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Preface

What began a long time ago as a comprehensive book on optimization of
queueing systems has evolved into two books: this one on optimal design and
a subsequent book (still in the works) on optimal control of queueing systems.

In this setting, “design” refers to setting the parameters of a queueing sys-
tem (such as arrival rates and service rates) before putting it into operation.
By contrast, in “control” problems the parameters are control variables in the
sense that they can be varied dynamically in response to changes in the state
of the system.

The distinction between design and control, admittedly, can be somewhat
artificial. But the available material had outgrown the confines of a single
book and I decided that this was as good a way as any of making a division.

Why look at design models? In principle, of course, one can always do
better by allowing the values of the decision variables to depend on the state
of the system, but in practice this is frequently an unattainable goal. For
example, in modern communication networks, real-time information about the
buffer contents at the various nodes (routers/switches) of the network would,
in principle, help us to make good real-time decisions about the routing of
messages or packets. But such information is rarely available to a centralized
controller in time to make decisions that are useful for the network as a whole.
Even if it were available, the combinatorial complexity of the decision problem
makes it impossible to solve even approximately in the time available. (The
essential difficulty with such systems is that the time scale on which the system
state is evolving is comparable to, or shorter than, the time scale on which
information can be obtained and calculations of optimal policies can be made.)
For these and other reasons, those in the business of analyzing, designing, and
operating communication networks have turned their attention more and more
to flow control, in which quantities such as arrival (e.g., packet-generation)
rates and service (e.g., transmission) rates are computed as time averages over
periods during which they may be reasonably expected to be constant (e.g.,
peak and off-peak hours) and models are used to suggest how these rates can
be controlled to achieve certain objectives. Since this sort of decision process
involves making decisions about rates (time averages) and not the behavior of
individual messages/packets, it falls under the category of what I call a design
problem. Indeed, many of the models, techniques, and results discussed in
this book were inspired by research on flow and routing control that has been
reported in the literature on communication networks.

Of course, flow control is still control in the sense that decision variables can

ix
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change their values in response to changes in the state of the system, but the
states in question are typically at a higher level, involving congestion averages
taken over time scales that are much longer than the time scale on which
such congestion measures as queue lengths and waiting times are evolving at
individual service facilities. For this reason, I believe that flow control belongs
under the broad heading of design of queueing systems.

I have chosen to frame the issues in the general setting of a queueing system,
rather than specific applications such as communication networks, vehicular
traffic flow, supply chains, etc. I believe strongly that this is the most appro-
priate and effective way to produce applicable research. It is a belief that is
consistent with the philosophy of the founders of operations research, who had
the foresight to see that it is the underlying structure of a system, not the
physical manifestation of that structure, that is important when it comes to
building and applying mathematical models.

Unfortunately, recent trends have run counter to this philosophy, as more
and more research is done within a particular application discipline and is
published in the journals of that discipline, using the jargon of that discipline.
The result has been compartmentalization of useful research. Important re-
sults are sometimes rediscovered in, say, the communication and computer
science communities, which have been well known for decades in, say, the
traffic-flow community.

I blame the research funding agencies, in part, for this trend. With all the
best intentions of directing funding toward “applications” rather than “the-
ory,” they have conditioned researchers to write grant proposals and papers
which purport to deal with specific applications. These proposals and papers
may begin with a detailed description of a particular application in which
congestion occurs, in order to establish the credibility of the authors within
the appropriate research community. When the mathematical model is intro-
duced, however, it often turns out to be the M/M/1 queue or some other old,
familiar queueing model, disguised by the use of a notation and terminology
specific to the discipline in which the application occurs.

Another of my basic philosophies has been to present the various models in
a unified notation and terminology and, as much as possible, in a unified ana-
lytical framework. In keeping with my belief (expressed above) that queueing
theory, rather than any one or several of its applications, provides the appro-
priate modeling basis for this field, it is natural that I should have adopted
the notation and terminology of queueing theory. Providing a unified ana-
lytical framework was a more difficult task. In the literature optimal design
problems for queueing systems have been solved by a wide variety of analyt-
ical techniques, including classical calculus, nonlinear programming, discrete
optimization, and sample-path analysis. My desire for unity, together with
space constraints, led me to restrict my attention to problems that can be
solved for the most part by classical calculus, with some ventures into elemen-
tary nonlinear programming to deal with constraints on the design variables.
A side benefit of this self-imposed limitation has been that, although the book
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is mathematically rigorous (I have not shied away from stating results as the-
orems and giving complete proofs), it should be accessible to anyone with a
good undergraduate education in mathematics who is also familiar with el-
ementary queueing theory. The downside is that I have had to omit several
interesting areas of queueing design, such as those involving discrete decision
variables (e.g., the number of servers) and several interesting and powerful
analytical techniques, such as sample-path analysis. (I plan to include many
of these topics in my queueing control book, however, since they are relevant
also in that context.)

The emphasis in the book is primarily on qualitative rather than quanti-
tative insights. A recurring theme is the comparison between optimal designs
resulting from different objectives. An example is the (by-now-classical) result
that the individually optimal arrival rate is typically larger than the socially
optimal arrival rate.∗ This is a result of the fact that individual customers,
acting in self-interest, neglect to consider the external effect of their decision
to enter a service facility: the cost of increased congestion which their decision
imposes on other users (see, e.g., Section 1.2.4 of Chapter 1). As a general
principle, this concept is well known in welfare economics. Indeed, a major
theme of the research on queueing design has been to bring into the language
of queueing theory some of the important issues and qualitative results from
economics and game theory (the Nash equilibrium being another example).
As a consequence this book may seem to many readers more like an economics
treatise than an operations research text. This is intentional. I have always felt
that students and practitioners would benefit from an infusion of basic eco-
nomic theory in their education in operations research, especially in queueing
theory.

Much of the research reported in this book originated in vehicular traffic-
flow theory and some of it pre-dates the introduction of optimization into
queueing theory in the 1960s. Modeling of traffic flow in road networks has
been done mainly in the context of what someone in operations research might
call a “minimum-cost multi-commodity flow problem on a network with non-
linear costs”. As such, it may be construed as a subtopic in nonlinear pro-
gramming. An emphasis in this branch of traffic-flow theory has been on com-
putational techniques and results. Chapters 7 and 8 of this book, which deal
with networks of queues, draw heavily on the research on traffic-flow networks
(using the language and specific models from queueing theory for the behavior
of individual links/facilities) but with an emphasis on qualitative properties
of optimal solutions, rather than quantitative computational methods.

Although models for optimal design of queueing systems (using my broad
definition) have proliferated in the four decades since the field began, I was
surprised at how often I found myself developing new results because I could
not find what I wanted in the literature. Perhaps I did not look hard enough.
If I missed and/or unintentionally duplicated any relevant research, I ask for-

∗ But see Section 7.4.4 of Chapter 7 for a counterexample.
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bearance on the part of those who created it. The proliferation of research
on queueing design, together with the explosion of different application ar-
eas each with its own research community, professional societies, meetings,
and journals, have made it very difficult to keep abreast of all the important
research. I have tried but I may not have completely succeeded.

A word about the organization of the book: I have tried to minimize the use
of references in the text, with the exception of references for “classical” results
in queueing theory and optimization. References for the models and results
on optimal design of queues are usually given in an endnote (the final section
of the chapter), along with pointers to material not covered in the book.
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CHAPTER 1

Introduction to Design Models

Like the descriptive models in “classical” queueing theory, optimal design
models may be classified according to such parameters as the arrival rate(s),
the service rate(s), the interarrival-time and service-time distributions, and
the queue discipline(s). In addition, the queueing system under study may be
a network with several facilities and/or classes of customers, in which case
the nature of the flows of the classes among the various facilities must also be
specified.

What distinguishes an optimal design model from a traditional descriptive
model is the fact that some of the parameters are subject to decision and
that this decision is made with explicit attention to economic considerations,
with the preferences of the decision maker(s) as a guiding principle. The basic
distinctive components of a design model are thus:

1. the decision variables,

2. benefits and costs, and

3. the objective.

Decision variables may include, for example, the arrival rates, the service
rates, and the queue disciplines at the various service facilities. Typical benefits
and costs include rewards to the customers from being served, waiting costs
incurred by the customers while waiting for service, and costs to the facilities
for providing the service. These benefits and costs may be brought together
in an objective function, which quantifies the implicit trade-offs. For example,
increasing the service rate will result in less time spent by the customers
waiting (and thus a lower waiting cost), but a higher service cost. The nature
of the objective function also depends on the horizon (finite or infinite), the
presence or absence of discounting, and the identity of the decision maker
(e.g., the facility operator, the individual customer, or the collective of all
customers).

Our goal in this chapter is to provide a quick introduction to these ba-
sic components of a design model. We shall illustrate the effects of different
reward and cost structures, the trade-offs captured by different objective func-
tions, and the effects of combining different decision variables in one model. To
keep the focus squarely on these issues, we use only the simplest of descriptive
queueing models – primarily the classical M/M/1 model. By further restricting
attention to infinite-horizon problems with no discounting, we shall be able to
use the well-known steady-state results for these models to derive closed-form

1



2 INTRODUCTION TO DESIGN MODELS

expressions (in most cases) for the objective function in terms of the decision
variables. This will allow us to do the optimization with the simple and famil-
iar tools of differential calculus. Later chapters will elaborate on each of the
models introduced in this chapter, relaxing distributional assumptions and
considering more general cost and reward structures and objective functions.
These more general models will require more sophisticated analytical tools,
including linear and nonlinear programming and game theory.

We begin this chapter (Sections 1.1 and 1.2) with two simple examples
of optimal design of queueing systems. Both examples are in the context of
an isolated M/M/1 queue with a linear cost/reward structure, in which the
objective is to minimize the expected total cost or maximize the expected
net benefit per unit time in steady state. In the first example the decision
variable is the service rate and in the second, the arrival rate. The simple
probabilistic and cost structure makes it possible to use classical calculus to
derive analytical expressions for the optimal values of the design variables.

The next three sections consider problems in which more than one design
parameter is a decision variable. In Section 1.3, we consider the case where
both the arrival rate and service rate are decision variables. Here a simple
analysis based on calculus breaks down, since the objective function is not
jointly concave and therefore the first-order optimality conditions do not
identify the optimal solution. (This will be a recurring theme in our study of
optimal design models, and we shall explore it at length in later chapters.)
Section 1.4 revisits the problem of Section 1.2 – finding optimal arrival rates
– but now in the context of a system with two classes of customers, each with
its own reward and waiting cost and arrival rate (decision variable). Again
the objective function is not jointly concave and the first-order optimality
conditions do not identify the optimal arrival rates. Indeed, the only interior
solution to the first-order conditions is a saddle-point of the objective function
and is strictly dominated by both boundary solutions, in which only one class
has a positive arrival rate. Finally, in Section 1.5, we consider the simplest of
networks – a system of parallel queues in which each arriving customer must
be routed to one of several independent facilities, each with its own queue.

A final word before we start. In a design problem, the values of the decision
variables, once chosen, cannot vary with time nor in response to changes
in the state of the system (e.g., the number of customers present). Design
problems have also been called static control problems, in contrast to dynamic
control problems in which the decision variables can assume different values
at different times, depending on the observed state of the system. In the
literature a static control problem is sometimes called an open-loop control
problem, whereas a dynamic control problem is called a closed-loop control
problem. We shall simply use the term design for the former and control for
the latter type of problem.
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1.1 Optimal Service Rate

Consider an M/M/1 queue with arrival rate λ and service rate µ. That is,
customers arrive according to a Poisson process with parameter λ. There is a
single server, who serves customers one at a time according to a FIFO (First-
In-First-Out) queue discipline. Service times are independent of the arrival
process and i.i.d. with an exponential distribution with mean µ−1. Suppose
that λ is fixed, but µ is a decision variable.

Examples

1. A machine center in a factory: how fast a machine should we install?

2. A communication system: what should the transmission rate in a com-
munication channel be (e.g., in bits/sec.)?

Performance Measures and Trade-offs.
Typical performance measures are the number of customers in the system

(or in the queue) and the waiting time of a customer in the system (or in the
queue). If the system operates for a long time, then we might be interested
in the long-run average or the expected steady-state number in the system,
waiting time, and so forth. All these are measures of the level of congestion. As
µ increases, the congestion (as measured by any of these quantities) decreases.
(Of course this property is not unique to M/M/1 systems.) Therefore, to
minimize congestion, we should choose as large a value of µ as possible (e.g.,
µ = ∞, if there is no finite upper bound on µ). But, in all real systems,
increasing the service rate costs something. Thus there is a trade-off between
decreasing the congestion and increasing the cost of providing service, as µ
increases. One way to capture this trade-off is to consider a simple model with
linear costs.

1.1.1 A Simple Model with Linear Service and Waiting Costs

Suppose there are two types of cost:

(i) a service-cost rate, c (cost per unit time per unit of service rate); and

(ii) a waiting-cost rate h (cost per unit time per customer in system).

In other words, (i) if we choose service rate µ, then we pay a service cost c · µ
per unit time; (ii) a customer who spends t time units in the system accounts
for h · t monetary units of waiting cost, or equivalently, the system incurs h · i
monetary units of waiting cost per unit time while i customers are present.
Suppose our objective is to minimize the long-run average cost per unit time.
Now it follows from standard results in descriptive queueing theory (or the
general theory of continuous-time Markov chains) that the long-run average
cost equals the expected steady-state cost, if steady state exists (which is true
if and only if µ > λ). Otherwise the long-run average cost equals∞. Therefore,
without loss of generality let us assume µ > λ.
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Figure 1.1 Total Cost as a Function of Service Rate

Let C(µ) denote the expected steady-state total cost per unit time, when
service rate µ is chosen. Then

C(µ) = c · µ+ h · L(µ) ,

where L(µ) is the expected steady-state number in system. For a FIFO M/M/1
queue, it is well known (see, e.g., Gross and Harris [79]) that

L(µ) = λW (µ) =
λ

µ− λ
, (1.1)

where W (µ) is the expected steady-state waiting time in system.∗ Thus our
optimization problem takes the form:

min
{µ:µ>λ}

C(µ) = c · µ+ h ·
(

λ

µ− λ

)
. (1.2)

Note that
C ′′(µ) =

2hλ
(µ− λ)3

> 0 , for all µ > λ ,

so that C(µ) is convex in µ ∈ (λ,∞). Moreover, C(µ) → ∞ as µ ↓ λ and as
µ ↑ ∞. (See Figure 1.1.) Hence we can solve this problem by differentiating
C(µ) and setting the derivative equal to zero:

C ′(µ) = c− hλ

(µ− λ)2
= 0 . (1.3)

∗ The expression (1.1) holds more generally for any work-conserving queue discipline that
does not use information about customer service times. See, e.g., El-Taha and Stid-
ham [60].
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This yields the following expression for the unique optimal value of the
service rate, denoted by µ∗:

µ∗ = λ+

√
λh

c
. (1.4)

The optimal value of the objective function is thus given by

C(µ∗) = c
(
λ+

√
λh/c

)
+ λh/

√
λh/c = cλ+

√
λhc+

√
λhc .

This expression has the following interpretation. The term c · λ represents
the fixed cost of providing the minimum possible level of service, namely,
µ = λ. The next two terms – both equal to

√
λhc – represent, respectively,

the service cost and the waiting cost associated with the optimal “surplus”
service level, µ∗ − λ. Note that an optimal solution divides the variable cost
equally between service cost and waiting cost.

More explicitly, if one reformulates the problem in equivalent form with the
surplus service rate, µ̃ := µ−λ, as the decision variable and removes the fixed-
cost term, cλ, from the objective function, then the new objective function,
denoted by C̃(µ̃), takes the form

C̃(µ̃) = cµ̃+ hλ/µ̃ . (1.5)

The optimal value of µ̃ is given by

µ̃∗ =

√
λh

c
,

and the optimal value of the objective function by

C̃(µ̃∗) = c
√
λh/c) + λh/

√
λh/c =

√
λhc+

√
λhc .

It is the particular structure of the objective function (1.5) – the sum of a term
proportional to the decision variable and a term proportional to its reciprocal
– that leads to the property that an optimal solution equates the two terms,
a property that of course does not hold in general when one is minimizing
the sum of two cost terms. The general condition for optimality (cf. equation
(1.3)) is that the marginal increase in the first term should equal the marginal
decrease in the second term, not that the terms themselves should be equal.
It just happens in this case that the latter property holds when the former
does.

Readers familiar with inventory theory will note the structural equiva-
lence of the objective function (1.5) to the objective function in the classical
economic-lot-size problem and the resulting similarity between the formula for
µ̃∗ and the economic-lot-size formula.

1.1.2 Extensions and Exercises

1. Constraints on the Service Rate. Suppose the service rate is constrained
to lie in an interval, µ ∈ [µ, µ̄]. Characterize the optimal service rate, µ∗,
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in this case. Do the same for the case where the feasible values of µ are
discrete: µ ∈ {µ1, µ2, . . . , µm}.

2. Nonlinear Waiting Costs. Suppose in the above model that the cus-
tomer’s waiting cost is a nonlinear function of the time spent by that
customer in the system: h · ta, if the time in system equals t, where
a > 0. (Note that for a < 1 the waiting cost h · ta is concave in t, whereas
for a > 1 it is convex in t.) Set up and solve the problem of choosing
µ to minimize the expected steady-state total cost per unit time, C(µ).
For what values of a is C(µ) convex in µ?

3. General Service-Time Distribution. Consider an M/GI/1 model, in which
the generic service time S has mean E[S] = 1/µ and second moment
E[S2] = 2β/µ2, where β ≥ 1/2 is a given constant and µ is the decision
variable. (Thus the coefficient of variation of service time is given by√
var(S)/E[S] =

√
2β − 1, which is fixed.) In this case the Pollaczek-

Khintchine formula yields

W (µ) =
1
µ

+
λβ

µ(µ− λ)
.

Set up the problem of determining the optimal service rate µ∗, with linear
waiting cost rates. For what values of β is C(µ) convex? If possible, find
a closed-form expression for µ∗ in terms of the parameters, λ, c, h, and β.
(The easy cases are when β = 1 (e.g., exponentially distributed service
time) and β = 1/2 (constant service time, S ≡ 1/µ).)

1.2 Optimal Arrival Rate

Now consider a FIFO M/M/1 queue in which the service rate µ is fixed and
the arrival rate λ is a decision variable.

Examples

1. A machine center: at what rate λ should incoming parts (or subassem-
blies) be admitted into the work-in-process buffer?

2. A communication system: at what rate λ should messages (or packets)
be admitted into the buffer before a communication channel?

Performance Measures and Trade-offs
As λ increases, the throughput (number of jobs served per unit time) in-

creases. (For λ < µ, the throughput equals λ; for λ ≥ µ, the throughput
equals µ.) This is clearly a “good thing.” On the other hand, the congestion
also increases as λ increases, and this is just as clearly a “bad thing.” Again a
simple linear model offers one way of capturing the trade-off between the two
performance measures.
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1.2.1 A Simple Model with Deterministic Reward and Linear Waiting Costs

Suppose there is a deterministic reward r per entering customer and (as in
the previous model) a waiting cost per customer which is linear at rate h per
unit time in the system. Let B(λ) denote the expected steady-state net benefit
per unit time. Then

B(λ) = λ · r − h · L(λ) , (1.6)
where L(λ) is the steady-state expected number of customers in the system,
expressed as a function of the arrival rate λ. As in the previous section, we
have L(λ) = λW (λ), where W (λ) is the steady-state expected waiting time in
the system, and (assuming a first-in, first-out (FIFO) queue discipline) W (λ)
is given by

W (λ) =
1

µ− λ
, 0 ≤ λ < µ ,

withW (λ) =∞ for λ ≥ µ. Again it follows from standard results in descriptive
queueing theory that the long-run average cost equals the expected steady-
state cost, if steady state exists (which is true if and only if λ < µ). Otherwise
the long-run average cost equals ∞. Therefore, without loss of generality we
assume λ < µ.

For the M/M/1 model, the problem thus takes the form:

max
{λ∈[0,µ)}

r · λ− h ·
(

λ

µ− λ

)
. (1.7)

The presence of the constraint, λ ≥ 0, makes this problem more complicated
than the example of the previous section. Since B(λ) → −∞ as λ ↑ µ, we
do not need to concern ourselves about the upper limit of the feasible region.
But we must take into account the possibility that the maximum occurs at
the lower limit, λ = 0.

Let λ∗ denote the optimal arrival rate. Note that

B′′(λ) =
−2hµ

(µ− λ)3
< 0 , for all µ > λ ,

so that B(λ) is strictly concave and differentiable in 0 ≤ λ < µ. Therefore its
maximum occurs either at λ = 0 (if B′(0) ≤ 0) or at the unique value of λ > 0
at which B′(λ) = 0 (if B′(0) > 0).

It then follows from (1.6) that λ∗ is the unique solution in [0, µ) to the
following conditions:

(Case 1) λ = 0 , if r ≤ hL′(0) ; (1.8)
(Case 2) r = hL′(λ) , if r > hL′(0) . (1.9)

Now for the M/M/1 queue,

L′(λ) =
µ

(µ− λ)2
,

so that B′(0) ≤ 0 if r ≤ h/µ and B′(0) > 0 if r > h/µ. Therefore

(Case 1) λ∗ = 0 , if r ≤ h/µ ;
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Figure 1.2 Optimal Arrival Rate, Case 1: r ≤ h/µ

Figure 1.3 Optimal Arrival Rate, Case 2: r > h/µ

(Case 2) λ∗ = µ−
√
µh/r , if r > h/µ ;

The two cases are illustrated in Figures 1.2 and 1.3, respectively.
Since µ −

√
µh/r > 0 if and only if r > h/µ, we can combine Cases 1 and

2 as follows:

λ∗ =
(
µ−

√
µh/r

)+

,
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where x+ := max{x, 0}. Note that in Case 1 we have h/µ ≥ r; that is, the
expected waiting cost is at least as great as the reward even for a customer
who enters service immediately. Hence it is intuitively clear that λ∗ = 0: there
is no economic incentive to admit any customer. If r > h/µ, then it is optimal
to allocate λ so that the surplus capacity, µ − λ, equals the square root of
µh/r.

1.2.2 Extensions and Exercises

1. Constraints on the Arrival Rate. Suppose the feasible set of values for λ
is the interval, [λ, λ̄], where 0 ≤ λ < λ̄ ≤ ∞. The problem now takes the
form:

max
{λ∈[λ,λ̄]}

{λ · r − hL(λ)} . (1.10)

Since B(λ) = −∞ for λ ≥ µ, we can rewrite the problem in equivalent
form as

max
{λ∈[λ,min{λ̄,µ}]}

{
λ · r − h

(
λ

µ− λ

)}
. (1.11)

(Note that the feasible region reduces to [λ, µ) when λ̄ ≥ µ.) Characterize
the optimal arrival rate, λ∗, for this problem.

2. General Service-Time Distribution. Consider an M/GI/1 model, in which
the generic service time S has mean E[S] = 1/µ and second moment
E[S2] = 2β/µ2, where β ≥ 1/2 is given. The Pollaczek-Khintchine for-
mula yields

W (λ) =
1
µ

+
λβ

µ(µ− λ)
.

Set up the problem of determining the optimal arrival rate, λ∗, with
deterministic reward and linear waiting cost. Show that λ∗ is again char-
acterized by (1.8) and (1.9), and use this result to derive an explicit
expression for λ∗, in terms of the parameters, µ, β, r, and h.

1.2.3 An Upper Bound on the Optimal Arrival Rate

Note that
B(λ) = λr − hλW (λ) = λ(r − hW (λ)) , (1.12)

so that B(λ) > 0 for positive values of λ such that r > hW (λ) and B(λ) ≤ 0
for values of λ such that r ≤ hW (λ). If r ≤ hW (0) then r ≤ hW (λ) for all
λ ∈ [0, µ), since W (·) is an increasing function. In this case λ∗ = 0. Otherwise,
we can restrict attention, without loss of optimality, to values of λ such that
r > hW (λ). In the M/M/1 case, W (λ) = 1/(µ − λ), so that r ≤ hW (0) if
and only if r ≤ h/µ. Moreover, r = hW (λ) if and only if λ = µ− h/r. These
observations motivate the following definition.
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Define λ̄ by:

(Case 1) λ̄ = 0 , if r ≤ h/µ ; (1.13)
(Case 2) λ̄ = µ− h/r , if r > h/µ ; (1.14)

Since B(λ) ≥ 0 for 0 ≤ λ ≤ λ̄, and B(λ) ≤ 0 for λ̄ < λ < µ, it follows that λ̄
is an upper bound on λ∗. Moreover, in some contexts λ̄ can be interpreted as
the individually optimal (or equilibrium) arrival rate, as we shall see presently.

1.2.4 Social vs. Individual Optimization

In our discussion of performance measures and trade-offs, we have been implic-
itly assuming that the decision maker is the operator of the queueing facility,
who is concerned both with maximizing throughput and minimizing conges-
tion. Our reward/cost model assumes that each entering customer generates
a benefit r to the facility and that it costs the facility h per unit time per
customer in the system. In this section we offer alternative possibilities for
who the decision maker(s) might be. But first we must resolve another issue.

We have also been implicitly assuming that the decision maker (whoever
it is) can freely choose the arrival rate λ from the interval [0, µ). How might
such a choice be implemented? Here is one possibility.

Suppose that potential customers arrive according to a Poisson process with
mean rate Λ (Λ ≥ µ). A potential customer joins (or is accepted) with prob-
ability a and balks (or is rejected) with probability 1 − a. The accept/reject
decisions for successive customers are mutually independent, as well as inde-
pendent of the number of customers in the system. That is, it is not possible
to observe the contents of the queue before the accept/reject decision is made.
As a result, customers enter the system according to a Poisson arrival process
with mean rate λ = aΛ.† Moreover, a customer who enters with probability a
when the arrival rate equals λ receives an expected net benefit equal to

a(r − hW (λ)) + (1− a)0 = a(r − hW (λ)) .

Now let us consider the possibility that the decision makers are the cus-
tomers themselves, rather than the facility operator. We discuss this possibil-
ity in the next two subsections.

1.2.4.1 Socially Optimal Arrival Rate

Suppose now that benefits and costs accrue to individual customers and the
decision maker represents the collective of all customers. In this case, a reason-
able objective for the decision maker is to maximize the expected net benefit
received per unit time by the collective of all customers: B(λ) = λ(r−hW (λ)).
This is precisely the objective function that we have been considering. In this

† Note that the assumption that Λ ≥ µ ensures that the feasible region for λ is the interval
[0, µ), as in our original formulation.
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context, our probabilistic interpretation of the choice of λ still makes sense.
That is, the decision maker, acting on behalf of the collective of all customers,
admits each potential arrival with probability a = λ/Λ.

The optimal arrival rate λ∗ can now be interpreted as socially optimal,
since it maximizes social welfare, that is, the expected net benefit received
per unit time by the collective of all customers, namely B(λ). To emphasize
this interpretation, we shall henceforth write “λs” instead of “λ∗”. In the
M/M/1 case, then, the socially optimal arrival rate is given by

λs = (µ−
√
µh/r)+ . (1.15)

The system controller can implement λs by admitting each potential arrival
with probability as := λs/Λ and rejecting with probability 1− as.

1.2.4.2 Comparison with Individually Optimal Arrival Rate

This interpretation of λs as the socially optimal arrival rate suggests the fol-
lowing question: how does the socially optimal arrival rate compare to the
individually optimal arrival rate that results if each individual potential ar-
rival, acting in its own interest, decides whether or not to join?

Suppose (as above) that potential customers arrive according to a Poisson
process with arrival rate Λ (Λ ≥ µ) and each joins the system with probability
a and balks with probability 1−a. Each customer who enters the system when
the arrival rate is λ receives a net benefit r − hW (λ). A customer who balks
receives nothing. As is always the case with design (static control) models, we
assume that the decision (a = 0, 1) must be made without knowledge of the
actual state of the system, e.g., the number of customers present.

Now, however, the criterion for choice of a is purely selfish: each customer
is concerned only with maximizing its own expected net benefit. Since a sin-
gle individual’s action has a negligible effect on the system arrival rate λ,
each potential customer can take λ as given. For a given λ, the individually
optimizing customer seeks to maximize its expected net benefit,

a(r − hW (λ)) + (1− a) · 0 ,

by an appropriate choice of a, 0 ≤ a ≤ 1. Thus, the customer will join with
probability a = 1, if r > hW (λ); join with probability a = 0, if r < hW (λ);
and be indifferent among all a, 0 ≤ a ≤ 1, if r = hW (λ).

Motivated by the concept of a Nash equilibrium, we define an individually
optimal (or equilibrium arrival rate, λe (and associated joining probability
ae = λe/Λ), by the property that no individual customer trying to maximize
its own expected net benefit has any incentive to deviate unilaterally from λe

(ae). From the above observations, it follows that λe = 0 (ae = 0) if r ≤ hW (0)
(Case 1), whereas if r > hW (0) (Case 2) then λe = aeΛ is the (unique) value
of λ ∈ (0, µ) such that

r = hW (λ) . (1.16)

To see this, first note that in Case 1 the expected net benefit from choosing a
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positive joining probability, a > 0, is a(r−hW (0)), which is less than or equal
to zero, the expected net benefit from the joining probability ae = λe/Λ = 0.
Hence, in Case 1 there is no incentive for a customer to deviate unilaterally
from ae = 0. In Case 2, since r − hW (λe) = 0, the expected net benefit is

a(r − hW (λe)) + (1− a) · 0 = 0 ,

and hence does not depend on the joining probability a. Thus, customers are
indifferent among all joining probabilities, 0 ≤ a ≤ 1, so that once again there
is no incentive to deviate from ae = λe/Λ.

Since W (λ) = 1/(µ − λ) in the M/M/1 case, we see that the individually
optimal arrival rate λe coincides with λ̄ as defined by (1.13) and (1.14). But
we have shown that λ∗ = λs ≤ λ̄ = λe. In other words, the socially optimal
arrival rate, λs, is less than or equal to the individually optimal arrival rate,
λe.

The following theorem summarizes these results:
Theorem 1.1 The socially optimal arrival rate is no larger than the individ-
ually optimal arrival rate: λs ≤ λe . Moreover, λs = λe = 0 , if r ≤ h/µ , and
0 < λs < λe , if r > h/µ .

A review of our arguments above will show that this property is not re-
stricted to M/M/1 systems and is in fact quite general. In fact, this theorem
is valid for any system (for example, a GI/GI/1 queue) in which the following
conditions hold:

1. W (λ) is strictly increasing in 0 ≤ λ < µ ;

2. W (λ) ↑ ∞ as λ ↑ µ ;

3. W (0) = 1/µ .

1.2.5 Internal and External Effects

Suppose r > h/µ. It follows from (1.12) that

B′(λ) = r − [h ·W (λ) + h · λW ′(λ)] ,

and that λs is found by equating h·W (λ)+h·λW ′(λ) to r, whereas (cf. (1.16))
λe is found by equating h ·W (λ) to r. We can interpret h ·W (λ) as the internal
effect and h ·λW ′(λ) as the external effect of a marginal increase in the arrival
rate. The quantity h ·W (λ) is the waiting cost of the marginal customer who
joins when the arrival rate is λ. It is “internal” in that it is a cost borne only by
the customer itself. On the other hand, the quantity h ·λW ′(λ) is the marginal
increase in waiting cost incurred by all the customers as a result of a marginal
increase in the arrival rate. It is “external” to the marginal joining customer,
since it is a cost which that customer does not incur. The fact that λs ≤ λe

(that is, customers acting in their own interest join the system more frequently
than is socially optimal) is due to an individually optimizing customer’s failure
to take into account the external effect of its decision to enter. The formula
for λe only takes into account the internal effect of the decision to enter, that
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is the customer’s own waiting cost, hW (λ). By contrast, the formula for λs

takes into account both the internal effect, hW (λ), and the external effect,
hλW ′(λ).

It follows that individually optimizing customers can be induced to behave
in a socially optimal way by charging each entering customer a fee or con-
gestion toll equal to the external effect, hλW ′(λ). In this way arrival control
can be decentralized, in the sense that each individual customer can be left
to make its own decision. (Again, note that these results hold for any system
in which W (λ) is a well defined function satisfying conditions (1)–(3). See
Chapter 2 for further analysis and generalizations.)

1.3 Optimal Arrival Rate and Service Rate

Now let us consider an M/M/1 queue in which both the arrival rate λ and
the service rate µ are decision variables. We shall use a reward/cost model
that combines the features of the models of the last two sections. There is a
reward r per entering customer, a waiting cost h per unit time per customer
in the system, and a service cost c per unit time per unit of service rate. The
objective function (to be maximized) is the steady-state expected net benefit
per unit time, B(λ, µ), that is,

B(λ, µ) = λ · r − h · L(λ, µ)− c · µ , 0 ≤ λ < µ ,

with B(0, 0) = 0. (Note that B(λ, µ) has a discontinuity at (0, 0).) If c ≥ r,
then obviously the optimal solution is λ∗ = µ∗ = 0, with net benefit B(0, 0) =
0, since for all 0 ≤ λ < µ we have B(λ, µ) < 0. Henceforth we shall assume
that c < r, in which case we can exclude the point (0, 0) and restrict attention
to the region {(λ, µ) : 0 ≤ λ < µ}, since it contains pairs (λ, µ) for which
B(λ, µ) > 0. Note that B(λ, µ) is continuously differentiable over this region.

Following the program of the previous two sections, let us use the first-order
optimality conditions to try to identify the optimal pair, (λ∗, µ∗). Differenti-
ating B(λ, µ) with respect to λ and µ and setting the derivatives equal to zero
leads to the equations,

∂

∂λ
B(λ, µ) = r − h · ∂

∂λ
L(λ, µ) = 0 ,

∂

∂µ
B(λ, µ) = −h · ∂

∂µ
L(λ, µ)− c = 0 .

Since L(λ, µ) = λ/(µ− λ), for 0 ≤ λ < µ, we have

∂

∂λ
L(λ, µ) =

µ

(µ− λ)2
,
∂

∂µ
L(λ, µ) =

−λ
(µ− λ)2

,

from which we obtain the following two simultaneous equations for λ and µ,

h · µ
(µ− λ)2

= r ,
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h · λ

(µ− λ)2
= c ,

the unique solution to which is

λ =
h · c

(r − c)2
, µ =

h · r
(r − c)2

. (1.17)

Note that this solution is feasible (that is, λ < µ) since c < r.
To recapitulate, under the assumption that c < r, we have identified a

unique interior point of the feasible region (0 < λ < µ) that satisfies the
first-order optimality conditions. Surely this must be the optimal solution.
After all, we have simply brought together the two models and analyses of
the previous sections, in which µ and λ, respectively, were decision variables
and in the course of which we verified that our objective function, B(λ, µ), is
both concave in λ and concave in µ. What we have not verified, however, is
joint concavity in (λ, µ). Without joint concavity, we cannot be sure that a
solution to the first-order optimality conditions is a local (let alone a global)
maximum.

In fact B(λ, µ) is not jointly concave in (λ, µ), because L(λ, µ) = λ/(µ− λ)
is not jointly convex . To check for joint convexity, we must evaluate

∆ :=
(
∂2L

∂λ2

)(
∂2L

∂µ2

)
−
(
∂2L

∂λ∂µ

)2

and check whether ∆ is nonnegative. Since

∂2L

∂λ2
=

2µ
(µ− λ)3

,

∂2L

∂µ2
=

2λ
(µ− λ)3

,

∂2L

∂λµ
=
−(λ+ µ)
(µ− λ)3

,

we have

∆ =
(

2µ
(µ− λ)3

)(
2λ

(µ− λ)3

)
−
(
−(λ+ µ)
(µ− λ)3

)2

=
1

(µ− λ)6

[
4λµ− (λ2 + 2λµ+ µ2)

]
=

1
(µ− λ)6

[
−(λ2 − 2λµ+ µ2)

]
=

1
(µ− λ)6

[
−(µ− λ)2

]
=

−1
(µ− λ)4

< 0

Thus L(λ, µ) is not jointly convex and therefore B(λ, µ) is not jointly concave
in (λ, µ).
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It follows that the stationary point (1.17) identified by the first-order con-
ditions does not necessarily yield the global maximum net benefit. To gain
further insight, let us evaluate B(λ, µ) at this stationary point. Substituting
the expressions from (1.17) into the formula for B(λ, µ) and simplifying, we
obtain (after simplifying)

B(λ, µ) = − h · c
r − c

< 0 = B(0, 0) .

So the proposed solution in fact yields a negative net benefit! It is therefore
dominated by the point (0, 0) (do nothing) and we know that we can do even
better than that when c < r.

To see how much better, let us examine the problem from a slightly different
perspective. Define the traffic intensity ρ (as usual) by ρ := λ/µ and rewrite
the net benefit as a function of λ and ρ:

B̃(λ, ρ) := r · λ− h · ρ
1− ρ

− c · λ
ρ

.

Now fix a value of ρ such that
c

r
< ρ < 1 .

Then we have

B̃(λ, ρ) = λ · (r − c

ρ
)− h · ρ

1− ρ
.

The second term is constant and the first term is positive and can be made
arbitrarily large by choosing λ sufficiently large. Thus B(λ, ρ)→∞ as λ→∞
and hence there is no finite optimal solution to the problem. Rather, one can
obtain arbitrarily large net benefit by judiciously selecting large values of both
λ and µ.

Of course these observations raise serious questions about the realism of our
model. We shall address these questions later (in Chapter 5). In the meantime,
we need to understand what went wrong with our approach based on finding
a solution to the first-order optimality conditions.

As we saw, the net-benefit function in this model fails to be jointly concave
because it contains a congestion-cost term that is proportional to L(λ, µ), the
expected steady-state number of customers in the system, which fails to be
jointly convex. This congestion-cost term can be written as

h · L(λ, µ) = λ(h ·W (λ, µ)) ,

where W (λ, µ) is the expected steady-state waiting of a customer in the sys-
tem. In other words, we have a congestion cost per unit time that takes the
form

(no. customers arriving per unit time) × (congestion cost per customer) .

While the congestion cost per customer (in this case, h/(µ − λ)) is jointly
convex, the result of multiplying by λ is to destroy this joint convexity.
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As we shall see in later chapters, this type of congestion cost and its as-
sociated non-joint-convexity are not an anomaly but in fact are typical in
queueing optimization models. As a result one must be very careful when ap-
plying classical economic analysis based on first-order optimality equations.
It is not enough to simply assume that the values of the parameters are such
that there exists a finite optimal solution in the interior of the feasible region,
which then must satisfy the first-order conditions (because they are necessary
for an interior maximum). We have seen in the present example that there
may be no such interior optimal solution, no matter what the parameter val-
ues are. Moreover, there may be an easily identified solution to the first-order
conditions which one is tempted to identify as optimal but which may in fact
be far from optimal.

The literature contains a surprising number of examples in which these
kinds of mistakes have been made.

1.4 Optimal Arrival Rates for a Two-Class System

Now suppose we have an M/M/1 queue in which there are two classes of
customers. The service rate µ is fixed but the arrival rates of the two classes
(denoted λ1 and λ2) are decision variables. Customers are served in order of
arrival, regardless of class, so that the expected steady-state waiting time in
the system is the same for both classes and is a function, W (λ), of the total
arrival rate, λ := λ1 + λ2. Recall that in the M/M/1 case W (λ) is given by

W (λ) =
1

µ− λ
, λ < µ ; W (λ) =∞ , λ ≥ µ . (1.18)

We shall assume a reward/cost model like that of Section 1.2, but with
class-dependent rewards and waiting cost rates. Specifically, there is a reward
ri per entering customer of class i, and a waiting cost hi per unit time per
customer of class i in the system. The objective is to maximize the steady-state
expected net benefit per unit time:

max
{λ,λ1,λ2}

B(λ1, λ2) = r1λ1 + r2λ2 − (λ1h1 + λ2h2)W (λ)

s.t. λ1 + λ2 = λ

λ1 ≥ 0 , λ2 ≥ 0

As in the single-class model considered in Section 1.2, if all rewards and costs
accrue to the customers, a solution (λs1, λ

s
2) to this optimization problem will

be socially optimal, in the sense of maximizing the aggregate net benefit ac-
cruing to the collective of all customers. Moreover, if potential customers of
class i arrive according to a Poisson process with mean rate Λi ≥ µ, then
a socially optimal allocation can be implemented by admitting each class-i
arrival with probability asi = λsi/Λi.

The following Karush-Kuhn-Tucker (KKT) first-order conditions are nec-
essary for (λ1, λ2, λ) to be optimal for this problem (see, e.g., Bazaraa et
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al. [16]):

ri = hiW (λ) + δ and λi > 0 (1.19)
or ri ≤ hiW (λ) + δ and λi = 0 (1.20)

for i = 1, 2, and

λ = λ1 + λ2 , (1.21)
δ = (λ1h1 + λ2h2)W ′(λ) . (1.22)

Now consider this system from the perspective of individual optimization.
Suppose a fixed, arbitrary toll, δ, is charged to each entering customer. Each
customer of class i takes W (λ) as given and chooses the probability ai of
joining to maximize

ai · (ri − hiW (λ)− δ) + (1− ai) · 0 , ai ∈ [0, 1] .

In other words, a class-i customer who joins receives the net benefit, ri −
hiW (λ), minus the toll, δ, paid for the use of the facility. A customer who balks
receives (pays) nothing. Then it is easy to see that arrival rates, λi = ai · Λi,
that satisfy equations (1.19) and (1.20) will be individually optimal for the
customers of both classes. Moreover, for the given toll δ, a solution to (1.19),
(1.20), and (1.21) is a Nash equilibrium.

As expected, equation (1.22) reveals that the socially optimal toll is just the
external effect, defined (as usual) as the marginal increase in the total delay
cost incurred as a result of a marginal increase in the flow, λ. By charging this
socially optimal toll, the system operator can induce individually optimizing
customers to behave in a socially optimal way, thereby making the Nash-
equilibrium allocation coincide with the socially optimal allocation (λs1, λ

s
2, λ

s)
(cf. Section 1.2).

1.4.1 Solutions to the Optimality Conditions: the M/M/1 Case

Let us now examine the properties of the solution(s) to the KKT conditions,
using the explicit expression (1.18) for W (λ) for an M/M/1 system. The prob-
lem of finding a socially optimal allocation of flows takes the form

max
{λ1,λ2}

r1λ1 −
h1λ1

µ− λ1 − λ2
+ r2λ2 −

h2λ2

µ− λ1 − λ2

s.t. λ1 + λ2 < µ

λ1 ≥ 0 , λ2 ≥ 0

Without loss of generality, we may assume that µ = 1. (Equivalently, measure
flows in units of fraction of the service rate µ.) Let a := r1/h1, b := r2/h2,
c := h1/h2. Then an equivalent form for the above problem is

max
{λ1,λ2}

c

(
aλ1 −

λ1

1− λ1 − λ2

)
+ bλ2 −

λ2

1− λ1 − λ2
(1.23)

s.t. λ1 + λ2 < 1
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λ1 ≥ 0 , λ2 ≥ 0

For an interior optimal solution, equation (1.19) must be satisfied for i = 1, 2.
The unique solution to these equations is given by

λ̃1 =
b(c− 1)
(ca− b)2

− 1
c− 1

λ̃2 =
c

c− 1
− ca(c− 1)

(ca− b)2

It can be shown that this pair (λ̃1, λ̃2) is an interior point (λ̃1 > 0, λ̃2 > 0,
λ̃1 + λ̃2 < 1) if the parameters satisfy the following conditions:

b > a > 1 ;

c >
b− 1
a− 1

;

a <
(ca− b)2

(c− 1)2
< b .

So, for an M/M/1 system in which the parameters satisfy these condi-
tions, we have established that the first-order optimality conditions have a
unique interior-point solution. This result tempts us to conclude that this so-
lution is indeed optimal. But the model of Section 1.3, in which the unique
interior-point solution to the optimality conditions turned out to be nonop-
timal, should serve as a warning to proceed more cautiously. The question
remains whether there are other, non-interior-point solutions to the KKT
conditions and whether one of these could yield a higher value of the objec-
tive function. Put another way: are the KKT conditions sufficient as well as
necessary for an optimal solution to our problem?

1.4.2 Are the KKT Conditions Sufficient?

To answer this question, let us return to the problem in its original form. The
objective function takes the following form (after substituting for λ from the
equality constraint),

B(λ1, λ2) = r1λ1 + r2λ2 − f(λ1, λ2) ,

where f(λ1, λ2) := (λ1h1 + λ2h2)W (λ1 + λ2). That is, f(λ1, λ2) is the total
delay cost per unit time expressed as a function of λ1 and λ2. The KKT
conditions will be sufficient for social optimality if B(λ1, λ2) is jointly concave
in (λ1, λ2), which is true if and only if f(λ1, λ2) is jointly convex in (λ1, λ2).
It is easily verified that f(λ1, λ2) is convex in λ1 and convex in λ2. To check
for joint convexity, we evaluate

∆ :=
(
∂2f

∂λ2
1

)(
∂2f

∂λ2
2

)
−
(

∂2f

∂λ1∂λ2

)2



OPTIMAL ARRIVAL RATES FOR A TWO-CLASS SYSTEM 19

and find that ∆ = −((h1−h2)W ′(λ1 +λ2))2, which is strictly negative unless
h1 = h2, that is, unless the customer classes are homogeneous with respect
to their sensitivity to delay. Thus f(λ1, λ2) is not in general a jointly convex
function of λ1 and λ2. Indeed, the conditions for joint convexity fail at every
point in the feasible region if the customer classes are heterogeneous, that is,
if h1 6= h2. It follows that B(λ1, λ2) fails to be jointly concave unless h1 = h2.

Remark 1 Note that we did not use the specific functional form (1.18)
of W (λ) in our demonstration of the nonconvexity of f(λ1, λ2). The only
properties that we used were that the delay W (λ) for each customer is an
increasing, convex, and differentiable function of the sum of the flows, and
that the delay cost per unit time for each class i is the product of the flow,
λi, and the delay cost per customer, hiW (λ). All these properties are weak
and hold for many queueing models, not just for the M/M/1 case. As we shall
see in Chapters 4 and 5, nonconvexity is a widely encountered phenomenon
in models for the design of queues with more than one decision variable.

The nonconcavity of the objective function, B(λ1, λ2), leads one to suspect
that the first-order KKT conditions, (1.19)–(1.22), may not be sufficient for an
optimal allocation. In particular, an interior-point solution to these conditions
– such as the one found in the previous subsection – might not be optimal.
Let us now examine that question. First observe that such a solution must lie
on the line λ1 + λ2 = λ, where λ satisfies

r1 − h1W (λ) = r2 − h2W (λ) . (1.24)

Along this line both the total flow λ and the net benefit, B(λ1, λ2), are con-
stant: B(λ1, λ2) = B, say. In particular, the two extreme points on this line,
namely, (λ, 0), and (0, λ), share this net benefit; that is,

B(λ, 0) = B(0, λ) = B .

But

B(λ, 0) ≤ B(λ∗1, 0) ,
B(0, λ) ≤ B(0, λ∗2) ,

where λ∗i is the optimal flow allocation to class i when only that class receives
positive flow (i = 1, 2).

Thus we see that any interior solution to the first-order KKT conditions
is dominated by both the optimal single-class allocations. In other words, the
system achieves at least as great a net benefit by allocating all flow to a single
class, regardless of which class, than by using an interior allocation satisfying
the first-order conditions!

Our next observation has to do with external effects, congestion tolls, and
equilibrium properties. First note that charging each user a toll δ (per unit of
flow) equal to the external effect, that is,

δ = (λ1h1 + λ2h2)W ′(λ1 + λ2) ,
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makes (λ̃1, λ̃2) a Nash equilibrium for individually optimizing customers: no
customer of either class has an incentive to deviate from this allocation, as-
suming that all other customers make no change. Thus, we see that, even by
charging the “correct” toll (namely, a toll equal to the external effect), we can-
not be certain that the customers will be directed to a socially optimal flow
allocation. Rather, the resulting allocation, even though it is a Nash equilib-
rium, may be dominated by both of the optimal single-class allocations.

Thus we have a dramatic example of the pitfalls of marginal-cost pricing
(that is, pricing based on first-order optimality conditions) when the customer
classes are heterogeneous in their sensitivities to congestion.

As an example, let us return to the M/M/1 example of Section 1.4.1. Let
a = 4, b = 9, and c = 4. In this case, the solution to the first-order conditions
is

λ̃1 = 0.218 ; λ̃2 = 0.354 .

The optimal single-user flow allocations are λs1 = 0.500 and λs2 = 0.667. The
objective function values of these three flow allocations are:

B(λ̃1, λ̃2) = 3.81
B(λs1, 0) = 4.00
B(0, λs2) = 4.00

Thus we have an illustration of the general result derived above: the interior-
point equilibrium flow allocation is dominated by both optimal single-user
allocations.

For this example, Figure 1.4 and Figure 1.5 show, respectively, a contour
plot and graph of the response surface of the net benefit function, B(λ1, λ2).

Figure 1.4 Net Benefit: Contour Plot
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Figure 1.5 Net Benefit: Response Surface

1.5 Optimal Arrival Rates for Parallel Queues

Now let us consider n independent M/M/1 queues, with service rates µj and
arrival rates λj , j = 1, . . . , n. Suppose that the µj are fixed and that the λj
are design variables. Our objective is to minimize the steady-state expected
number of customers in the system, subject to a constraint that the total
arrival rate should equal a fixed value, λ. Thus the problem takes the form

min
n∑
j=1

λj
µj − λj

s.t.
n∑
j=1

λj = λ (1.25)

0 ≤ λj < µj , j = 1, . . . , n .

We can interpret this problem as follows. Suppose customers arrive to the
system according to a Poisson process with mean arrival rate λ. We must
decide how to split this arrival process among n parallel exponential servers,
each with its own queue. The splitting is to be done probabilistically, inde-
pendently of the state and past history of the system. That is, each arriving
customer is sent to queue j with probability aj = λj/λ, so that the arrival
process to queue j is Poisson with mean arrival rate λj .

We shall use a Lagrange multiplier to eliminate the constraint on the total
arrival rate. The Lagrangean problem is:

min
n∑
j=1

λj
µj − λj

− α
n∑
j=1

λj (1.26)

s.t. 0 ≤ λj < µj , j = 1, . . . , n .
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The solution is parameterized by α, which can be interpreted as the imputed
reward per unit time per unit of arrival rate. Problem (1.26) is separable, so
we can minimize the objective function separately for each facility. For facility
j, the problem takes the form of the single-facility arrival-rate-optimization
problem of Section 1.2, with r = α, h = 1. The solution is:

λj = λsj(α) := (µj −
√
µj/α)+ , j = 1, . . . , n . (1.27)

This solution will be optimal for the original problem if α is chosen so that∑n
j=1 λ

s
j(α) = λ.

Thus an optimal allocation satisfies the following conditions (j = 1, . . . , n):

L′j(λj) =
µj

(µj − λj)2
= α , if λj > 0 , (1.28)

L′j(λj) =
1
µj
≥ α , if λj = 0 , (1.29)

for some α such that
∑n
j=1 λj = λ.

These results can be used to solve the original problem (1.25) graphically.
First, plot each λsj(α) as a function of α, as shown in Figure 1.6. Define

λs(α) :=
n∑
j=1

λsj(α) ,

so that λs(α) is the total arrival rate in an optimal solution of problem (1.26)
corresponding to Lagrange multiplier α. We can now find the optimal solution
to the original problem for a particular value of λ by drawing a horizontal line
from the vertical axis at level λ and finding its intersection with the graph of
λs(α), then drawing a vertical line to the α axis. Where this line intersects the
graph of λsj(α), we obtain λsj = λsj(λ), the optimal value of λj for the original
problem with total arrival rate λ.

We can derive an explicit solution for the λsj in terms of the parameter λ
(denoted λsj(λ), j = 1, . . . , n) in the following way. First, order the µj so that
µ1 ≥ µ2 ≥ · · · ≥ µn. From (1.27) it can be seen that λs(α) is a continuous,
strictly increasing function of α, for α ≥ µ−1

1 . In this range, therefore, λs(α)
has an inverse, which we denote by α(λ). We solve for α(λ) separately over
the intervals induced by µ−1

1 ≤ α ≤ µ−1
2 , µ−1

2 ≤ α ≤ µ−1
3 ,. . . . In particular,

for µ−1
1 ≤ α ≤ µ−1

2 ,

λs1(α) = µ1 −
√
µ1/α ,

λsj(α) = 0 , j = 2, . . . , n .

Thus λs1(α) = λ in this range, so that√
1
α

=
µ1 − λ√

µ1
, (1.30)
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Figure 1.6 Arrival Control to Parallel Queues: Parametric Socially Optimal Solution

and hence

λs1(λ) = µ1 −
√
µ1√
µ1

(µ1 − λ) = λ .

But it follows from (1.30) that µ−1
1 ≤ α ≤ µ−1

2 if and only if 0 ≤ λ ≤
µ1 −

√
µ1µ2.

Summarizing, for r1 := 0 ≤ λ ≤ r2 := µ1 −
√
µ1µ2, we have

λs1(λ) = λ ,
λsj(λ) = 0 , j = 2, . . . , n .

Continuing this argument, we can deduce the general form of the solution for
λsj(λ), j = 1, . . . , n. In general, define rk :=

∑k
i=1(µi −

√
µiµk), k = 1, . . . , n,

rn+1 :=
∑n
i=1 µi. Then, for k = 1, . . . , n, if rk ≤ λ ≤ rk+1,

λsj(λ) = µj −

( √
µj∑k

i=1

√
µi

)(
k∑
i=1

µi − λ

)
, j = 1, . . . , k ,

= 0 , j = k + 1, . . . , n .

Note that each λsj is piecewise linear in λ. Figure 1.7 gives a typical illus-
tration. Note that, once λsj(λ) is positive, its rate of increase is nonincreasing
in λ (thus λsj(λ) is concave in λ ≥ rj) and that the rates of increase of the
λsj(λ) for fixed λ are nondecreasing in j.

Individually Optimal Allocation

The allocation described above assumes that the allocation of total “de-
mand,” λ, to the various facilities is made in accordance with the system-wide
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Figure 1.7 Arrival Control to Parallel Queues: Explicit Socially Optimal Solution

objective of minimizing the total rate of waiting per unit time:
∑n
j=1 Lj(λj) =∑n

j=1 λj/(µj − λj). An equivalent way of viewing this problem is to visual-
ize each arriving customer having a probability, aj = λj/λ, of joining facility
j, j = 1, . . . , n, where the a′js are to be chosen (by an omnipotent system
designer) to minimize the steady-state expected waiting time of an arbitrary
customer:

n∑
j=1

(
λj
λ

)(
1

µj − λj

)
=

1
λ

n∑
j=1

Lj(λj)

Now let us consider an allocation (λ1, . . . , λn) (equivalently, a set of joining
probabilities (a1, ..., an)) from the point of view of an individual customer who
wishes to minimize his expected waiting time. Under the allocation in question,
an arriving customer chooses facility j with probability aj = λj/λ; conditional
on joining facility j, the expected waiting time is (µj − λj)−1. (As is always
the case in design models, we assume that the fixed mean service rates µj and
the arrival rates λj associated with the given allocation are known and the
system is in steady state, but the exact number of customers at each facility
cannot be observed.) The customer’s unconditional expected waiting time is
therefore

∑n
j=1 aj(µj − λj)−1. As usual we call an allocation (λ1, . . . , λn) (or

a set of joining probabilities (a1, . . . , an)) individually optimal if no customer,
acting in its own interest, has an incentive to deviate unilaterally from the
allocation. This will be the case if and only if (µj − λj)−1 = (µk − λk)−1 for
all j, k such that λj > 0 and λk > 0, and (µj − λj)−1 ≤ µ−1

k , if λj > 0 and
λk = 0. Otherwise, e.g., if (µj − λj)−1 > (µk − λk)−1 for some j, k such that
λj > 0, an arriving customer could strictly reduce its expected waiting time
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Figure 1.8 Arrival Control to Parallel Queues: Parametric Individually Optimal So-
lution

by joining facility j with probability a′j := 0 and facility k with probability
a′k := aj + ak, rather than aj = λj/λ and ak = λk/λ, respectively.

In other words, an individually optimal allocation satisfies the following
conditions, for j = 1, . . . , n:

Wj(λj) =
1

µj − λj
= α , if λj > 0 ; (1.31)

Wj(λj) =
1
µj
≥ α , if λj = 0 ; (1.32)

for some α > 0 such that
∑n
j=1 λj = λ.

We would like to compare such an allocation, denoted λej(α), or λej(λ), to
the socially optimal allocation, λsj(α), or λsj(λ). First observe from (1.31) and
(1.28) that an individually optimal allocation equates average costs, 1/(µj−λj)
(internal effects), whereas a socially optimal allocation equates marginal costs,
µj/(µj − λj)2 = 1/(µj − λj) + λj/(µj − λj)2 (internal plus external effects),
at all open facilities j.

In terms of α, the individually optimal allocation can be written as

λej(α) = (µj − 1/α)+ , j = 1, . . . , n .

Figure 1.8 illustrates the behavior of λej(α), assuming µ1 ≥ µ2 ≥ · · · ≥ µn.
Now α must be chosen so that

∑n
j=1 λ

e
j(α) = λ, in order to find λej(λ) , j =

1, . . . , n. This can be done in the same way as for socially optimal allocations.
(The details are left to the reader.) In general, define sk :=

∑k
i=1(µi − µk) ,

k = 1, . . . , n , sn+1 :=
∑n
i=1 µi. Then the individually optimal allocation is as
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Figure 1.9 Arrival Control to Parallel Queues: Explicit Individually Optimal Solu-
tion

follows: for k = 1, . . . , n, if sk ≤ λ ≤ sk+1, then

λej(λ) = µj − [
k∑
i=1

µi − λ]/k , j = 1, . . . , k ,

= 0 , j = k + 1, . . . , n .

Figure 1.9 illustrates the behavior of the individually optimal facility arrival
rates as a function of the total arrival rate. Note that the positive λej(λ) are
piecewise linear in λ, with nonincreasing slope. The slopes of all positive λej(λ)
are equal in this case.

In Figure 1.10, the individually optimal allocation is superimposed on the
socially optimal allocation, for purposes of comparison. As a general observa-
tion, we can say that the individually optimal allocation assigns more (fewer)
customers to faster (slower) servers than the socially optimal allocation. More
specifically, for the example in Figure 1.10, the individually optimal allocation
always assigns more arrivals to facility 1, the fastest one, and fewer arrivals
to facility 3, the slowest one, than the socially optimal allocation does. As λ
increases, facility 2 first receives fewer, then more, arrivals in the individually
optimal than in the socially optimal allocation. Thus, facility 2 plays the role
of a “slower” server in light traffic and a “faster” server in heavy traffic.

1.6 Endnotes

Over the past forty years, there have been a number of survey papers and
books that discuss optimal control of queues, including Sobel [181], Stid-


