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Preface to the second edition

The topic of mathematical �nance has been growing rapidly since the �rst
edition of this book. For this new edition, we have not tried to be exhaus-
tive on all new developments but to select some techniques or concepts that
could be incorporated at reasonable cost in terms of length and mathemati-
cal sophistication. This was partly done by adding new exercises. The main
addition concern:

• complements on discrete models (Rogers' approach to the Fundamental
Theorem of Asset Pricing, super-replication in incomplete markets, see
chapter 1 exercises 1 and 2),

• local volatility and Dupire's formula (see Chapter 4),

• change of numéraire techniques and forward measures (see Chapter 1
and Chapter 6),

• the forward libor model (BGM model, see Chapter 6),

• a new chapter on credit risk modelling,

• an extension of the chapter dealing with simulation with numerical ex-
periments illustrating variance reduction techniques, hedging strategies
and so on.

We are indebted, in addition to those cited in the introduction, to a number
of colleagues whose suggestions have been helpful for this new edition. In
particular we are grateful to Marie-Claire Quenez, Benjamin Jourdain, Philip
Protter and, for the chapter on credit risk, to Monique Jeanblanc and Rama
Cont (whose lectures introduced us to this new area) and to Aurélien Alfonsi.
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Introduction

The objective of this book is to give an introduction to the probabilistic
techniques required to understand the most widely used �nancial models. In
the last few years, �nancial quantitative analysts have used more sophisticated
mathematical concepts, such as martingales or stochastic integration, in order
to describe the behavior of markets or to derive computing methods.

In fact, the appearance of probability theory in �nancial modeling is not
recent. At the beginning of this century, Bachelier (1900), in trying to build
up a �Theory of Speculation�, discovered what is now called Brownian motion.
From 1973, the publications by Black and Scholes (1973) and Merton (1973)
on option pricing and hedging gave a new dimension to the use of probability
theory in �nance. Since then, as the option markets have evolved, Black-
Scholes and Merton results have developed to become clearer, more general
and mathematically more rigorous. The theory seems to be advanced enough
to attempt to make it accessible to students.

Options
Our presentation concentrates on options, because they have been the main
motivation in the construction of the theory and still are the most spectacular
example of the relevance of applying stochastic calculus to �nance. An option
gives its holder the right, but not the obligation, to buy or sell a certain amount
of a �nancial asset, by a certain date, for a certain strike price.

The writer of the option needs to specify:

1. the type of option: the option to buy is called a call while the option to
sell is a put;

2. the underlying asset: typically, it can be a stock, a bond, a currency and
so on;

3. the amount of an underlying asset to be purchased or sold;

4. the expiration date; if the option can be exercised at any time before
maturity, it is called an American option but, if it can only be exercised
at maturity, it is called a European option;
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5. the exercise price which is the price at which the transaction is done if
the option is exercised.

The price of the option is the premium. When the option is traded on an organ-
ised market, the premium is quoted by the market. Otherwise, the problem is
to price the option. Also, even if the option is traded on an organized market,
it can be interesting to detect some possible abnormalities in the market.

Let us examine the case of a European call option on a stock, whose price
at time t is denoted by St. Let us call T the expiration date and K the
exercise price. Obviously, if K is greater than ST , the holder of the option has
no interest whatsoever in exercising the option. But, if ST >K, the holder
makes a pro�t of ST −K by exercising the option, i.e., buying the stock for
K and selling it back on the market at ST . Therefore, the value of the call at
maturity is given by

(ST −K)+ = max(ST −K, 0).

If the option is exercised, the writer must be able to deliver a stock at price
K. It means that he or she must generate an amount (ST −K)+ at maturity.
At the time of writing the option, which will be considered as the origin of
time, ST is unknown and therefore two questions have to be asked:

1. How much should the buyer pay for the option? In other words, how
should we price at time t= 0 an asset worth (ST −K)+ at time T? That is
the problem of pricing the option.

2. How should the writer, who earns the premium initially, generate an
amount (ST −K+ at time T? That is the problem of hedging the option.

Arbitrage and put/call parity
Answers the above questions require some modelling. The basic one, which is
commonly accepted in every model, is the absence of arbitrage opportunity in
liquid �nancial markets, i.e. there is no riskless pro�t available in the market.
We will translate that into mathematical terms in the �rst chapter. At this
point, we will only show how we can derive formulae relating European put
and call prices from the no arbitrage assumption. Consider a put and a call
with the same maturity T and exercise price K, on the same underlying asset
which is worth St at time t. We shall assume that it is possible to borrow or
invest money at a constant rate r.

Let us denote by Ct and Pt respectively the prices of the call and the
put at time t. Because of the absence of arbitrage opportunity, the following
equation called put/call parity is true for all t < T

Ct − Pt =St −Ke−r(T−t).
To understand the notion of arbitrage, let us show how we could make a

riskless pro�t if, for instance,

Ct − Pt>St −Ke−r(T−t).
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At time t, we purchase a share of stock and a put, and sell a call. The net
value of the operation is

Ct − Pt − St.
If this amount is positive, we invest it at rate r until time T , whereas if it is
negative we borrow it at the same rate. At time T , two outcomes are possible:

• ST >K: the call is exercised, we deliver the stock, receive the amount K
and clear the cash account to end up with a wealth K + er(T − t)(Ct −
Pt − St)> 0.

• ST ≤K: we exercise the put and clear our bank account as before to
�nish with wealth K + eT−t(Ct − Pt − St> 0.

In both cases, we locked in a positive pro�t without making any initial en-
dowment: this is an example of an arbitrage strategy.

There are many similar examples in the book by Cox and Rubinstein
(1985). We will not review all these formulae, but we shall characterize math-
ematically the notion of a �nancial market without arbitrage opportunity.

Black-Scholes model and its extensions
Even though no-arbitrage arguments lead to many interesting equations, they
are not su�cient in themselves for deriving pricing formulae. To achieve this,
we need to model stock prices more precisely. Black and Scholes were the �rst
to suggest a model whereby we can derive an explicit price for a European
call on a stock that pays no dividend. According to their model, the writer of
the option can hedge himself perfectly, and actually the call premium is the
amount of money needed at time 0 to replicate exactly the payo� (ST −K)+
by following their dynamic hedging strategy until maturity. Moreover, the
formula depends on only one non-directly observable parameter, the so-called
volatility.

It is by expressing the pro�t and loss resulting from a certain trading
strategy as a stochastic integral that we can use stochastic calculus and, par-
ticularly, Itô formula, to obtain closed form results. In the last few years,
many extensions of the Black-Scholes approach has been considered. From a
thorough study of the Black-Scholes model, we will attempt to give to the
reader the means to understand those extensions.

Contents of the book
The �rst two chapters are devoted to the study of discrete time models. The
link between the mathematical concept of martingale and the economic notion
of arbitrage is brought to light. Also, the de�nition of complete markets and
the pricing of options in these markets are given. We have decided to adopt
the formalism of Harrison and Pliska (1981) and most of their results are
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stated in the �rst chapter, taking the Cox, Ross and Rubinstein model as
an example. The second chapter deals with American options. Thanks to
the theory of optimal stopping in a discrete time set-up, which uses quite
elementary methods, we introduce the reader to all the ideas that can be
developed in continuous time.

Chapter 3 is an introduction to the main results in stochastic calculus
that we will use in Chapter 4 to study the Black-Scholes model. As far as
European options are concerned, this model leads to explicit formulae. But, in
order to analyze American options or to perform computations within more
sophisticated models, we need numerical methods based on the connection
between option pricing and partial di�erential equations. These questions are
addressed in Chapter 5.

Chapter 6 is a relatively quick introduction to the main interest rate models
and Chapter 7 looks at the problems of option pricing and hedging when the
price of the underlying asset follows a simple jump process.

In these latter cases, perfect hedging no longer possible and we must de�ne
a criterion to achieve optimal hedging. These models are rather less optimistic
than the Black-Scholes model and seem to be closer to reality. However, their
mathematical treatment is still a matter of research, in the framework of so-
called incomplete markets.

Finally, in order to help the student to gain a practical understanding,
we have included a chapter dealing with the simulation of �nancial models
and the use of computers in the pricing and hedging of options. Also, a few
exercises and longer questions are listed at the end of each chapter.

This book is only an introduction to a �eld that has already bene�ted
from considerable research. Bibliographical notes are given in some chapters
to help the reader to �nd complementary information. We would also like to
warn the reader that some important questions in �nancial mathematics are
not tackled. Amongst them are the problems of optimization and the questions
of equilibrium for which the reader might like to consult the book by Du�e
(1988).

A good level in probability theory is assumed to read this book. The reader
is referred to Dudley (2002)) and Williams (1991) for prerequisites. However,
some basic results are also proved in the Appendix.

Acknowledgments
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since 1988. The organisation of this lecture series would not have been possible
without the encouragement of N. Bouleau. Thanks to his dynamism, CERMA
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Chapter 1

Discrete-time models

The objective of this chapter is to present the main ideas related to option
theory within the very simple mathematical framework of discrete-time mod-
els. Essentially, we are following the �rst part of the paper by Harrison and
Pliska (1981). Cox, Ross and Rubinstein's model is detailed at the end of the
chapter in the form of a problem with its solution.

1.1 Discrete-time formalism
1.1.1 Assets
A discrete-time �nancial model is built on a �nite probability space (Ω,F ,P)
equipped with a �ltration, i.e. an increasing sequence of σ-algebras included
in F : F0,F1, . . . ,FN . The σ-algebra Fn can be seen as the information
available at time n and is sometimes called the σ-algebra of events up to
time n. The horizon N will often correspond to the maturity of the options.
From now on, we will assume that F0 = {∅,Ω},FN = F = P(Ω), where P(Ω)
denotes the collection of all subsets of the �nite sample space Ω, and we also
assume that P({ω})> 0, for ω ∈Ω. Working with a �nite probability space
avoids some technicalities: for instance, all real-valued random variables are
integrable.

The market consists of (d+ 1) �nancial assets, whose prices at time n are
given by the positive random variables S0

n, S
1
n, . . . , S

d
n, which are measurable

with respect to Fn (investors know past and present prices but obviously not
the future ones). The vector Sn = (S0

n, S
1
n, . . . , S

d
n) is the vector of prices at

time n. The asset indexed by 0 is the riskless asset and we set S0
0 = 1. If the

return of the riskless asset over one period is constant and equal to r, we will
obtain S0

n = (1 + r)n. The coe�cient βn = 1/S0
n is interpreted as the discount

factor (from time n to time 0): if an amount βn is invested in the riskless asset
at time 0, then one dollar will be available at time n. The assets indexed by
i= 1 . . . d are called risky assets.

15



16 CHAPTER 1. DISCRETE-TIME MODELS

1.1.2 Strategies
A trading strategy is de�ned as a stochastic process (i.e. a sequence in the
discrete case)

φ= ((φ0
n, φ

1
n, . . . , φ

d
n))0≤n≤N

in Rd+1, where φin denotes the number of shares of asset i held in the portfolio
at time n. The sequence φ is assumed to be predictable, i.e.

∀i∈ {0, 1, . . . , d}
{
φi0 is F0-measurable
and, for n≥ 1, φin is Fn−1-measurable.

This assumption means that the positions in the portfolio at time n, namely
φ0
n, φ1

n,. . . , φdn, are decided with respect to the information available at time
(n− 1) and kept until time n, when new quotations are available.

The value of the portfolio at time n is the scalar product

Vn(φ) =φn.Sn =
d∑

i=0

φinS
i
n.

Its discounted value is

Ṽn(φ) = βn(φn.Sn) =φn.S̃n,

where βn = 1/S0
n and S̃n = (1, βnS1

n, . . . , βnS
d
n) is the vector of discounted

prices. By considering discounted prices, we take the price of the non-risky
asset as a monetary unit or numéraire (see Exercise 3 for an introduction to
change of numéraire techniques).

A strategy is called self-�nancing if the following equation is satis�ed for
all n∈ {0, 1, . . . , N − 1}:

φn.Sn =φn+1.Sn.

The interpretation is the following: at time n, once the new prices S0
n, · · · , Sdn

are quoted, the investor readjusts his positions from φn to φn+1 without bring-
ing or consuming any wealth.

Remark 1.1.1. The equality φn.Sn =φn+1.Sn is obviously equivalent to

φn+1.(Sn+1 − Sn) =φn+1.Sn+1 − φn.Sn,
or to

Vn+1(φ)− Vn(φ) =φn+1.(Sn+1 − Sn).
At time n+ 1, the portfolio is worth φn+1.Sn+1 and φn+1.Sn+1 − φn+1.Sn is
the net gain caused by the price changes between times n and n+ 1. Hence,
the pro�t or loss realized by following a self-�nancing strategy is only due to
the price moves.

The following proposition makes this clear in terms of discounted prices.

Proposition 1.1.2. The following are equivalent:
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(i) The strategy φ is self-�nancing.

(ii) For any n∈ {1, . . . , N},

Vn(φ) = V0(φ) +
n∑

j=1

φj ·∆Sj ,

where ∆Sj is the vector Sj − Sj−1.

(iii) For any n∈ {1, . . . , N},

Ṽn(φ) = V0(φ) +
n∑

j=1

φj ·∆S̃j ,

where ∆S̃j is the vector S̃j − S̃j−1 = βjSj − βj−1Sj−1.

Proof. The equivalence between (i) and (ii) results from Remark 1.1.1. The
equivalence between (i) and (iii) follows from the fact that φn.Sn =φn+1.Sn
if and only if φn.S̃n =φn+1.S̃n. 2

This proposition shows that, if an investor follows a self-�nancing strat-
egy, the discounted value of his portfolio, and hence its value, are completely
de�ned by the initial wealth and the strategy (φ1

n, . . . , φ
d
n)0≤n≤N (this is only

justi�ed because ∆S̃0
j = 0).More precisely, we can prove the following propo-

sition.

Proposition 1.1.3. For any predictable process ((φ1
n, . . . , φ

d
n))0≤n≤N and

for any F0-measurable variable V0, there exists a unique predictable process
(φ0
n)0≤n≤N such that the strategy φ= (φ0, φ1, . . . , φd) is self-�nancing and its

initial value is V0.

Proof. The self-�nancing condition implies

Ṽn(φ) = φ0
n + φ1

nS̃
1
n + · · ·+ φdnS̃

d
n

= V0 +
n∑

j=1

(
φ1
j∆S̃

1
j + · · ·+ φdj∆S̃

d
j

)
,

which de�nes φ0
n. We just have to check that φ0 is predictable, but this is

obvious if we consider the equation

φ0
n = V0 +

∑n−1
j=1

(
φ1
j∆S̃

1
j + · · ·+ φdj∆S̃

d
j

)

+
(
φ1
n

(
−S̃1

n−1

)
+ · · ·+ φdn

(
−S̃dn−1

))
.

2
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1.1.3 Admissible strategies and arbitrage
We did not make any assumption on the sign of the quantities φin. If φ0

n< 0,
we have borrowed the amount |φ0

n| in the riskless asset. If φin< 0 for i≥ 1, we
say that we are short a number φin of asset i. In this model, short-selling and
borrowing are allowed, but, by the following admisibility condition, the value
of the portfolio must remain non-negative at all times.

De�nition 1.1.4. A strategy φ is admissible if it is self-�nancing and if
Vn(φ)≥ 0 for any n∈ {0, 1, . . . , N}.

The investor must be able to pay back his debts (in the riskless or the risky
assets) at any time. The notion of arbitrage (possibility of a riskless pro�t)
can be formalised as follows:

De�nition 1.1.5. An arbitrage strategy is an admissible strategy with zero
initial value and non-zero �nal value.

In other words, an arbitrage starts with a zero initial value and achieves a
nonnegative value at all times, with strictly positive probability of the �nal
value being positive. Most models exclude any arbitrage opportunity, and the
objective of the next section is to characterize these models with the notion
of martingale.

1.2 Martingales and arbitrage opportunities
In order to analyze the connections between martingales and arbitrage, we
must �rst de�ne a martingale on a �nite probability space. The conditional
expectation plays a central role in this de�nition, and the reader can refer to
the appendix for a quick review of its properties.

1.2.1 Martingales and martingale transforms
In this section, we consider a �nite probability space (Ω,F ,P), with F =
P(Ω) and ∀ω ∈ Ω,P({ω})> 0, equipped with a �ltration (Fn)0≤n≤N
(without necessarily assuming that FN = F , nor F0 = {φ,Ω}). A sequence
(Xn)0≤n≤N of random variables is adapted to the �ltration if, for any n, Xn

is Fn-measurable.

De�nition 1.2.1. An adapted sequence (Mn)0≤n≤N of real-valued random
variables is

• a martingale if E(Mn+1|Fn) =Mn for all n≤N − 1;

• a supermartingale if E(Mn+1|Fn)≤Mn for all n≤N − 1;

• a submartingale if E(Mn+1|Fn)≥Mn for all n≤N − 1.
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These de�nitions can be extended to the multidimensional case: for instance,
a sequence (Mn)0≤n≤N of Rd-valued random variables is a martingale if each
component is a real-valued martingale.

In a �nancial context, saying that the price (Sin)0≤n≤N of the asset i is a
martingale implies that, at each time n, the best estimate (in the least-square
sense) of Sin+1 is given by Sin.

The following properties are easily derived from the previous de�nition and
stand as a good exercise to get used to the concept of conditional expectation:

1. (Mn)0≤n≤N is a martingale if and only if

E(Mn+j |Fn) =Mn ∀j ≥ 0.

2. If (Mn)n≥0 is a martingale, then for any n : E(Mn) =E(M0).

3. The sum of two martingales is a martingale.

4. Obviously, similar properties can be shown for supermartingales and
submartingales.

De�nition 1.2.2. An adapted sequence (Hn)0≤n≤N of random variables is
predictable if, for all n≥ 1,Hn is Fn−1-measurable.

Proposition 1.2.3. Let (Mn)0≤n≤N be a martingale and (Hn)0≤n≤N a pre-
dictable sequence with respect to the �ltration (Fn)0≤n≤N . Denote ∆Mn =
Mn −Mn−1. The sequence (Xn)0≤n≤N de�ned by

X0 =H0M0

Xn =H0M0 +H1∆M1 + · · ·+Hn∆Mn for n≥ 1

is a martingale with respect to (Fn)0≤n≤N .

(Xn) is sometimes called the martingale transform of (Mn) by (Hn). A conse-
quence of this proposition and Proposition 1.1.2 is that if the discounted prices
of the assets are martingales, the expected value of the wealth generated by
following a self-�nancing strategy is equal to the initial wealth.

Proof. Clearly, (Xn) is an adapted sequence. Moreover, for n≥ 0,

E(Xn+1 −Xn|Fn)
= E(Hn+1(Mn+1 −Mn)|Fn)
=Hn+1E(Mn+1 −Mn|Fn) since Hn+1 is Fn-measurable
= 0.

Hence
E(Xn+1|Fn) =E(Xn|Fn) =Xn,

which shows that (Xn) is a martingale. 2
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The following proposition is a very useful characterization of martingales.

Proposition 1.2.4. An adapted sequence of real-valued random variables
(Mn) is a martingale if and only if for any predictable sequence (Hn), we
have

E

(
N∑
n=1

Hn∆Mn

)
= 0.

Proof. If (Mn) is a martingale, the sequence (Xn) de�ned byX0 = 0 and, for
n≥ 1, Xn =

∑n
j=1Hj∆Mj for any predictable process (Hn) is also a martin-

gale, by Proposition 1.2.3. Hence, E(XN ) =E(X0) = 0. Conversely, we notice
that if j ∈ {1, . . . , N}, we can associate the sequence (Hn) de�ned by Hn = 0
for n 6= j + 1 and Hj+1 = 1A, for any Fj-measurable A. Clearly, (Hn) is pre-
dictable and E

(∑N
n=1Hn∆Mn

)
= 0 becomes

E(1A(Mj+1 −Mj)) = 0.

Therefore E(Mj+1|Fj) =Mj . 2

1.2.2 Viable �nancial markets
Let us get back to the discrete-time models introduced in the �rst section.

De�nition 1.2.5. A market is viable if there is no arbitrage opportunity.

The following result is sometimes referred to as the Fundamental Theorem
of Asset Pricing.

Theorem 1.2.6. The market is viable if and only if there exists a probability
measure P∗ equivalent1 to P such that the discounted prices of assets are P∗-
martingales.

Proof. (a) Let us assume that there exists a probability P∗ equivalent to
P under which discounted prices are martingales. Then, for any self-�nancing
strategy (φn), Proposition 1.1.2 implies

Ṽn(φ) = V0(φ) +
n∑

j=1

φj .∆S̃j .

Thus, by Proposition 1.2.3, (Ṽn(φ)) is a P∗-martingale. Therefore, ṼN (φ) and
V0(φ) have the same expectation under P∗:

E∗(ṼN (φ)) =E∗(Ṽ0(φ)).

1Recall that two probability measures P1 and P2 are equivalent if and only if for any event
A, P1(A) = 0⇔ P2(A) = 0. Here, P∗ equivalent to P means that, for any ω ∈Ω, P∗({ω}) > 0.
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If the strategy is admissible and its initial value is zero, then E∗(ṼN (φ)) = 0,
with ṼN (φ)≥ 0. Hence ṼN (φ) = 0 since P∗({ω})> 0, for all ω ∈Ω.

(b) The proof of the converse implication is more tricky. Denote by Γ the
set of all non-negative random variablesX such that P(X > 0)> 0. Clearly, Γ is
a convex cone in the vector space of real-valued random variables. The market
is viable if and only if for any admissible strategy φ, V0(φ) = 0⇒ ṼN (φ) /∈Γ.

(b1) To any admissible process (φ1
n, . . . , φ

d
n) we associate the process de-

�ned by

G̃n(φ) =
n∑

j=1

(
φ1
j∆S̃

1
j + · · ·+ φdj∆S̃

d
j

)
,

which is the cumulative discounted gain realised by following the self-�nancing
strategy φ1

n, . . . , φ
d
n. According to Proposition 1.1.3, there exists a (unique)

process (φ0
n) such that the strategy ((φ0

n, φ
1
n, . . . , φ

d
n)) is self-�nancing with

zero initial value. Note that G̃n(φ) is the discounted value of this strategy
at time n, and, because the market is viable, the fact that this value is non-
negative at any time, i.e G̃n(φ)≥ 0 for n= 1, . . . , N , implies that G̃N (φ) = 0.
The following lemma shows that even if we do not assume that all the G̃n(φ)'s
are non-negative, we still have G̃N (φ) /∈Γ.

Lemma 1.2.7. If a market is viable, any predictable process (φ1, . . . , φd)
satis�es

G̃N (φ) /∈Γ.

Proof. Let us assume that G̃N (φ)∈Γ. First, if G̃n(φ)≥ 0 for all n∈
{0, . . . , N}, the market is obviously not viable. Second, if the G̃n(φ)'s are
not all non-negative, we de�ne n= sup{k|P(G̃k(φ)< 0)> 0}. It follows from
the de�nition of n that

n≤N − 1, P(G̃n(φ)< 0)> 0 and ∀m>n, G̃m(φ)≥ 0.

We can now introduce a new process ψ:

ψj(ω) =
{

0 if j ≤n
1A(ω)φj(ω) if j >n,

where A is the event {G̃n(φ)< 0}. Because φ is predictable and A is Fn-
measurable, ψ is also predictable. Moreover,

G̃j(ψ) =
{

0 if j ≤n
1A(G̃j(φ)− G̃n(φ)) if j >n;

thus, G̃j(ψ)≥ 0 for all j ∈ {0, . . . , N} and G̃N (ψ)> 0 on A. That contradicts
the assumption of market viability and completes the proof of the lemma. 2

(b2) The set V of random variables G̃N (φ), with φ a predictable process
in Rd, is clearly a vector subspace of RΩ (where RΩ is the set of real-valued
random variables de�ned on Ω). According to Lemma 1.2.7, the subspace V
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does not intersect Γ. Therefore, it does not intersect the convex compact set
K = {X ∈Γ|∑ωX(ω) = 1}, which is included in Γ. As a result of the convex
sets separation theorem (see the Appendix), there exists (λ(ω))ω∈Ω such that:

1. ∀X ∈K,
∑
ω

λ(ω)X(ω)> 0.

2. For any predictable φ,
∑
ω

λ(ω)G̃N (φ)(ω) = 0.

>From Property 1, we deduce that λ(ω)> 0 for all ω ∈Ω, so that the proba-
bility P∗ de�ned by

P∗({ω}) =
λ(ω)∑

ω′∈Ω λ(ω′)

is equivalent to P.
Moreover, if we denote by E∗ the expectation under measure P∗, Property

2 means that, for any predictable process (φn) in Rd,

E∗



N∑

j=1

φj∆S̃j


 = 0.

It follows that for all i∈ {1, . . . , d} and any predictable sequence (φin) in R,
we have

E∗



n∑

j=1

φij∆S̃
i
j


 = 0.

Therefore, according to Proposition 1.2.4, we conclude that the discounted
prices (S̃1

n), . . . , (S̃
d
n) are P∗-martingales.

1.3 Complete markets and option pricing
1.3.1 Complete markets
A European option2 with maturity N can be characterized by its payo� h,
which is a non-negative FN -measurable random variable. For instance, a
call on the underlying S1 with strike price K will be de�ned by setting
h=

(
S1
N −K

)
+
. A put on the same underlying asset with the same strike

price K will be de�ned by h=
(
K − S1

N

)
+
. In these two examples, which are

actually the two most important in practice, h is a function of SN only. There
are some options dependent on the whole path of the underlying asset, i.e. h
is a function of S0, S1, . . . , SN . That is the case of the so-called Asian options,

2Or, more generally, a contingent claim.



1.3. COMPLETE MARKETS AND OPTION PRICING 23

where the strike price is equal to the average of the stock prices observed
during a certain period of time before maturity.

De�nition 1.3.1. The contingent claim de�ned by h is attainable if there
exists an admissible strategy worth h at time N .

Remark 1.3.2. In a viable �nancial market, we just need to �nd a self-
�nancing strategy worth h at maturity to say that h is attainable. Indeed,
if φ is a self-�nancing strategy and if P∗ is a probability measure equiv-
alent to P under which discounted prices are martingales, then (Ṽn(φ)) is
also a P∗-martingale, being a martingale transform. Hence, for n∈ {0, . . . , N},
Ṽn(φ) =E∗(ṼN (φ)|Fn). Clearly, if ṼN (φ)≥ 0 (in particular if VN (φ) = h≥ 0),
the strategy φ is admissible.

De�nition 1.3.3. The market is complete if every contingent claim is at-
tainable.

To assume that a �nancial market is complete is a rather restrictive as-
sumption that does not have such a clear economic justi�cation as the no-
arbitrage assumption. The interest of complete markets is that it allows us
to derive a simple theory of contingent claim pricing and hedging. The Cox-
Ross-Rubinstein model, which we shall study in the next section, is a very
simple example of a complete market model. The following theorem gives a
precise characterization of complete, viable �nancial markets.

Theorem 1.3.4. A viable market is complete if and only if there exists a
unique probability measure P∗ equivalent to P, under which discounted prices
are martingales.

The probability P∗ will appear to be the computing tool whereby we can derive
closed-form pricing formulae and hedging strategies.

Proof. (a) Let us assume that the market is viable and complete. Then, any
non-negative, FN -measurable random variable h can be written as h= VN (φ),
where φ is an admissible strategy that replicates the contingent claim h. Since
φ is self-�nancing, we know that

h

S0
N

= ṼN (φ) = V0(φ) +
N∑

j=1

φj .∆S̃j .

Thus, if P1 and P2 are two probability measures under which discounted prices
are martingales, (Ṽn(φ))0≤n≤N is a martingale under both P1 and P2. It follows
that, for i= 1, 2,

Ei(ṼN (φ)) =Ei(V0(φ)) = V0(φ),
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the last equality coming from the fact that F0 = {∅,Ω}. Therefore,

E1

(
h

S0
N

)
=E2

(
h

S0
N

)

and, since h is arbitrary, P1 =P2 on the whole σ-algebra FN , which is assumed
to be equal to F .

(b) Let us assume that the market is viable and incomplete. Then, there
exists a random variable h≥ 0 that is not attainable. We call Ṽ the set of
random variables of the form

U0 +
N∑
n=1

φn.∆S̃n, (1.1)

where U0 is F0-measurable and
((
φ1
n, . . . , φ

d
n

))
0≤n≤N is an Rd-valued pre-

dictable process.
It follows from Proposition 1.1.3 and Remark 1.3.2 that the variable h/S0

N

does not belong to Ṽ . Hence, Ṽ is a strict subset of the set of all random
variables on (Ω,F ). Therefore, if P∗ is a probability equivalent to P under
which discounted prices are martingales, and if we de�ne the following scalar
product on the set of random variables (X,Y ) 7→E∗(XY ), we notice that there
exists a non-zero random variable X orthogonal to Ṽ . We now de�ne

P∗∗({ω}) =
(

1 +
X(ω)

2‖X‖∞

)
P∗({ω})

with ‖X‖∞ = supω∈Ω |X(ω)|. Because E∗(X) = 0, that de�nes a new proba-
bility measure equivalent to P, and di�erent from P∗. Moreover,

E∗∗
(

N∑
n=1

φn.∆S̃n

)
= 0

for any predictable process
((
φ1
n, . . . , φ

d
n

))
0≤n≤N . It follows from Proposi-

tion 1.2.4 that (S̃n)0≤n≤N is a P∗∗-martingale. 2

1.3.2 Pricing and hedging contingent claims in complete
markets

The market is assumed to be viable and complete and we denote by P∗ the
unique probability measure under which the discounted prices of �nancial
assets are martingales. Let h be an FN -measurable, non-negative random
variable and φ be an admissible strategy replicating the contingent claim
hence de�ned, i.e.

VN (φ) = h.

The sequence (Ṽn)0≤n≤N is a P∗-martingale, and consequently

V0(φ) =E∗(ṼN (φ)),


