫∞

−∞
h(τ)x(t −τ)dτ,

where h(t ) is called the impulse response of the system. If x(t ) is a sinusoidal

function of the form x(t ) = A sin(2π f t )+B cos(2π f t ), then

y(t ) =
∫∞

−∞
h(τ){A cos(2π f (t −τ))+B sin(2π f (t −τ))}dτ

= A′( f )cos(2π f t )+B ′( f )sin(2π f t ),

where

A′( f ) :=
∫∞

−∞
h(τ){A cos(2π f τ)−B sin(2π f τ)}dτ,

B ′( f ) :=
∫∞

−∞
h(τ){A sin(2π f τ)+B cos(2π f τ)}dτ.

In other words, the output y(t ) remains to be a sinusoidal function with the same

frequency f and the LTI system only changes the coefficients of the sinusoid

from A and B to A′( f ) and B ′( f ). Note that the linearity of an LTI system also

implies that if the input x(t ) is a sum of sinusoids, the output y(t ) remains to be

a sum of sinusoids with unaltered frequencies.

By taking advantage of the invariance to LTI systems, sinusoidal waves, in elec-

trical or acoustical forms, are widely used for transmission of signals in applica-

tions such as radar, sonar, biomedical imaging, and telecommunications. Com-

plex sinusoidal functions, which, by Euler’s formula, take the form

exp(iωt ) = cos(ωt )+ i sin(ωt )

with i :=
p
−1, appear naturally in these applications. Complex sinusoidal func-

tions are also known as complex exponentials.

In radar [416], for example, sinusoidal signals of the form

A cos(2π f0t )+B sin(2π f0t )

are transmitted as electromagnetic waves which propagate at the speed of light

c. When hitting a target, the wave is reflected with the Doppler effect that shifts

its frequency. The echo, or return, received by the radar takes the form

r (t ) := A′ cos(2π( f0 − f )t )+B ′ sin(2π( f0 − f )t ), (1.4.1)
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where f := 2v f0/c is the Doppler shift caused by the motion of the target. The

parameter v denotes the radial velocity of the target relative to the radar, which

is positive when the target moves toward the radar and negative when it moves

away from the radar. Although the Doppler shift is unknown, an upper bound,

denoted by b > 0, can be determined a priori for its absolute value. The carrier

frequency f0 is much greater than b, so the frequency in r (t ) resides in a narrow

band between f0 −b and f0 +b. If r (t ) were sampled at its Nyquist rate 2( f0 +b),

which is very large, it would produce an enormous amount of unnecessary data.

A more efficient way is to bring the frequency in r (t ) down to the neighborhood

of zero and sample the resulting baseband function at a much lower rate. This

process is known as frequency demodulation.

More precisely, consider the function

rI (t ) := cos(2π f0t )r (t ).

It follows from (1.4.1) that

rI (t ) = 1
2

{A′ cos(2π f t )−B ′ sin(2π f t )}

+ 1
2

{A′ cos(2π(2 f0 − f )t )+B ′ sin(2π(2 f0 − f )t )}.

Observe that the frequency of the second term in r I (t ), which equals 2 f0− f , is far

above the frequency of the first term, which equals f (assume f > 0 for simplicity

of discussion). Therefore, the second term can be removed by an analog lowpass

filter with impulse response h(t ) and cutoff frequency

fc ∈ (b,2 f0 −b).

This produces the so-called in-phase signal

xI (t ) := 1
2

{A′
I cos(2π f t )+B ′

I sin(2π f t )},

where

A′
I :=

∫∞

−∞
h(τ){A′ cos(2π f τ)+B ′ sin(2π f τ)}dτ,

B ′
I :=

∫∞

−∞
h(τ){A′ sin(2π f τ)−B ′ cos(2π f τ)}dτ.

Because xI (t ) does not have frequency content higher than fc , an alias-free time

series can be obtained by sampling xI (t ) at a rate fs ≥ 2 fc . With instantaneous

sampling, the time series takes the form

xI (∆t ) = 1
2

{A′
I cos(2π f ∆t )+B ′

I sin(2π f ∆t )} (t ∈Z),

where ∆ := 1/ fs . Similarly, applying the lowpass filter to the function

rQ (t ) := sin(2π f0t )r (t )
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followed by instantaneous sampling yields the so-called quadrature signal

xQ (∆t ) := 1
2

{A′
Q cos(2π f ∆t )+B ′

Q sin(2π f ∆t )} (t ∈Z),

where

A′
Q :=

∫∞

−∞
h(τ){B ′ cos(2π f τ)− A′ sin(2π f τ)}dτ,

B ′
Q :=

∫∞

−∞
h(τ){B ′ sin(2π f τ)+ A′ cos(2π f τ)}dτ.

Combining the in-phase and quadrature signals as the real and imaginary parts

of a complex-valued signal leads to the complex sinusoid

xt := xI (∆t )+ i xQ (∆t ) =βexp(iωt ) (t ∈Z), (1.4.2)

where ω := 2π f ∆ ∈ (0,π) and β := 1
2

(A′+ i B ′)
∫

h(τ)exp(−iωτ)dτ.

The same argument can be used to show that (1.4.2) remains valid when f

is negative because cos(2π f t ) = cos(2π| f |) and sin(2π f t ) = −sin(2π| f |). There-

fore, for complex sinusoids, the frequency can be negative. However, due to the

2π-periodicity, a negative frequency ω in the interval (−π,0) is an alias of the

positive frequency ω′ := 2π−ω in the interval (π,2π). Therefore, the frequencies

of complex sinusoids can also be restricted to the interval (0,2π).

The model (1.4.2) can be extended to include multiple complex sinusoids and

the noise. The general model takes the form

yt =
p
∑

k=1

βk exp(iωk t )+ǫt (t ∈Z).

In radar applications, this model represents superimposed returns from multiple

targets (or scatterers), each moving at a different speed relative to the radar.

Let us consider an example with real-world data. Figure 1.2 shows a 100-

sample segment of a radar signal together with the complex sinusoid extracted

from it and the residuals. The radar signal is part of a large data set collected

in November 1993 by a team of researchers at McMaster University using a high

resolution radar overlooking the Atlantic Ocean from a clifftop near Dartmouth,

Nova Scotia, Canada.‡ The target is a spherical block of styrofoam, one meter in

diameter and wrapped with wire mesh. The radar signal§ represents the demod-

ulated returns in the 2,685-meter range bin, sampled at the rate fs = 1,000 Hertz

(hence ∆ := 1/ fs = 1 millisecond).

‡http://soma.ece.mcmaster.ca/ipix.
§Available at http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html as Clutter + Target Data

File #283 (range bin 10, vertical polarization).
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Figure 1.2. Radar returns from a target. Top to bottom: real (solid line) and imaginary

(dashed line) parts of the radar data, the extracted complex sinusoid, and the residuals.

Time is in milliseconds.
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Processing the entire signal requires more sophisticated techniques due to its

time-varying nature (see Chapter 6 for details). Figure 1.2 simply shows that for

a sufficiently short segment (100 milliseconds in this case) the signal can be well

represented by a single complex sinusoid plus random noise.

The frequency of the complex sinusoid is estimated by the periodogram max-

imization technique to be discussed in Chapter 6, and the complex amplitude is

obtained by least-squares regression to be discussed in Chapter 5. The estimated

frequency is equal to 0.03912442. It is an estimate for the normalized frequency

fn := ∆ f = f / fs . To get an estimate for the velocity of the target, it suffices to

observe that f = 2v f0/c, where f0 = 9.39×109 Hertz is the carrier frequency of

the radar and c = 3×108 meters per second is the speed of light. Therefore, the

relative velocity of the target is given by v = fn × fs c/(2 f0), or approximately 0.62

meters per second toward the radar.





Chapter 2

Basic Concepts

This chapter discusses two types of parameterization for real and complex sinu-

soids together with some basic assumptions. It also reviews some basic concepts

of random processes, linear prediction theory, and asymptotic statistical theory.

Most of these results can be found easily in the literature. Therefore, they are

stated without proof but with reference to standard textbooks.

2.1 Parameterization of Sinusoids

As shown in Chapter 1, there are two types of models for sinusoidal func-

tions in practice: the real sinusoid model (RSM) and the complex sinusoid model

(CSM). Both models can be further parameterized in two different forms: the

Cartesian (or rectangular) form and the polar form.

Consider the real case first. The Cartesian RSM can be expressed as

xt =
q
∑

k=1

{Ak cos(ωk t )+Bk sin(ωk t )} (t ∈Z), (2.1.1)

where the ωk ∈ (0,π) are the frequency parameters, the Ak ∈R and Bk ∈R are the

amplitude parameters (or coefficients) satisfying A2
k +B 2

k > 0 (k = 1, . . . , q). The

polar RSM takes the form

xt =
q
∑

k=1

Ck cos(ωk t +φk ) (t ∈Z), (2.1.2)

where the Ck > 0 are the amplitude parameters and the φk ∈ (−π,π] are the phase

parameters. Note that in both (2.1.1) and (2.1.2) we exclude a possible constant

term A0 for convenience as it can be easily estimated and removed in practice.

While the Ck in (2.1.2) can be easily interpreted as representing the strength

of the sinusoids, the phase parameters φk represent the advance (if positive) or

delay (if negative) of the sinusoidal waves relative to their zero-phase counter-

parts. This is illustrated in Figure 2.1. In this example, the sinusoidal functions

13



14 Chapter 2. Basic Concepts

0 2 4 6 8 10 12 14 16 18 20

−1.0

−0.5

0.0

0.5

1.0

TIME

Figure 2.1. Two sinusoids with common frequency ω0 = 2π× 0.1 and different phases.

Solid line, φ1 = 0; dashed line, φ2 = 2π×0.2. The second sinusoid leads the first sinusoid

by (φ2 −φ1)/ω0 = 2 samples.

are x1(t ) := cos(ω0t +φ1) and x2(t ) := cos(ω0t +φ2), where ω0 = 2π×0.1, φ1 = 0,

and φ2 = 2π×0.2. As we can see, the first sinusoid (solid line) is just a shifted copy

of the second sinusoid (dashed line). At t = 0, the first sinusoid takes the value

cos(φ1) = 1. The second sinusoid takes the same value at t = (φ1 −φ2)/ω0 = −2.

Hence the second sinusoid leads the first sinusoid by 2 time units.

It is straightforward to verify that the Cartesian and polar forms of the RSM are

equivalent under the following parameter transformation:

{

Ak =Ck cos(φk ), Bk =−Ck sin(φk ),

Ck =
√

A2
k +B 2

k , φk = arctan(−Bk , Ak ),
(2.1.3)

where

arctan(B , A) :=















































arctan(B/A) if A > 0,

arctan(B/A)+π if A < 0,B ≥ 0,

arctan(B/A)−π if A < 0,B < 0,

π/2 if A = 0,B > 0,

−π/2 if A = 0,B < 0,

0 if A = B = 0.

This relationship is illustrated in Figure 2.2(a). The equivalence explains why a

linear combination of cos(ωt ) and sin(ωt ) is considered as a single real sinusoid

with frequency ω rather than two sinusoids. For this reason, we say that ωk , Ak ,

and Bk in (2.1.1) are the parameters of the kth sinusoid.

Without loss of generality, we always assume that the frequencies ωk are ar-

ranged in an ascending order such that

0 <ω1 < ·· · <ωq <π.
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Figure 2.2. Illustration of Cartesian and polar parameters for real and complex sinusoids.

(a) Real case. (b) Complex case.

We also exclude the possibility for the frequency parameter to take value zero

because it leads to a constant term which is typically removed (by subtracting

the sample mean) prior to spectral analysis. Moreover, instead of the angular

frequencies ωk (measured in radians per unit time), it is often more meaningful

to consider the normalized frequencies

fk :=ωk /(2π), (2.1.4)

which are measured in cycles per unit time. For example, if the time t is mea-

sured in seconds, then the normalized frequency fk is measured in cycles per

second, or Hertz; if t is in years, then fk is in cycles per year. So physical in-

terpretation becomes easier using the normalized frequencies. The angular fre-

quencies are more convenient for mathematical manipulation.

In the complex case, the Cartesian CSM takes the form

xt =
p
∑

k=1

βk exp(iωk t ) (t ∈Z), (2.1.5)

where ωk ∈ (−π,π] \ {0} is the frequency of the kth sinusoid and βk ∈ C is its

complex amplitude. Let βk be further parameterized by real-valued parameters

Ak ∈R and Bk ∈R such that

{

βk := Ak − i Bk ,

Ak :=ℜ(βk ), Bk :=−ℑ(βk ).
(2.1.6)

Then, the polar CSM can be expressed as

xt =
p
∑

k=1

Ck exp{i (ωk t +φk )} (t ∈Z). (2.1.7)

where Ck > 0 and φk ∈ (−π,π] are related to Ak and Bk through the transfor-

mation (2.1.3). Note that Bk is defined as −ℑ(βk ) rather than ℑ(βk ) in order for
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the transformation (2.1.3) to be valid for both RSM and CSM. Figure 2.2(b) illus-

trates this relationship for the CSM. The polar parameters Ck and φk can also be

expressed in terms of the complex amplitude βk such that

Ck = |βk |, φk =∠βk .

Without loss of generality, the frequencies ωk are assumed to satisfy

−π<ω1 < ·· · <ωp <π.

The frequencies can also be redefined by the aliasing transformation

ωk 7→
{

ωk +2π if ωk < 0,

ωk otherwise,

so that they take values in the interval (0,2π). In this case, it will be assumed that

0 <ω1 < ·· · <ωp < 2π.

As with the RSM, it is often more meaningful to consider the normalized frequen-

cies fk defined by (2.1.4) instead of the angular frequencies ωk = 2π fk .

A real sinusoid can be expressed as the sum of two conjugate complex sinu-

soids. Indeed, for any ω ∈ (0,π), C > 0, and φ ∈ (−π,π], let

β := 1
2

C exp(iφ).

Then,

C cos(ωt +φ) = βexp(iωt )+β∗ exp(−iωt )

= βexp(iωt )+β∗ exp(i (2π−ω)t ).

For this reason, the RSM can be written in the form of (2.1.5) with p := 2q and

{

ωp−k+1 :=−ωk or 2π−ωk

βp−k+1 :=β∗
k := 1

2
Ck exp(−iφk )

(k = 1, . . . , q), (2.1.8)

where Ck and φk are given by (2.1.2). The RSM can also be written in the form of

(2.1.7) with p := 2q and















ωp−k+1 :=−ωk or 2π−ωk

φp−k+1 :=−φk =−arctan(−Bk , Ak )

Cp−k+1 :=Ck := 1
2

√

A2
k +B 2

k

(k = 1, . . . , q), (2.1.9)

where Ak and Bk are given by (2.1.1). With this transformation, results derived

for the CSM can be translated into the corresponding results for the RSM.
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It is worth pointing out that in the RSM (2.1.1)–(2.1.2) the power of the kth

sinusoid is equal to 1
2

C 2
k asymptotically for large sample sizes, because

lim
n→∞

n−1
n
∑

t=1

|Ck cos(ωk t +φk )|2 = 1
2

C 2
k = 1

2
(A2

k +B 2
k ).

In the CSM (2.1.5)–(2.1.7), the power of the kth sinusoid is equal to C 2
k exactly for

all sample sizes, because

n−1
n
∑

t=1

|Ck exp{i (ωk t +φk )}|2 =C 2
k = |βk |2 = A2

k +B 2
k .

This distinction should be kept in mind when comparing the results derived for

the RSM with those derived for the CSM in later chapters.

While both RSM and CSM are discussed in this book, not all methods and anal-

yses are presented for both models. A primary reason is that the original sources

in the literature focus on different models. In many cases, one can infer the re-

sults for one model from the results for the other. In some cases, however, the

inference is not straightforward or even not valid (for example, there is no RSM

counterpart for the CSM with p = 1).

Frequency separation is an important concept in dealing with sinusoids. If two

frequencies are not sufficiently separated, the corresponding sinusoids cannot

be easily distinguished from each other based on a finite data record. In the

complex case, the separation of frequencies can be measured by

∆ := min
k 6=k ′

{|ωk −ωk ′ |,2π−|ωk −ωk ′ |},

where the second term is necessary because of the aliasing. In the real case, the

separation of frequencies is measured by

∆ := min
k 6=k ′

{|ωk −ωk ′ |,ωk ,π−ωk },

where the last two terms are required to take the conjugate frequencies into ac-

count (a frequency ωk near 0 or π is also near its conjugate frequency −ωk in the

CSM representation).

Once the sample size is given, an inherent limit of frequency resolution is de-

termined. In comparison with this resolution limit, the frequencies can be de-

scribed as well separated or closely spaced. The amount of frequency separation

relative to the resolution limit, and hence the sample size, turns out to be a key

factor that determines the technique and accuracy with which the frequencies

can be estimated on the basis of a finite data record. It also contributes to the in-

creased complexity in the mathematical analysis. In asymptotic analysis, a com-

mon and useful technique is to allow the frequency separation to approach zero

at a certain rate as the sample size grows. Such frequency separation conditions
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are typically expressed in terms of a power function of n−1 and in the order of

magnitude, for example, O (n−1) or O (n−1/2), rather than the exact amount. The

separation conditions play a key role in the asymptotic analysis of the estimation

methods discussed in later chapters.

Throughout the book, we are concerned with time series of the form

yt = xt +ǫt (t = 1, . . . ,n), (2.1.10)

where the ǫt represent the random measurement errors or noise. Additional

assumptions about {ǫt } will be made for specific methods and analytical stud-

ies. The simplest assumption is that the ǫt are independent and identically dis-

tributed, or i.i.d., random variables with mean zero and variance σ2. As a con-

vention, the noise is always assumed real when referring to the RSM and complex

when referring to the CSM. Unless noted otherwise, all parameters in the RSM

and CSM are regarded as deterministic but possibly unknown constants that are

fixed in all realizations of the random process {yt }. However, in some analytical

results, the phases φk of the sinusoids are allowed to be random variables that

are independent of the noise {ǫt }. In some simulations, the frequencies {ωk } are

also generated randomly to mitigate the possible dependence of the results on

specific frequency values.

2.2 Spectral Analysis of Stationary Processes

Stationarity is an important property of random processes that makes statis-

tical analysis meaningful. Although not always true in practice, the stationarity

assumption is typically applicable to sufficiently short data records taken from

slowly-varying nonstationary processes.

Definition 2.1 (Stationary Random Processes). A zero-mean real or complex ran-

dom process {X t } is said to be (weakly or wide-sense) stationary if the covariance

function c(s, t ) := E(Xs X ∗
t ) is finite and time-invariant, i.e., c(t +u, t ) does not

depend on t . In this case, r (u) := c(t +u, t ) = E(X t+u X ∗
t ) is called the autocovari-

ance function (ACF) of {X t }.

The following proposition summarizes some useful properties of the ACF.

Proposition 2.1 (Properties of the Autocovariance Function). The ACF r (u) of a

zero-mean stationary process {X t } is nonnegative definite in the sense that

m
∑

u=1

m
∑

v=1

au a∗
v r (u − v) ≥ 0
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for any constant sequence {a1, . . . , am} ⊂C. The ACF is symmetric in the sense that

r (−u) = r∗(u) and is bounded by the variance of X t , i.e., |r (u)| ≤ r (0).

In addition to the time-domain characterization, the ACF can also be repre-

sented in the frequency domain as a linear combination of infinitely many si-

nusoids with different frequencies. The subject of spectral analysis of stationary

processes is largely built upon the following proposition.

Proposition 2.2 (Spectral Representation of the Autocovariance Function [46, pp.

117–118]). If r (u) is the ACF of a stationary process {X t }, then there exists a unique

nondecreasing right-continuous function S(ω), with S(−π) = 0, such that

r (u) = (2π)−1

∫π

−π
exp(iωu)dS(ω).

The function S(ω) is called the spectral distribution function. If r (u) is absolutely

summable, i.e.,
∑

|r (u)| < ∞, then there exists a unique uniformly continuous

nonnegative function f (ω), called the spectral density function (SDF), such that

r (u) = (2π)−1

∫π

−π
f (ω)exp(iωu)dω

and

f (ω) =
∞
∑

u=−∞
r (u)exp(−i uω),

in which case, S(ω) can be expressed as S(ω) =
∫ω
−π f (λ)dλ and therefore is differ-

entiable with Ṡ(ω) = f (ω). If r (u) is real, then f (ω) and S(ω) are symmetric in

the sense that f (−ω) = f (ω) and S(−ω) = S(π)−S(ω). Both f (ω) and S(ω) can be

extended as 2π-periodic functions in R.

Remark 2.1 The SDF defined in Proposition 2.2 has the property

(2π)−1

∫π

−π
f (ω)dω=

∫1/2

−1/2
f (2πx)d x = r (0).

Therefore, it represents the distribution of the total variance r (0) with respect

to the normalized frequency ω/(2π) (cycles per unit time). This definition is of-

ten used in engineering textbooks such as [369]. In statistical textbooks such as

[46], the SDF is often defined as f (ω) := 2π
∑∞

u=−∞ r (u)exp(−i uω). In this case,

the SDF satisfies
∫π
−π f (ω)dω = r (0), so it represents the distribution of the total

variance with respect to the angular frequency ω (radians per unit time).

Remark 2.2 The absolute summability of the ACF is a sufficient but not neces-

sary condition for the existence of the spectral density function. The spectral

distribution function is also known as the integrated spectrum [298, p. 209].
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A typical stationary process can be classified according to the type of its spec-

trum into one of the following three categories.

Definition 2.2 (Discrete, Continuous, and Mixed Spectra). A stationary process

with spectral distribution function S(ω) is said to have a discrete spectrum if

S(ω) =
∑

a2
k I (ωk ≤ ω) for some finite sequences {ωk } ⊂ (−π,π) and {ak } ⊂ R,

where I (·) is the indicator function. It is said to have a continuous spectrum

if there exists a function f (ω) ≥ 0 such that S(ω) =
∫ω
−π f (λ)dλ. It is said to have a

mixed spectrum if S(ω) = Sd (ω)+Sc (ω), where Sd (ω) is a discrete spectrum and

Sc (ω) is a continuous spectrum.

Remark 2.3 A discrete spectrum of the form S(ω) =
∑

a2
k I (ωk ≤ ω) is a non-

decreasing step function with jumps of magnitude a2
k at ω = ωk . The spectral

distribution function not having a jump at ω = 0 is the necessary and sufficient

condition for the process to be ergodic in the mean, i.e., the sample mean con-

verges in mean-square to the expected value of the process as the sample size

approaches infinity [298, p. 342].

The following proposition shows that a stationary process itself can be repre-

sented as a linear combination of infinitely many sinusoids.

Proposition 2.3 (Spectral Representation of Stationary Processes [46, p. 145]). If

{X t } is a zero-mean stationary process with spectral distribution function S(ω),

then there exists a random process {Z (ω),−π≤ω≤π}, with Z (−π) = 0, such that

X t =
∫π

−π
exp(iωt )d Z (ω) (2.2.1)

almost surely, where Z (ω) satisfies the following conditions:

(a) E {Z (ω)} = 0 for ω ∈ [−π,π],

(b) E {|Z (ω)|2} <∞ for ω ∈ [−π,π],

(c) E {|Z (ω)−Z (λ)|2} = (2π)−1{S(ω)−S(λ)} for −π≤ω<λ≤π,

(d) E {(Z (ω)−Z (λ)) (Z (ω′)−Z (λ′))∗} = 0 for −π≤λ≤ω<λ′ ≤ω′ ≤π.

A process satisfying (a), (b), and (d) is called an orthogonal-increment process.

The representation (2.2.1) is unique in the sense that if it also holds with another

orthogonal-increment process Z ′(ω), then P {Z (ω) = Z ′(ω)} = 1 for all ω.

According to Proposition 2.3, if {X t } is a zero-mean stationary process of dis-

crete spectrum with spectral distribution function

S(ω) = 2π
p
∑

k=1

C 2
k I (ωk ≤ω), (2.2.2)

then it can be expressed in the form of (2.1.5) with βk := Z (ωk )− Z (ω−
k ), where

Z (ω−
k ) stands for the limit of Z (ω) (in mean-square) as ω approaches ωk from
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the left. Because Z (ω) satisfies (a), (c), and (d) in Proposition 2.3, we have

E(βk ) = 0, E(βkβ
∗
k ′ ) =C 2

kδk−k ′ , (2.2.3)

where {δu} (u ∈ Z) is the Kronecker delta sequence, named after the German

mathematician Leopold Kronecker (1823–1891), such that δ0 = 1 and δu = 0 for

all u 6= 0. Therefore, a zero-mean stationary process of discrete spectrum is noth-

ing but a sum of complex sinusoids of the form (2.1.5) with uncorrelated zero-

mean random coefficients βk . Using the notation of Dirac delta δ(ω), named

after the British physicist Paul Dirac (1902–1984), the SDF that corresponds to

S(ω) in (2.2.2) can be formally expressed as

f (ω) = 2π
p
∑

k=1

C 2
kδ(ω−ωk ), (2.2.4)

which is an impulsive function consisting of discrete impulses located at the ωk .

An SDF of this form is also known as a line spectrum [369]. By Proposition 2.2,

the corresponding ACF can be expressed as

r (u) =
p
∑

k=1

C 2
k exp(iωk u), (2.2.5)

which is a weighted sum of complex sinusoids with frequencies ωk .

On the other hand, if {X t } takes the form (2.1.5) with βk = Ck exp(iφk ) and

ωk ∈ (−π,π), and if the φk are i.i.d. random variables with uniform distribution

in (−π,π] and the Ck are real constants, then the condition (2.2.3) is satisfied. In

this case, {X t } can be expressed as (2.2.1) with

Z (ω) :=
p
∑

k=1

βk I (ωk ≤ω),

which implies that {X t } is a zero-mean stationary process of discrete spectrum

whose spectral distribution and density functions and whose ACF are given by

(2.2.2), (2.2.4), and (2.2.5), respectively.

More generally, consider the random process {yt } which is given by (2.1.10)

with {xt } taking the form (2.1.5). If the φk are i.i.d. random variables with uni-

form distribution in (−π,π] and the noise {ǫt } is a zero-mean stationary process

of continuous spectrum with spectral distribution function Sǫ(ω) and is indepen-

dent of the φk , then {yt } is a zero-mean stationary process of mixed spectrum

with spectral distribution function

Sy (ω) = Sx (ω)+Sǫ(ω),

where Sx (ω) takes the form (2.2.2). The corresponding SDF can be expressed as

fy (ω) = fx (ω)+ fǫ(ω),
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where fx (ω) takes the form (2.2.4) and fǫ(ω) := Ṡǫ(ω) is the SDF of {ǫt }.

If the φk are constants, then {yt } is no longer a stationary process in the sense

of Definition 2.1. But, we can still interpret {yt } as a stationary process of mixed

spectrum by considering the sample autocovariance function of {y1, . . . , yn} as

n →∞. As will be explained in Chapter 4, the sample ACF of {y1, . . . , yn}, defined

as r̂y (u) := n−1 ∑n−|u|
t=1 yt+|u|y

∗
t for |u| < n, converges (in a suitable sense) to a fi-

nite limit which can be expressed as the sum of the ACF given by (2.2.5) and the

ACF of {ǫt }. In other words, this limit of the sample ACF coincides with the ordi-

nary ACF in the previous case where the phases are random. Therefore, it has a

mixed spectrum of the same form as a stationary process.

In practice, the noise process {ǫt } in (2.1.10) can be assumed to have a con-

tinuous spectrum, which is in contrast to the signal {xt } in (2.1.1)–(2.1.5) that

has a discrete spectrum. This is the key feature that distinguishes the signal

from the noise. A special case is where {ǫt } can be modeled as a white noise

process, i.e., the ACF of {ǫt } takes the form rǫ(u) = σ2δu . This will be denoted

as {ǫt } ∼ WN(0,σ2). Linear processes constitute a more general model for {ǫt },

which is useful especially in asymptotic analysis.

Definition 2.3 (Linear Processes). A random process {X t } is said to be a linear

process if there exists a sequence of constants {ψj } and a white noise process

{ζt } ∼ WN(0,σ2) such that

X t =
∞
∑

j=−∞
ψj ζt−j (2.2.6)

converges in mean square. A linear process of the form (2.2.6) can be regarded

as the output of a linear time-invariant (LTI) filter with transfer function ψ(z) :=
∑

ψj z− j (z ∈ C) and input {ζt }. If z and z−1 are interpreted as the forward-shift

and backward-shift operators such that z ζt = ζt+1 and z−1ζt = ζt−1, then (2.2.6)

can also be expressed as X t =ψ(z)ζt .

Useful properties of linear processes are given in the following proposition.

Proposition 2.4 (Properties of Linear Processes [46, pp. 122, 154–155]). Let {ψj }

be a sequence of constants. If
∑

|ψj |2 <∞, then the infinite series in (2.2.6) con-

verges in mean square. If
∑

|ψj | <∞, then the infinite series in (2.2.6) converges

almost surely and the filter ψ(z) :=
∑

ψj z−j is said to be bounded-in-bounded-out

(BIBO) stable. In both cases, the SDF of {X t } takes the form

f (ω) =σ2|Ψ(ω)|2,

where Ψ(ω) :=ψ(exp(iω)) =
∑

ψj exp(−i jω), and the ACF of {X t } is given by

r (u) =σ2
∞
∑

j=−∞
ψj+u ψ∗

j .
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Moreover, if the filter ψ(z) is BIBO stable, then f (ω) is a uniformly continuous

function and {r (u)} is an absolutely summable sequence.

The following proposition shows that linear processes encompass a large class

of stationary processes with continuous spectra.

Proposition 2.5 (Wold Decomposition [46, p. 187]). Any purely nondeterministic

zero-mean stationary process {X t } can be expressed as X t =
∑∞

j=0
ψj ζt−j , where

ψ0 := 1,
∑

|ψj |2 <∞, and {ζt } ∼ WN(0,σ2) for some constant σ2 > 0. Moreover, for

any given t , the random variable ζt is a member of the closed linear space that

comprises all linear combinations of X t , X t−1, . . . and their mean-square limits.

Proposition 2.5 is part of a general theorem [46, Theorem 5.7.2, pp. 187–188]

which asserts that any stationary process can be decomposed into a purely non-

deterministic component as a linear process, and a deterministic component,

such as a sum of sinusoids with i.i.d. random amplitudes, that can be predicted

perfectly by a linear combination of its past values.

The process {ζt } in Proposition 2.5 is merely guaranteed to be white noise, i.e.,

its ACF takes the form σ2δu . In the linear process model (2.2.6), stronger assump-

tions, such as {ζt } being a sequence of i.i.d. random variables, are often needed

for some asymptotic analyses. Moreover, because Proposition 2.5 only guaran-

tees the square-summability of {ψj }, the corresponding spectrum may not be

smooth (or may not even be well-defined at some frequencies). The assump-

tion of BIBO stability ensures that the corresponding SDF is a continuous func-

tion (which should not be confused with the concept of continuous spectra).

Some analyses require the assumption of strong BIBO stability in the sense that
∑

| j |r |ψj | <∞ for some constant r > 1, in which case the SDF can be thought of

as being smoother than a continuous function. An important example of linear

processes with BIBO-stable filters is the autoregressive (AR) process that satisfies

the difference equation

X t +
m
∑

j=1

ϕj X t−j = ζt , {ζt } ∼ WN(0,σ2), (2.2.7)

where ϕ(z) := 1+
∑m

j=1
ϕj z− j has all its roots inside the unit circle of the complex

plane z ∈C. In this case, ψ(z) = 1/ϕ(z).

2.3 Gaussian Processes and White Noise

The concept of Gaussian or normal distribution is well known for real-valued

random variables and vectors. For a real random vector X, the Gaussian dis-
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tribution is specified completely by the mean E(X) and the covariance matrix

Cov(X) := E {(X−µ)(X−µ)T }. In the complex case, the covariance between ran-

dom variables X and Y is defined as

Cov(X ,Y ) := E {(X −E(X ))(Y −E(Y ))∗}.

Therefore, for a complex random vector X, not only do we need to consider the

mean µ := E(X) and the covariance matrix

Σ := Cov(X,X) := E {(X−µ)(X−µ)H },

but also the complementary covariance matrix, which is defined as

Σ̃ := Cov(X,X∗) := E {(X−µ)(X−µ)T }.

Given these quantities, the mean and the covariance matrix of the real-valued

random vector Xr := [ℜ(X)T ,ℑ(X)T ]T are completely specified by

µr := E(Xr ) = [ℜ(µ)T ,ℑ(µ)T ]T (2.3.1)

and

Σr := Cov(Xr ) =
1

2

[

ℜ(Σ+ Σ̃) −ℑ(Σ− Σ̃)

ℑ(Σ+ Σ̃) ℜ(Σ− Σ̃)

]

. (2.3.2)

On the other hand, if the mean µr and the covariance matrix Σr of a real-valued

random vector Xr := [XT
1 ,XT

2 ]T are given in the form of

µr =
[

µ1

µ2

]

, Σr =
[

Σ11 Σ12

Σ
T
12 Σ22

]

, (2.3.3)

then µ, Σ, and Σ̃ of the complex random vector X := X1 + i X2 are determined by











µ=µ1 + iµ2,

Σ=Σ11 +Σ22 + i (ΣT
12 −Σ12),

Σ̃=Σ11 −Σ22 + i (ΣT
12 +Σ12).

(2.3.4)

Note that the matrix ℑ(Σ) is antisymmetric, i.e., ℑ(Σ)T =−ℑ(Σ). This implies in

particular that the diagonal elements of ℑ(Σ) are all equal to zero.

With these properties in mind, let us define complex Gaussian distributions

and processes as follows.

Definition 2.4 (Complex Gaussian Distributions and Processes). A random vec-

tor X is said to have a general complex Gaussian distribution with mean µ, co-

variance matrix Σ, and complementary covariance matrix Σ̃, denoted by X ∼
Nc (µ,Σ,Σ̃), if Xr := [ℜ(X)T ,ℑ(X)T ]T is Gaussian with mean µr and covariance
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matrix Σr , i.e., Xr ∼ N(µr ,Σr ), satisfying (2.3.1)–(2.3.4). If Σ̃= 0, then X is said to

have a symmetric complex Gaussian distribution with mean µ and covariance

matrix Σ, denoted as X ∼ Nc (µ,Σ). A random process {X t } is said to be general or

symmetric complex Gaussian if X := [X t1 , . . . , X tn ]T is general or symmetric com-

plex Gaussian, respectively, for any distinct points {t1, . . . , tn} and any n.

A very important property of real Gaussian distributions is their invariance

under linear transformation — a linear transform of Gaussian variables remains

Gaussian. This property is also possessed by the general and symmetric complex

Gaussian variables, respectively, as stated in the following proposition.

Proposition 2.6 (Linear Transform of Complex Gaussian Random Variables). Let

A be a complex matrix and b be a complex vector.

(a) If X ∼ Nc (µ,Σ,Σ̃), then AX+b ∼ Nc (Aµ+b,AΣAH ,AΣ̃AT ).

(b) If X ∼ Nc (µ,Σ), then AX+b ∼ Nc (Aµ+b,AΣAH ).

(c) If X ∼ N(µ,Σ), then AX+b ∼ Nc (Aµ+b,AΣAH ,AΣAT ).

PROOF. The real and imaginary parts of AX + b are jointly Gaussian because

they are linear transforms of the real and imaginary parts of X which are jointly

Gaussian. Part (a) follows from the fact that Cov(AX + b,AX + b) = AΣAH and

Cov(AX+b, (AX+b)∗) = AΣ̃AT . Part (b) is a direct result of (a) with Σ̃ = 0. Part

(c) follows from the fact that the real and imaginary parts of AX+b are linear

transforms of X and Cov(AX+b, (AX+b)∗) = AΣAT . 2

According to (2.3.4), Σ̃= 0 if and only if Σr is symmetric in the sense that

Σ11 =Σ22, Σ12 =−ΣT
12. (2.3.5)

Hence, a symmetric complex Gaussian random vector is characterized by its real

and imaginary parts having a symmetric Gaussian distribution satisfying (2.3.5).

The probability density function (PDF) of a symmetric complex Gaussian random

vector X ∼ Nc (µ,Σ) takes the form

p(x) =π−n |Σ|−1 exp{−(x −µ)H
Σ
−1(x −µ)} (x ∈C

n),

which should be interpreted as a function of ℜ(x) and ℑ(x). Therefore, if X and

Y are jointly symmetric complex Gaussian with Cov(X,Y) = 0, then X and Y are

mutually independent. A univariate random variable X has a symmetric com-

plex Gaussian distribution with mean zero and variance σ2, i.e., X ∼ Nc (0,σ2), if

and only if ℜ(X ) and ℑ(X ) are i.i.d. N(0, 1
2
σ2).

By definition, a symmetric complex Gaussian process {X t } has zero comple-

mentary covariance function, i.e., E(Xs X t ) = 0 for all s and t . This is equivalent

to the following symmetry condition for the real and imaginary parts of {X t }:

{

Cov{ℜ(Xs ),ℜ(X t )} = Cov{ℑ(Xs ),ℑ(X t )},

Cov{ℜ(Xs ),ℑ(X t )} =−Cov{ℑ(Xs ),ℜ(X t )}.
(2.3.6)
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Such processes arise naturally in real-world applications, including radar, sonar,

and communications, as a result of modulation. For example, let {Yt } be a zero-

mean real Gaussian process and φ be a real random variable, independent of

{Yt }, such that E {exp(i 2φ)} = 0. Consider the modulated complex process

X t := Yt exp{i (ωc t +φ)},

where ωc , a nonzero constant, is known as the carrier frequency. It is easy to

show that E(X t ) = 0 and

E {ℜ(Xs )ℜ(X t )} = 1
2 E(Ys Yt ) [cos(ωc (s − t ))+E {cos(ωc (s + t )+2φ)}]

= 1
2

E(Ys Yt )cos(ωc (s − t )),

E {ℑ(Xs )ℑ(X t )} = 1
2

E(Ys Yt ) [cos(ωc (s − t ))−E {cos(ωc (s + t )+2φ)}]

= 1
2

E(Ys Yt )cos(ωc (s − t )),

E {ℜ(Xs )ℑ(X t )} = 1
2 E(Ys Yt ) [sin(ωc (s − t ))+E {sin(ωc (s + t )+2φ)}]

= 1
2

E(Ys Yt )sin(ωc (s − t )).

So the condition (2.3.6) is satisfied. Observe that {ℜ(X t )} and {ℑ(X t )} are jointly

Gaussian, because conditioning on φ they are jointly Gaussian with mean zero

and with covariance and cross-covariance functions being independent of φ.

Therefore, by definition, {X t } is a zero-mean symmetric complex Gaussian pro-

cess with covariance function c(s, t ) = E(Ys Yt )exp{iωc (s − t )}. In addition, if {Yt }

is stationary, so is {X t }. Note that (2.3.6) is not satisfied if E {exp(i 2φ)} 6= 0, in

which case, {X t } is only a general complex Gaussian process.

For convenience, we will drop the word “symmetric” when referring to sym-

metric complex Gaussian variables, distributions, or processes and simply call

them complex Gaussian. We will retain the word “general” when referring to gen-

eral complex Gaussian distributions.

White noise is a special type of stationary process that plays an important role

in statistical theory. It is a useful model for ambient noise and measurement

errors in many applications. It can also be used to simulate stationary processes

with a nonwhite, or colored, spectrum through linear filtering.

Definition 2.5 (White Noise). A zero-mean stationary process {X t } with variance

σ2 is said to be white noise, denoted by {X t } ∼ WN(0,σ2), if the ACF of {X t } takes

the form r (u) = σ2δu , where {δu} is the Kronecker delta sequence; or equiva-

lently, if the SDF of {X t } takes the form f (ω) = σ2 for all ω. A sequence {X t } of

i.i.d. random variables with mean zero and variance σ2 is a white noise process,

denoted by {X t } ∼ IID(0,σ2). A sequence {X t } is called Gaussian white noise, de-

noted by {X t } ∼ GWN(0,σ2) in the real case and by {X t } ∼ GWNc (0,σ2) in the

complex case, if the X t are i.i.d. N(0,σ2) or Nc (0,σ2), respectively.
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Martingale differences with constant variance constitute another, perhaps less

familiar, example of white noise.

Definition 2.6 (Martingale Differences). A random sequence {X t } is said to be

a sequence of martingale differences if there exists an increasing sequence of σ-

fields (or filtration) {Ft } such that (a) X t is measurable with respect to Ft for each

t and (b) E(|X t |2) <∞ and E(X t |Ft−1) = 0 almost surely for all t . A sequence {X t }

of martingale differences with constant variance σ2 is a white noise process and

is denoted by {X t } ∼ MD(0,σ2).

If {X t } is a sequence of martingale differences, then St :=
∑t

j=1
X j is called a

martingale, characterized by the property [34, p. 458]

E(St |Ft−1) = St−1.

The notion of martingale difference stems from the fact that X t = St −St−1.

The σ-field Ft in Definition 2.6 can be interpreted as a representation of cer-

tain historical information about the random process up to (and including) time

t . The requirement that X t be measurable with respect to Ft simply means that

X t is determined completely by the historical information up to time t . If the

historical information is known only up to time t −1, then the martingale differ-

ence X t remains unpredictable (in the minimum mean-square sense) because

the best prediction, E(X t |Ft−1), is equal to the mean of X t , which is zero. Given

this interpretation, it is not difficult to see that the one-step prediction errors,

X t := Yt −E(Yt |Yt−1,Yt−2, . . . ) (t = 1,2, . . . ), of a random process {Yt } are martin-

gale differences with Ft being the σ-field generated by {Yt ,Yt−1, . . . }.

Martingale differences in general are uncorrelated but not necessarily inde-

pendent or identically distributed or even stationary. For example, the variance

can change with t . A trivial sequence of martingale differences is a sequence of

i.i.d. random variables with mean zero, in which case Ft is defined as the σ-field

generated by {X t , X t−1, . . . }. Therefore, the concept of martingale differences is a

generalization of the concept of zero-mean i.i.d. random variables.

The assertion in Definition 2.6 that a sequence of martingale differences with

constant variance is white noise can be justified as follows. By definition, if {X t }

is a sequence of martingale differences, then, by the iterated expectation,

E(X t ) = E {E(X t |Ft−1)} = 0 for all t ,

E(X t X ∗
s ) = E {E(X t |Ft−1)X ∗

s } = 0 for all t > s.

This means that {X t } is an uncorrelated process with mean zero. If, in addition,

E(|X t |2) =σ2 for all t , then

E(X t X ∗
s ) =σ2δt−s ,

which, by definition, implies that {X t } ∼ WN(0,σ2). Note that if E(|X t |2|Ft−1) =σ2

for all t , then E(|X t |2) =σ2 for all t .
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2.4 Linear Prediction Theory

Linear prediction is a powerful technique for time series analysis. Autore-

gressive models are directly related to linear prediction. The following example

shows that linear prediction is also useful for modeling sinusoids.

Consider a simple case where yt = cos(ω0t ), with ω0 ∈ (0,π) being a constant.

Using trigonometric identities, we obtain

cos(ω0(t −1)) = cos(ω0)cos(ω0t )+ sin(ω0)sin(ω0t ),

cos(ω0(t −2)) = {2cos2(ω0)−1}cos(ω0t )+2cos(ω0)sin(ω0)sin(ω0t ).

Combining these equations leads to

2cos(ω0)cos(ω0(t −1))−cos(ω0(t −2)) = cos(ω0t ).

In other words, we can write

yt = 2cos(ω0)yt−1 − yt−2.

This expression means that the current value yt of the sinusoid can be predicted

without error by a suitable linear combination of the previous values yt−1 and

yt−2. Furthermore, the coefficient c := 2cos(ω0) can be used to identify the fre-

quency ω0 because ω0 = arccos(c/2). This observation has motivated the de-

velopment of many linear-prediction-based algorithms for frequency estimation

which will be discussed later in Chapter 9.

In this section, we provide a brief review of the linear prediction theory to fa-

cilitate the later discussions. First, the following proposition describes the prop-

erties of the best linear predictor for a zero-mean stationary process.

Proposition 2.7 (Best Linear Prediction [46, p. 64] [177, p. 157]). Let {X t } be a

zero-mean stationary process with ACF r (u). Then, for any m ≥ 1, the best linear

predictor of X t based on {X t−1, . . . , X t−m}, defined as the minimizer of E {|X t−Yt |2}

with respect to Yt being any linear function of {X t−1, . . . , X t−m}, can be expressed

as X̂ t =−
∑m

j=1
ϕj X t−j , where ϕ := [ϕ1, . . . ,ϕm]T satisfies Rϕ=−r, with

R :=













r (0) r∗(1) · · · r∗(m −1)

r (1) r (0) · · · r∗(m −2)
...

...
. . .

...

r (m −1) r (m −2) · · · r (0)













, r :=













r (1)

r (2)
...

r (m)













.

The prediction error X t − X̂ t has the orthogonality property E {(X t − X̂ t )X ∗
t−j } = 0

( j = 1, . . . ,m) and its variance σ2 := E {|X t − X̂ t |2} satisfies σ2 = r (0)+ rHϕ.



§2.4. Linear Prediction Theory 29

The next proposition presents a fast algorithm to compute the inverse of a

covariance matrix formed by a stationary process. With this algorithm, the coef-

ficients of the best predictor in Proposition 2.7 can be computed efficiently.

Proposition 2.8 (Levinson-Durbin Algorithm [46, p. 169] [177, pp. 171–176]). Let

{X t } be a zero-mean stationary process with ACF r (u). Let X := [X1, . . . , Xn]T and

Σ := E(XXH ) = [r (s − t )] (s, t = 1, . . . ,n). Then, the Cholesky decomposition of Σ
−1

takes the form Σ
−1 = UD−1UH , where D := diag(σ2

0,σ2
1, . . . ,σ2

n−1) is a diagonal

matrix and U := [ust ] (s, t = 1, . . . ,n) is an upper triangular matrix with ust :=
ϕ∗

t−1,t−s for 1 ≤ s ≤ t ≤ n (ϕt0 := 1 for all t = 0,1, . . . ). The ϕt j and σ2
t can be com-

puted recursively as follows: for t = 1,2, . . . and with the initial value σ2
0 = r (0),

ϕt t = −
1

σ2
t−1

{

r (t )+
t−1
∑

j=1

ϕt−1, j r (t − j )

}

,

ϕt j = ϕt−1, j +ϕt t ϕ
∗
t−1,t−j ( j = 1, . . . , t −1),

σ2
t = σ2

t−1(1−|ϕt t |2).

The best linear predictor of X t+1 based on {X1, . . . , X t } can be expressed as X̃ t+1 :=
−

∑t
j=1

ϕt j X t+1−j with the prediction error variance σ2
t = E {|X t+1 − X̃ t+1|2}.

Remark 2.4 The best linear prediction of X t defined in Proposition 2.7 can be

expressed as X̂ t =−
∑m

j=1
ϕm j X t−j with σ2 := E {|X t − X̂ t |2} =σ2

m .

Remark 2.5 The quantity ϕmm is called the mth reflection coefficient. It coin-

cides with the negative of the lag-m partial autocorrelation coefficient defined

as the autocorrelation coefficient between the best forward prediction error of

X t based on {X t−1, . . . , X t−m+1} and the best backward prediction error of X t−m

based on the same set of predictors. It follows from the third equation in Propo-

sition 2.8 that σ2
m > 0 if and only if |ϕt t | < 1 for all t = 1, . . . ,m.

In Proposition 2.8, the ϕt j and σ2
t are computed from the ACF of {X t }. When

{X t } is an AR process, they can be computed directly from the AR parameters

based on the following algorithm.

Proposition 2.9 (Levinson-Durbin Algorithm for AR Processes [46, p. 242] [177,

pp. 172–173]). Let {X t } be an AR(m) process of the form (2.2.7). Let ϕt j and σ2
t be

defined in Proposition 2.8. Then, for any t ≥ m, ϕt j = ϕj if 1 ≤ j ≤ m, ϕt j = 0 if

m < j ≤ t , and σ2
t = σ2; for t = m −1,m −2, . . . , the ϕt j and σ2

t can be computed

recursively as follows:

ϕt j =
ϕt+1, j −ϕt+1,t+1ϕ

∗
t+1,t+1−j

1−|ϕt+1,t+1|2
( j = 1, . . . , t ),

σ2
t =

σ2
t+1

1−|ϕt+1,t+1|2
.



30 Chapter 2. Basic Concepts

Moreover, let Σ be the covariance matrix defined in Proposition 2.8 and let Σ−1 :=
[ηst ] (s, t = 1, . . . ,n). Then, ηst = 0 for all |s − t | > m. In other words, Σ−1 is a band

matrix with bandwidth 2m +1.

While the Levinson-Durbin algorithm produces the Cholesky decomposition

for the inverse of a covariance matrix, the following innovations algorithm pro-

vides the Cholesky decomposition for the covariance matrix itself. It also gives

an expression for the best predictor in terms of the prediction errors or innova-

tions, hence the name of the algorithm.

Proposition 2.10 (Innovations Algorithm [46, pp. 172, 193, 255] [177, pp. 29–30]).

Let {X t } be a zero-mean stationary process with ACF r (u). Let X := [X1, . . . , Xn]T

and Σ := E(XXH ) = [r (s − t )] (s, t = 1, . . . ,n). Then, the Cholesky decomposition

of Σ takes the form Σ = LDLH , where D := diag(σ2
0,σ2

1, . . . ,σ2
n−1) is the diagonal

matrix defined in Proposition 2.8 and L = U−H := [cst ] is a lower triangular matrix

with cst :=ψs−1,s−t for 1 ≤ t ≤ s ≤ n (ψt0 := 1 for all t = 0,1, . . . ). The ψt j and σ2
t

can be computed recursively as follows: for t = 1,2, . . . and with σ2
0 = r (0),

ψt ,t−j =
1

σ2
j

{

r (t − j )−
j−1
∑

l=0

ψt ,t−l ψ
∗
j , j−l σ

2
l

}

( j = 0,1, . . . , t −1),

σ2
t = r (0)−

t−1
∑

j=0

|ψt ,t−j |2σ2
j .

The best linear predictor of X t+1 based on {X1, . . . , X t } can be expressed as X̃ t+1 =
∑t

j=1
ψt j Zt+1−j , where Zt := X t − X̃ t (X̃0 := 0) and Var(Zt ) = σ2

t−1. If {X t } is a

moving-average (MA) process of order m, i.e., X t =
∑m

j=0
ψj ζt−j , where ψ0 := 1

and {ζt } ∼ WN(0,σ2), then Σ is a band matrix with bandwidth 2m +1 such that

ψt j = 0 for t ≥ j > m. Moreover, if the filter ψ(z) :=
∑m

j=0
ψj z− j is invertible, then,

as t →∞, E {|Zt −ζt |2} → 0, σ2
t →σ2, and |ψt j −ψj | =O (ρt ) → 0 for all j = 1, . . . ,m

and for some constant ρ ∈ (0,1).

Remark 2.6 With cst :=ψs−1,s−t , the recursions can be written as

cst =
1

σ2
t−1

{

r (s − t )−
t−1
∑

l=1

csl c∗t lσ
2
l−1

}

(t = 1, . . . , s −1),

σ2
s−1 = r (0)−

s−1
∑

l=1

|csl |2σ2
l−1.

This is the standard Cholesky decomposition algorithm [177, pp. 29–30].

Remark 2.7 If {X t } is an MA process of order m, then it suffices to calculate ψt ,t−j

for t −m ≤ j ≤ t −1, and hence the complexity of the Cholesky decomposition by

the innovations algorithm takes the form O (n) for large n.
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2.5 Asymptotic Statistical Theory

In many estimation problems, it is often difficult to mathematically character-

ize and quantify the statistical behavior of an estimator for finite sample sizes.

A practical solution to the problem is simulation. While simulation does pro-

vide valuable insights and is indispensable to practitioners, simulation results

are usually inconclusive and cannot be extrapolated under different conditions.

Asymptotic analysis serves as an important tool to fill in the gap. Although it

does not directly answer questions regarding the finite-sample behavior, asymp-

totic analysis often yields conclusive and useful results that are valid under very

general conditions and for large but finite sample sizes; in many cases it is also

the only way to obtain such results.

As a performance criterion, it is desirable that an estimator calculated from

a finite data record converges in some sense to the parameter of interest as the

sample size approaches infinity. It is also desirable that the unknown distribu-

tion of an estimator converges to a known one so that the randomness of the es-

timator can be easily characterized and quantified. These concerns lead to three

widely-used modes of convergence: convergence in probability, almost sure con-

vergence, and convergence in distribution. Associated with the first two modes

of convergence are two ways of evaluating the magnitude of a random variable:

the boundedness in probability and the almost sure boundedness. These con-

cepts are summarized in the following.

Definition 2.7 (Convergence and Boundedness in Probability). A sequence of

random variables {Xn} is said to converge to zero in probability (or weakly), de-

noted by Xn = OP (1) or Xn
P→ 0, if for any constant δ > 0, P (|Xn | > δ) → 0 as

n → ∞. It is said to converge to a random variable X , denoted by Xn
P→ X , if

Xn − X = OP (1). It is said to be bounded in probability, denoted by Xn = OP (1),

if for any constant δ > 0 there exists a constant c > 0 such that P (|Xn | > c) < δ

for large n. Moreover, for any sequence of positive constants {an}, we write

Xn = OP (an) if a−1
n Xn = OP (1), and we write Xn = OP (an) if a−1

n Xn = OP (1). A

statement of convergence or boundedness in probability is valid for a sequence

of random vectors if it is valid componentwise.

The concept of convergence in probability can be easily understood by inter-

preting δ in Definition 2.7 as a prescribed tolerance level for deviation of Xn from

its target value. In so doing, the statement Xn
P→ 0 simply means that no matter

how small the tolerance level is, the probability of Xn exceeding that level will

approach zero as n approaches infinity.

Note that the probability here is calculated on the basis of repeatedly observ-

ing Xn from different random experiments (or scenarios) for each given and
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fixed n. Therefore, the fact that this probability approaches zero does not neces-

sarily imply that for each given experiment the resulting infinite sequence {Xn}

converges to zero in the ordinary sense. For example, in an infinite sequence

{Xn} produced by a given experiment, one may find infinitely many instances in

which the tolerance level is violated, but the probability that the tolerance level

is violated at a fixed instance n when considering all possible outcomes from the

repeated experiments can still approach zero as n →∞.

Similarly, Xn = OP (1) does not necessarily imply that the Xn are bounded in

the ordinary sense for each given experiment, i.e., it does not necessarily imply

that there exists a constant c > 0 such that |Xn | ≤ c for all n and all experiments.

The boundedness in probability only means that the probability of Xn exceeding

a bound c can be made arbitrarily small for all n if c is sufficiently large.

To ensure the convergence and the boundedness of a random sequence in the

ordinary sense for all possible experiments, the concepts of almost sure conver-

gence and almost sure boundedness are needed.

Definition 2.8 (Almost Sure Convergence and Boundedness). A sequence of ran-

dom variables {Xn} is said to converge to zero almost surely, denoted by Xn =
O(1) or Xn

a.s.→ 0, if P (Xn → 0) = 1 as n →∞, or equivalently, if P (|Xn | > δ i.o.) = 0

for any constant δ > 0, where i.o. stands for “infinitely often.” The sequence is

said to converge to a random variable X , denoted by Xn
a.s.→ X , if Xn − X = O(1).

It is said to be bounded almost surely, denoted by Xn = O (1), if there is a con-

stant c > 0 such that P (|Xn | > c) = 0 for all n. For any sequence of positive

constants {an}, we write Xn = O(an) if a−1
n Xn = O(1), and we write Xn = O (an) if

a−1
n Xn = O (1). A statement of almost sure convergence or boundedness is valid

for a sequence of random vectors if it is valid componentwise.

Convergence in distribution is another mode of convergence. It is useful when

the probability distribution of an estimator is of interest, as is the case when

constructing a confidence interval for the parameter being estimated.

Definition 2.9 (Convergence in Distribution). A sequence of random vectors {Xn}

is said to converge in distribution to a random vector X, denoted by Xn
D→ X, if

the cumulative distribution function (CDF) of Xn converges to the CDF of X at

every continuity point of the latter.

Unlike the other modes of convergence, the convergence in distribution does

not directly address the convergence of a random sequence itself. Instead, it

concerns the convergence of the CDFs. Just like two random variables from com-

pletely unrelated experiments can have the same CDF, the random variables in

Definition 2.9 may come from unrelated experiments.

The three modes of convergence are related to each other by a hierarchy with

the almost sure convergence being the strongest mode and the convergence in

distribution the weakest mode.



§2.5. Asymptotic Statistical Theory 33

Proposition 2.11 (Hierarchy of Convergence Modes [34, p. 330]). If Xn
a.s.→ X ,

then Xn
P→ X . If Xn

P→ X , then Xn
D→ X . The converses are not true in general.

However, if Xn
D→ c for some constant c, then Xn

P→ c.

In the asymptotic analysis of an estimator, it often suffices to consider the ma-

jor terms in an expansion of the estimator that dominate the other terms in mag-

nitude. This requires to combine random variables of different orders of magni-

tude, for which the following proposition is very useful.

Proposition 2.12 (Arithmetics of Big O and Small O [46, p. 199]). Let {Xn} and

{Yn} be random sequences. Let {an} and {bn} be sequences of positive constants. If

Xn = OP (an) and Yn = OP (bn), then XnYn = OP (anbn) and Xn +Yn = OP (an +bn).

The same implication holds if OP is everywhere replaced by OP . If Xn = OP (an)

and Yn = OP (bn), then XnYn = OP (anbn). All these assertions remain valid if OP

and OP are everywhere replaced by O and O , respectively.

The following proposition ensures that the modes of convergence are pre-

served after certain transformations.

Proposition 2.13 (Convergence after Simple Transformation).

(a) If Xn
P→ X, then g(Xn)

P→ g(X) for any continuous function g(·). This assertion

remains valid if
P→ is replaced by

a.s.→ or
D→.

(b) If Xn
D→ X and Yn

P→ c for some constant vector c, then YH
n Xn

D→ cH X and

Xn +Yn
D→ X+c. This assertion is known as Slutsky’s Theorem.

PROOF. These results are well known in the real case [34, p. 332 and p. 334]

[46, pp. 200–201 and 206–207]. In the complex case, part (a) is trivial with re-

gard to the convergence in probability and almost sure convergence. For the

convergence in distribution, observe that by definition Xn
D→ X is the same as

Yn := [ℜ(XT
n ),ℑ(XT

n )]T D→ Y := [ℜ(XT ),ℑ(XT )]T . Let g = g1 + i g2. Because g1 and g2

are continuous real functions, it follows that [gT
1 (Yn),gT

2 (Yn)]T D→ [gT
1 (Y),gT

2 (Y)]T ,

which is the same as g(Xn)
D→ g(X). Part (b) can be proved similarly. 2

Taylor expansion is a useful tool in the asymptotic analysis of estimators. The

following proposition ensures its validity for random variables.

Proposition 2.14 (Taylor Expansion). Let {rn} be a sequence of positive constants

such that rn → 0 as n →∞.

(a) For a sequence of real random variables {Xn}, if Xn = an +OP (rn), where

{an} is a sequence of constants, then for any real function g (·) which has m

continuous derivatives in a neighborhood of an ,

g (Xn) =
m
∑

j=0

{g j (an)/ j !} (Xn −an) j +OP (r m
n ),

where g j (·) denotes the j th derivative of g (·).
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(b) For a sequence of real random vectors {Xn}, if Xn = an +OP (rn), where {an}

is a sequence of constant vectors, then for any real function g (·) which is

continuously differentiable in a neighborhood of an ,

g (Xn) = {∇g (an)}T (Xn −an)+OP (rn),

where ∇ denotes the gradient operator. Both assertions remain valid if OP

and OP are everywhere replaced by O and O , respectively.

PROOF. Consider part (a). From calculus, we have

g (x) =
m
∑

j=0

{g j (an)/ j !} (x −an ) j +O(|x −an |m).

The assertion follows immediately from the fact that O(|Xn−an |m) = OP (r m
n ). Part

(b) can be proved similarly. 2

Asymptotic normality is an important concept in estimation theory.

Definition 2.10 (Asymptotic Normality). A sequence of random vectors {Xn} with

mean µn and covariance matrix Σn is said to be asymptotically Gaussian (com-

plex Gaussian), denoted by Xn
A∼ N(µn ,Σn) (Xn

A∼ Nc (µn ,Σn)), if Σ−H/2
n (Xn−µn)

D→
Z, where Z ∼ N(0,I) (Z ∼ Nc (0,I)). It is said to be asymptotically general complex

Gaussian with mean µn , covariance matrix Σn , and complementary covariance

matrix Σ̃n , denoted by Xn
A∼ Nc (µn ,Σn ,Σ̃n), if [ℜ(Xn)T ,ℑ(Xn)T ]T A∼ N(µnr ,Σnr ),

where (µnr ,Σnr ) and (µ,Σn ,Σ̃n) satisfy (2.3.1) and (2.3.2).

Many estimators enjoy the asymptotic normality. The following proposition

ensures that this property is preserved after differentiable transformations. It is

a generalization of the result in [46, p. 211].

Proposition 2.15 (Asymptotic Normality after Transformation). Let {an} and {bn}

be sequences of positive constants such an → 0 and bn → 0 as n →∞. Assume that

[a−1
n (Xn−µn)T ,b−1

n (Yn−νn)T ]T A∼ N(0,Σn) with Σn =O (1) and Σn ≥Σ (i.e., Σn−Σ

is nonnegative definite) for all n, where Σ is nonsingular covariance matrix. If

g1(·) and g2(·) are real functions, continuously differentiable in a neighborhood of

µn and νn respectively, with ∇Tg1(µn) 6= 0 and ∇Tg2(νn) 6= 0, then

[a−1
n (g1(Xn)−g1(µn))T ,b−1

n (g2(Yn)−g2(νn))T ]T A∼ N(0,JnΣn JT
n ),

where Jn := diag{∇Tg1(µn),∇Tg2(νn)} is the Jacobian matrix.

PROOF. Because a−1
n (Xn −µn) A∼ N(0,Σn1) and b−1

n (Yn −νn) A∼ N(0,Σn2) for some

Σn1 =O (1) and Σn2 =O (1), we can write

Xn =µn +OP (an), Yn =νn +OP (bn).
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It follows from Proposition 2.14(b) that

g1(Xn)−g1(µn) = Jn1(Xn −µn)+OP (an),

g2(Yn)−g2(νn) = Jn2(Yn −νn)+OP (bn),

where Jn1 :=∇Tg1(µn) and Jn2 :=∇Tg2(νn). Therefore,

[

a−1
n (g1(Xn)−g1(µn))

b−1
n (g2(Yn)−g2(νn))

]

= Jn

[

a−1
n (Xn −µn)

b−1
n (Yn −νn)

]

+OP (1) A∼ N(0,JnΣn JT
n ),

where Jn := diag(Jn1,Jn2). The proof is complete. 2

The last proposition summarizes some useful techniques for proving different

modes of convergence.

Proposition 2.16 (Methods of Proving Convergence).

(a) If E(|Xn |r ) =O (an) for some constants an > 0 and r > 0, then Xn =OP (a1/r
n ).

(b) If E(|Xn |r ) → 0 for some constant r > 0, then Xn
P→ 0.

(c) If
∑∞

n=1 E(|Xn |r ) <∞ for some constant r > 0, then Xn
a.s.→ 0.

(d) Let {Xn} be a sequence of r -dimensional real random vectors. Then, Xn
D→ X

if and only if aT Xn
D→ aT X for all a ∈R

r . This way of proving the asymptotic

distribution of random vectors is known as the Cramér-Wold device.

(e) Let {Xn} and {Ynm} be sequences of random vectors such that

lim
m→∞

limsup
n→∞

P (‖Xn −Ynm‖ > δ) = 0

for any constant δ> 0. If Ynm
D→ Ym as n →∞ for each fixed m and Ym

D→ Y

as m →∞, then Xn
D→ Y as n →∞.

PROOF. A simple proof of part (d) using the characteristic function can be found

in [34, p. 383] and [46, p. 204]. Part (e) is well known in the real case [34, p. 332]

[46, p. 207]. In the complex case, it can be easily proved by considering, as in the

proof of Proposition 2.13, the real vectors formed by the real and imaginary parts

of Xn , Ynm , Ym , and Y. Therefore, let us focus on (a)–(c). For any c > 0, Markov’s

inequality [34, p. 80] gives P (a−1/r
n |Xn | > c) ≤ E(|Xn |r )/(ancr ) ≤ b/cr , where b :=

sup{E(|Xn |r )/an} <∞. By taking c > (b/ε)1/r , we obtain P (a−1/r
n |Xn | > c) < ε. Part

(a) is thus proved. Part (b) follows from part (a) with an → 0. To prove part (c),

we use Markov’s inequality P (|Xn | > δ) ≤ δ−r E(|Xn |r ) and obtain

∞
∑

n=1

P (|Xn | > δ) ≤ δ−r
∞
∑

n=1

E(|Xn |r ) <∞

for any constant δ > 0. This, according to the Borel-Cantelli lemma [34, p. 59],

leads to P (|Xn | > δ i.o.) = 0. Hence, by definition, Xn
a.s.→ 0 as n →∞. 2





Chapter 3

Cramér-Rao Lower Bound

The Cramér-Rao inequality, also known as the information inequality, provides a

lower limit, called the Cramér-Rao lower bound (CRLB), for the covariance matrix

of unbiased estimators. It is named after the Swedish statistician Harald Cramér

(1893–1985) and the Indian American statistician Calyampudi Radhakrishna Rao

(1920–). An unbiased estimator that attains the CRLB is called a statistically ef-

ficient estimator because it has the smallest variance among all unbiased esti-

mators. The CRLB has been studied for the estimation of sinusoidal parame-

ters under various conditions. It is widely used as a performance benchmark for

comparing the accuracy and statistical efficiency of different estimators.

In this chapter, we derive the CRLB under the assumption that the noise has a

Gaussian distribution. We also derive some asymptotic expressions of the CRLB

for large sample sizes with well-separated or closely spaced frequencies. Finally,

we discuss the CRLB under the condition of nonGaussian white noise and its re-

lationship with the CRLB under the Gaussian assumption. We show in particular

that the CRLB is maximized by the Gaussian distribution among all noise distri-

butions that have the same or smaller variance. In this sense, the Gaussian dis-

tribution can be regarded as the least favorable distribution for the noise in the

estimation of sinusoidal parameters. We also show that the Laplace distribution

is the least favorable distribution in another family of noise distributions.

3.1 Cramér-Rao Inequality

The Cramér-Rao inequality for the general problem of parameter estimation

is stated in the following proposition. A proof can be found in Section 3.5.

Proposition 3.1 (Cramér-Rao or Information Inequality). Let Y be a real or com-

plex random vector that has a PDF p(y |ϑ) with respect to certain measure ν, where

ϑ is a real-valued parameter taking on values in Θ ⊂ R
r . Let η(ϑ) ∈ R

m be a

real-valued differentiable function with Jacobian matrix J(ϑ) := ∇Tη(ϑ), where

∇ := ∂/∂ϑ denotes the gradient operator with respect to ϑ. Let η̂ := η̂(Y) be an

37
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unbiased estimator of η(ϑ) on the basis of Y. Assume that the following regular-

ity conditions are satisfied.

(a) p(y |ϑ) has a common support for all ϑ ∈Θ;

(b) ∇p(y |ϑ) exists almost surely in y for any given ϑ ∈Θ;

(c) ℓ(ϑ|y) := log{p(y |ϑ)}, the log likelihood function, has the property

E {∇ℓ(ϑ|Y)} = 0, (3.1.1)

E {η̂[∇ℓ(ϑ|Y)]T } = J(ϑ), (3.1.2)

0 < I(ϑ) := E {[∇ℓ(ϑ|Y)][∇ℓ(ϑ|Y)]T } <∞. (3.1.3)

Then, for any constant vector a ∈R
m ,

Var(aT η̂) = aT Cov(η̂)a ≥ aT J(ϑ)I(ϑ)−1J(ϑ)T a, (3.1.4)

where the equality holds for some a 6= 0 and ϑ ∈ Θ if and only if there exists a

constant c 6= 0 such that aT {c(η̂−η(ϑ))+ J(ϑ)I(ϑ)−1∇ℓ(ϑ|Y)} = 0 almost surely.

Remark 3.1 The following observations are useful in verifying the regularity con-

ditions in Proposition 3.1. First, because

E {∇ℓ(ϑ|Y)} =
∫

∇p(y |ϑ)dν,

the condition (3.1.1) is satisfied if the orders of differentiation and integration

are interchangeable in the identity ∇
∫

p(y |ϑ)dν=∇1 = 0. A sufficient condition

that allows the interchange of orders is that there exists an integrable function

g (y) such that ‖∇p(y |ϑ)‖ ≤ g (y) for all ϑ ∈Θ. Similarly, because

E {η̂[∇ℓ(ϑ|Y)]T } =
∫

η̂(y)[∇p(y |ϑ)]T dν,

the condition (3.1.2) is satisfied if the orders of differentiation and integration are

interchangeable in the identity ∇T
∫

η̂(y)p(y |ϑ)dν = ∇Tη(ϑ) = J(ϑ). A sufficient

condition for the interchange of orders is that all elements in η̂(y)[∇p(y |ϑ)]T are

upper-bounded in absolute value by an integrable function of y for all ϑ ∈Θ.

Remark 3.2 The regularity conditions in Proposition 3.1 can be replaced, ac-

cording to [162, p. 73], by the following conditions:

(a) p(y |ϑ) is a continuous function of ϑ ∈Θ for almost every y ;

(b) for each ϑ ∈ Θ, the function
√

p(y |ϑ) has a mean-square derivative at ϑ,

i.e., there exists a square-integrable function ψ(y ;ϑ) such that

∫

∣

∣

√

p(y |ϑ+δ)−
√

p(y |ϑ)−δT ψ(y ;ϑ)
∣

∣

2
dν= O(‖δ‖2), δ→ 0;
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(c) ψ(y ;ϑ) is mean-square continuous in ϑ, i.e.,

∫

‖ψ(y ;ϑ+δ)−ψ(y ;ϑ)‖2 dν= O(1), δ→ 0.

Under these conditions, I(ϑ) = 4
∫

‖ψ(y ;ϑ)‖2dν. In addition, if p(y |ϑ) is differ-

entiable with respect to ϑ, then ψ(y ;ϑ) =∇
√

p(y |ϑ) = 1
2

√

p(y |ϑ) ∇ℓ(y |ϑ).

The matrix J(ϑ)I(ϑ)−1J(ϑ)T in (3.1.4) is called the Cramér-Rao lower bound

(CRLB) for estimating the parameter η(ϑ) on the basis of Y. It will be denoted

as CRLB(η(ϑ)). As a convention, (3.1.4) can also be written as

Cov(η̂) ≥ CRLB(η(ϑ)) := J(ϑ)I(ϑ)−1J(ϑ)T , (3.1.5)

which holds for any unbiased estimator η̂ of η(ϑ) based on Y.

In the special case where η(ϑ) =ϑ, the Cramér-Rao inequality reduces to

Cov(ϑ̂) ≥ CRLB(ϑ) := I(ϑ)−1, (3.1.6)

where ϑ̂ is any unbiased estimator of ϑ based on Y. In other words, for any

constant vector a ∈R
r , we have

Var(aT ϑ̂) ≥ aT I(ϑ)−1a,

where the equality holds for some a 6= 0 and ϑ ∈ Θ if and only if aT {c (ϑ̂−ϑ)+
I(ϑ)−1∇ℓ(ϑ|Y)} = 0 almost surely for some constant c 6= 0.

In the more general case where η(ϑ) has the same dimension as ϑ but η(ϑ) 6=ϑ

for some or all ϑ ∈ Θ, one can regard η̂ as a biased estimator of ϑ with the bias

given by b(ϑ) :=η(ϑ)−ϑ. It follows from (3.1.5) that

E {(η̂−ϑ)(η̂−ϑ)T } = Cov(η̂)+b(ϑ)b(ϑ)T

≥ J(ϑ)I(ϑ)−1J(ϑ)T +b(ϑ)b(ϑ)T ,

where J(ϑ) := ∇Tη(ϑ) = ∇T{b(ϑ) +ϑ} = ∇T b(ϑ) + I. This inequality generalizes

(3.1.6) and is valid for any biased estimator of ϑ under the regularity conditions

in Proposition 3.1. It implies that the mean-square error (MSE) of aT η̂ as a biased

estimator of aT ϑ satisfies

MSE(aT η̂) := E {|aT η̂−aT ϑ|2} ≥ aT J(ϑ)I(ϑ)−1J(ϑ)T a+ {aT b(ϑ)}2.

Note that aT b(ϑ) is nothing but the bias aT η̂ for estimating aT ϑ.

The matrix I(ϑ), defined in (3.1.3), is known as Fisher’s information matrix

(FIM), named after the English statistician Ronald Aylmer Fisher (1890–1962).

Owing to its inverse relationship with the CRLB, Fisher’s information matrix can

be interpreted as a measure of the intrinsic easiness in estimating ϑ, whereas its

inverse, the CRLB, measures the intrinsic difficulty.
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Proposition 3.1 can be easily generalized to the case where ϑ is a random vec-

tor. Indeed, if the assumptions in Proposition 3.1 are true when ϑ is treated as

a deterministic variable, then the inequality (3.1.5) remains valid for the condi-

tional covariance matrix Cov(η̂|ϑ), i.e.,

Cov(η̂|ϑ) ≥ J(ϑ)I(ϑ)−1J(ϑ)T . (3.1.7)

Therefore, the unconditional covariance matrix satisfies

Cov(η̂) = E {Cov(η̂|ϑ)} ≥ E {J(ϑ)I(ϑ)−1J(ϑ)T }, (3.1.8)

where the expected value is taken with respect to ϑ as a random variable. In this

case, we refer to the lower bound in (3.1.7) as the conditional CRLB and refer to

the lower bound in (3.1.8) as the unconditional CRLB, or simply the CRLB.

Equipped with Proposition 3.1, the remainder of this chapter is devoted to the

special case of estimating the sinusoidal parameters. For finite sample sizes, the

CRLB can be derived easily under the Gaussian assumption as will be discussed

in Section 3.2. This result is useful for numerical calculation, but it offers lit-

tle insight except for some very special cases. An easier way of analyzing the

CRLB is to make the assumption of large sample sizes, as will be discussed in

Section 3.3. Under this assumption, the finite sample CRLB can be approximated

by much simpler expressions from which interesting conclusions can be drawn.

Simple expressions can also be obtained under the condition of nonGaussian

white noise. These results lead to very interesting findings concerning the per-

formance limit in nonGaussian cases, which will be discussed in Section 3.4.

3.2 CRLB for Sinusoids in Gaussian Noise

Let us begin with the case of finite sample sizes under the assumption that

{ǫt } is a zero-mean (real or complex) Gaussian process. Let us also assume that

the covariance matrix Rǫ of ǫ := [ǫ1, . . . ,ǫn]T may depend on an unknown auxil-

iary parameter η (for example, the variance of ǫt ) which is not a function of the

sinusoidal parameter θ. The problem is to find the CRLB for estimating the si-

nusoidal parameter θ in the presence of the auxiliary parameter η from a data

record y := [y1, . . . , yn]T that satisfies

y = x+ǫ, (3.2.1)

where x := [x1, . . . , xn]T is given by (2.1.1), (2.1.2), (2.1.5), or (2.1.7).

In the real case where x is given by (2.1.1) or (2.1.2), the following theorem can

be established. See Section 3.5 for a proof.
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Theorem 3.1 (CRLB for RSM). Let y be given by (3.2.1) with ǫ ∼ N(0,Rǫ). If x

takes the Cartesian form (2.1.1), then the CRLB for estimating θ := [θT
1 , . . . ,θT

q ]T

with θk := [Ak ,Bk ,ωk ]T can be expressed as

CRLB(θ) = (XT R−1
ǫ X)−1, (3.2.2)

where X := ∂x/∂θT = [X1, . . . ,Xq ], Xk := ∂x/∂θT
k = [x1k ,x2k ,x3k ], and



















x1k := [cos(ωk ), . . . ,cos(ωk n)]T ,

x2k := [sin(ωk ), . . . , sin(ωk n)]T ,

x3k :=−Ak [sin(ωk ), . . . ,n sin(ωk n)]T

+Bk [cos(ωk ), . . . ,n cos(ωk n)]T .

(3.2.3)

If x takes the polar form (2.1.2), then the CRLB for estimating θ := [θT
1 , . . . ,θT

q ]T

with θk := [Ck ,φk ,ωk ]T can be expressed as (3.2.2) with the xjk defined by











x1k := [cos(ωk +φk ), . . . ,cos(ωk n +φk )]T ,

x2k :=−Ck [sin(ωk +φk ), . . . , sin(ωk n +φk )]T ,

x3k :=−Ck [sin(ωk +φk ), . . . ,n sin(ωk n +φk )]T .

(3.2.4)

Similarly, the following theorem can be obtained for the complex case where

x is given by (2.1.5) or (2.1.7). See Section 3.5 for a proof.

Theorem 3.2 (CRLB for CSM). Let y be given by (3.2.1) with ǫ ∼ Nc (0,Rǫ). If x

takes the Cartesian form (2.1.5), then the CRLB for estimating θ := [θT
1 , . . . ,θT

p ]T

with θk := [Ak ,Bk ,ωk ]T can be expressed as

CRLB(θ) = 1
2

{ℜ(XH R−1
ǫ X)}−1, (3.2.5)

where X := ∂x/∂θT = [X1, . . . ,Xp ], Xk := ∂x/∂θT
k = [x1k ,x2k ,x3k ], and











x1k := [exp(iωk ), . . . ,exp(iωk n)}]T ,

x2k :=−i x1k ,

x3k := i (Ak − i Bk )[exp(iωk ), . . . ,n exp(iωk n)]T .

(3.2.6)

If x takes the polar form (2.1.7), then the CRLB in (3.2.5) remains valid for esti-

mating θ := [θT
1 , . . . ,θT

p ]T with θk := [Ck ,φk ,ωk ]T , provided the xjk are given by











x1k := [exp{i (ωk +φk )}, . . . ,exp{i (ωk n +φk )}]T ,

x2k := iCk x1k ,

x3k := iCk [exp{i (ωk +φk )}, . . . ,n exp{i (ωk n +φk )}]T .

(3.2.7)
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Remark 3.3 The Jacobian matrix of the function that transforms the Cartesian

parameter {Ak ,Bk ,ωk } into the polar parameter {Ck ,φk ,ωk } takes the form

Jk :=







Ak /Ck Bk /Ck 0

Bk /C 2
k −Ak /C 2

k 0

0 0 1






. (3.2.8)

Let ΣP and ΣC denote the CRLB in (3.2.2) or (3.2.5) for the polar and Cartesian

parameters, respectively. Then, we can write

ΣP = JΣC JT ,

where J := diag(J1, . . . ,Jq ) for the RSM and J := diag(J1, . . . ,Jp ) for the CSM.

To gain some insights from these results, consider the following examples.

Example 3.1 (Single Complex Sinusoid in Gaussian White Noise: Cartesian). Let

x be given by the Cartesian CSM (2.1.5) with p = 1 and let ǫ ∼ Nc (0,σ2I). By

Theorem 3.2, the CRLB for estimating θ := [A1,B1,ω1]T takes the form

CRLB(θ) = 1
2
σ2{ℜ(XH X)}−1, (3.2.9)

where X := [x11,x21,x31] is given by (3.2.6). It is easy to verify that

xH
11x11 = xH

21x21 = n, xH
11x21 =−i xH

11x11 =−i n, xH
11x31 = i (A1 − i B1)

n
∑

t=1

t ,

xH
21x31 = i xH

11x31 =−(A1 − i B1)
n
∑

t=1

t , xH
31x31 = (A2

1 +B 2
1 )

n
∑

t=1

t 2.

Therefore,

ℜ(XH X) =







n 0 B1
∑

t

0 n −A1
∑

t

B1
∑

t −A1
∑

t (A2
1 +B 2

1 )
∑

t 2





 . (3.2.10)

Because
∑

t = 1
2

n(n +1),
∑

t 2 = 1
6

n(n +1)(2n +1), and C 2
1 = A2

1 +B 2
1 , we obtain

CRLB(θ) =
1

γ1



















1

2n
A2

1 +
2n +1

n(n −1)
B 2

1 −
3(n +1)

2n(n −1)
A1B1 −

3

n(n −1)
B1

2n +1

n(n −1)
A2

1 +
1

2n
B 2

1

3

n(n −1)
A1

symmetric
6

n(n2 −1)



















,

(3.2.11)

where γ1 :=C 2
1 /σ2 is the signal-to-noise ratio (SNR) of the complex sinusoid. 3
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Example 3.2 (Single Complex Sinusoid in Gaussian White Noise: Polar). Let x

be given by the polar CSM (2.1.7) with p = 1 and let ǫ ∼ Nc (0,σ2I). Then, by

Theorem 3.2, the CRLB for estimating θ := [C1,φ1,ω1]T takes the form (3.2.9) with

X := [x11,x21,x31] given by (3.2.7). Observe that

xH
11x11 = n, xH

11x21 = iC1xH
11x11 = iC1n, xH

11x31 = iC1

n
∑

t=1

t ,

xH
21x21 =C 2

1 n, xH
21x31 =−iC1xH

11x31 =C 2
1

n
∑

t=1

t , xH
31x31 =C 2

1

n
∑

t=1

t 2.

Therefore,

ℜ(XH X) =







n 0 0

0 C 2
1 n C 2

1

∑

t

0 C 2
1

∑

t C 2
1

∑

t 2






. (3.2.12)

Straightforward calculation yields

CRLB(θ) =
1

γ1



















1

2n
C 2

1 0 0

0
2n +1

n(n −1)
−

3

n(n −1)

0 −
3

n(n −1)

6

n(n2 −1)



















, (3.2.13)

where γ1 :=C 2
1 /σ2 is the SNR of the complex sinusoid. 3

As can be seen from Examples 3.1 and 3.2, the CRLB for the frequency param-

eter in both models remains the same and depends solely on the SNR and the

sample size. The CRLB under the polar CSM (2.1.7) takes a much simpler form

than the CRLB under the Cartesian CSM (2.1.5). In particular, the amplitude is de-

coupled with the frequency and the phase in (3.2.13). Moreover, because (3.2.13)

does not depend on the phase of the sinusoid, it remains valid when the phase

is a random variable. This can be justified by first conditioning on the phase to

obtain Cov(θ̂|φ1) ≥ CRLB(θ) and then taking the expected value on both sides

with respect to φ1 to get Cov(θ̂) = E {Cov(θ̂|φ1)} ≥ CRLB(θ). The ability to accom-

modate random phase is the major advantage of the polar system.

For large n, the CRLB for the amplitude or phase parameters takes the form

O (n−1), but the CRLB for the frequency parameter takes the form O (n−3). This

indicates that the frequency can be estimated with potentially much higher ac-

curacy than the amplitude and the phase.

The higher rate of accuracy for frequency estimation may seem surprising to

some who are accustomed to the usual O (n−1) rate for parameter estimation.
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An intuitive explanation of this phenomenon can be obtained by examining the

sensitivity of the sinusoidal model to its parameters. It follows from (2.1.7) that

|d xt | = |dCk |, |d xt | =Ck |dφk |, |d xt | = tCk |dωk |.

These expressions reveal that the error in xt caused by an amplitude or phase

offset remains constant over time but the error caused by a frequency offset

grows linearly with time t . This means that the sinusoidal signal is more sen-

sitive to the frequency offset than the amplitude or phase offset. As a result,

an error in frequency estimation will be amplified much more strongly than the

same amount of error in amplitude or phase estimation, sending a message for

further improvement on frequency estimation.

The next example illustrates the interaction among multiple sinusoids in the

CRLB which is absent in Examples 3.1 and 3.2.

Example 3.3 (Two Complex Sinusoids in Gaussian White Noise). Let x be given

by the polar CSM (2.1.7) with p = 2 and let ǫ ∼ Nc (0,σ2I). In this case, θk :=
[Ck ,φk ,ωk ]T , θ = [θT

1 ,θT
2 ]T , and X = [X1,X2], where Xk := [x1k ,x2k ,x3k ] is given by

(3.2.7). As in Example 3.2, it is easy to show that

ℜ(XH
1 X1) = M11, ℜ(XH

2 X2) = M22,

where Mkk takes the form (3.2.12) with Ck in place of C1. Similarly,

ℜ(XH
1 X2) = M12, ℜ(XH

2 X1) = M21,

where

Mkk ′ :=









∑

ckk ′ (t ) Ck ′
∑

skk ′ (t ) Ck ′
∑

t skk ′ (t )

−Ck
∑

skk ′ (t ) CkCk ′
∑

ckk ′ (t ) CkCk ′
∑

tckk ′ (t )

−Ck
∑

t skk ′ (t ) CkCk ′
∑

tckk ′ (t ) CkCk ′
∑

t 2ckk ′ (t )









, (3.2.14)

with ckk ′ (t ) := cos{dkk ′ (t )}, skk ′ (t ) := sin{dkk ′ (t )}, and dkk ′ (t ) := (ωk −ωk ′ )t +φk −
φk ′ . According to Theorem 3.2,

CRLB(θ) =
1

2
σ2

[

M11 M12

M21 M22

]−1

. (3.2.15)

Moreover, using the second matrix inversion formula in Lemma 12.4.1, the CRLB

for estimating θ1 can be expressed as

CRLB(θ1) = 1
2
σ2(M11 −M12M−1

22 M21)−1 ≥ 1
2
σ2M−1

11 , (3.2.16)

where the inequality is due to the fact that M12M−1
22 M21 is nonnegative definite

and hence M11 − M12M−1
22 M21 ≤ M11. Note that the lower bound in (3.2.16) is



§3.2. CRLB for Sinusoids in Gaussian Noise 45

nothing but the CRLB in Example 3.2 for estimating θ1 in the absence of the sec-

ond sinusoid. This means that the presence of the other sinusoid can raise the

CRLB for estimating θ1.

Similarly, it can be shown that (3.2.15) remains valid for estimating the Carte-

sian parameters θk := [Ak ,Bk ,ωk ]T except that Xk is given by (3.2.6) and hence

Mkk ′ =ℜ









∑

ekk ′ (t ) −i
∑

ekk ′ (t ) iβk ′
∑

tekk ′ (t )

i
∑

ekk ′ (t )
∑

ekk ′ (t ) −βk ′
∑

tekk ′ (t )

−iβk
∑

tekk ′ (t ) −βk
∑

tekk ′ (t ) β∗
k βk ′

∑

t 2ekk ′ (t )









, (3.2.17)

where ekk ′ (t ) := exp{i (ωk ′ −ωk )} and βk := Ak − i Bk .

In general, for estimating p complex sinusoids in Gaussian white noise,

CRLB(θ) = 1
2
σ2M−1,

where M := [Mkk ′ ] (k,k ′ = 1, . . . , p), with Mkk ′ given by (3.2.14) or (3.2.17). 3

Example 3.3 shows that the CRLB for multiple sinusoids is generally larger than

the corresponding CRLB for a single sinusoid. This can be attributed entirely to

the interference among multiple sinusoids. Moreover, unlike the CRLB for a sin-

gle complex sinusoid, the CRLB for multiple complex sinusoids depends on the

frequency as well as the phase of the sinusoids. The dependency is through the

functions dkk ′ (t ) (k 6= k ′) which are determined solely by the frequency differ-

ence ωk −ωk ′ and the phase difference φk −φk ′ .

Numerical studies in [89] and [317] demonstrate that the CRLB for two com-

plex sinusoids becomes much higher than the corresponding CRLB for a single

complex sinusoid as the frequency separation ∆ := |ω1 −ω2| falls below 2π/n.

This is an indication of increased difficulty in estimating closely spaced frequen-

cies. Moreover, because a real sinusoid with frequency ω1 ∈ (0,π) can be regarded

as two complex conjugate sinusoids with frequencies ω1 and ω2 := −ω1, the in-

creased difficulty also applies to the estimation of low-frequency real sinusoids.

The same is true for real sinusoids with frequencies near π. Further analysis of

the CRLB for closely spaced frequencies is provided later in Section 3.3.

Let us consider the computation of the CRLB under colored noise. To be more

specific, let us focus on the real case for which the CRLB equals (XT R−1
ǫ X)−1 by

Theorem 3.1. Observe that direct calculation of the CRLB requires the inversion

of the n-by-n matrix Rǫ, which can be burdensome when n is large. The burden

can be reduced considerably if we use the Levinson-Durbin algorithm in Propo-

sition 2.8 to compute XT R−1
ǫ X without explicitly inverting Rǫ.

According to Proposition 2.8, R−1
ǫ = UD−1UH , where D := diag(σ2

0,σ2
1, . . . ,σ2

n−1)

and U := [ϕ∗
t−1,t−s ] (s, t = 1, . . .n; ϕt−1,t−s := 0 for s > t and ϕt−1,0 := 1). Observe

that D and U can be computed recursively from Rǫ. Now, let

zjk := [zjk (1), . . . , zjk (n)]T := UH xjk ( j = 1,2,3).
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Because UH = [ϕs−1,s−t ] (s, t = 1, . . . ,n), we have

zjk (t ) =
t−1
∑

u=0

ϕt−1,u xjk (t −u) (t = 1, . . . ,n). (3.2.18)

Moreover, let Zk := [z1k ,z2k ,z3k ] = UH Xk and Z := [Z1, . . . ,Zq ] = UH X. Then,

XH R−1
ǫ X = XH UD−1UH X = ZH D−1Z = [Ikk ′ ] (k,k ′ = 1, . . . , q), (3.2.19)

where

Ikk ′ := ZH
k D−1Zk ′ = [zH

jk D−1zj ′k ′ ] ( j , j ′ = 1,2,3), (3.2.20)

zH
jk D−1zj ′k ′ =

n
∑

t=1

z∗
jk (t )zj ′k ′ (t )/σ2

t−1 ( j , j ′ = 1,2,3). (3.2.21)

Equations (3.2.18)–(3.2.21), together with the recursion in Proposition 2.8, con-

stitute a fast algorithm for computing XH R−1
ǫ X. Note that if {ǫt } is an AR process,

then the matrices Ikk ′ can be obtained directly from the AR parameters, rather

than the covariance matrix Rǫ, by using the algorithm in Proposition 2.9.

Finally, let us investigate an important special case where the signal frequen-

cies are known but the amplitude and phase parameters are unknown. In this

case, it suffices to use the CRLB given by the following corollary for the ampli-

tude and phase estimation. The result is stated without proof, as it is a direct

result of Theorem 3.1 for the RSM and of Theorem 3.2 for the CSM.

Corollary 3.1 (CRLB for Amplitude and Phase Parameters). Let y be given by

(3.2.1). If ǫ ∼ N(0,Rǫ), then, the CRLB for estimating θ := [A1,B1, . . . , Aq ,Bq ]T in

the RSM (2.1.1) or θ := [C1,φ1, . . . ,Cq ,φq ]T in the RSM (2.1.2) can be expressed as

(3.2.2) with Xk := [x1k ,x2k ] given by (3.2.3) or (3.2.4), respectively. If ǫ∼ Nc (0,Rǫ),

then the CRLB for estimating θ := [A1,B1, . . . , Ap ,Bp ]T in the CSM (2.1.5) or θ :=
[C1,φ1, . . . ,Cp ,φp ]T in the CSM (2.1.7) takes the form (3.2.5) with Xk := [x1k ,x2k ]

given by (3.2.6) or (3.2.7), respectively.

Remark 3.4 In the complex case, it is sometimes convenient to arrange the am-

plitude parameters such that

θ := [A1, . . . , Ap ,B1, . . . ,Bp ]T = [ℜ(β)T ,−ℑ(β)T ]T ,

where βk := Ak − i Bk . For estimating this parameter, the expression in (3.2.5)

remains true except that X := [F,−i F], where F := [f(ω1), . . . , f(ωp )] and f(ωk ) :=
[exp(iωk ), . . . ,exp(i nωk )]T = x1k . In the special case of Gaussian white noise, it

reduces to CRLB(θ) = 1
2
σ2

Σ, where

Σ :=
[

ℜ(FH F) ℑ(FH F)

−ℑ(FH F) ℜ(FH F)

]−1

=
[

ℜ{(FH F)−1} ℑ{(FH F)−1}

−ℑ{(FH F)−1} ℜ{(FH F)−1}

]

.

The second expression can be verified by simple matrix algebra.
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The following example illustrates this result.

Example 3.4 (CRLB for Amplitude Parameters: Single Complex Sinusoid in Gaus-

sian White Noise). Consider the complex case where ǫ ∼ Nc (0,σ2I) and p = 1.

Because f H(ω1)f(ω1) = n, it follows from Remark 3.4 that the CRLB for estimating

θ := [A1,B1]T can be expressed as CRLB(θ) = 1
2

n−1σ2I. 3

It is interesting to compare this example with Example 3.1 where the signal

frequency is unknown and jointly estimated with the amplitude parameters. In

Example 3.1, the CRLB for estimating A1, which is the (1,1) entry of the matrix

in (3.2.11), can be different from that for estimating B1, which is the (2,2) entry.

Furthermore, it is easy to verify that the CRLB for estimating A1 is strictly less

than the CRLB for estimating B1 if |A1| > |B1|, regardless of the sample size and

the SNR. Conversely, the CRLB for estimating B1 is strictly less than the CRLB for

estimating A1 if |B1| > |A1|. In other words, the larger of the two parameters has

a smaller CRLB. This is in contrast with Example 3.4 where the signal frequency

is known. In Example 3.4, the CRLB is the same for both A1 and B1 regardless of

their magnitude. Moreover, in the case of A1 = B1 6= 0 and large n, the CRLB in

Example 3.1 for estimating the amplitude parameters is approximately equal to

2.5 times the CRLB in Example 3.4; in the case of A1 = 0 and B1 6= 0, the CRLB in

Example 3.1 for estimating A1 is approximately 4 times the CRLB in Example 3.4.

These comparisons illustrate the increased difficulty in estimating the amplitude

parameters when the frequencies are unknown.

3.3 Asymptotic CRLB for Sinusoids in Gaussian Noise

As demonstrated by Example 3.3, the interaction among the sinusoids makes

it difficult to grasp the full implication of the CRLB for multiple sinusoids. This is

true even in the simple case of a single real sinusoid. However, when the sample

size is large, the CRLB can be approximated by much simpler expressions.

Let us begin by continuing the discussion in Examples 3.1 and 3.2.

Example 3.5 (Single Complex Sinusoid in Gaussian White Noise). Consider the

case discussed in Example 3.1. let Kn := diag(n1/2,n1/2,n3/2). Then, for large n,

the CRLB in (3.2.11) for estimating θ = θ1 := [A1,B1,ω1]T can be expressed as

CRLB(θ) = K−1
n {Γ(θ)+O (n−1)}K−1

n , (3.3.1)

where

Γ(θ) := 1
2
γ−1

1 ΛC(θ1)
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and

ΛC(θk ) :=









A2
k +4B 2

k −3Ak Bk −6Bk

−3Ak Bk 4A2
k +B 2

k 6Ak

−6Bk 6Ak 12









. (3.3.2)

Similarly, for the case discussed in Example 3.2, the CRLB in (3.2.13) for estimat-

ing θ = θ1 := [C1,φ1,ω1]T can be expressed as (3.3.1) with

Γ(θ) := 1
2
γ−1

1 ΛP(θ1),

where

ΛP(θk ) :=







C 2
k 0 0

0 4 −6

0 −6 12






. (3.3.3)

In both cases, γ1 :=C 2
1 /σ2 is the SNR of the complex sinusoid. 3

The matrix K−1
n Γ(θ)K−1

n in (3.3.1) is called the asymptotic CRLB or ACRLB. For

any unbiased estimator θ̂ of θ, it follows from (3.3.1) that

Cov(Kn θ̂) = KnCov(θ̂)Kn ≥ KnCRLB(θ)Kn =Γ(θ)+O (n−1).

Hence the matrix Γ(θ) serves as an asymptotic lower bound for the covariance

matrix of the normalized estimator Kn θ̂. The different orders of magnitude in

the CRLB are made very clear through the normalizing factors in Kn : for ampli-

tude and phase estimation, the normalizing factor is equal to n1/2; for frequency

estimation, it is equal to n3/2. When the normalizing factors are self-evident, we

may also refer to Γ(θ) as the ACRLB.

Next, consider the more interesting case in Example 3.3. Because two sinu-

soids are involved in this example, the degree of frequency separation becomes

a key factor in determining the ACRLB. The frequency separation is meaningful

only if it is measured with respect to the sample size n. To facilitate this analysis,

let us assume that the frequencies may depend on n with the possibility that the

distance between them approaches zero as n →∞.

Example 3.6 (Two Complex Sinusoids in Gaussian White Noise). In Example 3.3

for the polar parameters, define ∆ := min{|ω1 −ω2|,2π−|ω1 −ω2|} and assume

lim
n→∞

n∆=∞. (3.3.4)

By Lemma 12.1.4, the matrix M12, defined by (3.2.14), can be expressed as

M12 =









O (∆−1) O (∆−1) O (n∆−1)

O (∆−1) O (∆−1) O (n∆−1)

O (n∆−1) O (n∆−1) O (n2
∆
−1)









= KnO (n−1
∆
−1)Kn .
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Similarly, M21 = KnO (n−1
∆
−1)Kn . Moreover, because Mkk takes the form (3.2.12)

with Ck in place of C1, it follows that

Mkk = Kn{Wk +O (n−1)}Kn ,

where

Wk :=









1 0 0

0 C 2
k

1
2

C 2
k

0 1
2

C 2
k

1
3

C 2
k









. (3.3.5)

By matrix algebra, we obtain

W−1
k = (1/C 2

k )ΛP(θk ).

Let Γ(θk ) := 1
2
σ2W−1

k = 1
2
γ−1

k ΛP(θk ), where γk := C 2
k /σ2. Then, the CRLB for esti-

mating θ := [θT
1 ,θT

2 ]T with θk := [Ck ,φk ,ωk ]T can be expressed as

CRLB(θ) =
[

K−1
n 0

0 K−1
n

]{[

Γ(θ1) 0

0 Γ(θ2)

]

+O (n−1
∆
−1)

}[

K−1
n 0

0 K−1
n

]

= K−1{Γ(θ)+O (n−1
∆
−1)}K−1, (3.3.6)

where K := diag(Kn ,Kn) and Γ(θ) = diag{Γ(θ1),Γ(θ2)}.

The CRLB for the Cartesian parameters θk := [Ak ,Bk ,ωk ]T also takes the form

(3.3.6) except that Γ(θk ) = 1
2
γ−1

k ΛC(θk ). Indeed, by Lemma 12.1.5, Mkk ′ defined

by (3.2.17) takes the form Mkk ′ = KnO (n−1
∆
−1)Kn for k 6= k ′. Moreover, it follows

from (3.2.10) that Mkk = Kn{Wk +O (n−1)}Kn , where

Wk :=









1 0 1
2

Bk

0 1 − 1
2

Ak

1
2

Bk − 1
2

Ak
1
3

(A2
k +B 2

k )









. (3.3.7)

Because

W−1
k = (1/C 2

k )ΛC(θk ),

we obtain (3.3.6) with Γ(θk ) := 1
2
σ2W−1

k = 1
2
γ−1

k ΛC(θk ) and γk :=C 2
k /σ2. 3

This example shows that for large sample sizes the CRLB for two sinusoids

is decoupled so that the CRLB obtained for single complex sinusoids in Exam-

ples 3.1 and 3.5 can be used separately to approximate the CRLB for each sinu-

soid. The key prerequisite for the decoupling is the frequency separation condi-

tion (3.3.4). It is required to ensure that K−1
n Mkk ′K−1

n → 0 as n → ∞ for k 6= k ′.

For finite sample sizes, the accuracy of the approximation depends on ∆. In fact,
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Figure 3.1. Plot of n3CRLB(ω1) as a function of n in the case of two unit-amplitude

complex sinusoids in Gaussian white noise (ω1 = 2π×0.1, ω2 =ω1 +∆, φ1 = 0, φ2 = π/2,

γ1 = γ2 = 1) under different frequency separation conditions of the form ∆= 2π/nd . Solid

line, d = 0.25; dashed line, d = 0.5; dotted line, d = 0.7. The dash-dotted line depicts the

normalized single-sinusoid CRLB which approaches its asymptotic value 6 as n grows.

if n∆ does not approach infinity fast enough as n increases, the approximation

can be very poor. This point is illustrated by the example shown in Figure 3.1.

In this example, the frequency separation parameter ∆ takes the form ∆ =
2π/nd with d = 0.25,0.5,0.7, so the condition (3.3.4) is always satisfied. But, as

we can see from Figure 3.1, the accuracy of the single-sinusoid CRLB as an ap-

proximation to the exact CRLB deteriorates rapidly when d gets closer to unity.

This result also serves as a confirmation to the earlier comment on Example 3.5

that the CRLB increases rapidly as frequency separation decreases. Note that the

oscillations of the CRLB as a function of the sample size are due entirely to the

interplay between the sample size and the phases of the sinusoids.

Now, let us investigate the case of real sinusoids through two examples.

Example 3.7 (Single Real Sinusoid in Gaussian White Noise: Cartesian). Let x be

given by (2.1.1) with q = 1 and let ǫ ∼ N(0,σ2I). By Theorem 3.1, the CRLB for

estimating θ := [A1,B1,ω1]T takes the form CRLB(θ) = σ2(XT X)−1, where X :=
[x11,x21,x31] is given by (3.2.3). Let ct := cos(ω1t ) and st := sin(ω1t ). Then,

XT X =









∑

c2
t

∑

ct st
∑

t (−A1ct st +B1c2
t )

∑

s2
t

∑

t (−A1s2
t +B1ct st )

symmetric
∑

t 2(−A1st +B1ct )2









. (3.3.8)

This matrix is not as simple as its counterpart (3.2.10) for a single complex sinu-

soid. Although an explicit expression of the CRLB can be obtained by inverting

the matrix, let us derive a simpler expression for large sample sizes.
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Toward that end, assume that ω1 is not too close to 0 or π in the sense that

∆ := min{ω1,π−ω1} satisfies (3.3.4). Then, as n →∞, Lemma 12.1.5 gives























































n
∑

t=1

t r ct st =O (nr
∆
−1) (r = 0,1,2),

n
∑

t=1

c2
t = 1

2 n +O (∆−1),
n
∑

t=1

s2
t = 1

2 n +O (∆−1),

n
∑

t=1

tc2
t = 1

4
n2 +O (n∆−1),

n
∑

t=1

t s2
t = 1

4
n2 +O (n∆−1),

n
∑

t=1

t 2c2
t = 1

6
n3 +O (n2

∆
−1),

n
∑

t=1

t 2s2
t = 1

6
n3 +O (n2

∆
−1).

(3.3.9)

Therefore, (3.3.8) can be written as

XT X = Kn{ 1
2 W1 +O (n−1

∆
−1)}Kn ,

where W1 takes the form (3.3.7) with k = 1. This result leads to

CRLB(θ) =σ2(XT X)−1 = K−1
n {Γ(θ)+O (n−1

∆
−1)}K−1

n , (3.3.10)

where Γ(θ) := 2σ2W−1
1 = γ−1

1 ΛC(θ1), with ΛC(θ1) given by (3.3.2) and with γ1 :=
1
2

(A2
1 +B 2

1 )/σ2 being the SNR of the real sinusoid. 3

Example 3.8 (Single Real Sinusoid in Gaussian White Noise: Polar). Let x be given

by (2.1.2) with q = 1 and let ǫ∼ N(0,σ2I). By Theorem 3.1, the CRLB for estimat-

ing θ := [C1,φ1,ω1]T is CRLB(θ) =σ2(XT X)−1, where X := [x11,x21,x31] is given by

(3.2.4). Let ct := cos(ω1t +φ1) and st := sin(ω1t +φ1). Then,

XT X =









∑

c2
t −C1

∑

ct st −C1
∑

tct st

C 2
1

∑

s2
t C 2

1

∑

t s2
t

symmetric C 2
1

∑

t 2s2
t









. (3.3.11)

Under the assumption that ∆ := min{ω1,π−ω1} satisfies (3.3.4), the results in

(3.3.9) remain valid for ct = cos(ω1t +φ1) and st = sin(ω1t +φ1). Substituting

these expressions in (3.3.11) yields

XT X = Kn{ 1
2

W1 +O (n−1
∆
−1)}Kn ,

where W1 is defined by (3.3.5) for k = 1. Therefore, we obtain (3.3.10) with Γ(θ) :=
2σ2W−1

1 = γ−1
1 ΛP(θ1), where ΛP(θ1) is defined by (3.3.3) and γ1 := 1

2
C 2

1 /σ2 is the

SNR of the real sinusoid. 3

The following theorem summarizes the results for the ACRLB in the general

case of multiple real or complex sinusoids. Given Examples 3.5–3.8, it suffices to

state the theorem without proof.
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Theorem 3.3 (Asymptotic CRLB: Gaussian White Noise). Let y be given by (3.2.1)

with x satisfying (2.1.1), (2.1.2), (2.1.5), or (2.1.7), and with ǫ ∼ N(0,σ2I) in the

real case and ǫ∼ Nc (0,σ2I) in the complex case. Assume that (3.3.4) is satisfied by

∆ :=
{

mink 6=k ′ {|ωk −ωk ′ |,ωk ,π−ωk } for RSM,

mink 6=k ′ {|ωk −ωk ′ |,2π−|ωk −ωk ′ |} for CSM.
(3.3.12)

Let θk ∈R
3 denote the parameters of the kth sinusoid and define

Γ(θk ) :=



























γ−1
k ΛC(θk ) for Cartesian RSM (2.1.1),

γ−1
k ΛP(θk ) for polar RSM (2.1.2),

1
2
γ−1

k ΛC(θk ) for Cartesian CSM (2.1.5),

1
2
γ−1

k ΛP(θk ) for polar CSM (2.1.7),

(3.3.13)

where ΛC(θk ) and ΛP(θk ) are given by (3.3.2) and (3.3.3), respectively, and where

γk := 1
2

C 2
k /σ2 in the real case and γk :=C 2

k /σ2 in the complex case. Then, as n →
∞, the CRLB for estimating θ := [θT

1 , . . . ,θT
r ]T (r := q for the RSM and r := p for the

CSM) can be expressed as

CRLB(θ) = K−1{Γ(θ)+O (n−1
∆
−1)}K−1,

where Γ(θ) := diag{Γ(θ1), . . . ,Γ(θr )} and K := diag(Kn , . . . ,Kn).

Next, we consider the ACRLB under the condition of Gaussian colored noise

with continuous spectrum. In this case, the following theorem can be estab-

lished as a generalization of Theorem 3.3. See Section 3.5 for a proof.

Theorem 3.4 (Asymptotic CRLB: Gaussian Colored Noise). Let the conditions of

Theorem 3.3 be satisfied except that {ǫt } is a stationary real or complex Gaussian

process with mean zero and SDF fǫ(ω), where fǫ(ω) is a continuous function with

f0 := minω fǫ(ω) > 0. Then, as n →∞, the CRLB for estimating θ defined in Theo-

rem 3.3 can be expressed as

CRLB(θ) = K−1{Γ(θ)+O(1)}K−1, (3.3.14)

where the matrix Γ(θ) is the same as in Theorem 3.3 except that γk in (3.3.13)

is defined with fǫ(ωk ) in place of σ2, i.e., γk := 1
2

C 2
k / fǫ(ωk ) in the real case and

γk :=C 2
k / fǫ(ωk ) in the complex case.

Theorem 3.4 reveals that the ACRLB depends on the noise spectrum solely

through its values at the signal frequencies, so the noise spectrum elsewhere has

zero contribution to the asymptotic performance limit. An intuitive explanation

for this interesting result is as follows: Because the sinusoids are extremely well

localized in the frequency domain, any reasonable frequency estimator, let alone
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Figure 3.2. (a) Plot of n3CRLB(ω1) as a function of n in the case of a single real si-

nusoid in Gaussian colored noise with SDF fǫ(ω) = 1/|
∑∞

j=0
ϕj exp(−i jω)|2, where ϕj :=

( j +1)−d cos(jω1), ω1 = 2π×0.1, and γ1 = 1. Solid line, d = 3; dashed line, d = 1.5; dotted

line, d = 1.1. The dash-dotted line depicts the asymptotic value of the normalized CRLB.

(b) Plot of fǫ(ω) as a function of the normalized frequency f :=ω/(2π).

the optimal ones, must have the capability of suppressing the noise outside a

small neighborhood of the signal frequencies. Furthermore, as the sample size

grows, the small neighborhood must shrink toward zero in order to suppress the

noise most effectively. Therefore, in the limit, only the values of the noise spec-

trum at the signal frequencies have impact on the estimation accuracy.

It is worth pointing out that although the continuity of the noise spectrum

suffices for the validity of Theorem 3.4, the degree of smoothness of the noise

spectrum plays an important role in determining the accuracy of the ACRLB as

an approximation to the CRLB for finite sample sizes. To demonstrate this point,

consider the example shown in Figure 3.2.

In this example, the noise is a linear process of the form

ǫt =
∞
∑

j=−∞
ψj ζt−j , (3.3.15)

where
∑

|ψj | <∞ and {ζt } ∼ IID(0,σ2). By Proposition 2.4,

fǫ(ω) :=σ2|Ψ(ω)|2,

where Ψ(ω) :=
∑

ψj exp(−i jω). Take {ζt } ∼ GWN(0,1) and Ψ(ω) = 1/Φ(ω), where

Φ(ω) :=
∑∞

j=0ϕj exp(−i jω) with ϕj := ( j + 1)−d cos(0.2πj ). In other words, the

noise is a special Gaussian AR(∞) process. The smoothness of the noise spec-

trum is controlled by the parameter d which takes values 1.1, 1.5, and 3. As



54 Chapter 3. Cramér-Rao Lower Bound

shown in Figure 3.2(b), the noise spectrum is very smooth with d = 3 and be-

comes less smooth at the signal frequency ω1 = 2π× 0.1 as d decreases. The

exact CRLB shown in Figure 3.2(a) is computed directly from {ϕj } by using the al-

gorithm in Proposition 2.9 and an AR(6000) truncation of the AR(∞) noise spec-

trum. As we can see, the ACRLB, which equals 12, is an excellent approximation

to the exact CRLB when d = 3, even for small sample sizes. But, as d decreases,

especially when d = 1.1, it becomes poorer even for very large sample sizes. A

similar, but less dramatic, effect is also observed (not shown) when the noise is

an AR(2) process with a sharp spectral peak located at the signal frequency.

As an important special case, the ACRLB for estimating the amplitude and

phase parameters can be easily derived from Theorem 3.3 and Theorem 3.4. The

following assertion is stated without proof.

Corollary 3.2 (Asymptotic CRLB for the Amplitude and Phase Parameters). Let

the conditions of Theorem 3.3 or 3.4 be satisfied. For the Cartesian RSM and CSM,

let θk := [Ak ,Bk ]T . For the polar RSM and CSM, let θk := [Ck ,φk ]T . Define

Γ(θk ) :=



























ΓC(θk ) for Cartesian RSM (2.1.1),

ΓP(θk ) for polar RSM (2.1.2),

1
4
ΓC(θk ) for Cartesian CSM (2.1.5),

1
4
ΓP(θk ) for polar CSM (2.1.7),

(3.3.16)

where

ΓC(θk ) := diag{2 fǫ(ωk ),2 fǫ(ωk )},

ΓP(θk ) := diag{2 fǫ(ωk ),2 fǫ(ωk )/C 2
k }.

Then, as n →∞, the CRLB for estimating θ := [θT
1 , . . . ,θT

r ]T (r := q for the RSM and

r := p for the CSM) can be expressed as

CRLB(θ) = n−1{Γ(θ)+O(1)}, (3.3.17)

where Γ(θ) := diag{Γ(θ1), . . . ,Γ(θr )}.

Remark 3.5 By comparing Corollary 3.2 with Theorem 3.3 and Theorem 3.4, we

can see that the same remark we made at the end of Section 3.2 regarding the

CRLB for estimating the amplitude parameters (Ak ,Bk ) in the complex case ap-

plies to the ACRLB for estimating (Ak ,Bk ) in the real case.

So far, the signal frequencies are assumed to satisfy (3.3.4). It is under this con-

dition that the sinusoids become decoupled in Γ(θ) which takes a block-diagonal

form. In the remainder of this section, let us investigate a case where the condi-

tion (3.3.4) is not satisfied.


