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We are delighted to dedicate this third edition of the Handbook of Near-Infrared Analysis to our good
friend and colleague, Karl H. Norris.

Karl is regarded as the “father” of modern near-infrared spectroscopic analysis. He was a major
force in the development of the near-infrared reflection technology for the simple, accurate, rapid,
and inexpensive testing of many quality characteristics of food and grains. This technology has now
been widely accepted and has revolutionized the way many chemical analyses are performed. As
one can see in the applications chapters that follow, the near-IR approach to the determination of
sample composition now permeates nearly every industry.

After nearly 40 years as an internationally recognized authority in this field, Karl was awarded
a well-deserved honorary doctorate by Wilson College on August 10, 2006. This came as a sur-
prise during the 25th anniversary celebration of the International Diffuse Reflectance Conference in
Chambersburg, PA, before a crowd of nearly 150 colleagues.

Dr. Norris is now retired as leader of the Instrumentation Research Laboratory of USDA’s
Agricultural Research Service. He holds several patents, and is the author or co-author of more than
100 research papers.

Way to go, Karl. Keep it up!

Donald A. Burns

Emil W. Ciurczak
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Preface

Near-Infrared (NIR) spectroscopy is a technique whose time has arrived. And for good reason — it is
unusually fast compared to other analytical techniques (often taking less than 1 s), it is nondestructive,
and as often as not, no sample preparation is required. It is also remarkably versatile: if samples
contain such bonds as C−−H, N−−H, or O−−H, and if the concentration of the analyte exceeds about
0.1% of the total composition, then it is very likely to yield acceptable answers, even in the hands
of relatively untrained personnel.

The price to be paid, however, is the preliminary work, which is typical of any chemometric
method. The instrument/computer system must be “taught” what is important in the sample. While
this task may be time-consuming, it is not difficult. Today’s sophisticated software offers the user
such choices of data treatments as multiple linear regression (MLR), partial least squares (PLS),
principal components regression (PCR), factor analysis (FA), neural networks (NN), and Fourier
transform (FT), among others. The trade-off is a good one: even after several hours (or days) of
calibrating, the multiple advantages of analysis by NIR far outweigh the time required for method
development.

This book is divided into four parts. Following the Introduction and Background, there is a
general section on Instrumentation and Calibration. This is followed by Methods Development, and
the depth of NIR’s utility is covered by a broad (if not comprehensive) section on Applications.

The Handbook of Near-Infrared Analysis was written for practicing chemists and spectroscopists
in analytical, polymer, forage, baking, dairy products, petrochemicals, beverages, pharmaceutical,
and textile chemistry who are responsible for methods development or routine analyses where speed,
accuracy, and cost are vital factors.

Chapters 2 and 3 have been replaced (Basic Principles and Theories of Diffuse Reflection),
several chapters (4,19,25,26,29, and 37) have been updated (Commercial Instrumentation,
Analyses of Textiles and of Baked Products, Advances in the Petrochemical Industry,
Polymers, Pharmaceutical Applications, and Process Analysis), and some new chapters
(12,18,21,28,29,31,32,33,35, and 38) have been added (Process Sensors, Agro-Forestry Sys-
tems, Gas Analysis, Use of NIR at the Bowling Alley, PAT in the Pharmaceutical Industry,
Nutraceuticals, Detection of Counterfeit Drugs (e.g., Viagra), NIR Photography in Medicine,
Biomedical Components in Blood and Serum, and The Detection of Counterfeit Currency and
Turquoise).

All this should enable you to assess the potential of NIR for solving problems in your own field
(and it could even lead to becoming a hero within your organization). You will discover the relative
merits of on-line, in-line, and at-line analyses for process control. You will see how interferences can
be removed spectrally rather than physically, and how to extract “hidden” information via derivatives,
indicator variables, and other data treatments.

Thanks are due to many people in our lives (i) Linda Burns, who put up with the disap-
pearance of all flat surfaces in our house for those weeks (or was it months?) when piles of
papers were everywhere, awaiting some semblance of organization into a book, (ii) the publisher,
whose prodding was minimal and whose patience was long, (iii) the special people in my (Emil’s)
life: Alissa, Alex, Adam, Alyssa, and Button (the Wonder Dog), and (iv) the many contribut-
ors, both original and new. We hope that this general book will be useful to those already using
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NIR as well as to those just entering the field and having to make important decisions regard-
ing instrumentation, software, and personnel. Suggestions for improving the next edition are most
welcome.

Donald A. Burns

Emil W. Ciurczak
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Part I

Introduction and Background
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1 Historical Development

Peter H. Hindle

CONTENTS

1.1 The Discovery of Near-Infrared Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The First Infrared Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 THE DISCOVERY OF NEAR-INFRARED RADIATION

The interaction of light with matter has captured the interest of man over the last two millennia. As
early as a.d. 130, Ptolemaeus tabulated the refraction of light for a range of transparent materials,
and in 1305, Von Freiburg simulated the structure of the rainbow by using water-filled glass spheres.

By the mid-eighteenth century, through the work of great scientists such as Snell, Huygens,
Newton, Bradley, and Priestly, the laws of reflection and refraction of light had been formulated.
Both the wave and corpuscular nature of light had been proposed along with measurement of its
velocity and adherence to the inverse square law. For the student of the infrared, it is Herschel’s
discovery of near-infrared (NIR) radiation that is probably of the greatest significance.

Sir William Herschel was a successful musician turned astronomer. Without doubt, he was one of
the finest observational astronomers of all time. In 1800, he wrote two papers [1] detailing his study
of the heating effect in the spectrum of solar radiation. He used a large glass prism to disperse the
sunlight onto three thermometers with carbon-blackened bulbs. Toward the red end of the spectrum,
the heating effect became apparent. However, just beyond the red, where there was no visible light,
the temperature appeared at its greatest.

Herschel referred to this newly discovered phenomenon as “radiant heat” and the “thermometrical
spectrum.” Erroneously, he considered this form of energy as being different from light. Whilst
his conclusions may appear surprising to us, we must remember that there was no concept of an
electromagnetic spectrum, let alone that visible light formed only a small part of it. It was left to
Ampere, in 1835, employing the newly invented thermocouple, to demonstrate that NIR had the same
optical characteristics as visible light and conclude that they were the same phenomenon. Ampere’s
contribution, often overlooked, is important because it introduces, for the first time, the concept of
the extended spectrum.

However, Herschel [2] clearly attached great importance to the analysis of light. In a letter to
Professor Patrick Wilson, he concludes:

…And we cannot too minutely enter into an analysis of light, which is the most subtle of all active
principles that are concerned with the mechanism of the operation of nature.

By the beginning of the twentieth century, the nature of the electromagnetic spectrum was
much better understood. James Clerk Maxwell had formulated his four equations determining the

3
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propagation of light, and the work of Kirchoff, Stefan, and Wien were neatly capped by Max Planck’s
radiation law in 1900.

Observationally, little progress had been made. Fraunhofer used a newly produced diffraction
grating to resolve the sodium “D” lines in a Bunsen-burner flame as early as 1823 and Kirchoff had
visually recorded the atomic spectra of many elements by the 1860s. Sadly, lack of suitable detection
equipment impeded real progress outside the visible part of the spectrum.

1.2 THE FIRST INFRARED SPECTRA

An important step was taken in the early 1880s. It was noted that the photographic plate, invented in
1829 by Niepce and Daguerre, had some NIR sensitivity. This enabledAbney and Festing [3] to record
the spectra of organic liquids in the range 1 to 1.2 µm in 1881. This work was of great significance;
not only did it represent the first serious NIR measurements but also the first interpretations, because
Abney and Festing recognized both atomic grouping and the importance of the hydrogen bond in
the NIR spectrum.

Stimulated by the work of Abney and Festing, W. W. Coblentz [4] constructed a spectrometer
using a rock-salt prism and a sensitive thermopile connected to a mirror galvanometer. This instru-
ment was highly susceptible to both vibration and thermal disturbances. After each step in the rotation
of the prism, corresponding to each spectral element to be measured, Coblentz had to retire to another
room in order to allow the instrument to settle. Each pair of readings (with and without the sample
in the beam) was made with the aid of a telescope to observe the galvanometer deflection. It took
Coblentz a whole day to obtain a single spectrum. Around 1905 he produced a series of papers
and ultimately recorded the spectra of several hundred compounds in the 1- to 15-µm wavelength
region.

Coblentz discovered that no two compounds had the same spectrum, even when they had the
same complement of elements (e.g., the isomers propan1-ol and propan2-ol). Each compound had
a unique “fingerprint.” However, Coblentz noticed certain patterns in the spectra; for example, all
compounds with OH groups, be they alcohols or phenols, absorb in the 2.7 µm region of the
spectrum. In this way, many molecular groups were characterized. He also speculated the existence
of harmonically related series. Essentially, Coblentz gave chemists a new tool, spectroscopy, where
they could obtain some structural information about compounds.

It is interesting to note that contemporaries of Coblentz were working on exciting, new, instru-
mental designs, which, years later, were to become the mainstay of present-day spectrometry.
Rowland developed large, ruled diffraction gratings and concave gratings, in particular, in the 1880s.
In 1891, A. A. Michelson [5] published a paper describing the two-beam interferometer.

1.3 A STEADY EVOLUTION

During the first half of the twentieth century many workers extended the spectral database of organic
compounds and assigned spectral features to functional groups. While infrared spectroscopy had
moved away from being a scientific curiosity it was used very little; suitable spectrometers did not
exist and few chemists had access to what instruments there were. Over half a century was to pass
between Coblentz’s original work and the routine use of spectroscopy as a tool; indeed, two-thirds
of a century would pass before routine NIR measurement made its debut.

Possibly, the first quantitative NIR measurement was the determination of atmospheric moisture
at the Mount Wilson observatory by F. E. Fowle in 1912 [6] followed, in 1938, by Ellis and Bath
[7] who determined amount of water in gelatin. In the early 1940s, Barchewitz [8] analyzed fuels
and Barr and Harp [9] published the spectra of some vegetable oils. In the late 1940s Harry Willis,
working at ICI, used a prewar spectrometer to characterize polymers and later employed NIR for the
measurement of the thickness of polymer films.
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The state of the art by the mid-1950s is summarized by Wilbur Kaye [10,11], in 1960 by
R. E. Goddu [12] and in 1968 by K. Whetsel [13]. It is interesting to note that up to 1970, only
about 50 papers had been written on work concerning NIR.

In the 1930s, lead sulphide (PbS) was being studied as a compound semiconductor, and the advent
of the World War II stimulated its development as an infrared detector for heat-sensing purposes. In
the 1950s, PbS became available for commercial applications as a very sensitive detector for the 1-
to 2.5-µm wavelength region. The NIR region, at last, had a good detector.

Research into NIR spectra (1 to 2.5 µm) as opposed to the mid-infrared (mid-IR) (roughly 2 to
15 µm) had a slow start. Many spectroscopists considered the region too confusing with many weak
and overlapping peaks of numerous overtone and combination bands (making assignments difficult).
Compared with the mid-IR absorption features were very weak (by two or three orders of magnitude)
and, because of the overall complexity, baselines were hard to define. However, two aspects of NIR
technology were initially overlooked. First, the PbS detector was very sensitive and because tungsten
filament lamps (particularly quartz halogen) were a good source of NIR radiation, diffuse reflection
measurements were possible. Second, relatively low-cost instruments could be manufactured because
detectors, light sources, and, importantly, optics made from glass were inexpensive.

1.4 THE DIGITAL REVOLUTION

Modern NIR technology relies heavily on the computer (and the microprocessor in particular), not
only for its ability to control and acquire data from the instrument, but to facilitate calibration and
data analysis. The foundations of data analysis were laid down in the 1930s. Work on the diffuse
scattering of light in both transmission and reflection, by Kubelka and Munk [14] in 1931, opened
the door to NIR measurements on solids. In 1933, Hotelling [15] wrote a classic paper on principal
components analysis (PCA), and Mahalanobis formulated a mathematical approach for representing
data clustering and separation in multidimensional space.

In 1938, Alan Turing created the first programmable computer, employing vacuum tubes and
relays. By the 1950s, the first commercial computer, UNIVAC, was available. By the mid-1950s,
FORTRAN, the first structured, scientific language had been developed by Backus at IBM. The first
personal computer (PC) was probably the Altair in 1975, followed in 1977 by the Commodore PET,
the same year that saw Bill Gates and Paul Allen found Microsoft. IBM joined the fray with their
first PC in 1981 and their designs set the format for compatibility. PC sales of around 300,000 in
1981 rocketed to 3 million in the next year. The PC soon became the driving force behind NIR
instrumentation.

Starting in the 1950s there was a growing demand for fast, quantitative determinations of mois-
ture, protein, and oil. Kari Norris, already working for the USDA, was charged with solving the
problem for wheat. He then took the bold step of choosing NIR, working with primitive means
by today’s standards. In 1968, Ben-Gera and Norris published their initial work on applying mul-
tiple linear regression (MLR) to the problem of calibration relating to agricultural products. The
early 1970s saw the birth of what was to become the laboratory instrument sector of NIR with the
emergence of names like Dickey–John, Technicon, and Neotec all in the United States.

At the same time, and quite separately, online process instruments emerged. In Germany, Pier
Instrument produced a two-filter sensor with tube-based electronics. In 1970, Infrared Engineering
(in the United Kingdom) and Anacon (United States), both employing integrated circuit (IC)-based
electronics, entered the marketplace. Afew years later Moisture Systems Corporation (United States)
entered the field. Online instrumentation is now used for both continuous measurement and process
control over a wide range of applications including chemicals, pharmaceuticals, tobacco, food,
drinks, and web-based products [16,17].

During the 1980s, the microprocessor was integrated into the designs of most instruments. Much
more sophisticated data acquisition and manipulation was now possible. The scope of data treatment
display and interpretation was enhanced to include MLR, partial least squares, PCA, and cluster
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analysis. Third-party software suppliers have emerged offering a wide choice of data treatments,
feeling the user from the constraints of instrument suppliers. Subsequent chapters of this book are
devoted in detail to these issues.

NIR technology has evolved rapidly since 1970 and has now gained wide acceptance. In many
sectors, it is now the measurement of choice. Its history is far richer than can be presented within
the scope of this chapter and so some references for further reading have been included [18–33].
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2.1 INTRODUCTION

The increasing demand for product quality improvement and production rationalization in the chem-
ical, petrochemical, polymer, pharmaceutical, cosmetic, food, and agricultural industries has led to
the gradual substitution of time-consuming conservative analytical techniques (GC, HPLC, NMR,
MS) and nonspecific control procedures (temperature, pressure, pH, dosing weight) by more spe-
cific and environmentally compatible analytical tools. In this respect, of the different methods of
vibrational (mid-infrared [MIR], near-infrared [NIR] and Raman) spectroscopy, primarily the NIR
technique has emerged over the last decade — in combination with light-fiber optics, new in- and
on-line probe accessories, and chemometric evaluation procedures — as an extremely powerful tool
for industrial quality control and process monitoring.

With this development the wavelength gap between the visible and the MIR region that has over
a long period been lying idle is eventually also filled with life and exploited according to its real

7
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FIGURE 2.1 The NIR spectra of acetylsalicylic acid and cellulose: fingerprints of the chemical composition
and the physical state of order.

potential. The period of idling can be mainly contributed to two facts:

• On the one hand, conservative spectroscopists did not accept the frequently broad and
overlapped overtone and combination bands of the NIR region as a complementary and
useful counterpart to the signals of the fundamental vibrations observed in the Raman
and MIR spectra. Figure 2.1 shows the NIR spectra of a crystalline, pharmaceutical active
ingredient (acetylsalicylic acid) and an amorphous excipient (cellulose). The characteristic
absorption bands with significantly different half-bandwidth clearly demonstrate that this
prejudice is not justified and that the NIR spectrum is not only a fingerprint of the chemical
composition but also a signature of the physical state of order of the material under
investigation.

• Most of the early users of NIR spectroscopy were, with few exceptions, working in the
field of agriculture, taking advantage of this new nondestructive analytical tool and having
low or no interest to further exploit the spectroscopy behind the data in scientific depth.

Although the situation has not yet changed to the point of equivalent recognition of NIR compared to
MIR and Raman spectroscopy, today NIR spectroscopy is at least an accepted technique for industrial
applications. It should be emphasized, however, that NIR spectroscopy is not only a routine tool but
has also a tremendous research potential, which can provide unique information not accessible by
any other technique. Several chapters of this book will certainly prove this statement.

Historically, the discovery of NIR energy is ascribed to W. Herschel in 1800 [1,2]. As far as the
development of instrumentation and its breakthrough for industrial applications in the second half
of the twentieth century was concerned, it proceeded in technology jumps [3]. In this respect, large
credit has to be given to researchers in the field of agricultural science, foremost K. H. Norris [4,5],
who have recognized the potential of this technique already in the early fifties. At the same period,
with few exceptions [6–8], comparatively low priority had been given to NIR spectroscopy in the
chemical industry. This situation is also reflected by the fact that the NIR spectral range was for
a long time only offered as a low- or high-wave number add-on to ultraviolet-visible (UV-VIS) or
MIR spectrometers, respectively.
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This situation has dramatically changed since about the mid-eighties when stand-alone NIR
instrumentation became widely available. Since the early nineties, the availability of efficient chemo-
metric evaluation routines, light-fiber optics coupled with specific probes for a multitude of purposes,
and the subsequent fast progress in miniaturization, based on new monochromator/detector designs,
has launched NIR spectroscopy into a new era for industrial quality and process control.

2.2 BASIC PRINCIPLES OF VIBRATIONAL
SPECTROSCOPY

In order to provide a minimum basis to put the different vibrational spectroscopies (Raman, MIR, and
NIR) into perspective as far as their theoretical and instrumental fundamentals and their individual
advantages are concerned, a short comparative overview is given here. For more detailed information
the interested reader is referred to the pertinent literature [9–21].

Although the three techniques are very different in several aspects, their basic physical origin is
the same: signals in the MIR, NIR, and Raman spectra of chemical compounds can be observed as a
consequence of molecular vibrations. However, while Raman spectroscopy is a scattering technique,
MIR and NIR spectroscopy are based on the absorption of radiation (Figure 2.2).

2.2.1 THE ABSORPTION TECHNIQUES OF MIR AND
NIR SPECTROSCOPY

2.2.1.1 The Harmonic Oscillator

We will first treat the methods based on the phenomenon of absorption and consider a harmonic
diatomic oscillator model where the vibrating masses m1 and m2 (Figure 2.2) lead to changes of the
internuclear distance <10%. In this case, Hooke’s law applies and the potential energy, V , can be
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FIGURE 2.2 The principles of Raman, MIR, and NIR spectroscopy (see text).
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represented by [22]
V = 1

2 k(r − re)
2 = 1

2 kq2 (2.1)

where k is the force constant of the bond, r is the internuclear distance during the vibration, re is
the equilibrium internuclear distance, and q = (r− re) is the displacement coordinate. The potential
energy curve of such an oscillator is parabolic in shape and symmetrical about the equilibrium bond
length re. This model leads to the vibrational frequency ν0:

ν0 = 1

2π

√
k

m
(2.2)

where the reduced mass m is given by:

m = m1m2

m1 + m2
(2.3)

From Equation (2.2) and Equation (2.3), it becomes obvious that the vibrational frequencies are
very sensitive to the structure of the investigated compound, and this is the basis for the widespread
application of infrared spectroscopy for structure elucidation.

A quantum mechanical treatment by the Schrödinger equation shows that the vibrational energy
has only certain discrete values that are given by [22]:

En = hν0

(
n+ 1

2

)
(2.4)

where h is Planck’s constant, ν0 is the vibrational frequency defined above and n is the vibrational
quantum number that can only have integer values 0, 1, 2, 3, . . . and so on. If the energy levels are
expressed in wave number units (cm−1), they are given by [3]:

Gn = En

hc
= ν̄0

(
n+ 1

2

)
(2.5)

where c is the speed of light and ν̄0 is the wave number corresponding to the frequency ν0

ν̄0 = 1

2πc

√
k

m
(2.6)

Interaction of infrared radiation with a vibrating molecule, however, is only possible if the electric
vector of the radiation oscillates with the same frequency as the molecular dipole moment,µ. Thus, a
vibration is infrared active only if the molecular dipole moment is modulated by the vibration [9] and

∂µ

∂q
�= 0 (2.7)

where q is the vibrational coordinate. The requirement of a dipole moment change during the vibration
makes MIR spectroscopy specifically sensitive to polar functionalities (see below and Figure 2.3).

For the harmonic oscillator the energy levels expressed in Equation (2.4) and Equation (2.5) are
equidistant and transitions are only allowed between neighboring energy levels with

	n = ±1 (2.8)
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FIGURE 2.3 Specific characteristics of Raman, MIR, and NIR spectroscopy (I0, incident radiation;
I , transmitted radiation; A, absorbance; a, absorptivity; b, sample thickness; c, sample concentration) (see text).

According to the Boltzmann distribution, most molecules at room temperature populate the ground
level n = 0, and consequently the allowed, so-called fundamental, transitions between n = 0 and
n = 1 dominate the vibrational absorption spectrum (Figure 2.2). The potential of MIR spectroscopy
as a structure elucidation tool is based on the fact that the majority of absorption bands of chemical
compounds corresponding to fundamental vibrations occur in this wave number region (4000 to
200 cm−1).

2.2.1.2 The Anharmonic Oscillator

However, the picture of the harmonic oscillator cannot be retained at larger amplitudes of vibration
owing to:

• Repulsive forces between the vibrating atoms.
• The possibility of dissociation when the vibrating bond is strongly extended.

Accordingly, the allowed energy levels for an anharmonic oscillator have to be modified [3,22,23]:

Gn = En

hc
= ν̄0

(
n+ 1

2

)
− χν̄0

(
n+ 1

2

)2

(2.9)

where χ is the anharmonicity constant.
Unlike the harmonic oscillator, energy levels are no longer equidistant and the strict selection rule

of Equation (2.8) is expanded to transitions over more than one energy level (see Equation (2.10)).
Furthermore, the potential energy curve is represented by an asymmetric Morse function [3,9,22]
as shown in Figure 2.2. Generally, a nonlinear molecule containing N atoms will have 3N − 6
vibrational degrees of freedom, while a linear molecule has only 3N − 5 [3,24]. The number of
vibrational degrees of freedom represents the number of fundamental vibrational frequencies of the
molecule or the number of different “normal modes” of vibration. For a given molecule, a normal
mode of vibration corresponds to internal atomic motions in which all atoms move in phase with the
same frequency, but with different amplitudes. Additionally to these normal vibrations transitions
corresponding to

	n = ±2,±3, . . . (2.10)

are now also allowed and are called first, second, and so on, overtones.
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Apart from overtones, combinations of different vibrational transitions (sum and difference
“tones”) may also be observed. However, the probability of these transitions decreases significantly
with their order, and generally the absorption bands corresponding to overtone or combination
vibrations have much lower intensity than their fundamental analogs. Contrary to the MIR, the NIR
region contains almost exclusively absorption bands that can be assigned to overtone and combination
vibrations. Unfortunately, the overlap of these overtone and combination bands strongly decreases
the specificity of NIR spectroscopy (especially for interpretation purposes) and was one of the
main reasons why this technique has been neglected by conservative spectroscopists for such a
long time.

However, the availability of (a) chemometric evaluation procedures for qualitative discrimination
and quantitative determination [25–28] and (b) the perception that the low band intensities can be
advantageously exploited in terms of larger sample thicknesses and therefore much easier sample
handling has eventually led to the breakthrough of the NIR technique.

2.2.1.3 The Calculation of Overtones and Anharmonicities

With Equation (2.9) the wave number position of the fundamental vibration ν̄1 or an overtone ν̄n

(n = 2, 3, . . .) of the anharmonic oscillator can be given by [23]

ν̄n = Gn − G0 = ν̄0n− χν̄0n(n+ 1) (2.11)

ν̄0 is not directly accessible and from the absorption spectra only the wave numbers ν̄1, ν̄2, . . . may
be obtained. Therefore, we substitute ν̄0 in Equation (2.9) by

ν̄0 = ν̄1

1− 2χ
(2.12)

and can derive

ν̄n = ν̄1n− ν̄1χn(n+ 1)

1− 2χ
(2.13)

for n = 2, 3, 4, . . . .
Thus, if the wave number position ν̄1 of the fundamental vibration and the anharmonicity constant

χ are known, the wave number positions of the overtones can be calculated by Equation (2.13).
Alternatively, χ can be calculated if, for example, ν̄1 and ν̄2 are known.

The intensities of overtone absorption bands depend on the anharmonicity, and it has been
shown [23] that vibrations with low anharmonicity constants also have low overtone intensities.
X−−H stretching vibrations, for example, have the largest anharmonicity constants and therefore
dominate the spectra in the NIR region. Table 2.1 summarizes the anharmonicity constants of the
vibrations of some characteristic functionalities.

TABLE 2.1
Anharmonicity Constants χ
for Selected Vibrations [23]

χν(CH) ∼1.9× 10−2

χν(CD) ∼1.5× 10−2

χν(CF) ∼4× 10−3

χν(CCl) ∼6× 10−3

χν(C==O) ∼6.5× 10−3
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2.2.1.4 Fermi Resonance, Darling–Dennison Resonance, and
the Local Mode Concept

Apart from overtone and combination vibrations, some other characteristic effects may contribute
to the appearance of signals in a vibrational spectrum [3].

A resonance that leads to a perturbation of the energy levels can occur if two vibrational levels
belong to the same symmetry species and have similar energy. Such an accidental degeneracy of,
for example, an overtone or a combination band that has the same symmetry and nearly the same
frequency as that of a fundamental vibration is called Fermi resonance [29,30], and this leads to
two relatively strong absorption bands that are observed at somewhat higher and lower frequencies
than the expected unperturbed frequency positions. When this perturbation takes place, the weaker
absorption in the spectrum “steals” intensity from the stronger one. Typical examples of Fermi
resonance have been analyzed for the Raman [14] as well as for the NIR spectra of CO2 [3,31], but
this phenomenon has also been reported for numerous other compounds [3,9,14].

A resonance that is of importance in the NIR spectra of water has been discussed by Darling
and Dennison [32] but can also occur in other molecules containing symmetrically equivalent X−−H
bonds. Thus, of the three normal modes of water — ν2 bending vibration (1595 cm−1), ν3 anti-
symmetric stretching (3756 cm−1), and ν1 symmetric stretching (3657 cm−1)— the two stretching
vibrations absorb at similar wave number positions but belong to different symmetry species and
therefore cannot interact directly. However, energy levels of these vibrations associated with specific
vibrational quantum numbers n1, n2, and n3 [3,32] can interact if they belong to identical symmetry
species and have similar energies. These interactions then lead to several pairs of NIR absorption
bands with appreciable intensities.

Finally, a few comments shall be made on the concept of local modes as compared to normal
modes [3,33–35]. The main idea of the local mode model is to treat a molecule as if it were made
up of a set of equivalent diatomic oscillators, and the reason for the local mode behavior at high
energy (>8000 cm−1) may be understood qualitatively as follows. As the stretching vibrations are
excited to high energy levels, the anharmonicity term χν̄0 (Equation (2.9)) tends, in certain cases, to
overrule the effect of interbond coupling and the vibrations become uncoupled vibrations and occur
as “local modes.”

The absorption bands in the spectrum can thus be interpreted as if they originated from an
anharmonic diatomic molecule. This is the reason why NIR spectra are often said to become simpler
at higher energy. Experimentally, it is found that the inversion from normal to local mode character
occurs for high energy transitions corresponding to 	n ≥ 3.

2.2.2 THE SCATTERING TECHNIQUE OF RAMAN SPECTROSCOPY

Whereas scanning MIR and NIR spectrometers operate with a polychromatic source for the individual
frequency range (Figure 2.2) from which the sample absorbs specific frequencies corresponding to
its molecular vibrational transitions (mostly fundamental vibrations for the MIR and overtone or
combination vibrations for the NIR), in Raman spectroscopy the sample is irradiated with mono-
chromatic laser light whose frequency may vary from the VIS to the NIR region. This radiation
excites the molecule to a virtual energy state that is far above the vibrational energy levels of this
anharmonic oscillator for a VIS-laser and in the range of high overtones for an NIR-laser excitation
(Figure 2.2 and Figure 2.4).

From the excited energy level, the molecule may return to the ground state by elastic scattering,
thereby emitting the Rayleigh line that has the same frequency as the excitation line and does not
contain information in terms of the molecular vibration (this case is not shown in Figure 2.2 and
Figure 2.4). If it returns to the first excited vibrational level by inelastic scattering, the emitted Raman
line (so-called Stokes line) (Figure 2.2) has a lower frequency (wave number), and the difference to
the excitation line corresponds to the energy of the fundamental transition that can also be observed as
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FIGURE 2.4 Fluorescence and scattering efficiency in NIR- and VIS-Raman spectroscopy.

an MIR absorption band. In the case of the anti-Stokes line, where the starting level is the first excited
vibrational state and the molecule returns to the ground state by inelastic scattering (Figure 2.2), the
emitted Raman line is of higher frequency (here too, the frequency difference to the excitation line
corresponds to the fundamental transition) but of lower intensity compared to the Stokes line, due to
the lower population of the excited state (law of Boltzmann). Commonly, the Stokes lines are used
for practical Raman spectroscopy.

One of the limiting factors for the application of the Raman technique, however, becomes evident
by comparing the intensity of the laser source and the scattered radiation [9,15,19–21]

IRaman ≈ 10−4IRayleigh ≈ 10−8Isource (2.14)

From these figures it can readily be derived that a sensitive detection of the Raman line alongside an
efficient elimination of the Rayleigh line are experimental prerequisites for the successful application
of Raman spectroscopy. As shown in Figure 2.2, Raman and MIR spectroscopy cover approximately
the same wave number region with the Raman technique extending further into the far-infrared (FIR)
region (down to about 50 cm−1) owing to instrumental limitations of the MIR (primarily because
of the MIR detector cut-off). In some cases, this additional frequency range is valuable, since it
often contains absorptions of lattice modes of molecular crystals that may be very characteristic for
a specific polymorph (e.g., of a pharmaceutical active ingredient).

An important relation for the comparison of VIS- vs. NIR-Raman spectroscopy, is the dependence
of the scattered Raman intensity IRaman on the fourth power of the excitation frequency νexc

IRaman ≈ ν4
exc (2.15)

The impact of this relationship with reference to the application of either VIS- or NIR-Raman
spectroscopy for an individual problem will be outlined below.

Asimilar condition as for MIR spectroscopy holds for the Raman effect and a molecular vibration
can only be observed in the Raman spectrum if there is a modulation of the molecular polarizability
α [9,15,19–21]:

∂α

∂q
�= 0 (2.16)

Hence, Raman spectroscopy is primarily sensitive to vibrations of homonuclear bonds (Figure 2.3).
From the selection rules (Equation (2.7) and Equation (2.16)), it becomes obvious that MIR and
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Raman spectroscopy are complementary techniques and the application of both methods can be very
helpful for the efficient elucidation of a molecular structure.

2.2.3 A COMPARISON OF THE QUALITATIVE AND QUANTITATIVE
ASPECTS OF RAMAN, MIR, AND NIR SPECTROSCOPY

The different excitation conditions of Raman, MIR, and NIR spectroscopy (Figure 2.3) lead to
extremely different signal intensities of these techniques for the same vibration of a specific molecular
functionality.

NIR spectroscopy covers the wave number range adjacent to the MIR and extends up to the VIS
region (4,000 to 12,500 cm−1) (Figure 2.2). NIR absorptions are based on overtone and combin-
ation vibrations of the investigated molecule, and owing to their lower transition probabilities, the
intensities usually decrease by a factor of 10 to 100 for each step from the fundamental to the next
overtone [3,11,23]. Thus, the intensities of absorption bands successively decrease in the direction
from the MIR to the visible region, thereby allowing an adjustment of the sample thickness (from
millimeters up to centimeters), depending on the rank of the overtone.

This is a characteristic difference to MIR and Raman spectra, where the signal intensities of the
fundamental vibrations vary irregularly over the whole frequency range and depend exclusively on the
excitation conditions of the individual molecular vibrations (Equation (2.7) and Equation (2.16)). As
pointed out above, these different excitation conditions lead to the complementarity of the Raman and
MIR technique as structural elucidation tools, because Raman spectroscopy predominantly focuses
on vibrations of homonuclear functionalities (e.g., C==C, C−−C, S−−S), whereas the most intense
MIR absorptions can be traced back to polar groups (e.g., C−−F, Si−−O, C==O, and C−−O−−C).

NIR spectroscopy, on the other hand, requires — in addition to the dipole moment change —
a large mechanical anharmonicity of the vibrating atoms (see Figure 2.3) [3,23]. This becomes
evident from the analysis of the NIR spectra of a large variety of compounds, where the overtone
and combination bands of CH, OH, and NH functionalities dominate the spectrum, whereas the
corresponding overtones of the most intense MIR fundamental absorptions are rarely represented.
One reason for this phenomenon is certainly the fact that most of the X−−H fundamentals absorb at
wave numbers >2000 cm−1 so that their first overtones already appear in the NIR frequency range.

The polar groups leading to the most intense fundamental absorptions in the MIR (e.g., ν(C−−F),
ν(C==O), ν(Si−−O)) on the other hand absorb at wave numbers <2000 cm−1, so that their first (and
sometimes higher) overtones still occur in the MIR region. Owing to the intensity loss for each step
from the fundamental to the next overtone, the absorption intensities of these vibrations have become
negligible by the time they should occur in the NIR range. The best example in this respect is the
ν(C−−F) absorption band at about 1200 cm−1 (e.g., of poly[tetrafluorethylene]), which is one of the
most intense absorption bands in the MIR owing to the large dipole moment of the C−−F bond.

However, because of the small anharmonicity constant (see Table 2.1), the first and the second
overtones that are expected at about 2400 and 3600 cm−1, respectively, have already strongly reduced
intensity, and no further overtone vibrations of this functionality can be observed in the NIR region.
In fact, poly(tetrafluorethylene) is used as a nonabsorbing standard material (Spectralon®) for the
NIR region.

Anharmonicity plays also an important role in the evaluation of the fundamental and overtone
vibration intensities of functionalities with a high hydrogen-bonding tendency such as ν(O−−H) and
ν(N−−H). Figure 2.5a shows the MIR spectrum of the ν(N−−H) region of a polyamide 11 (PA 11)
film of about 30 µm thickness at room temperature. Under these conditions, the majority of the
N−−H-groups (∼99%) occur in the associated, hydrogen-bonded form. This is directly reflected
in the very low intensity of the ν(N−−H)free absorption at 3450 cm−1 relative to the dominating
ν(N−−H)assoc absorption at 3300 cm−1.

If the same polymer is investigated at room temperature with a film thickness of about 750 µm
in the NIR region, the spectrum shown in Figure 2.5b is obtained. Here, the intensity ratio of the
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FIGURE 2.5 (a) MIR spectrum of polyamide 11 film in ν(N–H) fundamental absorption region and (b) NIR
spectrum in 2× ν(N–H) overtone absorption region.

2×ν(N−−H)free (6760 cm−1) relative to the broad 2×ν(N−−H)assoc absorption at about 6510 cm−1

is reversed, although the state of order of the polymeric material has not been changed [36]. The
explanation for this effect is that, owing to its larger anharmonicity, the intensity of the ν(N−−H)free
overtone absorption is strongly enhanced relative to the corresponding overtone vibration of the
associated N−−H-groups [37,38]. Hydrogen bonding is equivalent to increasing the mass of the
vibrating H-atom, thereby leading to a reduction of mechanical anharmonicity of the ν(N−−H)assoc
vibration and a decrease of its absorption intensity. The uncontrolled use of absorption intensities
without proper care for their absorptivities (a) in Beer’s law (Figure 2.3) would therefore lead to
dramatic errors in the estimation of the extent of hydrogen bonding.

The superposition of many different overtone and combination bands in the NIR region causes
a very low structural selectivity for NIR spectra compared to the Raman and MIR analogs where
many fundamentals can usually be observed in isolated positions. Nevertheless, NIR spectra should
also be assigned in as much detail as possible with reference to their molecular origin [3,36,39];
this allows a more effective application for research purposes and combination with chemometric
evaluation procedures. For the assignment of overtones and combination bands in the NIR to their
corresponding fundamentals in the MIR, it is recommended that the wave number notation be used
instead of the widespread wavelength (nm or µm) scale. It should be mentioned, however, that the
wave-number positions of the overtones deviate with increasing multiplicity from the exact multiples
of their fundamentals owing to the anharmonicity of the vibrations [3,11,23].

As far as the quantitative evaluation of vibrational spectra is concerned, MIR and NIR spec-
troscopy follow Beer’s law, whereas the Raman intensity IRaman is directly proportional to the
concentration of the compound to be determined (Figure 2.3). To avoid compensation problems, in
most cases, quantitative Raman spectroscopy is performed with an internal reference signal in the
vicinity of the analytical absorption band being analyzed.

An important issue for the implementation of a technique as an industrial routine tool is the sample
preparation required for this technique. In this respect, it can be seen from Figure 2.6 that Raman
and NIR spectroscopy have considerable advantages over MIR spectroscopy, which usually requires
individual sample preparation steps before data acquisition. Only the technique of attenuated total
reflection (ATR) [16,40] circumvents time-consuming sampling procedures for MIR spectroscopy.

2.2.4 A COMPARISON OF THE BASIC INSTRUMENTATION OF
RAMAN, MIR, AND NIR SPECTROSCOPY

Figure 2.7 summarizes the present state of the most frequently used monochromator/detection prin-
ciples for the different scanning spectroscopies. As mentioned above, in Raman spectroscopy two
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FIGURE 2.7 The current monochromator/detection principles of scanning Raman, MIR, and NIR
spectrometers.

techniques are presently in current use:

1. Excitation by a VIS-laser (in the range from 400 to 800 nm) combined with monochro-
matization of the scattered radiation by a holographic grating and simultaneous detection
of the dispersed, narrow frequency ranges by a charge-coupled device (CCD) detector.

2. NIR-laser excitation (1064 nm) and measurement in a Fourier-Transform (FT)
spectrometer.

In Figure 2.4 the trends of the main limiting factors — fluorescence and low scattering efficiency —
have been outlined with reference to the two excitation mechanisms. Thus, both alternatives establish
only compromises and the choice of the applied technique depends on the individual problem.

If a molecule is irradiated with visible radiation, it may be excited to an energy level of the
next higher electronic state. Return to the ground state or an excited vibrational level of the original
electronic state can easily proceed via fluorescence as shown in Figure 2.4. Thus, for a large proportion
of samples, irradiation with visible light causes strong fluorescence by additives or impurities (or
by the sample itself), which will superimpose and in many cases inundate the Raman spectrum of
the sample. The use of NIR-laser excitation confers a number of advantages on a Raman system.
Both fluorescence and self-absorption are very much reduced in the Raman signal, and, owing to the
lower energy of the excitation radiation, thermal degradation is also less of a problem. However, these
advantages are partly neutralized by the disadvantages of using a low-frequency laser as the source.

The NIR-Raman technique is obviously less sensitive due to the ν4-dependence of the scattering
efficiency (Figure 2.4). Thus, a shift of the excitation line from the VIS region (e.g., Ar+-ion laser,
488 nm/20,492 cm−1) to the NIR region (1064 nm/9398 cm−1) reduces the scattering intensity.
At 0 cm−1, the sensitivity of a Nd-YAG laser is 23 times lower than that of an Ar laser, and at
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4,000 cm−1 this factor has increased to 87 [3,41,42]. As shown in Figure 2.7, however, NIR-Raman
spectroscopy is performed on FT-spectrometers, and the sensitivity loss can be compensated by
accumulation of multiple scans. As a valuable compromise to suppress fluorescence and at the same
time retain an acceptable scattering efficiency, excitation with a diode laser at 785 nm (12739 cm−1)

is increasingly used [10,19–21].
As far as MIR spectroscopy is concerned, today almost exclusively FT-based instruments with

different interferometer designs are in routine use (Figure 2.7). Contrary to Raman and MIR spec-
troscopy, scanning NIR spectroscopy offers the largest multiplicity of monochromator/detection
principles. Thus, apart from different designs with moving parts, such as grating instruments
and FT-spectrometers with Michelson or polarization interferometers (with NIR-transparent quartz
wedges) two fast-scanning approaches with no moving parts are available: diode-array systems and
acousto-optic tunable filters (AOTF) [10]. Recently, a micro-electro-mechanical-system (MEMS)
FT-NIR spectrometer based on a Fabry–Perot interferometer that combines a high spectral resolu-
tion and rapid-scanning capability has been brought to the market [43]. Although miniaturization has
already progressed significantly withAOTF and diode-array spectrometers, the last mentioned system
has launched NIR spectroscopy in a new era of miniaturization and microfabrication technology.

2.2.5 IMPORTANT ASPECTS FOR THE IMPLEMENTATION OF RAMAN,
MIR, AND NIR SPECTROSCOPY IN PROCESS CONTROL

In Figure 2.6, the most important aspects for the implementation of the individual spectroscopies as
process-monitoring tools are addressed. The very small, representative sample volume or thickness in
Raman and MIR/ATR spectroscopy may certainly lead to problems if special care is not taken to avoid
the formation of a stationary layer on the reactor window or on the ATR crystal. In this respect, NIR
spectroscopy is the method of choice in view of the comparatively large sample volume/thickness
involved in these measurements. The ability to separate the spectrometer from the point of sampling
is certainly a great advantage for Raman and NIR spectroscopy.

Although light fibers based on chalcogenides, ZrF4, and AgCl are also available for MIR spec-
troscopy, it should be mentioned that their cost, attenuation properties, and mechanical stability are
still inferior compared with the well-established quartz fibers. Specific probes are available for all
three techniques. NIR spectroscopy offers an especially wide range of in-line, on-line, and at-line
transmission and diffuse-reflection probes designed for the measurement of liquids and solids. Large
differences can also be identified with respect to the ability of measuring aqueous solutions. Water
is an extremely strong absorber in the MIR and also a strong NIR absorber, thereby limiting the
available wave number regions in both techniques.

In contrast, it is a weak Raman scatterer and it is recommended to consider Raman spectroscopy
as an analytical alternative for aqueous solutions. Care has to be taken, however, with the NIR-
Raman FT-technique (1064 nm/9398 cm−1), because, owing to the absorption of the water-overtone
vibration at about 7000 cm−1, the Raman spectrum may be modified relative to the VIS-laser excited
Raman spectrum [44].

2.3 CONCLUSION

Over the past years MIR, NIR, and Raman spectroscopy have been further developed to a point
where each technique can be considered a potential candidate for industrial quality-control and
process-monitoring applications. However, adding up the specific advantages and disadvantages of
the individual techniques, NIR spectroscopy is certainly the most flexible and advanced alternative.
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3.1 INTRODUCTION

The use of near-infrared (NIR) diffuse reflection for the quantitative analysis of products and
commodities is now widely accepted. For many of the algorithms developed to achieve multi-
component determinations from the diffuse reflection spectra of powdered samples, a linear
dependence of band intensity on analyte concentration is not absolutely mandatory for an analytical
result to be obtained. Nonetheless it is probably true to say that all of these algorithms yield the most
accurate estimates of concentration when the intensity of each spectral feature is linearly proportional
to the analyte concentration. In an analogous manner to transmission spectrometry, reflectance is
input to most of these algorithms as log(1/R′), where R′ is the reflectance of the sample relative
to that of a nonabsorbing standard, such as a ceramic disk. The use of log(1/R′) as the preferred
ordinate is contrary to what most physical scientists would consider appropriate for a diffuse reflec-
tion measurement on an optically thick sample. Thus an understanding of the theories of diffuse
reflection and the validity of the assumptions for each theory should be helpful in understanding the
strengths and limitations of NIR diffuse reflection. Perhaps, it will even help to explain why accurate
analyses may be made when band intensities are expressed as log(1/R′).

The continuum theories of Schuster and of Kubelka and Munk are presented in some detail in
this chapter along with a summary of the discrete ordinate approximation of the radiation transfer
equation and the diffusion approximation. Together with some of the earlier work on light scattering,
an understanding of the importance of the assumptions in arriving at the final solutions that are
experimentally valid can be achieved. To a greater or lesser extent, all continuum theories describe
model systems and require certain assumptions, such as negligibly small particle size, that are
not valid in practice. Several of the drawbacks of these models may be overcome by the use of
discontinuum models in which the assumptions of a homogenous sample composed of infinitesimally
small particles are not invoked. These models are discussed in some detail in the final part of this
chapter.

3.2 DIFFUSE VS. DIRECTED RADIATION

The descriptions of diffuse reflection assume that there is a unique direction of light incident upon
the sample, and that a plane perpendicular to this direction passes through the sample. A beam of
light is called directed or collimated if all the light is going in a direction perpendicular to the plane
of the sample. We then say that the sample is directly illuminated. Most commercial spectrometers,
to a reasonable approximation, produce a directed incident beam. Light that is scattered from the
sample toward a detector on the opposite side of the sample is said to be detected in transmis-
sion. Light that is scattered from the sample toward a detector on the same side of the sample is
said to be detected in reflection. If the angle of reflection is equal to the angle of incidence, the
reflection is said to be specular. Radiation reflected at all other angles is diffuse. The sum of the
specularly and diffusely reflected radiation is the remitted radiation. For samples with a matte finish,
especially powdered samples, the specularly reflected radiation is generally of low intensity. Hence
measurement of the radiation from this type of sample is frequently known as diffuse reflection
spectrometry.

3.2.1 LAMBERT COSINE LAW

The phenomenon of diffuse reflection is easily observed in everyday life. Consider for example the
intensity of radiation reflected from a completely matte surface such as a sheet of white paper. The
remitted radiation is everywhere of the same intensity no matter what the angle of observation or
angle of incidence is. It was the same observation that led Lambert [1] to be the first to attempt a
mathematical description of diffuse reflection. He proposed that the remitted radiation flux Ir in an
area f cm2 and solid angle ω steradians (sr) is proportional to the cosine of the angle of incidence α
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FIGURE 3.1 Schematic representation showing variables used in the Lambert cosine law.

and the angle of observation ϑ (see Figure 3.1), that is,

dIr/df

dω
= CS0

π
cosα cosϑ = B cosϑ (3.1)

where S0 is the irradiation intensity in W/cm2 for normal incidence, B is the radiation density or
surface brightness in W/cm2/sr, and the constant C is the fraction of the incident radiation flux that
is remitted. C is generally less than 1 since some radiation is always absorbed.

Equation (3.1) is known as the Lambert cosine law and, according to Kortüm [2], can be derived
from the second law of thermodynamics, although Wendlandt and Hecht [3] disagree. According to
Kortüm, it is rigorously valid only for a black-body radiator acting as an ideal diffuse reflector (i.e.,
the angular distribution of the reflected or remitted radiation is independent of the angle of incidence).
It is, however, contradictory to call a black-body radiator an ideal diffuse reflector since all incident
radiation is absorbed by a black-body and none is absorbed by an ideal diffuse reflector. An ideal
diffuse reflector has never been found in practice and therefore deviations (large and small) always
occur from the Lambert cosine law. Various workers, including Wright [4] and Pokrowski [5–8],
have reported the results of experimental investigations that were designed to prove or disprove
the Lambert cosine law. They found that in general the law holds true only when both the angle of
incidence α and the angle of observation ϑ are small.

3.3 ABSORPTION AND SCATTER BY A
SINGLE PARTICLE

The terminology used to describe the interaction of light and matter is rather dependent on the size
and shape of the particle(s). This is because in limiting situations, some of which we encounter every
day, what is observed depends on the nature of the reflecting medium. For example, we see our
image in a mirror and call it a reflection. In this case, the “particle” has a large flat smooth surface.
We look at a glass of milk and say that the white color is a result of the scattering of light by particles
or oily droplets in the milk.

When one is describing the interaction of light in situations other than these limiting cases, the res-
ult can be somewhat confusing. Terms used by those who study this interaction are described below.
The thing that is in common for all the situations is that some of the light may be lost to absorption.

When a beam of light is incident on a particle with large flat, smooth surfaces, the word reflection
describes the process by which light is remitted from the (front) surface. We refer to the passage
of light through the particle as transmission. If the light entering the particle hits the surface at an
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angle, we call the bend in the light path at the surface as refraction. A treatment that uses these terms
is called geometric optics.

When light encounters a very small particle, light is said to be scattered by the particle. It might
be back-scattered, somewhat like reflection, or scattered in the forward direction, somewhat like
transmission, but here the term diffuse transmission refers to the intensity of a directed beam of light
after it has encountered a collection of particles compared to what it was at the macroscopic surface
of the particles. Some of the light is lost to absorption by the particles and some to scatter by the
particles, and the rest of the beam is transmitted. The sum of the effects of absorption and scatter is
called extinction.

What for the case of small particles is called backward and forward scatter is, for the case of
particles with large, flat surfaces, the sum of reflection and transmission. For infinitesimally small
particles, continuum theories of diffuse reflection may be applied. As particles get larger, it becomes
more likely that the terms for geometrical optics will be applied and discontinuum theories are more
relevant.

A theory developed by Stokes in the 1860 is generally accepted as describing absorption, remis-
sion and transmission by plane parallel layers (sheets). Discussion of this theory is contained in the
section on discontinuum theories, along with the discussion of an assembly of sheets. There is no
generally accepted theory that describes the absorption and scatter by a collection of spheres as an
assembly, although a brief discussion of Melamed’s theory is also contained in the discontinuum
section. There is, however, a good theoretical description of absorption and scatter by a single,
isolated sphere, the cornerstone of which is Mie theory.

3.3.1 MIE SCATTERING

One of the more generally accepted theories of the scattering of light was developed around 1900
by Mie [9]. Mie scattering relates primarily to the scattering of radiation by isolated particles. Only
a very brief introduction will be given here, although Kortüm [2] has presented a less abbreviated
description. (The reader is referred to References 10–12 for a comprehensive survey, not only of
Mie theory but also the theories of Rayleigh, Gans, Born, and others.) Mie obtained solutions to the
Maxwell equations [3] that describe the angular distribution of both the intensity and the polarization
of scattered radiation for a plane wave scattered once (single scattering) by a particle that can be
both dielectric and absorbing. In Mie’s description, the particle was spherical, with no limitation
on its size. He showed that the angular distribution of scattered radiation for single scattering is not
isotropic. The basic equation that was developed by Mie is

Iθs

I0
= λ2

8π2R2
(i1 + i2) ≡ q(θs) (3.2)

where Iθs is the scattered intensity at angle θ at a distance R from the center of the sphere; I0 is the
intensity of the incident radiation, and λ is the wavelength of the incident radiation. The symbols i1
and i2 represent complicated functions of the angle of the scattered radiation, the spherical harmonics
or their derivatives with respect to the cosine of the angle of scattered radiation, the refractive index of
both the sphere and its surrounding medium, and the ratio of the particle circumference to wavelength.
Equation (3.2) applies only to the case of a dielectric nonabsorbing particle and unpolarized incident
radiation. If the particle is absorbing, the complex refractive index must be used in the determination
of i1 and i2.

Mie theory, although general for spherical particles of any size, is valid only for single scattering
and therefore directly applicable only to chemical systems in which particles are well separated. For
example, scattering by the gases of the atmosphere (the molecules of which are well separated) is a
special case of Mie theory, that is, the case where the particle is much smaller than the wavelength
of incident radiation. The theory of scattering by particles of this type was developed and explored
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by Rayleigh [13,14]. In fact, Kortüm stated that “Rayleigh scattering constitutes a limiting case of
the Mie theory for very small particles if only dipole radiation is taken into account” [2].

Mie theory describes the fraction of light that is scattered by a spherical particle in terms of its
linear absorption coefficient and the difference between the refractive index of the particle and that
of the medium in which it is suspended. It does so uniquely for scatter in every direction. There are
some generalizations about the results:

1. For very small particles, the total scatter in the forward direction is equal to the total
scatter in the backward direction. (The scatter is mirrored in the forward and backward
directions, though not equally at all angles.)

2. For large particles, the scatter in the forward direction is much larger than the scatter in
the backward direction.

3. For particles having a size that is a small multiple of the wavelength, there are diffraction
ripples in the scattered intensity that can be significant enough to be observed.

There are additional characteristics of radiation that has been scattered from spheres that also have to
do with the wave character of light. Let us assume that we have a particle that is large compared to the
wavelength of the light. It is then meaningful to talk about reflection from the surface of the sphere,
and refraction of the light that enters the sphere. If the absorption of the material of which the particle
is composed is large enough, all of the light that enters the sphere is absorbed. The sphere is then
opaque, and will cast a shadow. However some of the light scattered by the edges of the particle will
be diffracted to the center of the shadow of the particle forming diffraction rings. When the incident
radiation is a plane wave, this is called a Fraunhofer diffraction pattern, shown in Figure 3.2.

Using the terms of geometric optics, we say that the light that is incident upon the particle is all
accounted for by reflection from the external surface of the sphere, the absorption by the sphere and
light transmitted through the sphere. The diffraction pattern arises because there is additional light,
not directly incident on the sphere, that is scattered by the sphere. In cross section, this light is within
a circle around the sphere. The circle has twice the area as the cross section of the sphere, and has a
radius of 1.4 times that of the sphere [15]. The area between the cross section of the sphere and the
circle is equal to the cross-sectional area of the sphere. The light incident on this area gives rise to
the diffraction pattern.

Most applications of NIR reflection analysis involve samples for which it is expected that multiple
scattering will take place within the sample. After multiple scattering events, the special effects of
scattering from individual spheres tend to be lost. The investigations of Theissing [16] assumed
multiple scattering from particles that were sufficiently well separated that interference and phase

FIGURE 3.2 A Fraunhofer diffraction pattern under two different contrast levels. The circle drawn around
the right hand pattern has a radius 1.5 times that of the geometrical shadow of the object. The area between
the shadow and the circle represents the area from which the light to form the pattern is obtained. (The pat-
terns were calculated using the Fresnel Diffraction Explorer, which may be obtained from Dauger Research:
http://daugerresearch.com/)
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differences between the scattered radiation from the various particles are negligible. Scattering
order was defined as the number of times a photon is scattered. Theissing found that with an increase
in the order of scatter, the forward scattering predicted by Mie theory decreases and the angular
distribution of scattered radiation tends to be isotropic. He also found that the larger the ratio of
particle circumference to wavelength (designated p), the greater must be the order of scatter to
produce an isotropic distribution. For example, if p is 0.6 and the ratio of the refractive index of the
sphere to its surrounding medium (designated m) is 1.25, twofold scattering is required for an isotropic
distribution of the reflected radiation. But if p = 5 and m = 1.25, a scattering order of 8 is required
for isotropic reflection of radiation. (As a qualitative result, the above is not surprising, given that if a
sample is thick enough, almost all the scatter from a collection of spheres is in the backward direction.)

The diameters of particles that are examined by NIR diffuse reflection spectrometry are typically
fairly large, on the order of 100 µm, and so p will be large. It is expected that for a sufficiently large
number of particles and a sufficiently thick sample (the bounds necessary to define what is sufficient
being unknown), multiple scattering does occur for most samples of the type used for NIR reflection
analysis. This means that for both already established applications of NIR reflection analysis and
potential applications being considered, a theory for multiple scattering within a densely packed
medium is required to describe quantitatively the change in reflectance with a change in concentration.

For most samples of the type for which NIR reflection analysis may be possible, the scattering
density is large, the ratio of particle circumference to wavelength is much greater than 1, and the
particles are so densely packed that the phase relations and interference between scattered beams
cannot readily be described. Thus for samples of this type, no general quantitative solution to the
problem of multiple scattering has been found. In this case, the scientist must resort to the use of
phenomenological theories. (Once the reader has reached the section on discontinuum theories, it
will be seen that these theories often have more in common with the theory described for sheets than
for spherical particles.) Several of the continuum theories have been rather consistently represented
as being a two-flux approximation to the equation of radiative transfer (ERT) (which they are). In
the following section, we will occasionally make reference to what they have in common with the
theory of sheets.

3.4 CONTINUUM THEORIES OF DIFFUSE
REFLECTION

3.4.1 TWO-FLUX TREATMENTS

Much work that has been done on two-flux treatment of the diffuse reflection of radiation has
evolved from a general radiation transfer equation. In simple terms, a radiation transfer equation can
be written as

−dI = κρI ds (3.3)

An equation such as this describes the change in intensity, dI, of a beam of radiation of a given
wavelength in a sample, the density of which is ρ and for which the pathlength is ds. κ corresponds
to the attenuation coefficient for the total radiation loss whether that loss is due to scattering or
absorption. The general form of the radiation transfer equation that is used in the derivation of most
phenomenological theories considers only plane-parallel layers of particles within the sample and
can be written as

µ
dI(τ ,µ)

dτ
= −I(τ ,µ)+ 1

2
ω0

∫ +1

−1
p0(µ,µ′)I(τ ,µ′)dµ′ (3.4)

where µ is the cosine of the angle ϑ with respect to the inward surface normal; µ′ is the cosine of
the angle ϑ with respect to the outward surface normal; dτ is the optical thickness and is equal to
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κρ dx where dx is the distance between the boundaries of one plane-parallel layer; I is the intensity
of the beam of radiation striking the layer; ω0 = σ/(σ + α) is the albedo∗ for single scattering,
with the scattering and absorption coefficients σ and α, respectively. The scattering phase function
p0(µ,µ′) denotes the probability for scattering from direction µ′ into µ. If every element scatters
isotropically, p0(µ,µ′) = 1 and is independent of the angle between the incident radiation and the
scattered radiation. Chandrasekhar has published extensively on radiation transfer and his work is
summarized in Reference 17. Other authors who have contributed to the literature on this topic more
recently are Truelove [18] and Incropera et al. [19].

3.4.2 SCHUSTER’S THEORY

Schuster was interested in the astrophysical problem of radiation passing through interstellar space.
He envisioned a dilute suspension of particles, in which the particles were luminescent, in addition
to being absorbing and scattering. The derivation below follows Kortüm [2] in that the lumines-
cence terms are not included. Kortüm calls α (the fraction of light incident upon a particle that is
absorbed) the true absorption coefficient of single scattering and σ (the fraction of light incident upon
a particle that is scattered) the scattering coefficient for single scattering. It is important to note that
this is not what spectroscopists usually mean by a coefficient. In spectroscopy, the coefficient is that
quantity, which when multiplied by a pathlength, is used in the calculation of the fraction of incident
light that is absorbed or scattered. When the fractions themselves are used as the coefficient (as was
done by Kortüm), the unit of thickness of the coefficient is implied to be the particle diameter. Thus
coefficients of single scattering are really probabilities.

The classic paper Radiation Through a Foggy Atmosphere published in 1905 by Schuster [20]
described a particle theory designed to solve a particular problem. However, it was described by
Kortüm as an attempt to find a solution of the radiation transfer equation by using the simplified
assumption of two oppositely directed radiation fluxes. Radiation traveling in a forward direction
through a sample (forward with respect to the direction of the incident radiation) is designated as
I . Radiation traveling in the opposite direction is labeled as J . With this simplification, Schuster
derived the following two differential equations:

−dI

dτ
= (k + s)I − sJ (3.5)

dJ

dτ
= (k + s)J − sI (3.6)

where

k = 2α

α + σ (3.7)

and

s = σ

α + σ (3.8)

The symbol s used by Schuster is identical to the albedo ω0 for single scattering. It is relevant to
discuss a coefficient of single scattering for a continuum model in that these coefficients relate to
the reflectance measured as if the particles in the model were “exploded” apart so that only single
scattering could occur.

∗ In other disciplines, the albedo of an object refers to its optical reflectivity, that is, the extent to which it reflects light.
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If the boundary conditions are set as

I = I0 at τ = 0

I = I(τ )→ 0; J = 0 at τ = τ for τ →∞
Equations (3.5) and (3.6) are strictly valid only for an ideally diffusing medium where there

is no change in the degree of dispersion of the light within the sample. The differential equations
for the radiant flux in an ideally diffusing medium can be readily integrated. Solutions displayed
immediately below may be obtained subject to the boundary conditions that:

1. the intensity of flux I is equal to the incident intensity at a penetration depth of zero, and
2. the intensity of both I and J is zero at “infinite depth,” that is, the sample thickness at

which there is no further change in the measured diffuse reflection.

R∞ = J(τ=0)

I0
= 1− (k/(k + 2s))1/2

1+ (k/(k + 2s))1/2
(3.9)

This equation can be rewritten as

(1− R∞)2

2R∞
= k

s
= 2α

σ
(3.10)

Equation (3.10) gives the reflectance behavior for isotropic scattering when two oppositely directed
radiation fluxes are assumed in the direction of the surface normal. The function ((1− R∞)2/2R∞)
is commonly known as the Kubelka–Munk (K–M) function and is usually given the symbol f (R∞),
although it is interesting to note that in their original paper [21], Kubelka and Munk did not derive
this expression. Kubelka actually published the derivation of this equation [22] 17 years later.

We may imagine that the “foggy atmosphere” above is divided into layers, each containing a
number of particles. In the limit of infinite dilution, there will be one particle in such a layer. For
such a condition, there can be no multiple scatter between particles in the same layer. The above
formulation carries with it an implicit assumption that the fraction (α+σ ) is insignificant compared
to 1. This limitation is somewhat relieved by the discontinuous solution

f (R∞) = (1− R∞)2

2R∞
= k

s
= α(2− α − σ)

σ
(3.11)

This is the discontinuous equivalent of the Schuster equation for isotropic scatter.

3.4.3 KUBELKA–MUNK THEORY

Kubelka and Munk [21] obtained a solution to the radiation transfer problem similar to Schuster’s.
While Schuster was considering a “foggy atmosphere,” Kubelka and Munk were considering the
“optics of paint layers.” There are significant differences in the way the problem was set up, the
most notable being that that Kubelka and Munk solved their differential equations for the case of
remission, not isotropic scatter. Their solution resulted in an equation for remission from an infinitely
thick coating expressed in terms of the probability of events in an infinitesimal layer of the coating
that absorbs (a) and remits (r) a certain constant portion a dx+r dx of all the light passing through it,
where a, the absorption constant and r, the scattering constant, are specific constants of the coating
under consideration. You will notice similarity of this approach to that of Dahm and Dahm as shown
in Equation (3.83).

In later work, Kubelka [22] published a treatment that is applicable to spectroscopy, which is
generally referred to as the K–M theory. It is this later work that we will describe here, following the
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treatment of Kortüm [2]. The solution shown here will be obtained through an exponential derivation.
A detailed description of a hyperbolic solution can be found in Reference 2.

Unlike Schuster, Kubelka envisioned using the solution for dense systems. While Schuster
defined the two constants k and s in terms of the absorption and scattering coefficients for single
scattering, Kubelka simply defines K and S in the equations as absorption and scattering coefficients
for the densely packed sample as a whole. Atabulation of the variables that are used in their derivation
is found in Table 3.1. Figure 3.3 shows a schematic representation of the type of system for which
Kubelka and Munk derived their solution.

We will first describe how Kubelka and Munk arrived at the two fundamental differential equa-
tions that, once solved, give the simplified solution similar to the one in Equation (3.10). Their stated

TABLE 3.1
Variables Used in the Development of Kubelka’s Simplified Solution to
the Radiation Transfer Equation

d Sample layer thickness
+x Downward direction through the sample
−x Upward direction through the sample
x = 0 Illuminated surface
x = d Unilluminated surface
I Radiant flux in +x direction
J Radiant flux in −x direction
I0 Incident flux
ϑ Angle at which a particular ray traverses through dx
dx An infinitesimal layer
dx/ cosϑ Pathlength of a particular ray traversing dx
dξI Average pathlength of radiation passing through dx in the +x direction
∂x/∂ cosϑ Angular distribution of I’s intensity in the +x direction
dξJ Average pathlength of radiation passing through dx in the −x direction
E Fraction of radiation absorbed per unit pathlength in the sample
σ Fraction of radiation scattered per unit pathlength in the sample

Note: Neither ε or σ are exactly the same as the corresponding parameters defined by Schuster.

Illuminated
surface
x = 0

d

y

dx

x

I
J

z

d�I dx

FIGURE 3.3 Schematic representation of a sample for which the K–M equation was derived. Consider
the cube as a sample throughout which the particles (only shown in a portion of the sample) are randomly
distributed.
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assumptions are on page 33. Since they were modeling a dense, particulate system, they needed to
take two factors into account. First, because the system was particulate, scattering would diffuse dir-
ected radiation. Consequently, in order to avoid the untenable situation that radiation would start out
directed and become diffuse during the course of a measurement, they considered systems for which
the irradiation began as diffuse. Second, they modeled the particulate system as a sheet, though the
word layer is used in Table 3.1. The thickness of the layer is dx, and the continuous mathematics
requires that thickness of the layer be infinitesimal. Since the angle through dx, ϑ , that the path of
the radiation might follow can be between 0 and 90◦, the average pathlength for radiation passing
through dx in the +x direction can be found by the following integral:

dξI = dx
∫ π/2

0
(∂I/I∂ϑ)(dϑ/ cosϑ) ≡ u dx (3.12)

The above formulation holds for a sheet with no voids and for which there are no scattering points
within the layer. Kortüm has shown that if the layer were comprised of scattering and absorbing
points (i.e., particles of infinitesimal size), the average pathlength though the layer would be twice
the geometrical thickness of the layer. Now, if the layer were composed of spherical particles (and an
assumption of single scatter within the layer were made) the pathlength through the particles would
be unchanged by the angle of incidence on the layer. For real particles we would expect the effect
of diffuse radiation to be somewhere between no change and the factor of two increase.

If no absorption or scattering has occurred, the illumination of the layer dx could be described by

I dξI = Iu dx (3.13)

Since, however, absorption and scattering do occur, the decrease in intensity of the illumination of
dx can be shown by including a combination of absorption and scattering coefficients:

(ε + σ)I dξI = (ε + σ)Iu dx

= Iu dx + Iu dx
(3.14)

The term εIu dx represents that component of the radiation that is absorbed while the term σ Iu dx
represents that component of the radiation that is scattered. Radiation traveling in the –x direction
(the J flux) also has a corresponding average pathlength through dx

dξJ = dx
∫ π/2

0
(∂J/J∂ϑ)(dϑ/ cosϑ) ≡ v dx (3.15)

Again, if no absorption or scattering were to take place for radiation traveling in this direction, then
the illumination of the layer dx in the −x direction would be described by

J dξI = Jv dx (3.16)

The corresponding equation can be written for the absorption and scattering that occurs for the J
radiation flux:

(ε + σ)J dξI = (ε + σ)Jv dx = εIv dx + σ Iv dx (3.17)

Similarly to Equation (3.14), the term εJv dx corresponds to that part of the radiation which is
absorbed while the term σJv dx corresponds to that part of the radiation which is scattered. It is
necessary to know, however, the actual change dI or dJ in the radiation fluxes, I and J , which
were incident on the layer dx, respectively, after traversing dx. Not only does the absorption and
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scattering of the forward radiation flux affect I , but the component of the scattered J radiation flux
will also affect I and therefore dI. The same correlation can be made for J and therefore for dJ. It
must therefore be true that

−dI = εuI dx − σvI dx + σuJ dx (3.18)

−dI = εuJ dx − σvJ dx + σuI dx (3.19)

The signs in the above equations are indicative of the fact that as x increases I must decrease and J
must increase.

If the sample is an ideal diffuser, then the angular distribution of the radiation flux through a
plane layer dx in a given direction is

− ∂I

∂θ
= I sin 2θ = 2I sin 2θ cos θ (3.20)

∂J

∂θ
= J sin 2θ = 2J sin 2θ cos θ (3.21)

These expressions can then be substituted into Equation (3.11) and Equation (3.14) describing the
average pathlength of radiation through dx to solve for this quantity. Doing so we find that dξI =
u = 2. Likewise, dξJ = v = 2. If we now substitute for u and v in the differential Equation (3.18)
and Equation (3.19) we obtain:

−dI = 2εI dx − 2σ I dx + 2σJ dx (3.22)

dJ = 2εJ dx − 2σJ dx + 2σ I dx (3.23)

Using Kortüm’s notation [2], the absorption coefficient of the material k is equal to ε and the scattering
coefficient of the material s is equal to σ . We can then designate K = 2k and S = 2s to obtain the
two fundamental simultaneous differential equations from which a simplified solution to the general
radiation transfer equation can be found:

−dI = K dx − SI dx + SJ dx (3.24)

dJ = KJ dx − SJ dx + SI dx (3.25)

It should be noted here that Kubelka and Munk define scattering differently than does Mie (or
Schuster). Mie defines scattering as radiation traveling in any direction after interaction with a
particle. Kubelka and Munk defined scattered radiation as only that component of the radiation that
is backward reflected into the hemisphere bounded by the plane of the sample’s surface. In effect,
the defining of S as equal to 2s makes S an isotropic scattering coefficient, with scatter equal in both
the forward and backward directions.

It may also be noted that, subject to the conditions of infinitesimal particle size, the above
differential equations will still hold true even if collimated radiation at an angle of 60◦ to the surface
normal is used instead of diffuse irradiation since for an incident angle of 60◦:

dξIJ = dx

cos 60◦
= 1

0.5
= 2 = u = v (3.26)

The differential equations can be simplified by setting

S + K

S
= 1+ K

S
≡ a (3.27)
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and J/I ≡ r. The simplified form of Equation (3.22) and Equation (3.23) then becomes

−dI/S dx = −aI + J (3.28)

dJ/S dx = −aJ + I (3.29)

Dividing the first equation by I and the second equation by J , and then adding the two equations, it
is found that

dr/S dx = r2 − 2ar + I (3.30)

Using the principle of separation of variables to solve differential equations we obtain

I(r2 − 2ar + 1)−1 dr = S dx (3.31)

Since the integration must be done over the entire thickness of the sample, the boundaries are

x = d : (J/I)x=d = Rg = reflectance of the background (3.32)

x = 0: (J/I)x=0 = R = reflectance of the sample (3.33)

Equation (3.31) can be integrated using partial fractions where the first step in the fractionation is

dr

(r2 − 2ar + 1)
= 1

(r + (2ar − 1)1/2)(r − (2ar − 1)1/2)
dr (3.34)

The solution of Equation (3.31) can then be found to be

ln
(R′ − a− (a2 − 1)1/2)(Rg − a+ (a2 − 1)1/2)

(Rg − a− (a2 − 1)1/2)(R− a+ (a2 − 1)1/2)
= 2Sd(a2 − 1)1/2 (3.35)

Since it is assumed that the layer is of infinite depth, that is, d = ∞ and Rg = 0, Equation (3.35) is
reduced to

(−a− (a2 − 1)1/2)(R∞ − a(a2 − 1)1/2) = 0 (3.36)

which can be solved for the reflectance R∞:

R∞ = 1

a+ (a2 − 1)1/2
= 1

1+ K/S + ((K/S)2 + 2K/S)1/2
(3.37)

Rearranging Equations (3.37) in terms of the ratio K/S we obtain an equation similar to the one
derived from the work of Schuster:

(1− 2R∞ + R2∞)
2R∞

= (1− R∞)2

2R∞
= K

S
(3.38)

The above derivation is mathematical and is valid subject to the limitations of the mathematics used.
Several assumptions were made, either explicitly or implicitly, in Kubelka’s derivation. Most of these
should not be viewed as assumptions upon which his solution depended, but rather as a description
of the kind of experimental arrangement and samples to which the equations they derived would be
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most applicable. The assumptions are listed below:

1. The radiation flux (I and J) travels in two opposite directions.
2. The sample is illuminated with monochromatic radiation of intensity I0.
3. The distribution of scattered radiation is isotropic so that all regular (specular) reflection

is ignored.
4. The particles in the sample layer (defined as the region between x = 0 and x = d are

randomly distributed.
5. The particles are very much smaller than the thickness of the sample layer d.
6. The sample layer is subjected only to diffuse irradiation.
7. Particles are much larger than the wavelength of irradiation (so that the scattering coeffi-

cient will be independent of wavelength), although if only one wavelength is to be used
then this assumption is not relevant.

8. The breadth of the macroscopic sample surface (in the yz plane) is great compared to the
depth (d) of the sample and the diameter of the beam of incident radiation (to discriminate
against edge effects).

9. The scattering particles are distributed uniformly throughout the entire sample.
10. The absorption by any one particle is small (which is, of course, the case if the particles

are infinitesimally small).

A few points might be made about the assumption of isotropic scatter. If there is specular reflection in
the scatter, there may be preferential directions of travel through the sample, and the assumption of
diffuse radiation will be violated. Assumption 3 points out that the effect of front-surface reflection
is ignored in their treatment. This assumption has often been interpreted as meaning that forward
and backward scatter from a particle are assumed to be equal. As stated above, related to Equation
(3.24) and Equation (3.25), the assumption of isotropic scatter of this kind is also built into their
treatment.

Subject to the assumption of infinitesimal particle size, the diffuse reflectance is a function only
of the ratio of two constants, K and S, and not of their absolute values. For small particles (i.e.,
good approximations to infinitesimal particle size), Equation (3.38) can be used to quantitatively
determine the concentration. If K is assumed to be proportional to the absorption coefficient obtained
in transmission, the equation can be rewritten as shown in Equation (3.39), where a is the absorptivity
of the analyte.

(1− R∞)2

2R∞
= K

S
∝ ac

S
(3.39)

While this is not an exact relationship, as many of the above assumptions are not accurately adhered
to in practice, it is very useful for two reasons. First, other treatments of diffuse reflection do not
allow R∞ to be converted into a simple parameter that varies approximately linearly with the concen-
tration of a component of a powdered sample (similarly to absorbance [log(1/T)] for transmission
spectroscopy). If S can be assumed to be constant among a group of samples and the baseline of the
spectrum is at a constant value (vide infra), this relationship can be used to quantitatively determine
the concentration, c, of an absorbing analyte by preparing a “Beer’s law” plot of the K–M function
vs. concentration.

Second, the relationship allows the effect of scattering on diffuse reflection spectra to be under-
stood and forecast. Simply put, the greater the scattering, the weaker the absorption metric. This was
demonstrated by Chaffin and Griffiths [23] who measured extended NIR diffuse reflection spectra
of three types of polyethylene, a loosely packed powder (high S), an opaque high-density polyethyl-
ene (HDPE) bottle (intermediate S) and a translucent milk jug (low S). These spectra are shown
in Figure 3.4. The intensity of the first harmonic of the C−−H stretching mode at approximately
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FIGURE 3.4 Extended NIR diffuse reflection spectra of various polyethylene samples. (Reproduced from
N. C. Chaffin and P. R. Griffiths, Appl. Spectrosc., 52: 218–221 (1998) by permission of the Society for Applied
Spectroscopy Copyright 1998.)

5800 cm−1 is greatest for the spectrum of the sample with the lowest scattering coefficient and least
for the sample with the highest scattering coefficient.

This result can be explained by a simple consideration of the path of the photons that are back-
scattered (remitted) back to the detector. When the scattering coefficient is high, the scattered photons
follow a short path in the sample before re-emerging from the face of the sample at which they
entered. Thus the pathlength through the absorbing particles is short and the absorption bands are
weak. Conversely, when the scattering coefficient is low, the remitted photons that reach the detector
pass through many more absorbing molecules in the sample and the absorption bands are relatively
strong.

Other scientists in the field [24–28] derived expressions similar to those of Schuster [20] and
Kubelka and Munk [21]. Earlier theories developed by Gurevic [29] and Judd [30,31] were shown
by Kubelka [22] to be special cases of the K–M theory, while Ingle [32] showed that the formulas
derived by Smith [33], Amy [34], and Bruce [35] can be derived from the equations of Kubelka
and Munk.

Because the simplified solution obtained by Kubelka is a two-constant equation and therefore
experimentally testable, and because so many other workers’derivations are derivable from Kubelka
and Munk’s work, their solution is the most widely accepted, tested and used. Other workers have
derived solutions to the radiation transfer equation that are more complicated than these two-constant
formulas. For example, a third constant has been added to account for different fractions of forward
and back scattering [36]. Ryde [37,38] included four constants since a difference in the scattering
between incident light and internally diffused light is assumed, while Duntley [39] developed a
model with eight constants, as a difference between both the absorption and scattering coefficients
due to incident and internally diffused radiation was assumed. However, none of these theories is
readily applicable in practice, and therefore the treatment of Kubelka is most often applied.

3.4.4 DISCRETE ORDINATE APPROXIMATION

Another two-constant approach, based on a discrete ordinate approximation of the radiation transfer
equation [17,40] was recently applied to describe the diffuse reflectance in the NIR [41,42]. In this
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approach, the integral in Equation (3.4) is approximated by a weighted sum over discrete directions
(i.e., representing the diffuse radiation field inside the sample by radiation fluxes in distinct directions)

∫ +1

−1
p0(µ,µ′)I(τ ,µ′)dµ′ =

N∑
j=−N

ajp0(µi,µj)I(τ ,µj) (3.40)

where the directions µj are chosen to be zeros of Jacobi polynominals

P(0,1)
n (2µj − 1) = 0 (3.41)

with the corresponding coefficients aj given by [40]:

aj = 1

µ2
j (1− µj)[P(0,1)′

n (2µj − 1)]2
(3.42)

Introducing Equation (3.40) into Equation (3.4) leads to system of differential equations:

µi
dI(τ ,µi)

dτ
= −I(τ ,µi)+ ω0

2

j=+N∑
j=−N

ajp0(µi,µj)I(τ ,µj) (3.43)

For the case of three radiation fluxes (j = −1, 0,+1) the directions and coefficients are given by

µ−1 = − 2
3 , µ0 = 0, µ+1 = + 2

3 , a−1 = 3
4 , a0 = 1

2 , a+1 = 3
4 (3.44)

and the system of three differential equations can be solved analytically to obtain the diffuse reflec-
tance and transmittance as a function of the optical thickness τ and the albedo ω0 [43]. With a given
sample thickness d and the relations [τ = (α + σ)d] and [ω0 = σ/(α + σ)], the diffuse reflectance
and transmittance can also be described as a function of the scattering coefficient σ and the absorption
coefficient α (here, the coefficients are defined according to the Mie theory).

In the case of a diffusely illuminated, isotropically scattering and optically thick sample (Kubelka
and Munk’s assumptions), the three-flux approximation yields the following relation between the
ratio α/σ and the diffuse reflectance R∞ [39]:

α

σ
= 3

8

(1− R∞)2

2R∞
= 3

8

K

S
(3.45)

The factor 3
8 in Equation (3.45) is identical to the result of Mudgett and Richards [44], who related the

ratio of the K–M absorption to scattering coefficient to the corresponding ratio of the Mie coefficients.
This relationship may be obtained by simple geometrical considerations. The K–M K is an absorption
coefficient for the two-flux case. You will recall that the K–M absorption coefficient is equal to twice
the absorption coefficient for single scatter or [K = 2α]. Then, as similarly written in Equation (3.10):

f (R∞) = (1− R∞)2

2R∞
= K

S
= 2α

σ
(3.46)

Mie theory is for spheres of finite size, and the coefficients are for a point of infinitesimal size. For
a finite object, the total absorption is related to the volume around this infinitesimal point, and the
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scatter is proportional to the cross-sectional area of the object. Including these factors in the above
equation, we obtain the two-flux description of absorption and scatter by a finite sphere:

f (R∞) = (1− R∞)2

2R∞
= K

S
= 2α(4/3πr3)

σ (πr2)
= 8αr

3σ
(3.47)

Notice that the K–M function for a finite sphere is proportional to the radius of the sphere, and that
the coefficients will change with particle size.

Unlike the Mie theory, the discrete ordinate approximation assumes that the sample is continuous
matrix of points that absorb and scatter. The values for the coefficients obtained from the discrete
ordinate approximation will also change and deviate substantially from the Mie coefficients as the
particle size becomes large. This has been called the hidden mass effect [42].

To obtain solutions that are relevant for most common spectrometers, for which sample illu-
mination is usually (almost) directional, the intensity I(τ , µ) in Equation (3.4) is separated into the
reduced incident intensity Idir(τ , µ) and a diffuse intensity Idiff (τ , µ)

I(τ ,µ) = Idir(τ ,µ)+ Idiff (τ ,µ) (3.48)

where Idir(τ ,µ) is given by

Idir(τ ,µ) = F0

2π
e−τ δ(µ− 1) (3.49)

with the directional impinging flux F0. Substituting Equation (3.47) and Equation (3.48) into the
radiation transfer Equation (3.4) and taking advantage of the δ-function in the presentation of Idir
leads to the radiation transfer equation as a function of only the diffuse intensity Idiff plus a source
function

ω0

4π
p(µ, 1)F0e−τ (3.50)

which accounts for the attenuated incident radiation. A more detailed discussion and analytical
expressions of the diffuse reflectance and transmittance as a function of τ and ω0 can be found in
the publication by Kuhn et al. [43]. In the case of a directly illuminated, isotropically scattering and
optically thick sample, the three-flux approximation yields

α

σ
= (1− R∞)2

2R∞
6

5(R∞ + 4)
(3.51)

or its inverse

R∞ = −(4(α/σ)+ (6/5))+ 2(4(α2/σ 2)+ 3(α/σ))1/2

2(α/σ)− (6/5) (3.52)

3.4.5 DIFFUSION THEORY

A totally different approach to investigate the radiation transfer is the diffusion approximation,
which is often used in biomedical applications [45,46]. The propagation of the photons in a suffi-
ciently thick sample, with a scattering coefficient that is much larger than the absorption coefficient,
can be described by a diffusion process (analogous to Fick’s law of mass diffusion). Similar to
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FIGURE 3.5 Diffuse reflectance R∞ of an isotropic, optically thick sample according to the three-flux
approximation, the diffusion approximation, Giovanelli and the K–M theory.

Equation (3.37) and Equation (3.52), the diffuse reflectance of an optically thick sample R∞ can be
expressed as a function of the ratio α/σ , which for directional sample illumination yields [47].

R∞ = 1

1+ 3(α/σ)+ (5/3)(3(α2/σ 2)+ 3(α/σ))1/2
(3.53)

The result of applying the different radiative transfer models that describe the diffuse reflectance of
an optically thick sample are compared with each other in Figure 3.5. The diffusion approximation
(Equation (3.52)), the three-flux approximation (Equation (3.51)) and the data according to a numer-
ical solution of the radiative transfer equation by Giovanelli [48] were calculated for directional
sample illumination. The data according to the K–M theory (Equation (3.38)) were obtained for
diffuse sample illumination. Thus, the differences between the K–M theory and the other models
are due to the different illumination conditions as well as due to differences in the definition of K/S
and α/σ . In practice, the three-flux approximation is in very good agreement to the calculations of
Giovanelli, whereas the diffusion approximation exhibits increasing deviations for larger α/σ -ratios
(corresponding to smaller albedos). For α/σ = 1 or ω = 0.5, the relative deviations are in the order
of 7%.

It should be mentioned that in all the models presented above, specular reflection at the air-sample
boundary is neglected; thus these models are only valid for loose powders and have to be used with
care for other samples.

3.4.6 DEVIATIONS FROM THE KUBELKA–MUNK EQUATION AND

THE EFFECT OF ANISOTROPIC SCATTER

Although the K–M treatment is most often applied to diffuse reflection spectra of dilute dispersions
of absorbing materials in a nonabsorbing powdered matrix, it is usually found that, for measure-
ments taken in the mid-infrared or ultraviolet-visible region of the spectrum where the absorptivities
of absorption bands may be quite high, plots of f (R∞) vs. c, the concentration of the absorbing
component, deviate from linearity even at quite low concentrations (c > ∼1%). For NIR spectra,
band absorptivities are usually significantly weaker, so that linear plots of f (R∞) vs. c may often be
obtained even at fairly high concentrations when the absorptivity of the matrix is zero. On the other
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hand, if the analyte has strong absorption bands, NIR diffuse reflection spectra of binary mixtures
are no longer adequately described by K–M theory. This was originally thought to be caused by the
simple two-flux model (shown in Figure 3.3) breaking down.

The effect of front-surface reflection can be readily seen from the spectra of the two polyethylene
bottles in Figure 3.4 [22]. In each case, the K–M function reaches a maximum value of about 18,
corresponding to a reflectance, R∞, of about 0.05. Since the Fresnel (specular) reflectance at normal
incidence for these samples (which have a refractive index of about 1.5) is about 0.04, a reflectance of
0.05 is not unreasonable, especially when the collection optics used for these measurements are taken
into account. For NIR spectra, where absorption is so weak that it has little effect of the refractive
index, there will always be some maximum value of f (R∞) that can be measured in practice (typically
about 20). This value will be dependent on the optics used to collect the remitted radiation. One
result of reflection from the front surface of the sample is to lead to nonlinear plots of f (R∞) against
the concentration of an absorbing component in a nonabsorbing matrix, with f (R∞) approaching its
maximum value asymptotically in a similar way to the effect of stray light in any measurement made
with a grating monochromator [49]. Correction for reflection from the front surface of the sample
significantly increases the range of linearity.

In a way, because reflection from the first layer of the sample is considered in a different way
to the behavior of later layers, this correction can be considered to be an intermediate step between
continuous and discontinuous approaches to diffuse reflection. Prior to the development of the
discontinuous equations, the nonlinearity was very troublesome to experimenters, and the reason for
the departure from linearity was much debated. Besides specular reflection, other proposed culprits
were the effect of absorption by the matrix [50,51], and the subject of this section, anisotropic scatter.

One of the assumptions listed at the start of the earlier discussion of K–M theory is that the
medium scatters isotropically. Chandrasekhar [17] gave an exact solution of the radiation transfer
equation for an isotropically scattering medium, that is, a medium for which the albedo for single
scattering, ω0, is equal to the scattering phase function, p(cos θ ), where θ is the angle of scattering
from a direction given by µ′ = cosϑ ′ and φ′ into a direction given by µ and φ. ω0 is identical to
Schuster’s scattering coefficient for single scattering, s, given earlier as

ω0 = σ

α + σ (3.54)

For isotropic scattering, p(cos θ ) is equal to unity. For anisotropic scattering, the isotropic phase
function p(cos θ ), or ω0, is modified by multiplying ω0 by a factor of (1+ x cos θ ) so that

p(cos θ) = ω0(1+ x cos θ) (3.55)

where x is the anisotropy factor. Chandrasekhar has also described exact solutions to the radiation
transfer equation in this case, but the solution is far too complex to be applicable to the quantitative
analysis of powdered mixtures.

The solution has been put into a more tractable form by several workers, including Pitts [52] who
developed an approximate solution and Giovanelli [48] who put Pitts’s solution into a more useful
form (now most commonly known as the Pitts–Giovanelli formula) which gives the reflectance as a
function of the direction cosine of the angle of incidence µ0 as

R(µ0) = ω0

2(χ)1/2 + 3− ω0x

[
−x + 3+ (1− µ0)x

1+ µ0(χ)1/2

]
(3.56)

where

χ = (3− ω0x)(1− ω0) (3.57)
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If the components of a binary mixture are designated 1 and 2, and the relative weight of those
components W = W2/W1 so that the concentration of component 2 is W/(W + 1), the albedo of
single scatter may be expressed as

ω0 = 1+ P1W

P2 + P3W
(3.58)

where P1 = σ2/σ1, P2 = (α1 + σ1)/σ1, and P3 = (α2 + σ2)/σ1. Equation (??) may be expressed
in terms of the weights, absorption coefficients, and scattering coefficients of the individual
components as

ω0 = σ1W1 + σ2W2

(α1 + σ1)W1 + (α2 + σ2)W2
(3.59)

Thus the Pitts–Giovanelli equation requires four empirical parameters, P1, P2, P3, and x, for a
complete characterization of the diffuse reflectance of a binary mixture. Although spectra can be
fit over a wide concentration range to Equation (3.56) by a suitable selection of the values of these
parameters, obtaining good estimates of these parameters a priori is difficult or impossible. Thus the
Pitts–Giovanelli treatment is never used in practice to obtain linear plots of a function of the measured
reflectance at a wavelength corresponding to an absorption band of the analyte against concentration,
even for a binary mixture of an absorbing analyte in a nonabsorbing matrix. This treatment has been
shown by Hecht to describe the diffuse reflectance of visible radiation by a model system consisting
of soluble absorbers in a liquid medium containing nonabsorbing scattering particles [53,54]. In a
related study (again in the visible region of the spectrum), Hecht [55] showed that the Pitts–Giovanelli
formula is a good approximation to the equation for radiation transfer even for large values of the
anisotropy factor x. He suggested that this result indicates that the breakdown of the K–M theory
is not so much due to the failure of the two-flux approximation as to the neglect of anisotropy of
scatter.

There is a bit of a paradox in these results. On the one hand, the concept of anisotropy is irrelevant
to the two-flux case. The forward scatter is no different than the transmitted beam and so can be
neglected. For this reason, the discontinuous methods described in the next section use a concept of
remission instead of scatter (as did Kubelka and Munk in their original work). On the other hand, the
scatter from a finite particle is undeniably anisotropic. Further, voids may be thought of as producing
an extreme case of anisotropic scatter, with all radiation scattered forward, and none back. So while
we do not agree that neglect of anisotropy causes breakdown of the two-flux theories, the model of a
continuum of anisotropically scattering points is, in principle at least, a better model for real samples
than a continuum of isotropically scattering points.

An alternative treatment was developed by Rozenberg [56] and is based on the work of Kuznetsov
[57]. Here reflectance is treated as the sum of several components, with each successive term
representing increased multiplicity of scatter. The principal independent variable in the Rozenberg
treatment is the ratio of the absorption and scattering coefficients β, that is, β = α/σ . If β is
sufficiently large, the reflectance R may be described by the equation

1

R
= 1

R0

(1+ β)2
1+ β/Q (3.60)

where R0 is the reflectance of the diffusely reflecting matrix in the absence of an absorbing component
(β = β0) and Q is a quantity that defines the relative contribution of higher multiplicities of scatter
when β = β0. β and Q can also be expressed in terms of the reflection r, forward scatter t, and
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absorption a of a single layer, where a+ r + t = 1, as

β = a

r + 1
(3.61)

and

Q = 1+ t

r + t
(3.62)

Defining R′ as R/R0, it can be seen that

R′ = 1+ β/Q
(1+ β)2 (3.63)

In terms of the relative weight W defined above, an expression for β has been derived [58] which
is formally analogous to the expression for W0 in the Pitts–Giovanelli treatment (Equation (3.58)),
that is,

β = p1 + p2W

1+ p3W
(3.64)

where p1 = α1/σ1, p2 = α2/σ1 and p3 = σ2/σ1. Again, the visible reflectance of model systems
has been fit quite accurately by adjusting the parameters of the Rozenberg equation [58]. In practice,
however, neither the Pitts–Giovanelli treatment nor the Rozenberg treatment is particularly relevant
for “real-world” samples which often have more than two components and may have a wide range
of particle shapes and diameters. Thus a more practical basis for obtaining quantitative data from
diffuse reflection spectra must be found.

An alternative way of looking at the nonlinearity of plots of f (R∞) vs. c is through discontinuum
treatment, which is discussed in more detail later in this chapter. If α is the probability of a photon
being absorbed by a layer of the sample, and σ is the probability that it is scattered, the discontinuous
equivalent of the K–M equation can be written as

f (R∞) = (1− R∞)2

2R∞
= K

S
= α(2− α − σ)

σ
(3.65)

If we consider infinitesimal layers, the fractions α and σ are very small compared to 2 and can
be neglected. In this case, Equation [3.39] will yield a linear plot. However, when finite layers are
considered, the function is nonlinear. This will be discussed at length in the second half of this chapter.

Before leaving this topic, one important practical question should be addressed. Since no the-
ory of diffuse reflection, whether continuous as discussed above, or discontinuous, as discussed
below, suggests that plots of log(1/R∞) vs. c should be linear, why do almost all practitioners of
NIR spectroscopy convert reflectance to log(1/R∞) rather than using f (R∞) or any other func-
tion that theory suggests should be more relevant? When samples are very carefully prepared, so
that the scattering coefficient is constant in all cases, the baseline of the spectrum always has a
constant value. In practice, achieving a constant scattering coefficient is exceptionally difficult (In
the language of discontinuous mathematics, the distance between the layers can vary significantly
depending on the way in which the sample is loaded into the cup). Measurements in the mid-
infrared have shown that, provided that the sample is loaded under a constant pressure that is applied
for a given amount of time, diffuse reflection spectra can be very reproducible [59,60] and plots
of f (R∞) vs. c can be linear up to the point at which front surface reflection becomes signific-
ant. For NIR diffuse reflection spectrometry, samples are usually simply loaded into a cup pressed
against a quartz window. While experimentally simple, this method of presenting the sample to the
spectrometer can lead to wide variations in the baseline. Because of the nature of the K–M function,
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such baseline variations can significantly affect the value of f (R∞) due to an absorption band of the
sample [61].

To exemplify this argument, the baseline corrected values of f (R∞) and log(1/R∞) for bands
absorbing 50% of the baseline energy are listed in the table below for different baseline energies:

f (R∞) log(1/R∞)

f (R∞)A f (R∞)B f (R∞)B − f (R∞)A log(1/R∞)B log(1/R∞)A log(1/R∞)A − log(1/R∞)B
Baseline
(at A nm) (%)

Maximum
absorption

(at B nm) (%)

100 50 0.000 0.250 0.250 0.000 0.301 0.301

80 40 0.025 0.450 0.425 0.097 0.398 0.301

60 30 0.133 0.817 0.684 0.222 0.523 0.301

40 20 0.450 1.600 1.150 0.398 0.699 0.301

20 10 1.6000 4.050 2.450 0.699 1.000 0.301

It can be seen that the baseline-corrected values [f (R∞)B − f (R∞)A] are strongly dependent
on the baseline shift, whereas the baseline-corrected values for [log(1/R∞)A − log(1/R∞)B] are
identical. Even though plots of log(1/R∞) vs. c are nonlinear over wide ranges of concentration,
the range of the analyte concentration for many samples that are studied by NIR diffuse reflection
is quite small. In this case, the effect of nonlinearity of log(1/R∞) vs. c on the quantitative result is
far less than the effect of baseline changes from one sample to the next. In practice, therefore, most
practitioners convert their data to log(1/R∞) rather than f (R∞).

3.5 DISCONTINUUM THEORIES OF
DIFFUSE REFLECTION∗

A continuum theory implicitly assumes a model for the absorption by and scatter from a particle of
infinitesimal size. This model is only a reasonable approximation for samples in which the fraction
of light absorbed by an individual particle is a very small fraction of the light incident upon it. The
advantage of this model is that it is simple, though the mathematics that describe it are not. The dis-
continuum method we will describe uses mathematics no more complex than the continuum theories.
However, the description of the sample is more complex. This is both the power and limitation of
the discontinuum theories: they can describe more complex situations, but doing so requires a more
detailed description.

Currently, no continuum or discontinuum theory produces a function that is linear with concen-
tration of absorbers over large concentration ranges. However, the discontinuum theory can provide
an understanding as to why the functions behave the way they do. A discontinuum theory can make
visible that which is hidden in the implicit assumptions of continuous mathematics. The largest
advantage of the discontinuous theory to a spectroscopist is that models appropriate for mixtures can
be used to describe a sample.

As noted above, the phenomenological two-flux theories that have been developed on the basis of
the radiation transfer equation can be considered continuum theories. Continuum theories consider
the absorption and scattering coefficients as properties of an irradiated isotropic layer of infinites-
imal thickness. On the other hand, discontinuum theories consider layers containing a collection of
particles. Consequently, the thickness of a layer is dictated by the size of the scattering and absorbing
particles. Optical constants can then be determined from the scattering and absorption properties of
these particles.

∗ Sections 3.5 and 3.6 are drawn in large part from a book: Interpreting Diffuse Reflectance and Transmittance: A The-
oretical Introduction to Absorption Spectroscopy of Scattering Materials by Donald J. Dahm and Kevin D. Dahm, NIR
Publications (2007).
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Recently, the discontinuous approach has been applied by Dahm and Dahm [62,63] to the two-
flux results obtained from the radiation transfer equation. This has resulted in being able to recast
the results obtained from the continuous approach in terms of a layer of particles. This has been
termed the representative layer theory. In the discussion of deviations from the K–M equation, we
gave without proof an analogous mathematical expression reached by the discontinuous treatment
(Equation (3.65)). In this section we give the derivation of some of the more important formulas in
the discontinuous treatment.

3.5.1 THEORY FOR AN ASSEMBLY OF SPHERES

Melamed developed an elegant mathematical description of absorption and scatter from an assembly
of close packed spheres [64]. Unfortunately, it is remembered more for its failings than its elegance.
The Melamed model embodied two assumptions: There would be reflection from the front external
surface of a particle (that would follow Lambert’s cosine law for a sphere), and there would be
isotopic scatter from inside the particle. Within the sphere, the model took into account an infinite
number of internal reflections. The model predicts that reflectance would reach a maximum as the
relative refractive index approached zero. Of course, if there is no refractive index difference between
that of the particle and the medium, there is no reflection from the particle.

While the primary failings of the theory were “fixed” with a modification by Simmons [65], it
was Simmons himself who pointed out that simple scattering models seem to be as useful as more
complex ones. Recent work in discontinuous theories has been dominated by using a two-flux model
and the mathematics of plane parallel layers (sheets).

3.5.2 THEORY FOR SHEETS AND AN ASSEMBLY THEREOF

Consider a sheet under directed illumination. Asheet is an object with two large, flat, smooth, parallel
surfaces with two dimensions much larger than the third. This third dimension will be referred to as
the thickness. The layers are illuminated with a directed beam from a direction perpendicular to the
large dimensions. The diameter of the beam is small compared to the front surface area of the layer
that it strikes.

At normal incidence, the reflectance from a surface, r0, may be calculated from the index of
refraction of the material, n1, and n0, the index of refraction of the dispersing medium (in this case
air) using the Fresnel equation

r0 = (n1 − n0)
2

(n1 + n0)2
(3.66)

This formula neglects the effects of absorption on remission. Because in NIR, the band absorptiv-
ities are very small, the refractive index, and hence the reflectance, of a surface should not vary
significantly with absorption. This is not the case in the mid-infrared region. In this case, not only
the effect of absorption on r0, but also the fact that the refractive index varies significantly across a
strong absorption band, an effect known as anomalous dispersion, must be taken into account when
applying the Fresnel equations.

Within a layer, there is a transmission loss due to absorption, which can be calculated from
the Bouguer–Lambert law by [1 − exp(−kd)], where k is the linear absorption coefficient of the
material making up the layer and d is the thickness of the layer.† Consequently, the light incident

† The term Bouguer–Lambert law is not familiar to many spectroscopists. The term Beer–Lambert law or merely Beer’s law
is frequently used in its place. Technically, Beer’s law refers to the observation that the contribution of an absorber to the
absorbance of a sample is proportional to the concentration of the absorber. The symbol k is referred to by some spectroscopists
as the Beer–Lambert absorption coefficient. Because of the possibility of decadic or napierian absorbance and the various
units by which concentration can be expressed, several different quantities are all Beer–Lambert absorption coefficients. The
term absorptivity is commonly used in equations for decadic absorbance and can include concentration in any units. The term
linear absorption coefficient is the usual name for the linear napierian absorption coefficient of a pure material.
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on the back surface has been diminished by absorption, and the reflection from it is correspondingly
diminished.

The fraction of incident light remitted by a single layer, R1, the total transmittance through
a layer, T1, and the fraction of light absorbed by a layer, A1, can be calculated from the Stokes
equations [3,66]:

R1 = r0 + (1− r0)
2r0 exp(−2kd)

1− r2
0 exp(−2kd)

(3.67)

T1 = (1− r0)
2 exp(−kd)

1− r2
0 exp(−2kd)

(3.68)

A1 = 1− R1 − T1 (3.69)

The expression for R1 above reveals an important physical insight. The expression exp(−2kd) is
always between 0 and 1 and appears in a negative term of the denominator. Thus, for the case of a
constant r0, the effect of increasing absorption will be to reduce the remission of radiation that has
penetrated into a single layer. Consequently, even if the remission from a single surface is independent
of absorption, remission from an absorbing layer or particle, which has both a front and rear surface,
does depend on absorption. The assumption of a constant r0, which depends on a constant refractive
index, is a good one in the NIR region. In the mid-infrared, the case is more complicated because
the refractive index changes across strong absorption bands, thereby increasing r0. In such a case it
is even more likely that the remission from an absorbing layer or particle depends on absorption.

Derivation of these formulas involves assuming that a fraction r0 is reflected by the front surface
and a fraction (1 − r0) is transmitted into the particle, where it is attenuated, that is, a fraction
[(1 − r0) e−kd] reaches the back surface. Here a fraction [(1 − r0)

2 e−kd] leaves the particle in the
forward direction contributing to its transmission. A fraction [r0(1 − r0) e−kd] returns back toward
the front surface and is again attenuated by absorption, with [r0(1 − r0) e−2kd] reaching the front
surface. Here a fraction [r0(1 − r0)

2 e−2kd] leaves the particle and contributes to the reflectance.
This process continues indefinitely and is described as infinite series that converge to the above
expressions.

R1 = r0 + r0(1− r0)
2 e−2kd + r3

0(1− r0)
2 e−4kd + · · · + r2n−1

0 (1− r0)
2 e−2nkd (3.70)

T1 = (1− r0)
2 e−kd + r2

0 (1− r0)
2 e−3kd + · · · + r2n−1

0 (1− r0)
2 e−(2n−1)kd (3.71)

It is assumed that there is no divergence of the beam, and that on every pass through the layer, the
light will travel exactly the distance d. This means that, with conventional spectroscopic equipment,
there would be no remission detected from the sample, because it would all be reflected back directly
into the incident beam.

The above derivation may be generalized for the case where re is the fraction of light reflected
from the surface as the light enters the layer and rf is the fraction of light reflected at the surface when
the light leaves the layer. Note that the layer is still considered symmetrical in this model: the front
and back surfaces both behave the same way, the distinction between re and rf concerns whether
light is traveling from the surrounding medium to the layer, or from the layer to the surrounding
medium. For this situation, the above equations become:

R1 = re + (1− re)(1− rf )rf exp(−2kd)

1− r2
f exp(−2kd)

(3.72)

T1 = (1− re)(1− rf ) exp(−kd)

1− r2
e exp(−2kd)

(3.73)

A1 = 1− R1 − T1 (3.74)
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For the case of diffuse illumination, there is a difference in the distance traveled for diffuse light, as
opposed to directed light. We may define a new absorption coefficient, K , which is dependent on the
actual distance that the light travels through the sheet. This is different from the distance traveled
by directed radiation, where the distance traveled is equal to the sample thickness. For diffuse
illumination of plane parallel particles, the relationship between the two absorption coefficients is

exp(−Kd) =
∫ π/2

0

exp(−kd)

cos(θ)
dθ (3.75)

The quantities exp(−kd) and exp(−Kd) are the transmittance through a sheet of thickness d for the
case of direct and diffuse radiation, respectively. (This relationship is not exact because it does not
account for the fact that the reflectance of a surface is dependent on angle. Furthermore, depending
on the geometry of a spectrometer, integration in a second direction might be required.)

3.5.2.1 The Stokes’ Formulas for an Assembly of Sheets

The equations that govern the passing of light through a sample composed of sheets are cumbersome,
but they are readily solved with a computer. Let x represent the distance into the sample compared
to the thickness of a single sheet. For example if x is 2, it is twice the thickness of a single sheet, and
if x is 1/2, it is half the thickness of a single sheet. From the fractions of a single layer (given by A1,
R1, and T1), we can calculate the fractions for a distance x (with Ax + Rx + Tx = 1) by

Tx = �−�−1

��x − (��x)−1
(3.76)

Rx = �x − (�x)−1

��x − (��x)−1
(3.77)

� and � are defined by

� = 1+ R1 + T2
1 +�

2 R1
(3.78)

and

� = 1+ R1 + T2
1 +�

2 T1
(3.79)

where

� = [(1+ R1 + T1)(1+ R1 − T1)(1− R1 + T1)(1− R1 − T1)]1/2 (3.80)

Note that x can be any number, including a fraction. A real sample made up of sheets must of course
have an integral number of sheets, so Rx for a fractional x does not correspond to anything physically
observable, but it can be computed.

3.5.2.2 The Dahm Equation

When Dahm and Dahm [62,63] applied the discontinuous approach to the same problem as Kubelka
and Munk, they made the following assumptions:

1. The sample has two large flat (but not necessarily smooth) plane parallel surfaces.
2. All radiation is directed, moving either forward or backward in a direction defined by the

normal to the sample surface.
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3. A sample is divided into layers. Each layer is representative of the sample as a whole and
is nowhere more than one particle thick. The layer may contain voids, and there is no
condition that the layer is the same thickness everywhere.

4. There is no scatter from one particle to another within the same layer.
5. The process in which radiation leaves a layer and returns into the hemisphere bounded by

the plane of the sample’s surface is termed remission. All remitted radiation is included
in the description, whether its origin is regular reflection or backscatter.

6. Each layer will absorb a certain fraction, a, remit a certain fraction, r, and transmit a
certain fraction, t.

Dahm and Dahm [62,63] have developed a discontinuum theoretical treatment based on the original
work of Benford [67]. It is assumed that each layer of material is bounded by two parallel infinite
planes. Of the radiation entering the ith layer, the total forward flux, that is, the fraction leaving the
layer in the same direction, is ti, and the total backward flux is ri, and the fraction absorbed is ai.
The total forward flux includes both transmission and forward scatter and the total backward flux
includes both external and internal reflection and backscatter.

Benford’s equations allow the total forward and backward flux and the total absorbance to be
calculated in terms from the properties of an individual layer. The overall properties for a material
composed of two layers are given by

ti+j = titj
(1− rirj)

; ri+1 = ri + t2
i rj

(1− rirj)
; ai+j = 1− ti+j − ri+j (3.81)

If ti, ri, and ai represent the known properties of a sample that contains a number i of identical layers,
each of which is described by t1, r1, and a1, the properties of a sample containing i such layers is
given by Benford as

ti+1 = ti t1
(1− rir1)

; ri+1 = ri + t2
1 r1

(1− rir1)
; ai+1 = 1− ti+1 − ri+1 (3.82)

Dahm and Dahm considered what happens when the thickness of the sample is doubled or halved,
and computed the total backward flux, R∞ for an infinitely thick sample by an iterative solution of
the latter set of equations. They showed that if the sample consists of an infinite number of layers,
each with a forward flux of ti, a backward flux of ri, and absorption of ai,

f (R∞) = ai

2ri
(2− ai − 2ri) (3.83)

The K–M equation was derived for a matrix of infinitesimally small particles. Because the numerator
of the K–M function is the absorption coefficient, f (R∞) varies linearly with the concentration of
each component of the sample. However, it is known that the K–M equation is only an approximation.
The Dahm Equation (3.83) may be expected to give a more exact solution for diffuse reflectance in
the case of particles of finite size.

The Dahm equation is frequently expressed in terms of an Absorption–Remission function
A(R, T) which has as one of its characteristics that it has the same value for any thickness of a
sample.

A(R, T) = (1− R2)− T2

R
= a

r
(2− a− 2r) (3.84)
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3.5.3 THE REPRESENTATIVE LAYER THEORY

3.5.3.1 Model for a Layer Representative of Particulate Solids

Use of the mathematics for plane parallel described in the last section requires that each layer in
a sample has a single set of spectroscopic properties: an absorption fraction, a remission fraction,
and a transmission fraction. This mathematics may be straightforwardly applied to homogeneous
layers such as plastic sheets. In order to apply the mathematics to samples of particulate solids
meaningfully, we need to establish a method for determining the properties of a layer of the sample
from the properties of the individual particles.

In the model of the representative layer that we present here, each particle type is characterized by
its composition, volume, and the average cross-sectional surface area that it presents to the incident
beam. We will picture a particle as having two flat ends, each perpendicular to the incident beam.
While the shape of the cross section is not important for our model, it may be pictured as a square.

Thus, a representative layer is made up of voids and of particles (shaped as boxes) of varying
size. The ends of the boxes are perpendicular to the incident beam. The representative layer is of
varying thickness, but is never more than a single particle thick. The layer is representative if

1. The volume fraction of each particle type is the same in the layer as in the sample as a
whole.

2. For all particle types, the cross-sectional surface area in the layer is in the same proportion
as the surface area of the particle type in the sample as a whole.

3. The fraction of the cross-sectional surface area that is made up of voids is the same as the
void fraction of the sample as a whole.

With this model, it will be possible to calculate the properties of a representative layer from the
properties of the individual particles of which it is comprised. The properties of the single particle
that are of interest are the absorption, remission, and transmission of the incident beam.

3.5.3.2 Absorption and Remission of the Representative Layer

The absorption is a property of a molecule and can be well represented as a continuum, but remission
is a property of an interface and may not be well represented as a continuum. In the absence of
absorption, the remission is independent of the thickness of a layer. The remission fraction from
a single representative layer is dependent only on the fraction of the cross-sectional surface area
occupied by each type of particle and the remission power of the material of which the particle is
composed. In the presence of absorption, the remission fraction diminishes (causing a reduction in
the remission coefficient).

For cases where we know the thickness of the representative layer, it is possible to calculate the
absorption and remission fractions for the representative layer from the remission and transmission
fractions of any sample of known finite thickness, d. The absorption fraction, A1, of a layer is given
by [1− exp(−Kd)]. (This is the value given by the plane parallel mathematics for a layer that has no
remission. In the symbolism being used, the subscript refers to the number of layers. Thus A2 would
refer to the properties of two layers, not to second layer.) By implication, the absorption of a single
particle, a, is given by [1− exp(−Kd)].

Aremission coefficient may be defined as the remission fraction of the representative layer divided
by the thickness of the representative layer. For cases where the thickness of the representative layer is
not known, the plane parallel mathematics can be used to obtain absorption and remission coefficients
as described above. This requires an assumption that a sample can be well represented as a continuum.
In this linear region, for a given linear absorption coefficient the absorption fraction of a particle is
proportional to its thickness, and the following conditions will be observed (and will be seen in the
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examples below to explain some commonly observed phenomena):

1. The contribution of a particle type to absorption is proportional to the volume fraction
(including voids) of the particle type and to the absorption coefficient of the material
making up the particle.

2. The contribution of a particle type to remission is proportional to the total cross-sectional
surface area of the particle type in the representative layer and the remission power of the
material making up the particle.

3. In a mixture of two or more particle types of similar remitting power, the Absorption–
Remission function of each particle type is represented in theAbsorption–Remission func-
tion of the sample weighted in proportion to surface area to volume ratio of the particle type.

In regions of higher absorption, the coefficients obtained from the plane-parallel mathematics become
less reliable. Then the representative layer model is a better descriptor, though the assumptions about
the shape of the particles become more important. The regions of extremely high absorption tend
not to be of value for compositional analysis. Here, the contribution of a particle to the absorption
of a layer is proportional to the surface area fraction of the particle type and not dependent on its
thickness. The representative layer model would still be useful in applications such as image analysis.

3.5.3.3 Mathematical Expression of Model

A sample is made up of particles of various types. For each particle type, we have the following
definitions of symbols:

di the thickness of a particle of type i in the direction of the incident beam

ρi density of a particle of type i

wi weight fraction of a particle of type i

v0 void fraction of the sample

vi fraction of occupied volume in the sample composed of particles of type i

Vi fraction of total volume occupied by particles of type i

si fraction of particle surface area which belongs to particle type i

Si fraction of a cross-sectional surface comprised of particles of type i

ki the effective absorption coefficient of the particles of type i

bi the effective remission coefficient of the particles of type i

(bd)i the remitting power of the material comprising particle type i

Volume surface area and fractions, for a given particle type can be computed from weight fractions
and particle density as follows:

vi = wi/ρidi∑
(wi/ρidi)

(3.85)

si = wi/ρi∑
(wi/ρi)

(3.86)

The following formulas assume that the amount of transmitted light lost by an interaction with a
single particle either to absorption or remission is small. With this assumption, for a single particle,
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the fraction of light absorbed is given by the cross-sectional area and the Bouguer–Lambert law, and
the remission fraction is given by the cross-sectional area and bidi. Thus, for a representative layer

A =
∑

Si[1− exp(−kidi)] (3.87)

R =
∑

Sibidi (3.88)

When kidi is small for all particle types, the following approximation can be made:

A =
∑

Sikidi

Then, since the surface area times the thickness is the volume,

A =
∑

Viki (3.89)

This is the basis for statement 1 in the previous section.
It has been shown [3,68] experimentally that bi is proportional to 1/di. This is equivalent to

saying that remission is proportional to surface area, and follows from the assumption that remission
is a property of an interface. This implies that the product bidi is constant and a property of the
composition of the material making up the particle, independent of particle size. The term (bd)i is
defined as the remitting power of a material, and

Ri =
∑

Si(bd)i (3.90)

Note that Equation (3.90) is a special case of Equation (3.88), and is the basis for statement 2 in the
previous section.

In the linear range, the approximation is reasonable that

A(r, t)i = Vi ai

Si ri
(3.91)

When all particles types are in this range, it follows that

A(R, T) =
∑

ai∑
ri

(3.92)

For the case where the remission fraction is the same for all particle types, A(R, T) is equal to
�(Vjaj/Sjrj) which is the basis for statement 3 above.

3.6 APPLICATION OF THEORY TO MODEL SYSTEMS∗

In this section, we will give several hypothetical examples, though we will compare results from
the theoretical model to actual experimental data. One set of data is from a system investigated by
Olinger and Griffiths [50]. Up to three components (carbazole, NaCl, and graphite) were mixed

∗ Section 3.6 is taken with minor modification by permission of NIR Publications Copyright 207 from: Donald J. Dahm and
Kevin D. Dahm, Interpreting Diffuse Reflectance and Transmittance: A Theoritical Introduction to Absorption Spectroscopy
of Scattering Materials pp 133–152, NIR Publications (2007). Sections 3.6.1 and 3.6.2 resulted from a collaboration between
the authors, which was based on work described in Reference 50.
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during the preparation of each sample. Carbazole was intended to represent a typical organic analyte
having moderate absorption. It will be referred to as the analyte. NaCl and graphite respectively
represent nonabsorbing and absorbing compounds. Whether as single compounds or mixtures, they
will sometimes be referred to as the matrix. In the hypothetical examples, we will use the names of
these materials, even though our calculation will not necessarily use the exact properties of these
materials.

If we consider a beam of light encountering a single layer of the particles, there are several
possible fates for the light:

1. The light can go through a void in the layer. In these examples, we will neglect the effect
of voids, which tends to be minimal in a sample of close packed particles.

2. Light can interact with the surface of any of the particles and be reflected.
3. Light can enter the NaCl particles and a portion will be scattered backward. The balance of

the light will be transmitted through the particle. In modeling this system, we will assume
that there is no absorption by the NaCl particles.

4. Light can enter the graphite particles and all of it will be absorbed. The absorption of
graphite is very high at most wavelengths in visible and infrared regions, so this assumption
well approximates an actual property.

5. Light can enter a carbazole particle and a portion of the light will be absorbed. Another
portion of it will be remitted, with the balance transmitted.

In total, the layer will remit a certain fraction, which represents the sum of reflection and backscatter;
absorb a certain fraction; and transmit (either directly or diffusely) the balance.

One approach to modeling the system would be to use the absorption and remission (or scattering)
coefficients with the following assumptions:

• The absorption coefficient of the NaCl is zero.
• The absorption coefficient of the graphite is infinite.
• The absorption coefficient of carbazole is neither zero nor infinite.

The linear absorption coefficient of carbazole might be determined by making transmission mea-
surements on a solution of known concentration in a nonabsorbing solvent. Such a coefficient is a
material property of carbazole. Unfortunately, that is not the absorption coefficient that is referred
to in the theories of diffuse reflection. The theories refer to an absorption coefficient that would
be obtained by taking the absorption and remission properties of a finite sample and extrapolating
them to a sample of zero thickness. For a sample of zero scatter, the two absorption coefficients
would be the same. In the presence of scatter, they are different. However, at very high absorp-
tion levels, the corresponding fraction of light absorbed as defined by each coefficient becomes
indistinguishable experimentally. (This should not be interpreted as meaning that the two absorp-
tion coefficients become mathematically equal at very high absorption levels. The two coefficients
will both approach infinity as absorption levels becomes very large, but will always have different
values at the same absorption fraction, and will change at different rates as the absorption fraction
changes.)

It is the intermediate levels of absorption that are the most important for analyses. Here, the
relationship between the two coefficients is rather complex. No one chose this complicated situation:
nature and our mathematics thrust it on us. However, many workers either did not know about or
ignored the fact that the two coefficients are not proportional. Thus we urge care when reading the
literature on this issue.

The situation with the remission coefficient is equally undesirable. Two particles with the same
surface reflectivity and particle size will have different remission (or scattering) coefficients if the
absorption coefficient of the material within the particle is different. These differences can be
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illustrated by our extremes. If there is infinite absorption by the particle, the remission from the
particle will be only the reflection from the first particle surface. For the particle with no absorption
(but the same surface reflectivity), there will also be remission from the back surface of the particle.
When extrapolated to zero thickness, this will mean that the remission coefficient for the particle
with infinite absorption will be approximately half that of the case of zero absorption. (This is an over
simplification. The remission coefficient will go down with increasing absorption and then, as the
absorption becomes very large, will increase [69].) Just as for the case of absorption, many workers
have ignored or did not know about the change in remission coefficients. (In the older literature,
what we term a remission coefficient is called a scattering coefficient. The term scattering coefficient
also has other meanings. Again, care is urged when reading the literature.)

There are situations where the assumptions of proportionality of the absorption coefficients
and constancy of remission coefficient are reasonable. If the fraction of light absorbed by a single
particle is small, the assumptions are good. In order to describe other situations, it is desirable to
use an approach that does not suffer from the complexities of coefficients referred to above. In the
following examples, we will illustrate the use of the approach of discontinuum theory as embodied
in the representative layer theory.

Discontinuum theories are sometimes called particle theories. We will treat a sample as an
assembly of particles. For the general case, we do not know how to use our models to deduce
particle properties from the spectroscopic data. We can, however, use the models to calculate the
spectroscopic properties of a sample from those of the particle.

3.6.1 EXAMPLE 1: GRAPHITE IN NaCl

We will begin our series of examples by assuming that we are mixing particles that have a drastically
different absorption fraction but the same remission fraction. The plot in Figure 3.6a shows how
f (R∞) (denoted there as K–M) and a/r vary as a function of the particle fraction of graphite in a
mixture of graphite (infinite absorption) and NaCl (zero absorption), with each assumed to have a
remission fraction of 0.04. The value of 0.04 was chosen because it is the specular reflectance at
normal incidence from the surface of a planar sample with a refractive index of 1.5. The value of
f (R∞) was calculated from the Dahm Equation (3.84). Because the function A(R, T) is constant for
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FIGURE 3.6 Variation of f (R∞) (denoted here as K–M) and a/r as a function of the particle fraction of
graphite in a mixture of graphite (infinite absorption) and NaCl (zero absorption). In chart (a), each is assumed
to have a remission fraction of 0.04. In (b), the remission from the graphite is assumed to be half that from
the NaCl. (Reproduced from D. J. Dahm and K. D. Dahm, Interpreting Diffuse Reflectance and Transmittance:
A Theoretical Introduction to Adsorption Spectroscopy of Scattering Materials (2007), by permission of NIR
Publications Copyright 2007.)
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any thickness of the sample, we can calculate the value for infinite thickness (T∞ = 0) from the
value for the single layer.

f (R∞) = (1− R∞)2

2R∞
= A(R∞, 0)

2
= a

2r
(2− a− 2r) (3.93)

Here the upper case letters A, R, and T are used to denote the fractions of incident light absorbed,
remitted, and transmitted by a sample of any thickness. The lower case letters are used to denote
the corresponding fractions for a single layer or particle. For samples of infinite thickness, the K–M
function, f (R∞), and the Absorption–Remission function, A(R, T ), are related by a simple factor of
two. The K–M equation, as originally derived, contains a quantity related to scatter in its denominator,
which with the assumption of isotropic scatter, is twice the magnitude of r.

The value for the absorption fraction of a single layer, a, varies from 0 to 1 with the fraction
of the area of the sample occupied by graphite, while the value for the remission fraction, r, is
constant at 0.04 (i.e., 4% of the incident radiation is reflected from either NaCl or graphite; any
radiation entering a graphite particle is completely absorbed; radiation entering a particle of NaCl
may be scattered within the sample in either the forward or reverse directions). Notice that the ratio
a/r increases linearly with graphite concentration in this example. We may picture this situation as
the sequential replacement of a clear particle (with no absorption) with an opaque particle (with
infinitely high absorption). The increase in a (the absorption fraction of the layer) is proportional
to the number of particles we have replaced. However, the remission from the layer is constant by
our assumption. On the extreme right of the chart, the layer is completely opaque and therefore
all the remission comes from reflection from the front surface of the first layer. At the left of the
chart, where the particles are clear, the remission is coming from many layers. The observation of
the nonlinearity in the function f (R∞) (also true for log(1/R∞)) is qualitatively explained as being
because the effective pathlength of the light in a sample decreases with increasing absorption.

Of course, we do not literally count out particles when we make up a sample; rather we weigh
them. Because graphite and NaCl have approximately the same density (2.2 g/cm3), the particle
fraction is the same as the weight fraction (assuming all particles have the same size). In later
examples, we will encounter a situation where this is not true. Here we make the point that because
they have the same density, particles of graphite and NaCl of the same size can be mixed to form a
matrix having any desired absorption fraction. We will refer to such a matrix in Example 2.

Just above, we considered particles with vastly different absorptivities, and the same remission
fraction. If we have two particles with the same refractive index but different absorptivity, the
remission fraction will not be the same. The remission fraction from a highly absorbing particle
(from which all the remission comes from the front surface) will be roughly half that of a lightly
absorbing particle (where the remission comes from both the front and rear surfaces). It is the
remission from the front surface that sets the upper limit on the K–M function.

Next, we will consider a similar system, but add that complexity. The graphite is assumed to have
an absorption fraction of one and a remission fraction of 0.02, while the NaCl retains a remission
fraction of 0.04 and zero absorption. The plot in Figure 3.6b shows how f (R∞) (denoted there
as K–M) and a/r vary as a function of the particle fraction of graphite in a mixture of graphite
(infinite absorption, reflectance of 2%) and NaCl (zero absorption, reflectance of 4%). Notice that
not only has the value of a/r changed, but it is also nonlinear, because 1/r is not a linear function.
However, notice that the K–M plot in Figure 3.6b is linear. This is a surprising result given our
contention expressed earlier that “reflection from the front surface of the sample leads to nonlinear
plots of f (R∞) against the concentration of an absorbing component in a nonabsorbing matrix,
with f (R∞) approaching its maximum value asymptotically.” If we consider the Dahm equation
expressed as f (R∞) = (a/2r)(2 − a − 2r), this behavior is explained by the nonlinearity in the
ratio a/r observed in Figure 3.6b being exactly compensated by the decrease in r in the expression:
(2−a−2r). The assumptions that we made are reasonable for a system in which one particle absorbs
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FIGURE 3.7 Functions related to a hypothetical sheet modeling particles within which the absorption fraction
(a) is changing. The reflectivity (r) of the sheet surface is taken as 2%. All points plotted in chart (b) have a
corresponding point in (a) with the same ordinate value, the difference between the two being the abscissa. The
absorption coefficient (k) is taken as [− ln(1−a)]. (Reproduced from D. J. Dahm and K. D. Dahm, Interpreting
Diffuse Reflectance and Transmittance: A Theoretical Introduction to Adsorption Spectroscopy of Scattering
Materials (2007), by permission of NIR Publications Copyright 2007.)

the light totally and the other not at all. However, this is not the normal situation encountered in
NIR analyses.

In Figure 3.7, we consider a more normal case. We assume that all particles in a sample are
identical. As the linear absorption coefficient k increases, a layer in each sample will have a pro-
gressively larger absorption fraction, which in the absence of scatter would increase linearly from 0
to 1. The collection of samples considered will have the same pattern in absorption fraction as those
considered just above. The difference is that the increase is happening within a particle rather than
by mixing particles with different absorption fractions. The remission fraction is calculated using
the model of a Stokes sheet (described by Equation (3.67) to Equation (3.69)). The sheet surface
has a reflectance of 2%, the same as that of the absorbing particles above. The remission fraction
still decreases with absorption, but the decrease follows a more realistic pattern than in the earlier
example. The decrease in remission again yields a nonlinear plot for a/r.

Notice that f (R∞), labeled K–M in Figure 3.7, now varies nonlinearly with a and has a shape
more typical of real samples. For the purpose of comparison, the plot of log(1/R∞) vs. a is also
shown. The plots in Figure 3.6b and Figure 3.7 invite the conclusion that it is not only the surface
reflectance in itself that causes the nonlinearity of the K–M function. It results from a rather complex
interaction between the remission and absorption in a scattering sample.

The data in Figure 3.7b are the same data as in Figure 3.7a, but plotted to better mimic how the
metrics vary as a function of composition. The abscissa in Figure 3.7b is the absorption coefficient
(k) that would yield the absorption fraction (a) in Figure 3.7a using the formula [k = − ln(1− a)].

3.6.2 EXAMPLE 2: CARBAZOLE IN A MATRIX OF

VARYING ABSORPTION

At the time the experimental work referred to at the beginning of this series of examples [50] was
undertaken, there was a belief that matrix referencing should remove the effect of the matrix and
isolate the absorption of the analyte. The experimental data (reported in previous editions of this
Handbook) showed unambiguously that, whether using f (R∞) or log(1/R∞) as the metric, the
matrix referencing technique would not work in the way envisioned. However, when the experi-
mental work was done, there was not a theory available that would predict the results that were
obtained.



DBURNS: “7393_c003” — 2007/7/27 — 17:23 — page 53 — #33

Continuum and Discontinuum Theories of Diffuse Reflection 53

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Particle fraction carbazole

(a)
K

–
M

 fu
nc

tio
n Absolute ↓

Matrix referenced:
Unique →

Common
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Particle fraction carbazole

(b)

lo
g(

1/
R

)

Absolute ↓

Matrix referenced:
Unique →

Common ↓

→

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Particle fraction carbazole

(c)

K
–

M
 (

fu
ll 

sc
al

e)

Referencing scheme:
Absolute →

↑
Common ↑ Unique

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

Particle fraction carbazole

(d)

lo
g(

1/
R

) 
(f

ul
l s

ca
le

)

Referencing scheme:

Absolute and common →

 ↑ Unique

FIGURE 3.8 Variation of f (R∞) and log10(1/R)with the particle fraction of carbazole for a matrix composed
of 95% NaCl and 5% carbon for three cases: (a) a referencing scheme that puts the data on an absolute scale
(marked “Absolute” on figure); (b) a reference that is made up of the matrix, each particle of which has an
absorption fraction of 0.05 (5%) of the light incident upon it (marked “Common” in figure ); and a (c) matrix
referencing scheme in which a unique reference is made for each sample (marked “Unique” in figure). Over
relatively small ranges of analyte absorption, matrix absorption does not cause significant nonlinearity of K–M
data collected on an absolute scale. Matrix referencing introduces nonlinearity into the data. In general, the
log(1/R′∞) data is not linear, as can be seen in chart (d). (Reproduced from D. J. Dahm, NIR news, 15: 6–10
(2007), by permission of NIR Publications Copyright 2007.)

In this example, we will investigate the effects of various referencing techniques with the intent
of explaining the experimental results. The four panels in Figure 3.8 each exhibit the behavior for a
matrix composed of 95% NaCl and 5% carbon for all three cases. The three cases are for

1. A referencing scheme that puts the data on an absolute scale (marked “Absolute” in
Figure 3.8).

2. A reference that is made up of the matrix, each particle of which has an absorption fraction
of 0.05 (5%) of the light incident upon it (marked “Common” in Figure 3.8).

3. A matrix referencing scheme in which a unique reference is made for each sample
(marked “Unique” in Figure 3.8). These reference materials are assumed to have the same
contribution of matrix absorption in the reference (uniquely made for this sample) as in
the sample. Thus if the absorption fraction for a matrix layer is 0.05 (5%), and the particle
fraction of the matrix is 0.5 (50%), then the contribution of the reference material to the
absorption fraction of a single layer of the sample would be (0.05× 0.5 = 0.025) or 2.5%.
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This was the referencing technique that was explored in the referenced experimental
work [50].

In each case, we have assumed that the absorption fraction of the carbazole is 0.10 (10%), and that
of the matrix is 0.05 (5%). The remission fraction from all particles is assumed to be 0.04 (4%).

Calculations according to the representative layer theory show that the matrix referencing tech-
niques would not make a plot of f (R∞) or log(1/R∞) more linear than data on an absolute scale.
In fact, matrix referencing has the opposite effect. Notice that in Figure 3.8a, the K–M function for
data on an absolute scale, for this case, varies approximately linearly with the particle fraction of
carbazole. In Example 1, the corresponding function was very nonlinear. This is because here we
assumed a maximum change of 5% in the absorption of a particle instead of 100%, which was the
case assumed for graphite in Example 1. (This will make it clear that it is the referencing scheme that
is causing the nonlinearity.) A plot of log(1/R∞) vs. the particle fraction of carbazole in Figure 3.8b
is slightly less linear than the corresponding plot for the K–M function.

In an article by Griffiths on continuum methods of diffuse reflection in the previous edition of
this Handbook, it was pointed out that “converting the measured reflectance of carbazole to the K–M
functions yields a fairly linear plot when the carbazole analyte was dispersed in the nonabsorbing
matrix (NaCl).” Consistent with this observation, the representative layer theory predicts that in
this case, the unique matrix referencing would give the same plot as the line marked “Absolute” in
Figure 3.8c. This is because the absorption for NaCl is very low, and thus in an infinitely thick sample,
is nearly 100% reflective. Conversely, when the matrix is an absorbing one, the experimenters con-
cluded “that log(1/R′∞) values provided a more linear plot over a major portion of the concentration
range studied.” That conclusion seems very reasonable in light of a comparison between the lines
marked “Unique” in Figure 3.8c and Figure 3.8d.

To subtract the matrix absorption successfully, two criteria must be fulfilled: (a) the reference
must match the absorption of the matrix and (b) the remission from the reference must remain constant
at all concentrations. In this matrix-referencing scheme, we have assured that we have matched the
absorption of the matrix and kept the remission for a single layer constant at all concentrations. The
remission of the reference will vary with concentration because the effective pathlength changes
with absorption.

Figure 3.8c and Figure 3.8d show the same data as Figure 3.8a and Figure 3.8b, except that all
plots are displayed full scale to show the relatively linearity of each case more clearly. The K–M data
which has all been referenced to a material with the same absorption (calculating the function f (R′∞),
where [R′ = R∞/Rref ]) has a different shape than the f (R∞) data that is on an absolute scale. The
log data has the same shape, and the curves fall upon each other when expanded to full scale. This
behavior is not unexpected, because taking the logarithm of a ratio is equivalent to subtracting the
logs. The correct way to correct K–M data for a reference with nonzero absorption is to subtract the
K–M functions, not to take their ratio. The software packages accompanying many NIR instruments
do not do this. This tends to make log(1/R) a better choice for an absorption metric than K–M on
those instruments for artificial reasons.

From the preceding example, it can be seen that the representative layer theory predicts that the
unique matrix referencing technique would not work. In this example, we will show that the shape
of the experimental curves is predicted by the representative layer theory. In this study, log(1/R)
and K–M matrix referenced data were obtained from three series of infinitely thick samples:

1. Binary mixtures of carbazole and NaCl.
2. Carbazole dispersed in a matrix of NaCl and 1 wt.% graphite.
3. Carbazole dispersed in a matrix of NaCl and 5 wt.% graphite.

Using the techniques described in the preceding examples, the curves shown in Figure 3.9a and
Figure 3.9b were obtained for f (R∞) and log(1/R), respectively. Notice the only curve for which
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FIGURE 3.10 A unique matrix referencing scheme can yield a linear K–M plot only with a nonabsorbing
matrix and when plotted against a volume based measure of concentration. From top to bottom, the lines in
each chart represent 0, 1, and 5% absorption by matrix particles. The markers are experimental data. The
lines are fit to the points assuming that the K–M function would be linear for all plots if an absolute reference
were used. (Reproduced from D. J. Dahm, NIR News, 15: 6–10 (2007), by permission of NIR Publications
Copyright 2007.)

a straight line is predicted is when f (R∞) is measured under conditions where the matrix does not
absorb. This line is straight because the absorption of the matrix is assumed to be zero, and thus
the data for that series are on an absolute scale. If all data were on an absolute scale, the data in
all three curves would form straight lines ending at the 100% carbazole absorption, although each
would begin at a different point on the y-axis.

The data calculated from the representative layer theory may be compared with actual data shown
in Figure 3.10. These data were originally reported by Olinger and Griffiths [50] and modified
by changing the weight fraction to particle fraction, as described by Dahm and Dahm [70]. The
individual points are experimental data, while the lines in these plots were calculated assuming that
f (R∞) varied linearly with the volume concentration of both the analyte and matrix. Notice the
similarity between the shapes of the experimental curves and those in Figure 3.9a and Figure 3.9b,
which are calculated from the representative layer theory. The absolute values of the numbers are
different from the experimental data for a variety of reasons, one being that the experimental data
was base line adjusted. More important, as we shall see in the next example, is that the particle
properties assigned which give this fit are not necessarily those of real particles.
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FIGURE 3.11 Reflectance measured (diamonds) by image analysis using visible light compared to reflec-
tance calculated (line) from the Dahm equation for mixtures of wheat and rape seed meal. (Reproduced from
D. J. Dahm and K. D. Dahm, Near-Infrared Technology in the Agriculture and Food Industries, 2nd edn.
(P. Williams and K. Norris, eds.), St. Paul, MN, pp. 1–17 (2001) by permission of American Association of
Cereal Chemists, Inc. Copyright 2001).

3.6.3 EXAMPLE 3: MIXTURE OF WHEAT AND RAPE SEED MEAL

Additional experimental confirmation for the usefulness of the representative layer theory comes
from the work of DeVaux et al. [71,72]. This study was concerned with the fact that, in a mixture
of two components with different particle sizes, the smaller particles will be over-represented in an
absorption metric compared to the weight fractions of the components. This effect was systematically
examined with a combination of image analysis and NIR spectroscopy on mixtures of “fine and coarse
fractions of wheat and rape seed meal.”

In order to be able to characterize the surfaces of the mixtures by image analysis with visible
radiation, mixtures were made from “raw materials of contrasting colors. Awhite product and a black
product were chosen: wheat and rape seed meal.” Four series totaling forty samples were built from
“mixtures from 0 to 100% of wheat by steps of 10%: fine wheat with fine rape seed meal, fine wheat
with coarse rape seed meal, coarse wheat with fine rape seed meal, and coarse wheat with coarse
rape seed meal.” Figure 3.11 shows experimental data (as diamonds) for the mixtures of fine wheat
with fine rape seed meal (i.e., passed through the same size sieve). The remission of visible radiation
from the mixtures increased with the concentration of “white” wheat. The reflectance values were
“not placed on a straight line between the raw fractions.”

To explain the shape of an image analysis curve, it is natural to think in terms of an opaque
layer, some parts of which are less reflective (darker) than others. In this example, the dark areas
are assumed to reflect 0.1 (10%) of the light and absorb 0.9 (90%); while the bright areas reflect
0.9 (90%) and absorb 0.1 (10%). The reflectance is shown for this hypothetical opaque layer in
Figure 3.12a. Notice that the reflectance, R, is a straight line proportional to the fraction of bright
area (as it would be for any mixture composed of two components of different reflectance); as a
result, the K–M and absorbance functions are both curved.

However, the reflectance from a real layer of white wheat and dark rape seed is not opaque. Light
is transmitted through the white particles, interacts with interior layers of the sample, and reemerges
from the sample after having undergone additional absorption. In Figure 3.12b, we see a plot of
the image analysis data from mixtures of the dark rape and white wheat seed meal. Here the line
representing the reflectance is curved, as is the line representing the K–M function. The log(1/R)
curve, by coincidence, happens to be approximately straight in this case.
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FIGURE 3.12 Variation of R, f (R∞) and log10(1/R) with particle fraction of the lighter component. (a) Cal-
culated values when the dark areas are assumed to reflect 0.1 (10%) of the incident radiation and absorb 0.9
(90%) and the bright areas reflect 0.9 (90%) and absorb 0.1 (10%). Notice that the reflectance, R, is a straight
line proportional to the fraction of bright area (as it would be for any mixture composed of two components
of different reflectance); as a result, the K–M and absorbance functions are both curved. (b) The reflectance
from a real layer of white wheat and dark rape seed. Light is transmitted through the white (wheat) particles,
interacts with interior layers of the sample, and reemerges from the sample after having undergone addi-
tional absorption. Here the line representing the reflectance is curved, as is the line representing the K–M
function. The log(1/R) curve, by coincidence, happens to be approximately straight in this case. (Repro-
duced from D. J. Dahm and K. D. Dahm, Interpreting Diffuse Reflectance and Transmittance: A Theoretical
Introduction to Adsorption Spectroscopy of Scattering Materials (2007), by permission of NIR Publications
Copyright 2007.)

Focusing on the line where the absorption metric is reflectance (the fraction of the incident beam
that is remitted), the black rape seed particles have high absorption, while the wheat particles absorb
far less. However, the line is curved because the layer is not opaque as discussed previously. Further,
because the effective sample thickness is higher for wheat than for rape seed, the line is super-linear
as a function of wheat fraction. As in Example 2, the representative layer theory can reasonably
define the shape of these curves.

In the model used to fit these experimental data, we assumed that the remission at the left-hand side
of the chart is from an opaque layer, although the opaque layer of pure rape seed is almost certainly
more than one particle thick because of the effect of voids. In a sample with voids, an opaque layer
must be at least two particles thick. The fractions for a hypothetical layer were calculated from the
assumed characteristics of the individual components using Equation (3.84) and Equation (3.85).
The R∞ values for an infinitely thick sample making up the line in Figure 3.12 were calculated by
applying an inverse form of the Dahm equation

R∞ = 1+ R2
1 − T2

1 − ((1+ R2
1 − T2

1 )
2 − 4R2

1)
0.5

2R1
(3.94)

The hypothetical opaque layer that fits yields the desired R∞ value for 100% rape seed; 0% wheat
has the following parameters: ar = 0.83, rr = 0.17, tr = 0.00. With these values for the pure rape
seed layer, the following values for a pure wheat layer: aw = 0.089, rw = 0.43, tw = 0.48 (subscript
w for wheat, r for rape seed) gave the desired line.

These assigned values may be quite unreasonable for remission from a layer that contained noth-
ing but those particles. This is a curve fitting exercise. We are manipulating four parameters to fit
a line. There are many combinations of these four parameters that give the same line. Presumably,
none of the sets will be the properties of a single layer of particles, because we have not included
voids in the model, and a layer of particles, one particle thick, would certainly contain voids. Non-
etheless, this exercise illustrates the capability of the Dahm equation and the representative layer
theory to describe particulate systems, even when there is very high absorption, a place where there
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FIGURE 3.13 Variation of log(1/R∞) vs. the fraction of wheat in a sample composed of rape seed and wheat.
The markers show the experimental values of log(1/R∞) vs. the fraction of wheat in the mixture while the
lines show the shape predicted by the representative layer theory. The top curve is for wheat and rape seed
of the same particle size. In the bottom curve, the wheat particles are twice the size of the particles of rape
seed. (Reproduced from D. J. Dahm and K. D. Dahm, Near-Infrared Technology in the Agriculture and Food
Industries, 2nd edn. (P. Williams and K. Norris, eds.), St. Paul, MN, pp. 1–17 (2001) by permission of American
Association of Cereal Chemists, Inc. Copyright 2001.)

is significant departure from the K–M equation. However, this is not a method to determine straight-
forwardly the properties of an individual particle from the experimental data. We can not show the
quantitative validity of the theory unless we know the properties of the individual particles (from
other data).

In Figure 3.13, we show the effect of particle size on the spectroscopic data. We have not engaged
in any curve fitting exercise. The data is taken from a region of the NIR spectrum in which absorption
of both rape seed and wheat is low. This will assure that absorption levels will not cause a significant
deviation from linearity of a plot of log(1/R) vs. wheat fraction. The wavelength of 1476 nm was
chosen because it is the location of an absorption maximum for rape seed, even though the absorption
at this wavelength range is low, as indicated by log(1/R) values of less than 0.6.

For the log(1/R) data at 1476 nm measured for two series of mixtures shown in Figure 3.13,
the upper series has wheat and rape seed with the same particle size. Notice that, as expected at low
absorption levels, the experimental points generally follow a straight line. The lower series has wheat
particles that are twice as large as the rape seed. Here the points show a departure from linearity.
The end points of the line were determined by human intervention, while the shape of the line was
determined from the values for the end points weighted in proportion to the contribution of each
component to the total surface area in the sample. (Surface area is inversely proportional to particle
size, so the smaller particles are over-represented compared to their weight fraction.) The two series
have the points at the extreme right of the chart in common. Again the data are reasonably well fit by
calculations using the representative layer theory. However, this time we have not used the Dahm
equation or done any curve fitting.

This data set also illustrates the problems in making reproducible measurements on mixtures of
particles. The largest source of variation is probably the void fraction. The effect of void fraction on
absorption is profound in close-packed mixtures, but the changes tend to occur at all wavelengths
and are thus easily corrected.

Notice how the end point of the series with two particle sizes departs from the trend for the
central points. Samples with only one particle size do not pack as densely as one with two sizes. In a
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mixture with two sizes, the small particles ones fill in the holes between the large ones. The behavior
of such samples may be understood with use of the Dahm equation (Equation (3.84)). As the void
fraction decreases, both a and r increase and the factor (2− a − 2r) decreases and the value of the
Absorbance/Remission function, A(R, T), decreases along with it.

We believe these examples show both the usefulness of the representative layer theory in describ-
ing particulate samples. Further we have illustrated the applicability of the Dahm equation to
situations where continuous theories do not work well. Finally, we have tried to make clear that,
however useful the theory may be in explaining what we observe, we have not created an easy way
to determine particle properties, or to correct simply absorption data so it will be linear with analyte
concentration.

3.7 EXPERIMENTAL CONSIDERATIONS FOR
REFLECTION MEASUREMENTS

Most analyses performed by NIR spectroscopy rely heavily on a chemometric approach. Most of
these rely on some form of linear regression. The recommendations made here are guided by the
assumption that the more linear the metric of reflectance as a function of analyte concentration
presented to the chemometric package, the better the performance. When one is choosing an
experimental arrangement, convenience generally outweighs the quest for optimal linearity. Addi-
tionally, there is no known approach that will produce linear data for the general case. However,
there are some principles that we would like to extend:

1. For small particles (where “small” means that the product of linear absorption coefficient
and diameter is much less than one), plots of f (R∞) vs. c are linear for samples of infinite
thickness. Achieving this linearity requires either that absorption by the matrix is very low
or measurements are made using absolute reflectance.

2. For nonscattering samples placed on a specularly or diffusely reflecting substrate, log(1/R)
is linear for measurements made in transflection, since this is simply a double-pass trans-
mission measurement. For scattering samples measured in transflection, plots of log(1/R)
vs. the concentration of a given component, are more linear for thinner samples than thicker
ones. The most linear response is obtained when measurements are made in regions of
low to moderate absorption.

The optimal experimental arrangement, of course, will depend on the purpose of the measurement,
as well as the characteristics of the sample of interest. The discussions below are intended to help
the analyst make better decisions in selecting an experimental arrangement.

3.7.1 DEPTH OF PENETRATION

If diffuse reflection spectrometry is to be used for quality control purposes, it is essential to know
the actual investigated sample volume, which is equivalent to the radiation penetration depth or the
effective sample size meff . In a publication by Berntsson et al. [73], the effective sample size of
pharmaceutical powders was investigated by the three-flux approximation presented above that they
called the equation of radiative transfer (ERT) method. and an empirical method they called the
variable layer thickness (VLT) method. In this publication, the effective sample size meff is defined
as the mass per area of the sample at which its diffuse reflectance has reached 98% of the diffuse
reflectance of a corresponding optically thick sample.

To obtain meff with the use of the three-flux approximation of ERT, the scattering and absorption
coefficients of the investigated powder are obtained from diffuse reflectance and transmittance meas-
urements on optically thin samples (for a detailed discussion see [41,74]). Then, at each wavelength,
the diffuse reflectance is calculated as a function of the scattering and absorption coefficients for a



DBURNS: “7393_c003” — 2007/7/27 — 17:23 — page 60 — #40

60 Handbook of Near-Infrared Analysis

0.33

90

80

70

60

50

40

30

20

10
500 1000 1500

Wavelength (nm)

2000 2500

0.67

1.0

1.33

1.67

2.0

2.33

2.67

3.0

m
′′ 

(m
g/

cm
2 )

D
ep

th
 (m

m
)

FIGURE 3.14 Effective sample size and penetration depth of microcrystalline cellulose powder according to
the ERT method (solid line) and the VLT method (dashed line). (Reproduced from O. Berntsson, T. Burger, S.
Folestad, L.-G. Danielsson, J. Kuhn, and J. Fricke, Anal. Chem., 71: 617–623 (1999) by permission of American
Chemical Society Copyright 1999.)

gradually increasing sample thickness and compared to the diffuse reflectance of an infinitely thick
sample. The sample thickness for which the above 98% limit is reached corresponds to the effective
sample size meff .

This method is compared to a totally independent procedure, the VLT method, where diffuse
reflection spectra are collected at several controlled powder thicknesses. Assuming that the backing
is either completely transparent or completely opaque, the diffuse reflectance of the powder layers
increases with increasing sample thickness until the reflectance of an optically thick sample (R∞)
is reached. For each measured wavelength, an exponential function is fitted to the experimental
data (plots of log(1/R) vs. sample thickness, where R is the measured reflectance). Using the 98%
limit, the effective sample size meff can be obtained from the exponential fit (see [75] for a detailed
discussion of the VLT method).

Figure 3.14 presents the effective sample size of a microcrystalline cellulose powder (MCC,
particle size range: 65 to 300µm) in the NIR region. Assuming a powder density of 0.30 g cm−3, the
effective mass per area is transformed into an effective penetration depth in millimeters, shown on
the right axis. The wavelength dependence of the effective sample size, which is inversely correlated
to the absorption coefficient, and the good correspondence of the two methods can clearly be seen.
The upper limit for the VLT method was 1400 nm for the MCC sample because the curve fitting
becomes unstable if the effective sample mass per area is below the smallest powder mass per area
used in the measurements. However, both methods are suited to determine the actual probed sample
volume of a diffuse reflection measurement.

Another approach to the determination of penetration depth in terms of “number of particles
interrogated” was investigated by Olinger and Griffiths [50]. An estimate of the effective penetration
depth of the beam in a diffuse reflectance measurement can be made from the measured values of
log(1/R′∞). If the absorptivity of a pure material in the absence of scatter is given by k, and particles
of the material have an average diameter d, then the absorbance per particle is given by a′d, where a′
is the base 10 absorptivity. By dividing the baseline corrected values of log(1/R′∞) by the absorbance
per particle, the effective number of particles through which the radiation reaching the detector has
passed can be estimated. Olinger and Griffiths estimated the typical number of particles through
which the remitted beam passes at 20. More recent work by a number of different research groups
suggests that the number of particles through which the remitted beam passes may be larger than
20, but that the sample depth that is actually interrogated in a diffuse reflection measurement is no
larger than about 20 particles.
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3.7.2 EFFECT OF RELATIVE REFLECTANCE AND

MATRIX REFERENCING

Even when we are dealing with “small” particles for which there is no significant inherent deviation
from linearity of plots of f (R∞), experimental conditions can cause a nonlinear response. Further,
certain approaches that are used by experimenters, borrowed largely from transmission spectroscopy,
designed to improve the linearity, actually create a nonlinear response. Such is the case with “matrix
referencing.” Below we wish to make two major points:

1. Using a relative reflectance measurement will tend cause a departure from linearity when
using the K–M function, but not log(1/R), as a metric for absorption.

2. Matrix referencing will cause a nonlinearity for both metrics (if the matrix has absorption).

An important point in practical NIR measurements is that a relative reflectance, R′∞, rather than
an absolute diffuse reflectance, R∞, is usually measured. The relative reflectance is equal to the
ratio IS/IR, where IS is the intensity of radiation reflected from the sample and IR is the intensity
of radiation reflected from a reference material. (In the case of NIR reflectance spectrometry this
material is usually a ceramic disk while a powdered alkali halide is usually employed for mid-infrared
measurements.) Strictly speaking, the K–M equation as well as the other presented models require
that an absolute reflectance, defined as the ratio IS/I0, be measured, where IS is defined as above
and I0 is the intensity of the incident radiation. Absolute intensities can, in theory, be measured
by using an infinitely thick sample of a scattering, but nonabsorbing, material as the reference.
(The ideal material would have the same scattering properties as the sample.) The measurement of
absolute reflectance can be made directly through the use of an integrating sphere, although some
care is required. An absolute reflectance can also be derived from the relative reflectance although
the derivation requires several experimental measurements [2].

The determination of absolute reflectance is more important when using the K–M function as
the metric for absorption than for log(1/R) data. If we define (IS/IR) as the relative reflectance
R′, then log(1/R′) = log(IR/IS) = log(IR) − log(IS). The reference value log(Iref ) is a constant
offset at a particular wavelength. Furthermore, if the reference is the matrix in which the analyte is
embedded, the measurement becomes a direct measure of the absorption of the analyte. However, the
K–M function using relative reflectance is not linearly related to the K–M function using absolute
reflectance, as shown in the examples in Section 3.6. Matrix referencing with the K–M function
would require measuring the function for the matrix and the sample, each on an absolute scale and
subtracting.

Kortüm [2,76] showed experimentally that the use of relative reflectance causes deviations from
K–M theory if the analyte is surrounded by an absorbing matrix. This effect was shown by measuring
the visible reflectance of Cr2O3 in an absorbing matrix relative both to the pure diluent and to a
highly reflective standard (MgO). When the diluent was used as the reference, a plot of f (R′∞) vs.
concentration of Cr2O3 was nonlinear. When MgO was used as the reference, a similar plot yielded
a straight line with a positive intercept. Kortüm states that a straight line with a zero intercept can
be obtained when f (R∞,A) is plotted vs. c:

f (R∞,A) = KA

S
= f (R′∞,A+M × ρR′∞,M)− f (ρR′∞,M) (3.95)

where R∞,A is the absolute reflectance of the analyte (A), R′∞,A+M is the reflectance of the analyte+
matrix relative to the reflectance of the matrix (M), ρ is the absolute reflectance of a nonabsorbing
standard, and R′∞,M is the reflectance of the matrix relative to the reflectance of the nonabsorbing
standard. For most NIR reflectance analyses of cereal products, it is impossible to measure either the
value R′∞,M or R′∞,A+M due to the complexity of the sample. Therefore this type of correction for the
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absorption of the matrix should only be viable for samples that are relatively simple, for example,
binary and ternary mixtures. Even for simple samples, use of Equation (3.95) may not be productive
since treatment of this type usually does not linearize plots of f (R′∞) vs. c for powdered mixtures
measured by mid-infrared diffuse reflectance spectrometry [49], because in that case the absorption is
usually very strong, and the function is inherently nonlinear even when absolute intensities are used.

It is generally accepted that the K–M equation (like Beer’s law, but to an even greater extent)
is a limiting equation and should only apply for weakly absorbing bands, that is, when the product
of absorptivity and concentration is low. For organic materials, absorptions in the NIR are due to
vibrational overtones and combination bands. The absorptivities of these bands are much weaker
than the absorptivities of the corresponding fundamental vibrations. Thus most organic analytes can
be considered to be weakly absorbing in the NIR even without dilution. As noted above, however, for
most NIR analyses, the analyte (such as protein or lipid molecules in a cereal) is usually not isolated
from other components, but is surrounded by a matrix which is not only complex but which also
often absorbs the incident radiation at least as strongly as the analyte at the analytical wavelengths.
In a cereal product analysis the matrix would largely consist of carbohydrate molecules. It would
therefore be expected that unless a proper referencing method is used, absorption by the matrix
surrounding the analyte will cause deviations from the K–M equation. Even if the intensities are
properly measured, using matrix referencing (for the case of an absorbing matrix) can cause a
deviation from linearity.

3.8 CONCLUSIONS

In summary, therefore, although detailed investigations of the theory of diffuse reflection spectrom-
etry by many workers have been carried out during the last century, they have not resulted in a single
metric that is proportional to analyte concentration (in the same manner as absorbance in transmission
spectroscopy). Fortunately, simple conversion of reflectance values to log(1/R′∞) appears to be
effective for many powdered samples being analyzed by NIR diffuse reflection spectrometry.

Because of the limitations inherent in representing a real sample as a continuum, the more
sophisticated radiative transfer models, such as the discrete ordinate approximation or the diffusion
approximation, hold little hope for obtaining for a better understanding of the effects occurring in
diffuse reflection spectrometry for the general case.

Beginning with the properties of the individual particles in a mixture, the representative layer
theory gives a way of calculating the properties of a layer of particles. The merging of the continuous
and discontinuous approaches, as embodied in the Dahm equation, gives a way to calculate the
spectroscopic properties of a sample from that of such a layer.

The inverse problem, calculating the properties of individual particles from that of a sample
remains unsolved for the general case.
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