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Foreword

Memories are a gift of the past,
That we hold in the present,
To create what can be a great future.
Treasure and keep memories,
For the sake of Life.

Mattie J. T. Stepanek, from “About Memories” (Hyperion/VSP, 2002)

This book is a result of an unplanned project which has been ruled by fate. Neither
Brian Wybourne nor I were even thinking about writing a book. Being deeply involved
in day-after-day fascinating research, we simply did not have time. There was no
time to slow down, collect thoughts and results of our investigations, and to prepare
the manuscript, since too many revolutionary and novel materials, properties and
applications were continuously brought to the light, not only in the spectroscopy of
lanthanides, the field of our research. For 13 years of our friendship and collaboration
in the Physics Department, Nicolaus Copernicus University in Toruń, Poland, we were
suggesting to each other to write a book, just teasing and treating this idea only as a
joke, since we both realized the size of such a task and the nature of its responsibility.
Brian knew this as an experienced author, who published his first book when I was
still in high school, and I, without any experience, having been only the editor of
special issues of scientific journals, was simply overwhelmed by such a project and
even afraid to think about it.

2003 was very difficult year for me. I was a fresh cancer survivor who was trying
to recover after my health crisis to gain the strength to go through a long and painful
procedure of a promotion in my native institute. Unfortunately the procedure was
based on the old-fashioned judgment of a “woman in physics” rather than on the
evaluation of the scientific achievements of a physicist, and eventually I was denied
promotion. Brian suffered with me, trying to give me all possible support. Being
saved several times from health breakdowns, and being blessed in my life to be a
scientist not for recognition but for the sake of fascination of my research, I have
survived the final decision of my colleagues simply by focusing on my work. But
I was crushed at the beginning of 2003, when my mother passed away after almost
two years of struggles. My world shrank to the size of a dot. As the best therapy
for my sorrow I started to teach at Vanderbilt University in Nashville (I have held
an appointment in the Department of Chemistry since 1994) where a group of very
talented, hard working and nice students from the Graduate School of the Physics
Department helped me to go through the toughest time.

From Nashville I was keeping vivid contact with Brian Wybourne, and thanks to
e-mail we were able to discuss science, exchange results and opinions, share the joy
of teaching and also talk about our students. However I must admit that very often I
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was missing just chatting with Brian, the atmosphere of which cannot be reproduced
by any electronic medium.

The first week of November 2003 I spent in Toruń to follow the Polish tradition of
celebrating All Saints Day and the Day of the Dead. Because of this special holiday
there was not enough time to go through all the interesting subjects and issues with
Brian that we had kept for some months to talk about directly. After my return
to Nashville I received an e-mail message from Brian, which was his reply to my
question about the elegance of his lecture notes we discussed while in Toruń. Brian’s
letter was a reaction to the joke I made, that in spite of the promises he had given to
himself, it looks as though he was getting ready to write a monograph.

Dear Lidia,
Pleased to know you managed to download the notes - I thought you might have

trouble with postscript. I have no plans to publish - I attached the copyright symbol
to avoid [some colleagues]! I prepared the notes for my class but Andrjez (?) was the
only survivor. He has been good at going through them and finding corrections hence
I also gave him a complete copy. To complete the notes we need radial integrals etc
to give some examples - not my forte! As a result the notes are left hanging. I don’t
think I have the energy to bring the notes to a publishable form. For that I would need
a young dynamic collaborator who could knock them into shape. I understand that
there is a person called Smentek who would fit the role and would, of course, become
the first author. Maybe KBN could support such a project?

Regards Brian

I have to explain that the student mentioned in this letter (his name is misspelt
above, which is not difficult to do for a foreigner) is my graduate student. This is
Andrzej Kȩdziorski, whom I left going to Nashville under the wings, guidance and
care of one of the founders of the field of spectroscopy of rare earths, the outstanding
and widely known Professor Brian Wybourne.

The tone of Brian’s letter made me nervous especially when realizing that possibly
we were approaching a dangerous point of talking seriously about writing a mono-
graph. Being called to the blackboard by the Master, when the first astonishment went
away, I was trying to imagine what it would have meant if we had indeed decided to
write a book. We had co-authored several papers, we had spent hours on discussions,
explaining to each other various issues and also arguing with each other. I knew that
due to Brian’s extensive knowledge and calm personality, writing a monograph with
him would be not only a creative activity, but also it would provide pleasure and sat-
isfaction. At the same time however I remembered so well Brian’s negative attitude
to writing a long manuscript and all the worries about problems he was aware of as a
former author of several books. In order not to despair I was repeating to myself that
it must be a joke....

It was not a joke. When I received the next e-mail message, I sensed that the idea
had become a serious matter, but still the plan had all the aspects of a project for the
future. At that moment in fact I was planning to go back to Toruń for an extended
period of time, if my health would permit, and this move would make it easier to work
together, if the decision was really made. Brian wrote:
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Subj: Re: It is not easy....
Date: 11/12/03 9:21:04 AM Central Standard Time
From: bgw at phys.uni.torun.pl
To: mailto:Smentek1 at aol.com
Sent from the Internet (Details)
Dear Lidia,
I was pleased with Andrzej today. This morning he brought along two Masters

students, one from Koepke and one from Wojtowicz, to my “lecture” on Spectro..... As
Andrzej has up to today been the only student and I have simply taken the opportunity
to talk with Andrzej I was totally unprepared. But it went well. I first got them to tell
me what their thesis topics were, with Andrzej occasionally helping with English. One
is working on Ce3+ and the other on energy transfer between Cr3+ and Nd3+ so we
discussed the ground states of the ions - they didn’t know the site symmetries so next
week they are supposed to tell me. Anyhow it looks like next week I will discuss 3d N

and 4 f N and weak and strong crystal fields.
I didn’t go to Jacek’s group meeting though I did discuss some things with Jacek.

I think his main thrust will be expecting everyone to compete for KBN grants etc with
those who are producing being most favoured.

I said goodbye to Jacek as he was going to Warsaw after that to join Marta and
fly to Katmandu.(...)

Unfortunately I did not have time to discuss a number of topics with Jacek. He
had mentioned that KBN had a special fund for anyone writing a book. You mentioned
Rudzikas’s conference. I looked it up on the web. Unfortunately it was too late for
me to discuss with Jacek. Possibly my KBN grant could cover your trip. However I
need someone to check the status of my KBN grant. Clearly the grant must be totally
expended by October next year.

I have no deadline for a completed manuscript. I had not thought of publishing
until you raised the question. Maybe Springer Lecture Notes Series or locally like
Physics as a Journey. I would expect to share authorship with my usual preference
for alphabetical order. It would need a careful going through with you doing radial
integrals etc etc. No rush. I’ll see how I get on with the new students.

−4C this morning. Two Christmas cakes finished and I can smell the bread cook-
ing! Too cloudy on Saturday to see the Lunar eclipse. I don’t know how Copernicus
became interested in such things. Likewise I have not seen Aurora Borealis which I
understand was even seen in Florida!

Regards Brian

This was the last letter I received from Brian, ever; he was struck down by a
stroke, and after ten days he passed away on November 26, 2003. These letters are
like Brian’s last will and testament left as instructions for what to do in the case of the
worst. Therefore I did not have any choice but to start to think about the work which
was dropped on my shoulders by fate. I wanted to be able to say what A. Einstein has
said: “Now he has departed from this strange world a little ahead of me. That means
nothing. People like us, who believe in physics, know that the distinction between
past, present, and future is only a stubbornly persistent illusion”; but I could not.
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Brian left me alone with the task of adopting his lecture notes to the form of a
monograph, of deriving new expressions and calculating radial integrals to continue
our research and extend the knowledge about the f-electron systems, of deriving
conclusions and presenting the future prospects of our field. I am left alone with
the responsibility for a BOOK, we agreed to work on together...It is difficult, but
“Obstacles cannot crush me. Every obstacle yields to stern resolve. He who is fixed
to a star does not change his mind” (Leonardo da Vinci).

Here I am presenting a completed project, our book, hoping that Brian would be
proud of it.

Since 2003 Andrzej has developed his skills and has performed interesting investi-
gations that hopefully will be collected soon as his PhD thesis. Unfortunately, there is
no Professor Wybourne around to advise, criticize, help with English and, most of all,
judge the scientific merit of his work. Instead, in order to have a closure of Andrzej’s
lucky chapter of the beginning of his career, when he was given a chance to learn
from a famous Professor about the beauty and the secrets of Nature, I am presenting
here some results of his work. The numerical results and graphical illustration of the
developed formalism that are presented in chapter 21 is a report we both, Andrzej
and I, owe to Brian.

In the letters presented here Brian mentioned the possibility of getting financial
support from the Science Foundation of Poland (KBN) for the project of writing a
monograph; I did not apply for this aid. Instead I was awarded a one year stipend
from the Nicolaus Copernicus University in Toruń which I would like to acknowledge.
The financial aspect was not so important as the acceptance of my project that was
granted by the authorities of the University together with the stipend; I do appreciate
this moral support.

During the 13 years Brian lived in Toruń we shared professional and personal
experiences. Those gained by him in his native New Zealand and exotic Poland; and
my own, which I gained in my native Poland where I live with the imagination about
exotic New Zealand. And today, on Brian’s birthday, when I am facing a challenge
of presenting the results of my work to a wide audience, I can hear his voice quoting
Victoria Holt:

“Never regret. If it’s good, it’s wonderful. If it’s bad, it’s experience”.
If so, having a positive attitude to the result of my mission, that is created by these
words, I may follow the advice of Leonardo da Vinci:

“Every now and then go away, have a little relaxation, for when you come back
to your work your judgment will be surer since to remain constantly at work will
cause you to lose power of judgment. Go some distance away because then the work
appears smaller, and more of it can be taken in at a glance, and a lack of harmony or
portion is more readily seen”.

Lidia Smentek
March 5th, 2006
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Preface

The monograph is devoted to the theoretical description of the spectroscopic prop-
erties of the rare earth ions doped in various materials. These systems revolutionize
modern science and technology at all possible scales, nano, micro and macro. The
tensor operators and the concepts of the Racah algebra are the language of the pre-
sentation. The level of complexity in the course of this monograph begins with the
basic knowledge of the theory of nuclei and theory of angular momentum, develops
through the standard description of the fine and magnetic hyperfine interactions, and
their impact upon the energy structure of the lanthanide ions, to culminate in the
advanced description of f ←→ f electric and magnetic dipole transitions, including
sensitized luminescence and its application in the detection and treatment of cancer
in various tissues.

The standard description is understood as a model in which the interactions via a
certain physical mechanism are limited to those within the 4 f shell. The extension of
the approach, which is analyzed through the book in the case of various physical inter-
actions, includes the inter-shell interactions. The inclusion of the perturbing impact of
the excited configurations breaks the limitations of the single configuration approxi-
mation. It leads very often not only to a better accuracy of the theoretical model, but
also introduces new selection rules, which shed new light upon the understanding of
the observed phenomena.

Thanks to the screening of the electrons of the optically active 4 f shell by the
closed shells of the 5s and 5p symmetry, the theory of the spectroscopic properties of
the lanthanides in crystals is based on perturbation theory. In practical applications,
the zeroth order problem describes the free ion within the single configuration ap-
proximation. The influence of important physical mechanisms upon the energy or the
transition probability is included in a perturbative way taking into account corrections
to the wave functions caused by various perturbations. The list of the perturbing oper-
ators included in the theoretical approaches presented in the monograph contains the
crystal field potential, electron correlation effects, spin-orbit interaction and magnetic
and electric multipole hyperfine interactions. In order to extend this list of various
interactions, which are in most cases limited to interactions within the orbital space,
an effectively relativistic model of various transitions is also presented.

Almost half of the book evolved from lectures prepared by Brian G. Wybourne
for the graduate students of the Institute of Physics, Nicolaus Copernicus University
in Toruń, Poland in 2002/2003. Wherever possible, the lecture format of presentation
is kept (although the monograph is not prepared as a textbook). Therefore useful
MAPLE routines are provided, several derivations of new expressions are presented
and supported by numerical results, and some of the chapters are concluded by ad-
ditional problems left for the reader to exercise. The advanced level of the course
addressed to graduate students is elevated by the discussion of the results presented
in the second part of the book; these results were not published previously. Among
these new issues of the optical spectroscopy of lanthanides in various materials are
the hyperfine induced f ←→ f electric dipole transitions. In their description the
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forcing role of the crystal field potential of the standard Judd-Ofelt theory is played
by the electric dipole hyperfine interactions. This new source of contributions to the
transition amplitude provides a potential explanation of the hypersensitivity of some
electric dipole transitions to the environment. This is the property that causes seri-
ous problems with the theoretical reproduction of the intensities, when based on the
standard parametrization of f − spectra. As a consequence of this discussion, and
also as a result of the analysis of the relativistic approach to the f ←→ f transi-
tions, a new parametrization scheme is introduced. Namely, in order to include all
possibly important physical interactions within the spin-orbital space when using the
fitting procedure, the unit tensor operators of the Judd-Ofelt theory are replaced by
the double tensor operators.

The chapter devoted to the radial integrals is unique in the sense that its contents
may not be found in the literature of the field. This chapter is mainly addressed to all
those who are interested in the direct calculations of the amplitude of the f ←→ f
transitions. For this purpose the values of all radial integrals of the theory of f −spectra
are presented for all lanthanide ions. They are evaluated within the perturbed function
approach, due to which a complete radial basis sets of one electron functions of given
symmetry are taken into account. The tables include the radial integrals of the Judd-
Ofelt effective operators, their values modified by the electron correlation effects
taken into account at the third order, as well as those associated with the effective
operators originating from intra-shell and inter-shell interactions via the spin-orbit
and hyperfine interactions.

As an illustration of the formalism developed throughout the monograph to de-
scribe the subtleties of the electronic structure of lanthanide ions, its very attractive
and promising application is presented in the last chapter. The particular case of sensi-
tized luminescence of the organic chelates with the lanthanide ion placed in the center
of the cage that are the tissue selective markers of the cancerous cells are described.
The architecture of the cage, its symmetry, and in turn, their impact upon the effi-
ciency of the energy transfer and consequently the luminescence, require theoretical
techniques developed and presented in the monograph. To construct adequate and re-
liable theoretical models, and through them to gain the understanding of the physical
reality of these materials, is a challenging task. This research is also important in the
light of existing strong demand for non-invasive diagnostic aids for early detection
of cancer and for powerful tools to cure the attacked tissue.

I hope that the reader finds the presentation clear and the discussion interesting and
useful for further research devoted to the lanthanides and their amazing properties.

Lidia Smentek
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1 Basic Facts of Nuclei

. . . when he imagined his education was completed, it had in fact not com-
menced; and that, although he had been at a public school and a university, he
in fact knew nothing. To be conscious that you are ignorant is a great step to
knowledge.

Benjamin Disraeli, Sybil or The Two Nations (1844)

The concept of quantum degeneracy and its controlled lifting by magnetic and
electric fields is perhaps the most technologically important and practical development
of the past century. It has lead to the development of lasers, NMR imaging, modern
telecommunications, the realization of Bose-Einstein condensation, and the potential
realization of quantum computing. These applications have required a detailed un-
derstanding of the quantum theory of angular momentum in all its manifestations,
starting with the angular momentum of nuclear states, the angular momentum of
electronic states and of the coupling of angular momentum of nuclear with electronic
states.

1.1 NUCLEONS

The basic building blocks of nuclei (here we ignore the quark substructure of the
nucleons) are neutrons and protons. Both are spin 1

2 particles with positive intrinsic

parity, i.e. Jp = 1
2

+
. Following Heisenberg1, the proton and neutron can be regarded

as different charge states of the nucleon. The respective masses are (we will generally
put c = 1)

m p = 938.3MeV mn = 939.6MeV (1-1)

In free space the neutron is unstable with a half-life of t1/2 = 614.6s whereas the
proton appears to be stable with t1/2 > 1033 y. Within the nucleus, as a consequence
of the Pauli exclusion principle, the proton and the neutron are stable.

Remarkably, the proton and the neutron both possess magnetic moments.

µp = 2.7928 µn = −1.9128 (1-2)

where the units are the Bohr nuclear magneton defined as

µBN = e h

2m p
(1-3)

An isotope of an element X having Z protons (Z is the atomic number) and N
neutrons will be designated as

A
Z X

1
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2 Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions

where

A = N + Z (1-4)

with A being the nucleon number.
The force between nucleons is, to a good approximation, charge independent

and of a short range. Its origin is to be found in the quark model which we shall not
explore here. The basic nuclear model we shall consider is the nuclear shell model. To
a first approximation we can consider the nucleons as executing harmonic oscillations
about the nuclear centre of mass and hence as nucleons in an isotropic 3-dimensional
harmonic oscillator.

1.2 THE ISOTROPIC HARMONIC OSCILLATOR

Recall that the energy eigenvalues of a 3-dimensional isotropic harmonic oscillator
potential containing a single particle are given by

En = (n + 3
2 )h̄ω n = 0, 1, 2, . . . (1-5)

corresponding to an infinite series of equally spaced levels. The n−th level has an
orbital degeneracy of

(n + 1)(n + 2)

2
(1-6)

These are precisely the dimensions of the symmetric irreducible representations{n}
of the special unitary group SU (3). The n−th level is associated with orbitals having
the angular momentum quantum number � such that

� = n, n − 2, . . . ,

(
1
0

)
(1-7)

Given that the nucleons have even intrinsic parity the states associated with the n−th
level are all of the same parity which is even or odd as n is even or odd. The nucleons
have spin 1

2 and hence each orbital � has a spin-orbital degeneracy of 4� + 2. It is
common in nuclear physics to prefix the orbital quantum number with the number of
nodes in the single particle wavefunction. Thus the orbitals associated with n−level
are in the sequence

1s; 1p; 2s, 1d; 2p, 1 f ; 3s, 2d, 1g; . . . (1-8)

Since nucleons have spin 1
2 , they are fermions and hence must be associated with

wavefunctions that are totally antisymmetric. This means that in building up many-
nucleon states the Pauli exclusion principle must be followed. Many-nucleon states
may be constructed by filling the spin-orbitals with neutrons and protons up to their
maximum allowed occupancy. The building-up principle is very similar to that for
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Basic Facts of Nuclei 3

periodic table for atoms except one fills neutron and proton orbitals separately to
construct nuclei with given A, N , Z numbers.

1.3 MAGIC NUCLEI NUMBERS

Nuclei in which the proton and neutron numbers Z,N belong to the magic numbers

Nuclei Magic Numbers 2, 8, 20, 28, 50, 82, 126 (1-9)

tend to be exceptionally stable and evidently associated with the closure of shells. The
magic numbers 2, 8, 20 correspond to the closure of the shells corresponding to the
first, second and third levels of an isotropic 3-dimensional harmonic oscillator. But
closure of the fourth level would give the fourth magic number as 40 rather than 28.
This constituted a puzzle until Goeppert Mayer introduced the spin-orbit interaction
into the nuclear shell model. In her case the spin-orbit interaction has the opposite
sign to the conventional spin-orbit interaction of electrons. This means, for example,
that in the 1p shell the 1p3/2 level is below the 1p1/2 level whereas in atoms one
has the opposite ordering. The effect of introducing the spin-orbit interaction is also
to partially lift the single particle energy degeneracies so that, apart from the case
of s−states each orbital � becomes characterized by a total single particle angular
momentum

j± = � ± s (1-10)

Henceforth, let us use n as the nodal quantum number rather than as the harmonic
oscillator level number so that a given spin-orbital is designated by the single particle
quantum numbers n� jm. For a single nucleon moving in a nucleus we write the
spin-orbit interaction as

Vs.o = ζ (r )n�(s · �) (1-11)

where ζ (r )n� is the spin-orbit coupling constant which is a radial function dependent
on the nature of the nuclear field and upon the quantum numbers n�. For a single
nucleon

(s · �) = 1
2

[
j( j + 1) − �(� + 1) − 3

4

]
(1-12)

The energy separation between the two components of a spin-orbit split doublet
characterized by the quantum numbers n� becomes


En� = (
� + 1

2

)
ζ (r )n� (1-13)

Thus the level with j+ is lower than the level with j−. Furthermore, it is a practical
observation that states with higher values of � have larger doublet splittings.

Even with the introduction of the spin-orbit interaction the single nucleon degen-
eracy is only partially lifted. The degeneracy associated with the isotropic harmonic
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oscillators is partially lifted so that states of a given harmonic oscillator level are no
longer degenerate with respect to � while each set of states associated with a par-
ticular orbital angular momentum � is split as a doublet of degenerate states labeled
by the quantum numbers n� jm. The degeneracy with respect to the total angular
momentum projection quantum number m remains, and hence each level with total
angular momentum j is (2 j + 1)−fold degenerate. The spin-orbit splitting leads to
subshells with a given j−level accommodating up to 2 j + 1 protons or neutrons.

1.4 NUCLEAR PAIRING INTERACTIONS

It is remarkable that nuclei having even numbers of protons and neutrons, so called
even-even nuclei, are always found to have zero nuclear angular momentum, i.e.
I = 0. In nuclear physics the total angular momentum J = L + S is nevertheless
usually referred to as the nuclear spin and designated by the letter I . So called odd-
even and even-odd nuclei always have half-integer nuclear spin while odd-odd nuclei
always have integer nuclear spin. It would appear that even numbers of neutrons or
protons pair to produce a lowest energy state, which has nuclear spin I = 0. Indeed,
Racah, showed that a strong short range nuclear force, such as a delta type force,
leads to such a pairing. It is this feature that is the key to predicting the nuclear spin
of the ground states of nuclei. If there is an even number of protons or neutrons in
a given orbital then those orbitals make no contribution to the nuclear spin of the
ground state. Furthermore, there is no nuclear spin contribution from closed shells.

1.4.1 SENIORITY AND PAIRING INTERACTIONS

Racah introduced the concept of seniority in both atomic and nuclear physics (and
indeed also in superconductivity where pairing is also important). He showed that
for a strong pairing interaction such as occur in nuclei states of lowest seniority
number v lie lowest. Thus in a configuration of identical nucleons, j N , the integer,
[ N−v

2 ], corresponds to the number of pairs of particles that are coupled to zero angular
momentum where

v =
{

0, 2, . . . , N N even

1, 3, . . . , N N odd
(1-14)

This has the consequence that in a configuration j N if N is even then the lowest state
will have zero angular momentum, whereas if N is odd the angular momentum of the
lowest state will be J = j .

In the case of atoms however, where there is Coulomb repulsion between pairs of
electrons, states of maximal seniority lie lowest and hence in some respects nuclear
states are simpler than electronic states!

The angular momentum states J and seniority numbers for the identical particle
configurations j N are given for j = 1

2 , 3
2 , . . . , 7

2 in Table 1-1. For j = 5
2 , 7

2 we list
just the states up to N = j + 1

2 .
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TABLE 1-1
Angular Momentum J and Seniority Numbers
for Some j N Configurations

j N J v N−v
2

( 1
2 )0 0 0 0

( 1
2 )1 1

2 1 0
( 1

2 )2 0 0 1

( 3
2 )0 0 0 0

( 3
2 )1 3

2 1 0
( 3

2 )2 0 0 1
2 2 0

( 3
2 )3 3

2 1 1
( 3

2 )4 0 0 2

( 5
2 )0 0 0 0

( 5
2 )1 5

2 1 0
( 5

2 )2 0 0 1
2, 4 2 0

( 5
2 )3 5

2 1 1
3
2 , 9

2 3 0

( 7
2 )0 0 0 0

( 7
2 )1 7

2 1 0
( 7

2 )2 0 0 1
2, 4, 6 2 0

( 7
2 )3 7

2 1 1
3
2 , 5

2 , 9
2 , 11

2 , 15
2 3 0

( 7
2 )4 0 0 2

2, 4, 6 2 1
2, 4, 5, 8 4 0

1.5 NUCLEAR SPIN OF NUCLEI GROUND STATES

In atomic physics interest is almost entirely restricted to atomic effects involving nu-
clei in their ground states. A given isotope is characterized by the number of neutrons,
N , and number of protons, Z . Starting with Table 1-1 giving the ordering of the n�j
quantum numbers for a single nucleon in an isotropic three-dimensional harmonic
oscillator potential together with the spin-orbit interaction, we can determine the
nuclear spin of the ground states of most nuclei. Let us now consider some examples.
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1.5.1 NUCLEAR SPIN OF H AND He ISOTOPES

Hydrogen has three well-known isotopes, hydrogen, 1
1 H , deuterium, 2

1 H , and tritium,
3
1 H . Hydrogen involves a single proton that may be assigned to the (1s1/2 )1

p config-
uration and hence 1

1 H has a nuclear spin I = 1
2 . Deuterium has a single proton and

neutron, and hence the nuclear ground state configuration is (1s1/2 )1
p(1s1/2 )1

n . The nu-
clear spin results from the coupling of two 1

2 spins to produce I = 0, 1. Experiment
shows that the ground state has I = 1. Finally, tritium has a single proton and two
neutrons, and therefore the nuclear configuration (1s1/2 )1

p(1s1/2 )2
n . The two neutrons

close the 1s1/2 shell and hence make no contribution to the nuclear spin, and thus the
nuclear spin of the tritium nucleus is I = 1

2 , the same as for hydrogen. Note that in
each case the ground state has even parity.

The two principal isotopes of helium are 4
2 He and 3

2 He. For the more abundant
isotope, 4

2 He, we have the nuclear configuration (1s1/2 )2
p(1s1/2 )2

n , and both shells are
closed. Hence the nuclear spin is I = 0, whereas for 3

2 He we have the nuclear
configuration (1s1/2 )2

p(1s1/2 )1
n and a nuclear spin of I = 1

2 .

1.5.2 SILICON ISOTOPES

Silicon has three stable isotopes, 28
14Si (92.23%), 29

14Si (4.67%), 30
14Si (3.10%). Two

of the isotopes are even-even nuclei, and both have nuclear spin and parity I = 0+.
All three isotopes have Z = 14, and therefore the 14 protons occur in the proton
configuration (1s2

1/2
1p4

3/2
1p2

1/2
1d6

5/2
). In practice we normally omit all closed shells

except for the highest and thus write the configuration as simply (1d6
5/2

)p. Since the
proton number is even, it follows that the protons make no contribution to the nuclear
spin. Fourteen of the neutrons go into the same type of configuration as the protons
with the fifteenth neutron occupying the (2s1/2 )n orbital. Thus the nuclear spin of 29

14Si

is I = 1
2

+
.

The above observations are of significance in considering the possibility of us-
ing silicon in quantum computing. Only the 29

14Si nuclei will respond to an external
magnetic field. Isotopically pure 28

14Si with nuclear spin I p = 0+ gives no response
to magnetic fields. Phosphorus has one stable isotope 31

15 P with one unpaired proton
in the 2s1/2 shell, and hence nuclear spin I p = 1

2
+

. Noting these facts, Kane2 has
proposed building a quantum computer using 28

14Si doped with31
15 P .

1.5.3 RUBIDIUM ISOTOPES

Rubidium has two stable isotopes, 85
37 Rb (72.16%), 87

37 Rb (27.83%) (actually the
isotope 87

37 Rb is slightly unstable with a half-life of t1/2 = 4.75 × 1010 y). The two
nuclei are odd-even with the neutrons making no contribution to the nuclear spin.
The first 28 protons go into filling closed shells leaving a further nine protons to
be distributed among the 2p3/2 and 1 f5/2 orbitals. Eight of the protons will pair to
produce no contribution to the nuclear spin leaving one unpaired proton. Experi-
mentally it is found that for 85

37 Rb the nuclear spin is I p = 5
2

−
while for 87

37 Rb
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I p = 3
2

−
. These results show some of the limitations of the simple nuclear shell

model, but as always, final appeal must be made to experiment. For an excellent
data base on properties of isotopes go to http://ie.lbl.gov/education/isotopes.htm or to
http://www.webelements.com/webelements/elements/text/periodic-table/isot.html;
the latter gives the Periodic Table and nuclear magnetic moments.

The rubidium isotopes play a key role in studies of Bose-Einstein Condensation
(BEC). Rubidium atoms behave as bosons, since their nuclear spins are half-integer.
However, the number of their electrons is odd, and therefore the net electron angular
momentum J is necessarily half-integer. The total angular momentum of the atom F
comprises the vector addition of the nuclear spin I and electronic angular momentum
J such that

F = J + I (1-15)

F is thus necessarily an integer and the rubidium atoms behave as bosons.

REFERENCES
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2 Notes on the Quantum
Theory of Angular
Momentum

Pure mathematics is on the whole distinctly more useful than applied. For what
is useful above all is technique, and mathematical technique is taught mainly
through pure mathematics

G H Hardy

In the language, and within the understanding, of the quantum mechanics the sym-
metry of a many particle system is determined by the transformation properties of the
Hamiltonian. Among the collection of all transformations those that commute with
the Hamiltonian are symmetry operations. The commutation relations mean that the
Hamiltonian remains invariant under the action of the symmetry operations. Keeping
in mind our future applications of the tools of quantum mechanics for evaluation of
various matrix elements, in the case of free atoms and ions, the most important are
the symmetry operations of the rotation group in three dimensions, SO(3). The an-
gular momentum operators are the generators of all the rotations in three dimensional
space. As a consequence, the Hamiltonian of spherically symmetric systems have
to commute with the generators of the symmetry operators. In this particular case
it means that Hamiltonian has to commute with the angular momentum operators.
Consequently, the basic property of the hermitan operators states that if two operators
commute, they have a common set of the eigenfunctions (but not the same eigenfunc-
tions!) and simultaneously measured eigenvalues. As a result the energy states carry
also information about the eigenvalues of angular momentum operators (only of these
that commute with the Hamiltonian). These transformation properties, distinguished
by the eigenvalues of appropriate angular momentum operators, are the formal source
of the quantum numbers that identify the energy states of a many electron system.
At the same time, the spherical harmonics form the basis sets for the irreducible
representations of the three dimensional rotation group. In the case of the systems of
symmetry lower than spherical, as in the case of crystals, the transformation proper-
ties are defined by the point groups, and the identification of the energy states is also
based on the commutation relations of the Hamiltonian and the symmetry operators.
In such cases, instead of quantum numbers, the irreducible representations of a given
group directly identify the energy levels.

We review some basic aspects of the quantum theory of angular momentum,
which is needed in the further discussion. In making practical calculations we must
ultimately be able to evaluate the matrix elements of interactions in suitable angular
momenta bases.

9
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2.1 COUPLING AND UNCOUPLING OF ANGULAR MOMENTA

Consider the components, Jx , Jy and Jz of the angular momentum vector J that
satisfy the commutation relations (we shall normally put h̄ = 1),

[Jx , Jy] = i Jz, [Jy, Jz] = i Jx , [Jz, Jx ] = i Jy (2-1)

States that are simultaneous eigenfunctions of J2 and Jz are designated in Dirac’s ket
notation as |J M〉. Thus the standard angular momentum operator relations have the
form

J2|J M〉 = J (J + 1)|J M〉 (2-2a)

Jz|J M〉 = M |J M〉 (2-2b)

J±|J M〉 = [J (J + 1) − M(M ± 1)]
1
2 |J M ± 1〉 (2-2c)

where
J± = Jx ± i Jy (2-3)

are the usual angular momentum ladder operators.
For a given eigenvalue J there are 2J + 1 values of the M quantum number

M = −J, J − 1, . . . , J − 1, J (2-4)

and for the states with the maximum and minimum values of M

J+|J J 〉 = 0 J−|J − J 〉 = 0 (2-5)

It is a common problem in the quantum theory of angular momentum to couple
together two ket states, say | j1m1〉, | j2m2〉 to produce coupled states |( j1 j2) jm〉. Thus
to have

| j1m1〉| j2m2〉 =
∑
j,m

〈 jm|m1m2〉|( j1 j2) jm〉 (2-6)

or inversely to uncouple coupled states, the coupling coefficients or Clebsch-Gordan
coefficients 〈 j1m1 j2m2| j1 j2 jm〉 are introduced. They represent the elements of a
unitary transformation that couples the uncoupled states | j1m1〉| j2m2〉 to produce the
coupled states |( j1 j2) jm〉,

|( j1 j2) jm〉 =
∑

m1,m2

〈 j1m1 j2m2| j1 j2 jm〉| j1m1〉| j2m2〉 (2-7)

Such transformations arise, for example in relating basis states in the |SMS L ML〉
scheme to the coupled basis states |SL J M〉, where M = MS + ML . Thus,

|SL J M〉 =
∑

MS ,ML

〈MS ML |SL J M〉|SMS L ML〉 (2-8)

Note that we shall often abbreviate the Clebsch-Gordan coefficient 〈 j1m1 j2m2

| j1 j2 jm〉 to just 〈m1m2| j1 j2 jm〉.
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As an example we analyze the triply ionized thulium T m3+, which has as its
ground state the spectroscopic term 4 f 12 3 H6. This means that the state is described
by the quantum numbers S = 1, L = 5, and J = 6. The state is (2J + 1) = 13-
fold degenerate, and the degenerate states are distinguished by the quantum number
M . These states could be described by the kets |SL J M〉 in the so-called Russell-
Saunders or L S-coupling, where S is coupled to L to give a total angular momentum
J . Alternatively the states could be described by the kets defined in an uncoupled
momenta scheme, |SMS L ML〉. These two sets of states correspond to two different
bases that are linked by the Clebsch-Gordan coupling coefficients as in (2-8). For
maximal M we expect for the ground state that

|(1, 5)66〉 ≡ eiφ|(1, 1)(5, 5)6〉 (2-9)

where the left-hand ket is in the |(SL)J M〉 scheme, and the right-hand in the
|(SMS)(L ML )〉 scheme, and eiφ is a phase factor, which we choose as unity. In fact,
at this point the choice of the phase factor is arbitrary, since the wave functions, by
themselves, do not have any physical interpretation, and only their squared modulus,
that cancels all signs, does. However, any phase factor convention once chosen has
to be followed throughout the course of the calculations.

The other states in the SL J M scheme that are assigned to the remaining values of
the quantum numbers are expressed as linear combinations of those in the SMS L ML

scheme. As an example we determine some of these linear combinations. First note
that

J± = L± + S± (2-10)

Let us apply the lowering ladder operator to both sides of (2-9), using at the left-hand-
side its form from the left hand-side of (2-10), and consequently, using its form from
the right-hand-side of (2-10) to the right-hand-side of (2-9), namely

J−|(1, 5)66〉 =
√

6(6 + 1) − 6(6 − 1)|(1, 5)65〉 =
√

12|(1, 5)65〉 (2-11a)

L− + S−|(1, 1)(5, 5)6〉 =
√

5(5 + 1) − 5(5 − 1)|(1, 1)(5, 4)5〉
+

√
1(1 + 1) − 1(1 − 1)|(1, 0)(5, 5)5〉

=
√

10|(1, 1)(5, 4)5〉 +
√

2|(1, 0)(5, 5)5〉 (2-11b)

Equating (2-11a) and (2-11b) gives

|(1, 5)65〉 = 1√
6

[√
5|(1, 1)(5, 4)5〉 + |(1, 0)(5, 5)5〉

]
(2-12)

Using the ladder operators in the way presented in the example above it is possible
to find the coefficients of all the other linear combinations that define the states of
the 4 f 12 configuration of thulium ion. In order to make this procedure more straight-
forward, the subsequent application of (2-2c) to lower the values of the quantum
numbers to desired values (in some cases the operators have to be applied several
times), the Clebsh-Gordan coefficients are introduced. The concept of these coeffi-
cients as transformation matrices between coupled and uncoupled angular momenta



P1: Binod

February 15, 2007 5:22 7264 7264˙Book

12 Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions

schemes is presented in (2-6) and (2-7); their algebraic form is as follows

〈m1m2| j1 j2 jm〉 =

δm1+m2,m

√
(2 j + 1)( j1 + j2 − j)! ( j1 − m1)! ( j2 − m2)! ( j + m)! ( j − m)!

( j1 + j2 + j + 1)! ( j + j1 − j2)! ( j − j1 + j2)! ( j1 + m1)! ( j2 + m2)!

×
∑

z

(−1) j1−m1−z ( j1 + m1 + z)! ( j + j2 − m1 − z)!

z! ( j − m − z)! ( j1 − m1 − z)! ( j2 − j + m1 + z)!
(2-13)

where the summation is performed over such values of z for which all the factorials
are well defined (the arguments are positive).

2.2 THE 3 j−SYMBOLS

While Clebsch-Gordan coefficients possesses considerable symmetry and from their
structure it is possible to verify the coupling scheme of angular momenta, a more sym-
metrical object was defined by Wigner and is now commonly known as the 3 j−symbol
or 3 jm−symbol. The 3 j−symbol is related to the Clebsch-Gordan coefficient by(

j1 j2 j3
m1 m2 m3

)
= (−1) j1− j2−m3

〈m1m2| j1 j2 j3 − m3〉√
(2 j3 + 1)

(2-14)

The 3 j−symbol is invariant with respect to an even permutation of its columns, while
for odd permutations of its columns is multiplied by a phase factor equal to the sum
of the arguments in its top row,(

j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j2 j1 j3

m2 m1 m3

)
(2-15)

Furthermore, changing the sign of all three lower arguments results also in multipli-
cation by a phase factor equal to the sum of the arguments in its top row,(

j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
(2-16)

A 3 j−symbol having all its m quantum numbers zero vanishes unless j1 + j2 + j3
is even. Likewise any 3 j−symbol having two identical columns will vanish unless
j1 + j2 + j3 is even.

The unitarity property of the Clebsch-Gordan coefficients leads directly to the
orthonormality conditions for the 3 j−symbols

∑
j3,m3

(2 j3 + 1)

(
j1 j2 j3

m1 m2 m3

) (
j1 j2 j3

m ′
1 m ′

2 m3

)
= δm1,m ′

1
δm2,m ′

2
(2-17a)

∑
m1,m2

(
j1 j2 j3

m1 m2 m3

) (
j1 j2 j ′

3
m1 m2 m ′

3

)
= δ j3, j ′

3
δm3,m ′

3

2 j3 + 1
(2-17b)

The values of the angular coupling coefficients are collected in various tables.
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2.3 THE 6 j−SYMBOLS

The 6 j−symbol is defined by the relation

〈( j1 j2) j12, j3; jm| j1, ( j2 j3) j23; jm〉
= (−1) j1+ j2+ j3+ j

√
(2 j12 + 1)(2 j23 + 1)

{
j1 j2 j12

j3 j j23

}
(2-18)

Similarly as in the case of the 3 j− symbols also here it is possible to analyze the
coupling schemes of angular momenta on both sides of the transformation matrix.
Indeed, it is seen that in general the 6 j− symbols connect two schemes of coupling
of three momenta. The 6 j−symbol may be evaluated by first expressing it as a sum
over a triple product of 3 j−symbols and then using the fact that the 6 j−symbol is
independent of m to produce a sum involving a single variable to finally yield

{
a b c
d e f

}
=

√

(abc)
(ae f )
(db f )
(dec) ×

∑
z

(−1)z(z + 1)!

× [(z − a − b − c)!(z − a − e − f )!(z − d − b − f )!

× (z − d − e − c)!(a + b + d + e − z)!(b + c + e + f − z)!

× (a + c + d + f − z)!]−1 (2-19)

where


(abc) = [(a + b − c)!(a − b + c)!(b + c − a)!/(a + b + c + 1)!]
1
2

which also represents the triangular condition that has to be satisfied for its arguments.
In particular, the 6 j−symbol vanishes unless the four triangular conditions portrayed
below are satisfied (all four are represented by appropriate 
’s under the square root
in the above expression),




◦
. .

. . . .
◦ ◦




{ ◦ . . . ◦ . . . ◦ }
{ ◦

. .
.

◦ . . . ◦

} 


◦
. . .

◦ . . . ◦


 (2-20)

where for example |a − b| <= c <= a + b.
The 6 j−symbol is invariant with respect to any interchange of columns and also

with respect to the interchange of the upper and lower arguments of any two columns.
The 6 j−symbols satisfy the orthogonality condition

∑
j12

(2 j12 + 1)(2 j23 + 1)

{
j3 j j12

j1 j2 j23

} {
j3 j j12

j1 j2 j ′
23

}
= δ j23, j ′

23
(2-21)
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2.4 THE 9 j−SYMBOL

The 6 j−symbol arose in discussing the coupling of three angular momenta. Clearly
more complex nj−symbols arise for couplings that involve more than three angular
momenta. The 9 j−symbol is defined as a transformation matrix between two coupling
schemes of four angular momenta

〈( j1 j2) j12, ( j3 j4) j34; j |( j1 j3) j13, ( j2 j4) j24; j〉

=
√

(2 j12 + 1)(2 j34 + 1)(2 j13 + 1)(2 j24 + 1)

{ j1 j2 j12

j3 j4 j34

j13 j24 j

}
(2-22)

The 9 j−symbol may be expressed in terms of 6 j−symbols as

{ a b c
d e f
g h i

}
=

∑
z

(−1)2z[z]

{
a d g
h i z

} {
b e h
d z f

} {
c f i
z a b

}
(2-23)

The 9 j−symbol is left invariant with respect to any even permutation of its rows or
columns or a transposition of rows and columns. Under an odd permutation of rows
or columns the symbol is invariant but for a phase factor equal to the sum of its all
arguments. If one argument of the 9 j−symbol is zero the symbol collapses to a single
6 j−symbol, namely

{ a b c
d e f
g h 0

}
= δc, f δg,h

(−1)b+d+ f +g

√
(2c + 1)(2g + 1)

{
a b c
e d g

}
(2-24)

2.5 TENSOR OPERATORS

A fundamental problem of quantum mechanical description of many particle systems
is to calculate matrix elements of relevant interactions. To do this in an elegant and ef-
ficient way one has to express the interactions in terms of tensor operators as pioneered
by Racah1−4 and outlined by Judd5 and Edmonds6. The theory of tensor operators
has a deep group theoretical basis, which is not considered here5−8. Here we follow
Racah’s original introduction of tensor operators2. An irreducible tensor operator
T(k), of rank k has (2k + 1) components T (kq) where q = −k, −k + 1, . . . , k − 1, k,
which satisfy the commutation relations

[Jz, T (kq)] = qT (kq) (2-25a)

[J±, T (kq)] =
√

k(k + 1) − q(q ± 1)T (k, q ± 1) (2-25b)

Group theoretically this implies that the tensor operator components form a basis
for the (2k + 1)−dimensional irreducible representation [k] of the rotation group
in three dimensions, SO(3). Furthermore since the components satisfy the same
commutation relations, they can be regarded as objects that transform themselves like
angular momentum states |kq〉. As a result we can use standard angular momentum
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coupling techniques to form coupled products of tensor operators. For a rank k = 1
tensor operator we have, in terms of the Cartesian components (Tx , Ty, Tz)

T (1)
±1 = ∓1√

2
(Tx ± iTy), T (1)

0 = Tz (2-26)

Thus J is a tensor operator of rank k = 1 with components

J (1)
0 = Jz, J (1)

∓1 = ± J∓√
2

(2-27)

A more complex example is the Coulomb interaction and its tensorial form. The
matrix elements of the N−particle repulsive Coulomb interaction

Hc =
N∑

i< j

e2

ri j
(2-28)

play an important role in atomic physics. The interaction between each pair of elec-
trons may be expanded in terms of Legendre polynomials of the cosine of the angle
ωi j between the vectors from the nucleus to the two electrons as

e2

ri j
= e2

∑
k

r k
<

rk+1
>

Pk(cos ωi j ) (2-29)

where r< indicates the distance from the nucleus of the nearer electron and r> the
distance from the nucleus to the further away electron. Using the spherical harmonic
addition theorem9 it is possible to obtain the angular part of the Coulomb interaction
operator in a tensorial form

Pk(cos ωi j ) = 4π

2k + 1

∑
q

Y ∗
kq (θi , φi )Ykq (θ j , φ j )

=
∑

q

(−1)q
(
C (k)

−q

)
i

(
C (k)

q

)
j

= (
C(k)

i · C(k)
j

)
(2-30)

where the spherical tensors C (k)
q are defined in terms of the usual spherical harmonics,

Ykq (that obviously satisfy (2-25a) and (2-25b), and therefore formally are also tensor
operators) as

C (k)
q =

(
4π

2k + 1

)1/2

Ykq (2-31)

The C (k)
q are the components of tensor operator C(k) with a rank k, and (C(k)

i · C(k)
j )

denotes the scalar product of two spherical tensors.

2.6 THE WIGNER-ECKART THEOREM FOR SO(3)

The key for calculating the matrix elements of tensor operators that act between an-
gular momentum states comes from the Wigner-Eckart theorem as applied to SO(3).


