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Preface

This book focuses on the kinetics of phase transitions, that is, the evolution of a
system from an unstable or metastable state to its preferred equilibrium state. A
system may become thermodynamically unstable due to a sudden change in external
parameters like temperature, pressure, magnetic field, and so on. The subsequent
dynamics of the far-from-equilibrium system is usually nonlinear and is characterized
by complex spatiotemporal pattern formation. Typically, the system evolves toward
its new equilibrium state via the emergence and growth of domains enriched in the
preferred state. This process is usually referred to as phase-ordering dynamics or
domain growth or coarsening. There has been intense research interest in this field
over the past few decades, as the underlying physical processes are of great scientific
and technological importance. Problems in this field arise from diverse disciplines
such as physics, chemistry, metallurgy, materials science, and biology. As a result of
this research activity, our understanding of phase-ordering dynamics has reached a
high level of sophistication. At the same time, many challenging problems continue
to arise in different contexts. It is now clear that the paradigms and concepts of
phase-ordering dynamics are of much wider applicability than was initially thought.

In the context of the above developments, we believed that there was a strong
need for a book that summarizes our current understanding of domain growth. Fur-
thermore, we believed that this book should be written at a level accessible to the
advanced undergraduate; that is, it should be a textbook rather than an advanced
research monograph. With this in mind, we wrote to various leaders in this field with
a request to each to contribute a chapter. Their responses were very positive, and
this book is an outcome of the collective efforts of various colleagues. On our part,
we have edited and homogenized the various chapters so that this book reads as a
seamless “multiple-author book” rather than as the usual disjointed “edited book.”

Let us provide an overview of the various chapters. The first chapter (written by
Sanjay Puri) provides an overview of studies of domain growth in simple systems. This
chapter develops the theoretical tools and methodology that are used in subsequent
chapters. The second chapter (written by Kurt Binder) focuses on the distinction
between spinodal decomposition and nucleation and growth, which are common
scenarios for domain growth problems. This issue has been discussed extensively
in the literature, but there remains considerable confusion over the interpretation of
various experiments and simulations. Kurt Binder addresses this issue in great detail,
emphasizing that there is no sharp boundary between spinodal decomposition and
nucleation.

Chapters 3 and 4 are dedicated to a discussion of simulation techniques in this
field. In Chapter 3, Gerard Barkema describes Monte Carlo simulations of kinetic
Ising models. In Chapter 4, Giuseppe Gonnella and Julia Yeomans discuss lattice

vii
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viii Preface

Boltzmann simulations, which have proved very useful in understanding the late stages
of phase separation in fluid mixtures. Numerical simulations have played a crucial
role in developing our understanding of phase-ordering dynamics. The methodology
described in Chapters 3 and 4 will prove very useful for a researcher entering this
field.

In Chapter 5, Marco Zannetti discusses slow relaxation and aging in phase-ordering
systems. These phenomena are well known in the context of structural glasses and
spin glasses. Recent studies indicate that these concepts are also highly relevant in
domain growth problems—Zannetti provides an overview of these studies.

Recent interest in this area has focused on incorporating various experimentally
relevant features in studies of phase-ordering systems. In this context, Chapter 6 (by
Rajesh Khanna, Narendra Kumar Agnihotri, and Ashutosh Sharma) describes the
kinetics of dewetting of liquid films on surfaces. In Chapter 7, Takao Ohta reviews
studies of phase separation in diblock copolymers. In these systems, the segregat-
ing polymers are jointed, so that the system can only undergo phase separation on
micro-scales.

Finally, in Chapter 8 (written by Akira Onuki, Akihiko Minami, and Akira
Furukawa), there is a discussion of phase separation in solids. Strain fields play an
important role in the segregation kinetics of alloys. Onuki et al. discuss how elastic
fields can be incorporated into the description of segregation in solid mixtures.

Before we conclude, it would be appropriate to thank those who have contributed
to this project. First, we are grateful to the authors, who have made the effort to write
pedagogical reviews of various research problems. Second, we wish to thank our
colleagues and collaborators, who have contributed so much to our understanding
and appreciation of this fascinating field of research. Finally, we are grateful to the
editorial and production staff at CRC Press/Taylor & Francis for their assistance in
getting this book into its final form.

Sanjay Puri
New Delhi

Vinod Wadhawan
Mumbai
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2 Kinetics of Phase Transitions

1.1 INTRODUCTION

Many systems exist in multiple phases, depending on the values of external
parameters, for example, temperature (T ), pressure (P), and so on. In this context, con-
sider a fluid (e.g., water), which can exist in three phases, viz., liquid, solid, and gas.
The phase diagram of this fluid in the (T , P)-plane is shown in Figure 1.1. The chosen
phase at a particular (T , P)-value is the one with lowest Gibbs potential G(T , P). This
phase diagram is characterized by a range of fascinating features, for example, lines
of first-order phase transitions, a second-order critical point, a triple point, and so on.
The correct understanding of these features is of great scientific and technological
importance. We have gained a thorough understanding of the equilibrium aspects of
phase transitions (and phase diagrams) through many important works, starting with
the seminal contribution of Van der Waals [1,2].

There is also a fascinating class of problems involving the kinetics of phase transi-
tions, that is, the evolution dynamics of a system that is rendered thermodynamically
unstable by a rapid change of parameters. In the context of Figure 1.1, consider a
situation in which the fluid in the solid phase is rapidly heated to a temperature where
the preferred equilibrium state is the liquid phase. Clearly, the solid will convert to
liquid on some timescale, so the initial and final states of the system are well under-
stood. However, we have less knowledge about the dynamical processes that occur as
the solid converts to liquid. These processes play a crucial role in our everyday life.
Over the years, our understanding of the kinetics of phase transitions has improved
greatly [3–6]. This book provides an overview of developments in this area.

(Tc, Pc)

P

(Tt, Pt)

Solid
Liquid

Gas

T

FIGURE 1.1 Phase diagram of a fluid in the (T , P)-plane. The system can exist in either of
three phases—liquid, gas, or solid. The solid lines denote lines of first-order phase transitions.
At the triple point (Tt , Pt), all three phases coexist. The point labeled (Tc, Pc) is the critical
point of the system.
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Before we proceed, it is relevant to develop the appropriate terminology first.
One is often interested in the evolution of systems whose parameters have been
drastically changed. Such systems are referred to as far-from-equilibrium systems, and
their evolution is characterized by nonlinear evolution equations and spatiotemporal
pattern formation. In most cases, we are unable to obtain exact solutions for the time-
dependent evolution of the system. However, the presence of domain boundaries
or defects in these systems provides a convenient analytical tool to understand the
resultant pattern dynamics.

Let us consider two other problems in this context. These will serve as paradigms
for understanding the kinetics of phase transitions. First, consider a ferromagnet whose
phase diagram is shown in Figure 1.2. Focus on the case with zero magnetic field
(h = 0). At high temperatures, the magnet is in a disordered or paramagnetic state. If
the temperature is suddenly quenched to T < Tc, this system now prefers to be in the
magnetized state with spins pointing in the “up” or “down” directions. The evolution
of the system is characterized by the emergence and growth of domains enriched in
either up or down spins. As time t →∞, the system approaches a spontaneously
magnetized state.

Second, consider a binary (AB) mixture whose phase diagram is shown in
Figure 1.3. The system is mixed or homogeneous at high temperatures. At time t = 0,
the mixture is suddenly quenched below the coexistence curve or miscibility gap. This
system now prefers to be in the phase-separated state and proceeds to its equilibrium
state via the growth of domains that are either A-rich or B-rich. The nonequilibrium
dynamics of the magnet or binary mixture is usually referred to as domain growth or
coarsening or phase-ordering kinetics.

T

h

(Tc, hc)

Up

Down

FIGURE 1.2 Phase diagram of a ferromagnet. The system parameters are the temperature
(T ) and the magnetic field (h). The point (Tc, hc = 0) is a second-order critical point. The line
(T < Tc, h = 0) corresponds to a line of first-order transitions. At low temperatures (T < Tc),
the system can be in either of two phases, up or down, depending on the orientation of the
magnetic spins.
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0 0.2 0.4 0.6 0.8 1
cA

0

0.5

1

T/Tc

Homogeneous

Segregated

(cA = 0.5, T/Tc = 1)

Spinodal

FIGURE 1.3 Phase diagram of a binary (AB) mixture. The system parameters are the
concentration of A (cA = 1− cB) and the temperature (T ). The point (cA = 0.5, T/Tc = 1)

corresponds to a second-order critical point. Above the coexistence curve (solid line), the sys-
tem is in a homogeneous or disordered state. Below the coexistence curve, the system is in a
segregated or phase-separated state, characterized by A-rich and B-rich regions. The dashed
lines denote spinodal curves. The homogeneous system is metastable between the coexistence
and spinodal curves and unstable below the spinodal lines.

There have been many studies of the kinetics of phase transitions. Problems in this
area arise in diverse contexts, ranging from clustering dynamics in the early universe
to the growth of nanostructures. This book is a pedagogical exposition of develop-
ments in this area and is organized as follows. This chapter reviews the framework of
phase-ordering kinetics and develops the tools and terminology used in later chapters.
The subsequent chapters are written by leading experts in this area and focus on prob-
lems of special interest in the context of phase-ordering dynamics.All the chapters are
written in textbook style and are accessible at the level of the advanced undergraduate
student. At this point, we should stress that our understanding of this area has been
greatly facilitated by numerical simulations of appropriate models. Therefore, two
chapters of this book are dedicated to tutorial-level discussions of numerical simula-
tions in this field. The first of these is written by Barkema (Chapter 3)—this chapter
focuses on Monte Carlo simulations of kinetic Ising models. The second of these is
written by Gonnella andYeomans (Chapter 4) and describes the application of lattice
Boltzmann algorithms to study phase-ordering systems.

This chapter is organized as follows. In Section 1.2, we introduce the Ising model
for two-component mixtures and study its equilibrium properties in the mean-field
(MF) approximation. This will enable us to obtain the phase diagrams shown in
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Figures 1.2 and 1.3. In Section 1.3, we study kinetic versions of the Ising model.
In Section 1.4, we discuss domain growth with a nonconserved order parameter, for
example, ordering dynamics of a ferromagnet into up and down phases. In this section,
we separately examine cases with scalar and vector order parameters. In Section 1.5,
we discuss domain growth with a conserved order parameter, for example, kinetics
of phase separation of an AB mixture. We will separately focus on segregation in
binary alloys that is driven by diffusion, and segregation in binary fluids where flow
fields drastically modify the asymptotic behavior. Finally, Section 1.6 concludes this
chapter with a summary and discussion.

1.2 PHASE DIAGRAMS OF TWO-COMPONENT MIXTURES

1.2.1 ISING MODEL AND ITS APPLICATIONS

The simplest model of an interacting many-body system is the Ising model [7], which
was first introduced as a model for phase transitions in magnetic systems. How-
ever, with suitable generalizations, it has wide applications to diverse problems in
condensed matter physics.

Consider a set of N spins {Si}, which are fixed on the sites {i} of a lattice. The
two-state (spin-1/2) Ising Hamiltonian has the following form:

H = −J
∑
〈ij〉

SiSj, Si = ±1, (1.1)

where J is the strength of the exchange interaction between spins. We consider the case
with nearest-neighbor interactions only, denoted by the subscript 〈ij〉 in Equation 1.1.

Although the Hamiltonian in Equation 1.1 is formulated for a magnetic system, it is
clear that a similar description applies for any interacting two-state system, as the two
states can be mapped onto S = +1 or−1. A well-known example is the lattice gas or
binary (AB) mixture [7]. We can describe this system in terms of occupation-number
variables nα

i = 1 or 0, depending on whether or not a site i is occupied by species α (A
or B). Clearly, nA

i + nB
i = 1 for all sites. A more convenient description is obtained in

terms of spin variables Si = 2nA
i − 1 = 1− 2nB

i . We associate an interaction energy
−εαβ between species α and β, located at neighboring sites i and j, respectively. The
corresponding Hamiltonian is

H = −
∑
〈ij〉

[
εAAnA

i nA
j + εBBnB

i nB
j + εAB

(
nA

i nB
j + nB

i nA
j

)]

= −
(

εAA + εBB − 2εAB

4

)∑
〈ij〉

SiSj − q(εAA − εBB)

4

N∑
i=1

Si

− Nq

8
(εAA + εBB + 2εAB). (1.2)

In Equation 1.2, q denotes the coordination number of a lattice site. The second term
on the right-hand side (RHS) is constant because

∑
i Si = NA − NB, where Nα is the
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number of α-atoms in the system. Further, the third term on the RHS is also a constant.
The Hamiltonian in Equation 1.2 is analogous to that in Equation 1.1 if we identify

J = εAA + εBB − 2εAB

4
. (1.3)

The Ising model and its variants are not restricted to two-state systems and can be
easily generalized to the case of multiple-state systems. Thus, three-state systems can
be mapped onto a spin-1 Hamiltonian; four-state systems onto a spin-3/2 Hamiltonian;
and so on. In general, higher-spin models have a larger number of possible interaction
terms (and parameters) in the Hamiltonian.

We can obtain phase diagrams for magnets (cf. Figure 1.2) and binary mixtures
(cf. Figure 1.3) by studying the Ising model in the mean-field (MF) approximation,
as described below.

1.2.2 PHASE DIAGRAMS IN THE MEAN-FIELD APPROXIMATION

The equilibrium properties of the Ising model in Equation 1.1 are described in the
MF approximation by the Bragg–Williams (BW) form of the Gibbs free energy [7].
This is obtained as follows. Consider a homogeneous state with spatially uniform
magnetization 〈Si〉 = ψ. We approximate the energy as

E(ψ) � −J
∑
〈ij〉
〈Si〉〈Sj〉 = −NqJ

2
ψ2. (1.4)

The corresponding probabilities for a site to have up (↑) or down (↓) spins are

p↑ = 1+ψ

2
,

p↓ = 1−ψ

2
.

(1.5)

Therefore, the entropy for a lattice with N sites is

S(ψ) = −NkB

[(
1+ψ

2

)
ln

(
1+ψ

2

)
+
(

1−ψ

2

)
ln

(
1−ψ

2

)]
, (1.6)

where kB is the Boltzmann constant.
Then, the Gibbs free energy is obtained as

G(ψ) = E(ψ)− hM − TS(ψ), (1.7)

where h is the magnetic field, and M (=Nψ) is the overall magnetization.
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This yields the free energy per spin as

g(T , h, ψ) = G(T , h, ψ)

N

= −1

2
qJψ2 − hψ

+ kBT

[(
1+ψ

2

)
ln

(
1+ψ

2

)
+
(

1−ψ

2

)
ln

(
1−ψ

2

)]
.

(1.8)

The RHS of Equation 1.8 is a variational function of the magnetization ψ = 〈Si〉. If
we Taylor-expand the entropy term in Equation 1.8, the Gibbs free energy assumes
the customary ψ4-form:

g(T , h, ψ) = 1

2
(kBT − qJ) ψ2 − hψ+ kBT

12
ψ4 + O(ψ6)− kBT ln 2. (1.9)

The order parameter ψ in Equation 1.8 or Equation 1.9 can describe both
ferromagnetic and antiferromagnetic order, with J < 0 in the latter case. Furthermore,
in the antiferromagnetic case, ψ refers to the sublattice magnetization or staggered
magnetization [7].

The equilibrium value of ψ at fixed (T , h) is obtained from Equation 1.8 by
minimizing the Gibbs free energy:

∂g

∂ψ

∣∣∣∣
ψ=ψ0

= 0. (1.10)

This yields the well-known transcendental equation [β = (kBT)−1]:

ψ0 = tanh(βqJψ0 + βh). (1.11)

For h = 0, we identify the MF critical temperature

Tc = qJ

kB
. (1.12)

For T > Tc and h = 0, the transcendental equation has only one solution ψ0 = 0,
which corresponds to the paramagnetic state. For T < Tc, Equation 1.11 has three
solutions ψ0 = 0,±ψ(T). The state with ψ0 = 0 has a higher free energy than do the
equivalent states +ψ(T) and −ψ(T). Further, ψ(T)→ 1 as T → 0, and ψ(T)→ 0
as T → T−c . The relevant phase diagram in the (T , h)-plane is shown in Figure 1.2.

Next, let us consider the case of the binary mixture (or lattice gas) with NA (=cAN)

atoms of species A and NB (=cBN) atoms of species B (N = NA + NB). The appro-
priate order parameter in this case is the local density difference, ψ = 〈nA

i 〉 − 〈nB
i 〉.

The above analysis has to be modified because the appropriate ensemble for a binary
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mixture is characterized by a fixed magnetization rather than a fixed magnetic field.
The relevant free energy to be minimized is the Helmholtz potential

F(T , ψ) = E(ψ)− TS(ψ). (1.13)

For the BW free energy, we have the expression

f (T , ψ) = F(T , ψ)

N

= −1

2
qJψ2 + kBT

[(
1+ψ

2

)
ln

(
1+ψ

2

)
+
(

1−ψ

2

)
ln

(
1−ψ

2

)]
.

(1.14)

For a system that undergoes phase separation, there are two possibilities:

(a) We can have a homogeneous (or one-phase) state with order parameter
ψh = cA − cB.

(b) We can have a phase-separated state where the system segregates into two
regions having order parameter ψ1 (with fraction x) and ψ2 [with fraction
(1− x)]. The quantity x is determined from the lever rule

ψh = xψ1 + (1− x)ψ2. (1.15)

Let us minimize the Helmholtz potential f for the phase-separated state. (The
homogeneous state is the limit ψ1 = ψ2.) The quantity f is obtained as

f = xf (ψ1)+ (1− x)f (ψ2). (1.16)

This has to be minimized subject to the constraint in Equation 1.15. We implement
this constraint by introducing the Lagrange multiplier λ and minimizing the quantity

A = xf (ψ1)+ (1− x)f (ψ2)− λ[xψ1 + (1− x)ψ2 −ψh]. (1.17)

This yields the equations

∂A

∂x
= f (ψ1)− f (ψ2)− λ(ψ1 −ψ2) = 0,

∂A

∂ψ1
= xf ′(ψ1)− λx = 0,

∂A

∂ψ2
= (1− x)f ′(ψ2)− λ(1− x) = 0,

∂A

∂λ
= xψ1 + (1− x)ψ2 −ψh = 0.

(1.18)
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The first three equations yield

λ = f (ψ1)− f (ψ2)

ψ1 −ψ2
= f ′(ψ1) = f ′(ψ2), (1.19)

which is referred to as Maxwell’s double-tangent construction. This is valid for
arbitrary functional forms of the Helmholtz free energy.

The specific form for f (T , ψ) in Equation 1.14 is an even function of ψ with
f (T ,−ψ) = f (T , ψ). Further, f (T , ψ) has a single minimum at ψ = 0 for T >

Tc = qJ . Thus, the only solution of the double-tangent construction is ψ1 = ψ2.
In that case, the constraint in Equation 1.15 yields ψ1 = ψh, corresponding to the
homogeneous state.

For T < Tc, f (T , ψ) has a symmetric double-well structure with extrema at
f ′(T , ψ0) = 0, that is,

ψ0 = tanh(βqJψ0). (1.20)

The states with non-zero ψ0 correspond to lower free energy than the state with
ψ0 = 0. Thus, a possible solution to the double-tangent construction is

ψ1 = −ψ0, ψ2 = +ψ0, (1.21)

where ψ0 is the positive solution of Equation 1.20. However, this is only an acceptable
solution if the lever rule can be satisfied, that is, −ψ0 < ψh < ψ0. Thus, phase sep-
aration occurs at T < Tc only if |ψh| < ψ0. When phase separation does occur, the
segregated states have the composition−ψ0 (B-rich) and+ψ0 (A-rich), respectively.
The resultant phase diagram in the (cA, T/Tc)-plane is shown in Figure 1.3.

The phase diagrams in Figures 1.2 and 1.3 will provide the basis for our subsequent
discussion of phase-ordering dynamics.

1.3 KINETIC ISING MODELS

1.3.1 INTRODUCTION

The above discussion has clarified the utility of Ising-like models in a wide range
of problems. We next consider the issue of kinetics of Ising models. For simplicity,
we restrict our discussion to the spin-1/2 model described by Equation 1.1. The
generalization to higher-spin models is straightforward. The Ising spin variables do
not have intrinsic dynamics, as is seen by constructing the relevant Poisson bracket.
In order to associate kinetics with the Ising model, we assume that it is placed in
contact with a heat bath that generates stochastic spin-flips (Si →−Si) in the system
[6]. The heat bath can be interpreted as consisting of phonons that induce spin-flips
via a spin-lattice coupling. The resultant kinetic Ising model is referred to as the
spin-flip or Glauber model [8] and is appropriate for describing the nonconserved
kinetics of the paramagnetic→ ferromagnetic transition. The probability of a jump
depends on the configuration of all other spins and the heat-bath temperature, in
general.
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Next, consider the case where the Ising model describes a lattice gas or a binary
(AB) mixture. The appropriate microscopic kinetics involves the diffusion of atoms,
for example, atomic jumps to vacant sites in the lattice gas, or A↔ B interchanges in
the binary mixture. Thus, the heat bath causes spin-exchanges rather than spin-flips,
that is, Si jumps from +1→−1 while a neighbor Sj simultaneously jumps from
−1→+1. This process mimics phonon-induced atomic jumps. The resultant model
is referred to as the spin-exchange or Kawasaki model [9,10].

It should be emphasized that transition probabilities in both the Glauber and
Kawasaki models must satisfy the detailed-balance condition [11], which will be
discussed shortly. Thus, although the two models describe different time-dependent
behavior, the equilibrium state is unique. As t →∞, we recover properties calcula-
ble from the equilibrium statistical mechanics of the Ising model in an appropriate
ensemble.

1.3.2 THE SPIN-FLIP GLAUBER MODEL

In the Glauber model, the heat bath induces fluctuations in the system in the form of
single-spin-flip processes [8]. The Glauber model describes nonconserved kinetics
because the spin-flip processes make the total magnetization M =∑N

i=1 Si time-
dependent. Let us examine the evolution of the probability distribution for the spin
configuration {Si} of a system with N spins. In this context, we introduce the condi-
tional probability P({S0

i }, 0|{Si}, t), which is the probability that the ith spin is in state
Si (i = 1→ N) at time t, given that it was in state S0

i (i = 1→ N) at time t = 0. The
evolution of P is described by the master equation [11]:

d

dt
P({Si}, t) = −

N∑
j=1

W(S1, . . . Sj, . . . SN |S1, . . .−Sj, . . . SN )P({Si}, t)

+
N∑

j=1

W(S1, . . .−Sj, . . . SN |S1, . . . Sj, . . . SN )P({S′i}, t), (1.22)

where we suppress the argument ({S0
i }, 0|, for compactness. The first term on the RHS

of Equation 1.22 corresponds to the loss of probability for the state {Si} due to the
spin-flip Sj →−Sj. The second term on the RHS denotes the gain of probability for
the state {Si} due to a spin-flip S′j →−S′j in a state {S′i} with

S′i = Si for i �= j,

S′j = −Sj.
(1.23)

Equation 1.22 assumes that the underlying stochastic process is Markovian.
The essential physical input is provided by the modeling of the transition matrix
W({Si}|{S′i}) for the change {Si} to {S′i}). The choice of W must be such that the
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ensemble approaches the equilibrium distribution Peq({Si}) as t →∞:

Peq({Si}) = 1

Z(T , h, N)
exp[−β(H − hM)]. (1.24)

Here, Z is the partition function, which is defined as

Z(T , h, N) =
∑
{Si}

exp[−β(H − hM)]. (1.25)

To ensure this, the transition probability W({Si}|{S′i}) should obey the detailed-
balance condition [11]:

W
({Si}|{S′i}

)
Peq({Si}) = W

({S′i}|{Si}
)
Peq
({S′i}

)
. (1.26)

Clearly, in the equilibrium ensemble, this guarantees that the number of systems
making the transition from {Si} → {S′i} is balanced by the number of systems making
the reverse transition {S′i} → {Si}. Thus, the probability distribution Peq is indepen-
dent of time, as expected. Further, an arbitrary distribution P({Si}, t)→ Peq({Si}) as
t →∞ under Equation 1.22, provided that W obeys the detailed-balance condition.
For the proof of this, we refer the reader to the book by Van Kampen [11].

It is evident that there are many choices of W that satisfy the condition in
Equation 1.26. We choose the Suzuki–Kubo form [12]:

W
({Si}|{S′i}

) = λ

2

{
1− tanh

[
βΔ(H − hM)

2

]}
, (1.27)

where λ−1 sets the timescale of the nonequilibrium process. Here, Δ(H − hM)

denotes the enthalpy difference between the final state {S′i} and the initial state {Si}.
It is straightforward to confirm that this form of W satisfies the detailed-balance
condition.

For the spin-flip Ising model, the states {S′i} and {Si} differ only in one spin, that
is, S′j = −Sj. Then

(H − hM)initial = −JSj

∑
Lj

SLj − hSj + other terms,

(H − hM)final = JSj

∑
Lj

SLj + hSj + other terms,
(1.28)

where Lj denotes the nearest neighbors (nn) of j. Thus

Δ(H − hM) = 2JSj

∑
Lj

SLj + 2hSj, (1.29)



“9065_C001.tex” — page 12[#12] 13/2/2009 16:56

12 Kinetics of Phase Transitions

and

W
({Si}|{S′i}

) = λ

2

⎡
⎣1− tanh

⎛
⎝βJSj

∑
Lj

SLj + βhSj

⎞
⎠
⎤
⎦

= λ

2

⎡
⎣1− Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦ . (1.30)

In Equation 1.30, we can bring Sj outside the argument of the tanh-function because
it only takes the values +1 or −1. We replace the form of W from Equation 1.30 in
Equation 1.22 to obtain the explicit form of the master equation:

d

dt
P({Si} , t) = −λ

2

N∑
j=1

⎡
⎣1− Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P({Si}, t)

+ λ

2

N∑
j=1

⎡
⎣1+ Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P
({S′i}, t

)
.

(1.31)

We can use this master equation to obtain the evolution of the magnetization:

〈Sk〉 =
∑
{Si}

SkP({Si}, t). (1.32)

We multiply both sides of Equation 1.31 by Sk and sum over all configurations to
obtain

d

dt
〈Sk〉 = −λ

2

N∑
j=1

∑
{Si}

Sk

⎡
⎣1− Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P({Si}, t)

+ λ

2

N∑
j=1

∑
{Si}

Sk

⎡
⎣1+ Sj tanh

⎛
⎝βJ

∑
Lj

SLj + βh

⎞
⎠
⎤
⎦P
({S′i}, t

)

≡ A+ B. (1.33)

In the second term on the RHS of Equation 1.33, we redefine Sj = −Sj. Clearly, the
sum

∑
Sj=±1 is equivalent to the sum

∑
Sj=±1. Therefore, the terms in A and B cancel
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with each other, except for the case j = k. This yields the following evolution equation
for the magnetization:

λ−1 d

dt
〈Sk〉 = −

∑
{Si}

Sk

⎡
⎣1− Sk tanh

⎛
⎝βJ

∑
Lk

SLk + βh

⎞
⎠
⎤
⎦P({Si}, t)

= −〈Sk〉 +
〈

tanh

⎛
⎝βJ

∑
Lk

SLk + βh

⎞
⎠
〉

, (1.34)

where we have used S2
k = 1.

1.3.2.1 Mean-Field Approximation

Unfortunately, the exact time-dependent Equation 1.34 is analytically intractable in
d ≥ 2. (For the d = 1 solution, see the work of Glauber [8].) The main obstacle is that
the second term on the RHS of Equation 1.34 yields a set of higher-order correlation
functions, as can be seen by expanding the tanh-function. These dynamical equations
can be rendered tractable by invoking the MF approximation, which truncates the
hierarchy by neglecting correlations between different sites, that is, the average of the
product of spin operators is replaced by the product of their averages. The result of
such a random-phase decoupling is that the angular brackets denoting the statistical
average can be taken inside the argument of the tanh-function [13,14]. Thus, we obtain

λ−1 d

dt
〈Sk〉 = −〈Sk〉 + tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉 + βh

⎞
⎠. (1.35)

For time-independent effects in equilibrium, the LHS of Equation 1.35 is identically
zero. Thus, we have (as t →∞)

〈Sk〉eq = tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉eq + βh

⎞
⎠. (1.36)

Notice that Equation 1.35 is nonlinear because of the presence of the tanh-function
and is only tractable numerically. These equations are often referred to as mean-field
dynamical models in the literature [15–19]. A further simplification can be effected
by expanding the tanh-function and retaining only leading terms. For simplicity, we
consider the case of zero magnetic field, that is, h = 0. We can then expand various
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terms on the RHS of Equation 1.35 as follows:

∑
Lk

〈SLk 〉 � qψ(�rk , t)+ a2∇2
k ψ(�rk , t)+ higher-order terms, (1.37)

where a is the lattice spacing. Further,

tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠ � βJ

∑
Lk

〈SLk 〉 −
1

3

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠

3

+ higher-order terms

� Tc

T
ψ(�rk , t)− 1

3

(
Tc

T

)3

ψ(�rk , t)3 + Tc

qT
a2∇2

k ψ (�rk , t)

+ other terms, (1.38)

where we have used Equation 1.37 to obtain the second expression. Therefore, the
order-parameter equation for the Glauber–Ising model simplifies as

λ−1 ∂

∂t
ψ(�r, t) =

(
Tc

T
− 1

)
ψ− 1

3

(
Tc

T

)3

ψ3 + Tc

qT
a2∇2ψ+ other terms,

(1.39)

where we have dropped the subscript k for the position variable.
At this stage, a few remarks are in order. Firstly, Equation 1.39 is referred to as

the time-dependent Ginzburg–Landau (TDGL) equation. We will discuss the general
formulation of the TDGL equation in Section 1.4.1. Secondly, the approximation of
neglecting the higher-order terms in Equation 1.39 is justifiable only for T � Tc,
where the order parameter is small. However, it is generally believed that the TDGL
equation is valid even for deep quenches (T � Tc), at least in terms of containing the
correct physics.

1.3.3 THE SPIN-EXCHANGE KAWASAKI MODEL

We mentioned earlier that the Glauber model, which assumes single-spin-flip pro-
cesses, is appropriate for nonconserved kinetics. On the other hand, when the Ising
model describes either phase separation (J > 0) or order-disorder (J < 0) transi-
tions in an AB mixture [1,7,20,21], the Glauber model is not applicable. For a
binary mixture, the Ising spin variable models the presence of an A- or B-atom on
a lattice site. Thus, the appropriate microscopic dynamics should involve random
exchanges of A- and B-atoms at neighboring sites, with their individual numbers
being constant. In practice, these jumps are actually mediated by vacancies [22–
25], and the system should be described as a ternary (ABV) mixture [18,19,26,27].
However, when the vacancy concentration is small, it is reasonable to ignore vacancies
and assume that the underlying stochastic process is a spin-exchange. As stated
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earlier, this corresponds to the Kawasaki model, which is based on a stationary Markov
process involving a spin-exchange mechanism [9,10]. The resultant master equation
is as follows:

d

dt
P({Si}, t) = −

N∑
j=1

∑
k∈Lj

W(S1, . . . Sj, Sk , . . . SN |S1, . . . Sk , Sj, . . . SN )P({Si}, t)

+
N∑

j=1

∑
k∈Lj

W(S1, . . . Sk , Sj, . . . SN |S1, . . . Sj, Sk , . . . SN )P({S′i}, t).

(1.40)

The first term on the RHS is the loss of probability for the state {Si} due to the spin-
exchange Sj ↔ Sk . We consider only nearest-neighbor exchanges, where site k ∈ Lj,
that is, the nearest-neighbors of j. The second term on the RHS corresponds to the
gain of probability for the state {Si} due to an exchange S′j ↔ S′k in a state {S′i}. The
state {S′i} differs from the state {Si} in only two spins:

S′i = Si for i �= j, k,

S′j = Sk ,

S′k = Sj.

(1.41)

As in the Glauber case, the transition probability W({Si}|{S′i}) must obey the
detailed-balance condition. As we have seen in Section 1.2.2, the binary mix-
ture is described by an ensemble with fixed (T , M, N), where the “magnetization”
M =∑N

i=1 Si = NA − NB. The corresponding equilibrium distribution is

Peq({Si}) = 1

Z(T , M, N)
exp(−βH)δ∑

i Si ,M , (1.42)

where the Kronecker delta confines the distribution to configurations with∑N
i=1 Si = M. The appropriate partition function is

Z(T , M, N) =
∑
{Si}

exp(−βH)δ∑
i Si ,M . (1.43)

Again, we choose the Suzuki–Kubo form for the transition probability in Equa-
tion 1.40:

W({Si}|{S′i}) =
λ

2

[
1− tanh

(
βΔH

2

)]
, (1.44)
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where ΔH is the change in energy due to the spin-exchange Sj ↔ Sk . For the Ising
model,

Hinitial = −JSj

∑
Lj �=k

SLj − JSk

∑
Lk �=j

SLk − JSjSk + other terms,

Hfinal = −JSk

∑
Lj �=k

SLj − JSj

∑
Lk �=j

SLk − JSjSk + other terms.

(1.45)

Thus, the energy change resulting from the spin exchange is

ΔH = J(Sj − Sk)
∑
Lj �=k

SLj − J(Sj − Sk)
∑
Lk �=j

SLk , (1.46)

and

W
({Si}|{S′i}

) = λ

2

⎧⎨
⎩1− tanh

⎡
⎣βJ

2
(Sj − Sk)

∑
Lj �=k

SLj −
βJ

2
(Sj − Sk)

∑
Lk �=j

SLk

⎤
⎦
⎫⎬
⎭

= λ

2

⎧⎨
⎩1− Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭. (1.47)

In Equation 1.47, we have used the fact that (Sj − Sk)/2 = 0,±1 to factor it out of
the argument of the tanh-function. Therefore, the master equation has the form

d

dt
P({Si}, t) = −λ

2

N∑

j=1

∑

k∈Lj

⎧⎨
⎩1− Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

N∑

j=1

∑

k∈Lj

⎧⎨
⎩1+ Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P

({S′i}, t
)
.

(1.48)
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We can obtain an evolution equation for the order parameter by multiplying both
sides of Equation 1.48 with Sn and summing over all configurations:

d

dt
〈Sn〉 = −λ

2

∑
{Si}

N∑
j=1

∑
k∈Lj

Sn

⎧⎨
⎩1− Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

∑
{Si}

N∑
j=1

∑
k∈Lj

Sn

⎧⎨
⎩1+ Sj − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Lj �=k

SLj −
∑
Lk �=j

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({S′i}, t).

(1.49)

In the second term on the RHS of Equation 1.49, we redesignate Sj = Sk and
Sk = Sj. This leads to a large-scale cancellation between the first and second terms.
The only remaining terms are

d

dt
〈Sn〉 = −λ

2

∑

{Si}

∑

k∈Ln

Sn

⎧⎨
⎩1− Sn − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

+ λ

2

∑

{Si}

∑

k∈Ln

Sk

⎧⎨
⎩1+ Sk − Sn

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭P({Si}, t)

= −λ

2

〈∑

k∈Ln

(Sn − Sk)

⎧⎨
⎩1− Sn − Sk

2
tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn−
∑

Lk �=n

SLk

⎞
⎠
⎤
⎦
⎫⎬
⎭

〉
.

(1.50)

Some algebra yields the exact evolution equation

2λ−1 d

dt
〈Sn〉 = −q〈Sn〉 +

∑
Ln

〈
SLn

〉

+
∑
k∈Ln

〈
(1− SnSk) tanh

⎡
⎣βJ

⎛
⎝∑

Ln �=k

SLn −
∑
Lk �=n

SLk

⎞
⎠
⎤
⎦
〉

.

(1.51)

This equation is analogous to Equation 1.34, obtained in the context of Glauber
kinetics.

Although the Kawasaki model is usually associated with conserved kinetics, we
should make a clarifying remark. In the context of binary mixtures, a ferromagnetic
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interaction (J > 0) results in phase separation, that is, the equilibrium system consists
of domains of A-rich and B-rich phases. The appropriate order parameter is the differ-
ence in densities ofA and B and is locally conserved by Kawasaki kinetics. The length
scale over which the order parameter is conserved increases if we allow long-ranged
exchanges rather than only nearest-neighbor exchanges. In the limit where the spin
exchanges are infinite-ranged, the Kawasaki model has global conservation rather
than local conservation. In this case, the Kawasaki model is essentially equivalent to
the Glauber model [28,29].

It is also of great interest to consider the binary mixture with antiferromagnetic
interactions, J < 0. In this case, there is a phase transition from a high-temperature
disordered phase to a low-temperature ordered phase, where the A- and B-atoms
order on alternate sub lattices. The appropriate order parameter is now the staggered
magnetization, which is the difference between the two sub lattice magnetizations.
This quantity is not conserved by Kawasaki kinetics, though the overall concentration
is conserved. For the AB alloy with equal fractions of A and B, the antiferromagnetic
case with Kawasaki kinetics is equivalent to the ferromagnetic Ising model with
Glauber kinetics [30]. For asymmetric compositions, novel features arise due to the
conserved concentration variable.

1.3.3.1 Mean-Field Approximation

As in the Glauber case, Equation 1.51 is the first of a hierarchy of equations involv-
ing higher-order correlations of the spin variable. This hierarchy can be truncated by
invoking the MF approximation, that is, by replacing the expectation value of a func-
tion of spin variables by the function of the expectation values of the spin variables.
The resultant MF dynamical model is

2λ−1 d

dt
〈Sn〉 = −q〈Sn〉 +

∑
Ln

〈
SLn

〉

+
∑
k∈Ln

(1− 〈Sn〉 〈Sk〉) tanh

⎡
⎣βJ

⎛
⎝∑

Ln

〈
SLn

〉−
∑
Lk

〈
SLk

〉
⎞
⎠
⎤
⎦ .

(1.52)

Notice that the restrictions on the summations inside the tanh-function have been
dropped in the MF approximation. This is necessary for Equation 1.52 to contain the
correct MF solution in Equation 1.36 [13]. Recall the MF solution for the h = 0 case:

〈Sk〉eq = tanh

⎛
⎝βJ

∑
Lk

〈
SLk

〉eq

⎞
⎠ . (1.53)
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If we replace this in the RHS of Equation 1.52, we obtain

RHS = −q〈Sn〉eq +
∑
Ln

〈SLn〉eq +
∑
k∈Ln

(
1− 〈Sn〉eq 〈Sk〉eq)

×
[

tanh
(
βJ
∑

Ln

〈
SLn

〉eq)− tanh
(
βJ
∑

Lk

〈
SLk

〉eq )

1− tanh
(
βJ
∑

Ln

〈
SLn

〉eq) tanh
(
βJ
∑

Lk

〈
SLk

〉eq )
]

= −q 〈Sn〉eq +
∑
Ln

〈
SLn

〉eq +
∑
Ln

(〈Sn〉eq − 〈SLn

〉eq)

= 0, (1.54)

as expected.
Finally, let us derive a partial differential equation for the order parameter. This is

the conserved counterpart of the TDGL equation we derived for the magnetization in
Section 1.3.2. We can simplify the RHS of Equation 1.52 by using the identity

tanh(X − Y) = tanh X − tanh Y

1− tanh X tanh Y
, where

X = βJ
∑
Ln

〈SLn〉,

Y = βJ
∑
Lk

〈SLk 〉. (1.55)

We are interested in the late-stage dynamics, where the system has equilibrated locally
and Equation 1.53 applies. Then, we make the approximation:

(1− 〈Sn〉〈Sk〉)
(

tanh X − tanh Y

1− tanh X tanh Y

)
� tanh X − tanh Y . (1.56)

Therefore, we can rewrite Equation 1.52 as

2λ−1 d

dt
〈Sn〉 �

∑
Ln

(〈SLn〉 − 〈Sn〉
)

+
∑
k∈Ln

⎡
⎣tanh

⎛
⎝βJ

∑
Ln

〈SLn〉
⎞
⎠− tanh

⎛
⎝βJ

∑
Lk

〈SLk 〉
⎞
⎠
⎤
⎦

= ΔD

⎡
⎣〈Sn〉 − tanh

⎛
⎝βJ

∑
Ln

〈SLn〉
⎞
⎠
⎤
⎦ , (1.57)
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where ΔD denotes the discrete Laplacian operator. We can use the Taylor expansion
in Equation 1.38 to obtain the coarse-grained version of Equation 1.57 as

2λ−1 ∂

∂t
ψ(�r, t) = −a2∇2

[(
Tc

T
− 1

)
ψ− 1

3

(
Tc

T

)3

ψ3 + Tc

qT
a2∇2ψ

]

+ other terms, (1.58)

where a is the lattice spacing.
Equation 1.58 is known as the Cahn–Hilliard (CH) equation and is the standard

model for phase separation driven by diffusion. In Section 1.5.1, we will derive the
CH equation using phenomenological arguments.

1.4 DOMAIN GROWTH IN SYSTEMS WITH
NONCONSERVED KINETICS

1.4.1 CASE WITH SCALAR ORDER PARAMETER

In Figure 1.2, we had shown the phase diagram for a ferromagnet. The corresponding
ordering problem considers a paramagnetic system at T > Tc, h = 0 for time t < 0.At
t = 0, the system is rapidly quenched to T < Tc, where the preferred equilibrium state
is spontaneously magnetized. The far-from-equilibrium disordered system evolves
toward its new equilibrium state by separating into domains that are rich in either up
or down spins (see Figure 1.4). These domains coarsen with time and are characterized
by a growing length scale L(t). A finite system becomes ordered in either of the two
equivalent states (up or down) as t →∞.

At the microscopic level, this evolution can be described by an Ising model with
Glauber spin-flip kinetics, as discussed in Section 1.3.2. At the coarse-grained level,
the appropriate order parameter to describe the system is the local magnetization
ψ(�r, t). In Section 1.3.2, we had used the Glauber–Ising model to derive the TDGL
equation 1.39, which governs the evolution of the order parameter. More generally, the
TDGL equation models the dissipative (over-damped) relaxation of a ferromagnetic
system to its free-energy minimum:

∂

∂t
ψ(�r, t) = −Γ

δG[ψ]
δψ

+ θ(�r, t). (1.59)

In Equation 1.59, Γ denotes the inverse damping coefficient; and δG/δψ is the
functional derivative of the free-energy functional:

G[ψ] =
∫

d�r
[

g(ψ)+ 1

2
K( �∇ψ)2

]
. (1.60)

Typical forms of the local free energy g(ψ) are given in Equations 1.8 and 1.9.
The second term on the RHS of Equation 1.60 accounts for surface tension due to
inhomogeneities in the order parameter. The parameter K (>0) measures the strength
of the surface tension.
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t = 10 t = 50

t = 200 t = 500

FIGURE 1.4 Evolution of a disordered ferromagnet, which is quenched to T < Tc at
time t = 0. These pictures were obtained from a Euler-discretized version of the dimen-
sionless TDGL equation 1.66 with h = 0 and no thermal fluctuations (ε = 0). The dis-
cretization mesh sizes were Δt = 0.1 and Δx = 1 in time and space, respectively. The
initial condition ψ(�r, 0) consisted of small-amplitude fluctuations about ψ = 0. The lat-
tice size was 2562, and periodic boundary conditions were applied in both directions.
Regions with up spins (ψ > 0) and down spins (ψ < 0) are marked black and white,
respectively.

The noise term in Equation 1.59 is also space- and time-dependent and satisfies
the fluctuation-dissipation relation:

θ(�r, t) = 0,

θ(�r′, t′)θ(�r′′, t′′) = 2ΓkBTδ(�r′ − �r′′)δ(t′ − t′′), (1.61)

where the bars denote an average over the Gaussian noise ensemble. The presence of
the noise term ensures that the system equilibrates to the correct Boltzmann distri-
bution at temperature T . Equations 1.59 through 1.61 are also referred to as Model
A of order-parameter kinetics, as discussed by Hohenberg and Halperin [31] in the
context of dynamic critical phenomena.
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Recall the TDGL equation 1.39, which was derived in Section 1.3.2. We identify it
as the deterministic version of the general form in Equation 1.59. Further, the damping
coefficient Γ = βλ, where λ is the inverse timescale of Glauber spin-flips. Finally,
the form of the free-energy functional that gives rise to Equation 1.39 is

βG[ψ] =
∫

d�r
[
−1

2

(
Tc

T
− 1

)
ψ2 + 1

12

(
Tc

T

)3

ψ4 + Tc

2qT
a2( �∇ψ

)2
]

. (1.62)

For our subsequent discussion, it is convenient to use the general form of the
ψ4-free energy:

G[ψ] =
∫

d�r
[
−a(Tc − T)

2
ψ2 + b

4
ψ4 − hψ+ K

2

( �∇ψ
)2] , (1.63)

where we have introduced the parameters a, b > 0 and a term proportional to the
magnetic field; and neglected terms of O(ψ6) and higher. The parameters a, b can
be identified by a comparison with the explicit form of the free energy in (say)
Equation 1.62. However, it is more appropriate to think of them as phenomenological
parameters, without any reference to an underlying microscopic model.

For the ψ4-free energy in Equation 1.63, the TDGL equation 1.59 has the form:

∂

∂t
ψ(�r, t) = Γ

[
a(Tc − T)ψ− bψ3 + h+ K∇2ψ

]
+ θ(�r, t). (1.64)

The parameters in Equation 1.64 can be absorbed into the definitions of space and
time by introducing the rescaled variables (for T < Tc)

ψ′ = ψ

ψ0
, ψ0 =

√
a(Tc − T)

b
,

t′ = a(Tc − T)Γ t,

�r′ =
√

a(Tc − T)

K
�r, ξb =

√
2K

a(Tc − T)
,

h′ = h

a(Tc − T)ψ0
,

θ′ = θ

a(Tc − T)Γψ0
.

(1.65)

Dropping primes, we obtain the dimensionless TDGL equation:

∂

∂t
ψ(�r, t) = ψ−ψ3 + h+ ∇2ψ+ θ(�r, t), (1.66)
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where

θ(�r, t) = 0,

θ(�r′, t′)θ(�r′′, t′′) = 2εδ(�r′ − �r′′)δ(t′ − t′′),

ε = kBTb [a(Tc − T)](d−4)/2

Kd/2
. (1.67)

We will focus on the case with h = 0 (shown in Figure 1.4), where the system
evolves into two competing states. There is a domain boundary or interface that
separates regions enriched in the two states. Our analytical understanding of domain
growth problems is based on the dynamics of these interfaces.

1.4.1.1 Static Interfaces or Kinks

Consider the deterministic version of the TDGL equation with h = 0:

∂

∂t
ψ(�r, t) = ψ−ψ3 + ∇2ψ, (1.68)

where we have set ε = 0 in Equation 1.66. The static solution of this equation corre-
sponds to a uniform state with ψ0 = +1 or ψ0 = −1. Another static solution (with
higher energy than that of the uniform state) is the interface or kink, which is obtained
as the solution of

d2ψs

dz2
+ψs −ψ3

s = 0. (1.69)

The kink solution is

ψs(z) = tanh

[
± (z − z0)√

2

]
, (1.70)

where z0 (the center of the kink) is arbitrary. The solutions with a positive sign (kink)
and negative sign (anti-kink) are shown in Figure 1.5. The kink (anti-kink) goes from
ψ = −1 (ψ = +1) at z = −∞ to ψ = +1 (ψ = −1) at z = ∞. The solution differs
from ψ � ±1 in a small interfacial region only, whose width defines the correlation
length ξb =

√
2 (in dimensionless units).

The free energy associated with a configuration ψ(�r) is (in dimensionless units)

G[ψ] =
∫

d�r
[
−ψ2

2
+ ψ4

4
+ 1

2
( �∇ψ)2

]
. (1.71)

Therefore, the free-energy difference between the kink solution and the homogeneous
solution ψ = ψ0 is

ΔG = A
∫ ∞
−∞

dz

[
−1

2

(
ψ2

s −ψ2
0

)
+ 1

4

(
ψ4

s −ψ4
0

)
+ 1

2

(
dψs

dz

)2
]

, (1.72)


