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Preface

The main purpose of the first volume of this handbook was to provide the reader with
information on the use, design, and performance of ball and roller bearings in common and
relatively noncomplex applications. Such applications generally involve slow-to-moderate
speed, shaft, or bearing outer ring rotation; simple, statically applied, radial or thrust loading;
bearing mounting that does not include misalignment of shaft and bearing outer-ring axes;
and adequate lubrication. These applications are generally covered by the engineering infor-
mation provided in the catalogs supplied by the bearing manufacturers. While catalog
information is sufficient to enable the use of the manufacturer’s product, it is always
empirical in nature and rarely provides information on the geometrical and physical justifi-
cations of the engineering formulas cited. The first volume not only includes the underlying
mathematical derivations of many of the catalog-contained formulas, but also provides
means for the engineering comparison of rolling bearings of various types and from different
manufacturers.

Many modern bearing applications, however, involve machinery operating at high
speeds; very heavy combined radial, axial, and moment loadings; high or low temperatures;
and otherwise extreme environments. While rolling bearings are capable of operating in
such environments, to assure adequate endurance, it is necessary to conduct more sophisticated
engineering analyses of their performance than can be achieved using the methods and formulas
provided in the first volume of this handbook. This is the purpose of the present volume.

When compared with its earlier editions, this edition presents updated and more accurate
information to estimate rolling contact friction shear stresses and their effects on bearing
functional performance and endurance. Also, means are included to calculate the effects on
fatigue endurance of all stresses associated with the bearing rolling and sliding contacts. These
comprise stresses due to applied loading, bearing mounting, ring speeds, material processing,
and particulate contamination.

The breadth of the material covered in this text, for credibility, can hardly be covered by
the expertise of the two authors. Therefore, in the preparation of this text, information
provided by various experts in the field of ball and roller bearing technology was utilized.
Contributions from the following persons are hereby gratefully acknowledged:

Neal DesRuisseaux bearing vibration and noise
John 1. McCool bearing statistical analysis
Frank R. Morrison bearing testing

Joseph M. Perez lubricants

John R. Rumierz lubricants and materials
Donald R. Wensing bearing materials

Finally, since its initial publication in 1967, Rolling Bearing Analysis has evolved into this 5th
edition. We have endeavored to maintain the material presented in an up-to-date and useful
format. We hope that the readers will find this edition as useful as its earlier editions.

Tedric A. Harris
Michael N. Kotzalas
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1 Distribution of Internal Loading

in Statically Loaded Bearings:
Combined Radial, Axial, and
Moment Loadings—Flexible
Support of Bearing Rings

LIST OF SYMBOLS

Symbol Description Units
A Distance between raceway groove curvature centers mm (in.)
B fi+/fo—1
¢ Crown drop at end of roller or raceway effective length or
crown gap at other locations mm (in.)
C Influence coefficient mm/N (in./Ib)
D Ball or roller diameter mm (in.)
D Influence coefficient to calculate nonideal roller-raceway
contact deformations
Bearing pitch diameter mm (in.)
Eccentricity of loading mm (in.)
Modulus of elasticity MPa (psi)
r/D
Applied load N (Ib)
Friction force due to roller end-ring flange sliding motions N (Ib)
Roller thrust couple moment arm mm (in.)
Ring section moment of inertia mm* (in.%)

PR = ENN»NN;}J%J\MQEQ‘

Number of laminae
Load-deflection factor, axial load—deflection factor

Roller length mm (in.)
Moment N xmm (Ib x in.)
Load-—deflection exponent

Diametral clearance mm (in.)

Load per unit length N/mm (Ib/in.)
Ball or roller-raceway normal load N (Ib)

Roller end-ring flange load in cylindrical roller bearing N (Ib)

Roller end-ring flange load in tapered roller bearing N (Ib)

N/mm” (Ib/in.”)
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r Raceway groove curvature radius mm (in.)
r Radius to raceway contact in tapered roller bearing mm (in.)
re Radius from inner-ring axis to roller end—flange contact in

tapered roller bearing mm (in.)
Ry Radius from tapered roller axis to roller end—flange contact mm (in.)
R Ring radius to neutral axis mm (in.)
R Radius of locus of raceway groove curvature centers mm (in.)
s Distance between loci of inner and outer raceway groove

curvature centers mm (in.)
u Ring radial deflection mm (in.)
U Strain energy N x mm (Ib x in.)
Z Number of balls or rollers per bearing row
a Mounted contact angle rad, °
a’ Free contact angle rad, °
B tan~'//(dyn — D) rad, °
v Dcosa/dny
1) Deflection or contact deformation mm (in.)
81 Distance between inner and outer rings mm (in.)
A Contact deformation due to ideal normal loading mm (in.)
Ay Angular spacing between rolling elements rad, °
I4 Roller tilt angle rad, °
n tan~!//D rad, °
0 Bearing misalignment angle rad, °
A Lamina position
m Coefficient of sliding friction between roller end and

ring flange
o Normal contact stress or pressure MPa (psi)
£ Poisson’s ratio
3 Roller skewing angle rad, °

1.1 GENERAL

In most bearing applications, only applied radial, axial, or combined radial and axial loadings
are considered. However, under very heavy applied loading or if shafting is hollow to
minimize weight, the shaft on which the bearing is mounted may bend, causing a significant
moment load on the bearing. Also, the bearing housing may be nonrigid due to design
targeted at minimizing both size and weight, causing it to bend while accommodating
moment loading. Such combined radial, axial, and moment loadings result in altered distri-
bution of load among the bearing’s rolling element complement. This may cause significant
changes in bearing deflections, contact stresses, and fatigue endurance compared to these
operating parameters associated with the simpler load distributions considered in Chapter 7
of the first volume of this handbook.

Incylindrical and tapered roller bearings, the moment loading caused by bending of the shaft
results in nonuniform load per unit length along the roller-raceway contacts. Misalignment
of the bearing inner ring on the shaft or outer ring in the housing also generates moment loading
in the bearing, causing a nonuniform load per unit length along the roller-raceway contacts.
Thus, the maximum roller-raceway contact stresses will be greater than those occurring if the
contacts are loaded uniformly along their lengths. Moreover, when bearing rings are misaligned,
thrust loading is induced in the rollers, causing the rollers to tilt, further exacerbating the
nonuniform roller-raceway contact loading. As seen in Chapter 11 in the first volume of this
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(a) (b)
FIGURE 1.1 (a) Ball-raceway contact before applying load; (b) ball-raceway contact after load is applied.

handbook, fatigue life is inversely proportional to approximately the ninth power of contact
stress. Hence, a nonuniform roller-raceway contact loading can result in significant reduction in
bearing endurance.

In this chapter, methods to determine the distribution of applied loading among the
rolling elements will be established considering each of the aforementioned effects.

1.2 BALL BEARINGS UNDER COMBINED RADIAL, THRUST,
AND MOMENT LOADS

When a ball is compressed by load Q, since the centers of curvature of the raceway grooves
are fixed with respect to the corresponding raceways, the distance between the centers is
increased by the amount of the normal approach between the raceways. From Figure 1.1, it
can be seen that

s=A+ 6+ 6, (1.1)
on=08;+6,=5— 4 (1.2)

If a ball bearing that has a number of balls situated symmetrically about a pitch circle is
subjected to a combination of radial, thrust (axial), and moment loads, the following relative
displacements of inner and outer raceways may be defined:

8, Relative axial displacement
6, Relative radial displacement
0  Relative angular displacement

These relative displacements are shown in Figure 1.2.

Consider a rolling bearing before the application of a load. Figure 1.3 shows the positions
of the loci of the centers of the inner and outer raceway groove curvature radii. It can be
determined from Figure 1.4 that the locus of the centers of the inner-ring raceway groove
curvature radii is expressed by

R zd—m+ (ri——) cosa’® (1.3)
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FIGURE 1.2 Displacements of an inner ring (outer ring fixed) due to application of combined radial,
axial, and moment loadings.

where a° is the free contact angle determined by bearing diametral clearance. From Figure 1.3
then

Ro =RN; — Acosa® (1.4)
R, — RN, = Acosa® (L.5)

In Figure 1.3, ¢ is the angle between the most heavily loaded rolling element and any other
rolling element. Because of symmetry 0 < ¢ < .

If the outer ring of the bearing is considered fixed in space as the load is applied to the
bearing, then the inner ring will be displaced and the locus of inner-ring raceway groove radii
centers will also be displaced as shown in Figure 1.5. From Figure 1.5 it can be determined
that s, the distance between the centers of curvature of the inner- and outer-ring raceway
grooves at any rolling element position i, is given by

s =[(Asina® + 8, + R; 6 cos)> + (A cosa® + 8, cos ih)*]'/ (1.6)
or
P — 2 o = 211/2
s:A[(sma + 8, + Ri Ocos ) +(cos a® + 8, cos ) } (1.7)

where

|

o~
|
SIS

—

-

o]
Net
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— Bearing axis X

Outer raceway
curvature
center locus

Inner raceway
curvature
center locus

FIGURE 1.3 Loci of raceway groove curvature radii centers before applying load. (From Jones, A.,
Analysis of Stresses and Deflections, New Departure Engineering Data, Bristol, CT, 1946.)

)
6 = j (1.9)
— 6
== 1.1
7=1 (1.10)
Substituting Equation 1.7 into Equation 1.2 yields
P — 2 o = 211/2
o, = A [(sma + 84 + Ri 6 cos ) "+ (cos a® + &, cos ) } -1 (1.11)

From Chapter 7 of the first volume of this book, the load vs. deformation relationship for a
rolling element-raceway contact is given by



6 Advanced Concepts of Bearing Technology

i

- - Axis of rotation

FIGURE 1.4 Radial ball bearing showing ball-raceway contact due to axial shift of inner and outer
rings.

S
RO
Outer raceway /
curvature —
center locus
, Inner raceway
curvature
center locus
Y Yl

FIGURE 1.5 Loci of raceway groove curvature radii centers after displacement (From Jones, A.,
Analysis of Stresses and Deflections, New Departure Engineering Data, Bristol, CT, 1946.)
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0 = K,8" (1.12)

In Equation 1.12, exponent n = 3/2 for ball bearings and 10/9 for roller bearings. Substitution
of Equation 1.11 into Equation 1.12 and using the former exponent gives

15
0= KnAl'S{ [(sinaO + 8, + R; 6 cos (J/)2+(cosa° + 6, cos 1,[/)2} 1 2—1} (1.13)

At any ball azimuth position ¢, the operating contact angle is «. This angle can be determined
from

sina® + 8, + R; 6 cos (1.14)

sina = — . — 1
[(sin a® + 8, + Ri O cos ) +(cos a® + 8, cos ) }

or

°+6
cosa — cosa® + 6. cos i (1.15)

{(sin a® + 8, + R; 6 cos ¢)2+(cos a® + 8, cos w)z} 2

Equation 1.12 describes the normal load on the raceway acting through the contact angle.
This normal load may be resolved into axial and radial components as follows:

0. = Osina (1.16)
0 = Qcoscosa (1.17)

If the radial and thrust loads applied to the bearing are F; and F,, respectively, then for static
equilibrium to exist

=t
Fo= Y Qysina (1.18)
b=0
==+
F. = Z Oy cosicosa (1.19)
=0

Additionally, each of the thrust components produce a moment about the Y-axis such that
dmn .
M, :7Q¢cos¢sma (1.20)

For static equilibrium, the applied moment M about the Y-axis must equal the sum of the
moments of each rolling element about the Y-axis (in the case of load symmetry, rolling
element thrust component moments about the Z-axis are self-equilibrating).

d Y=+
M:7m Z Qy cos¢rsina (1.21)
b=0
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Combining Equation 1.13, Equation 1.16, and Equation 1.18 yields

B ~ B a2 15 ~ B
d,:i,,{ [(sin a® + 8, +R;6cos ¢)2+(cos a® + 8, cos L{f)z] - 1} (sina® + 8, + RO cosh)

F,— KnAl‘S Z =0
¥=0 [(sin a® + 8, + R; 6cos w)2+(cos a°® + 8, cos 111)2] 2
(1.22)
~ - , ~ 12 1.5 B
P { [(sin a® + 8, + Ri O cos i) "+ (cos a® + 5, cos ) ] - 1} (cosa® + &, cos i) cos
Fr— KAy ; =0
. = — 2 _ 211/2
¥=0 [(sma" + 8, + Ri 6 cos )"+ (cos a® + 5, cos ) ]
(1.23)
15
4 ,,,:ﬂ{ [(sinoz"+(§a+§Ri§cos¢1)2+(cosa°+grcos 1/1)2} 1/2—1} (sina®+8, + R0 cos ) cos i
M—Z2Ka Ay =0
2 . - — 2 - 271/2
¥=0 [(sma°+6a+§ki9cosw) +(cos a® 48, cos i) ]
(1.24)

These equations were developed by Jones [1].

Equation 1.22 through Equation 1.24 are simultaneous nonlinear equations with un-
knowns &,, 8, and 6. They may be solved by numerical methods; for example, the Newton—
Raphson method. Having obtained §,, 8,, and 6, the maximum ball load may be obtained from
Equation 1.13 for ¢y = 0.

B B _ain 15
Omax = KnA1~5{ [(sina® +8, +R0) "+ (cosa® + ;)] —1} (1.25)
Solution of the indicated equations generally necessitates the use of a digital computer.

1.3 MISALIGNMENT OF RADIAL ROLLER BEARINGS

Although it is undesirable, radial cylindrical roller bearings and tapered roller bearings can
support to a small extent the moment loading due to misalignment. The various types of
misalignment are illustrated in Figure 1.6. Spherical roller bearings are designed to exclude
moment loads from acting on the bearings and therefore are not included in this discussion.
Figure 1.7 illustrates the misalignment of the inner ring of a cylindrical roller bearing relative
to the outer ring.

To commence the analysis, it is assumed that any roller-raceway contact can be divided
into a number of “slices” or laminae situated in planes parallel to the radial plane of the
bearing. It is also assumed that shear effects between these laminae can be neglected owing to
the small magnitudes of the contact deformations that develop. (Only contact deformations
are considered.)

1.3.1 CoOMPONENTS OF DEFORMATION

In a misaligned cylindrical roller bearing subjected to radial load, at each lamina in a
crowned roller-raceway contact, the deformation may be considered to be composed of
three components: (1) A,,; due to the radial load at the roller azimuth location j, (2) ¢, due
to the crown drop at lamina A, and (3) the deformation due to bearing misalignment and
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(a) Misalignment (out-of-line)

(b) Off-square or tilted outer ring

o\ol

(c) Cocked or tilted inner ring

|
|

10\O|
ool

(d) Shaft deflection

FIGURE 1.6 Types of misalignments.

roller tilt at the roller azimuth location j. These components are shown schematically in
Figure 1.8.

The component due to radial load is the only contact deformation component considered
in the simplified analytical methods presented in Chapter 7 of the first volume of this book. It
needs no further explanation here.

1.3.1.1 Crowning

As stated previously, crowning of rollers and raceways is accomplished to avoid edge loading
that can result in early fatigue failure of the rolling components. It may be accomplished in
various forms. The simplest of these is the full circular profile crown illustrated in Figure 1.9.
The rollers in most spherical roller bearings may be considered fully crowned whether of
symmetrical contour (barrel-shaped) or of asymmetrical contour. In the latter case, the crown
is offset from the roller mid-length point. Full crowning may also be applied to raceways as



10 Advanced Concepts of Bearing Technology

i

1
il
1

— r

FIGURE 1.7 Misalignment of cylindrical roller bearing rings.
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FIGURE 1.8 Components of roller-raceway contact deformation due to radial load, misalignment, and
crowning.

FIGURE 1.9 Schematic diagram of cylindrical roller with full circular profile crown.
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C0, max

/

i Gi, max

/

FIGURE 1.10 Schematic diagram of uncrowned (straight profile) cylindrical roller contacting inner and
outer raceways, each with a full circular profile crown.

shown in Figure 1.10. This is commonly used in tapered roller bearings where often both the
cone and cup raceways are crowned, and the rollers are not crowned.

Most cylindrical roller bearings employ rollers that are crowned only over a portion of the
roller contour; the remaining portion is cylindrical (the contour is sometimes called flat or
straight). A partially crowned cylindrical roller is illustrated in Figure 1.11.

From Figure 1.8, it can be seen that crown drop or crown gap ¢, at a selected lamina is
considered as a negative deformation; that is, no roller-raceway loading can occur at a lamina
until ¢, is overcome by the radial or the misalignment deformation. For both the fully
crowned or partially crowned rollers that have circular profiles, Equation 1.26 defines ¢, in
terms of the roller and crown dimensions, where 1 < A < k.

21 _ )2 (k)? _ 2 2
B (=) [ EE I STA
1_7> k /
24— 1 A
—“1) —(2) <
: 1) -() =0

For rollers with circular profile partial crowns, blending between the straight and crowned
portions of the profile is necessary to minimize stress concentrations and the resulting reduced
fatigue life. To avoid such stress concentrations, in lieu of a circular profile, a tangential
profile might be used. In this case, the crown radius would be variable, and the crown gap at
each lamina k& would be calculated using

o= (1.26)
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| — — 7 21 Is
o = "m“[ [k 2 =1 =%>0 (1.27)
0 R

To minimize edge loading, Lundberg and sjovall [2] devised a fully crowned roller having a
logarithmic profile. The crown gap at each lamina k is calculated using

=02 In : (1.28)

22— 1 2
1.0067 — —1
()

Subsequently, Reussner [3] developed another logarithmic profile crown believed to be more
effective. The crown gap at each lamina k for the Reussner crown profile is given by

e =2x107*2pw?k? - In (1.29)

It is possible to combine roller crowning and raceway crowning. In this case, the crown gap at
each lamina k& would be calculated as the sum of the crown gaps for the roller and raceway as
follows:

Cmx = CRA 1+ Cmr (130)
In the above equation, subscript R refers to the roller and m to the raceway (m = i or m = o).

For the bearing misalignment # shown in Figure 1.7, the effective misalignment at the
azimuth location of the roller i; is +1/20 cos ;. The plus sign pertains to 0 < ¢f; <r/2; the
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minus sign pertains to 7/2 < ¢; < 7 (assuming symmetry of loading about the 0—7 diameter).
Therefore, the total roller-raceway deformation at roller location j and lamina A is given by

0 1
5)‘]_A]:|:§<)\—§)M/COS¢]—CA (131)

1.3.2 LoAD ON A RoLLER—RACEWAY CONTACT LAMINA

In Chapter 6 of the first volume of this book, the following equations were given to describe
the deformation vs. load for a roller-raceway contact:

20(1- &) wEP
8= 1 1.32
mEl le(l —&)(157) (132
8=23.84x10" 5%089 (1.33)

Equation 1.32 was developed by Lundberg and Sjévall [2] for an ideal line contact. In Equation
1.32, vy = D cos a/d,, E is the modulus of elasticity, and & is Poisson’s ratio. Equation 1.33 was
developed empirically by Palmgren [4] from laboratory test data and pertains to the contact of a
crowned roller on a raceway. While the load-deformation characteristic of an individual
contact lamina may be described using either equation, the latter is applied here as the solution
of a transcendental equation leads to force and moment equilibrium equations of greater
complexity. Considering that the contact is divided into k laminae, each lamina of width w, the
contact length is kw. Letting ¢ = Q/I, Equation 1.33 becomes

8 = 3.84 x 107°¢" (kew)"! (1.34)
Rearranging the above equation to define ¢ yields

81'11
1.24 x 10-5 (kw)*!!

g (1.35)

Equation 1.35 does not consider edge stresses; however, because these obtain only over very
small areas, they can be neglected with little loss of accuracy when considering equilibrium of
loading. Substitution of Equation 1.31 into Equation 1.35 gives

[A;£6(X —F)weosi; — c)\]l'“

1.24 x 105 (k)™

51/\]' (136)

Depending on the degree of loading and misalignment, all laminae in every contact may not
be loaded; in Equation 1.36, k; is the number of laminae under load at roller location j. Total
roller loading is given by

089

A=k 1 L1
0 = 154 % 10- 5k011 Z {A +- 0(/\—5>wcos¢/j } (1.37)
=1
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1.3.3 EQuATIONS OF STATIC EQUILIBRIUM

To determine the individual roller loading, it is necessary to satisfy the requirements of static
equilibrium. Hence, for an applied radial load,

FomZ2
Er_ > 7Qicosyy; =0 7;,=05 ;=07
= (1.38)

=1 ¢#0,7

Substituting Equation 1.37 into Equation 1.38 yields

0.62 x 105F. 7722 1 cosy, "N 1 1 111
Tr - Z WZ {A_,-i 59( —§>wcos¢/j—c,\} =0 (1.39)
Jj=1 J A=1

For an applied coplanar misaligning moment load, the equilibrium condition to be
satisfied is

op =2
5 Z TiQjeicosyy; =0 7, =05, ;=0,7
=1 (1.40)

=1 %#0,77

where ¢; is the eccentricity of loading at each roller location. ¢;, which is illustrated in Figure 1.12,
is given by

-1 A
—> (A 2)w 4—/ﬂk\l\ A ﬁ\
A
/ \
A 7 ‘\
AT
A
aqyj
A
A

4—%*4 ej‘<—

<
3 >

FIGURE 1.12 Load distribution for a misaligned crowned roller showing eccentricity of loading.
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)\:k/’
AZI (A — 3w

I,
e = A=k, ) /=3 PR (141

Z qrj
=1
Hence,

0.62 x 1075  ~& " 7;cosy;
w089 . ;011

A=k; 1 1 1.11 1
X {Z [Aj + 56()\ —E)wcosd/j—cj] ( —§>W (1.42)

1 =k | 1 111
3 2 [Aj + 20<A —2>wcos¢j—c)\} }:0

1.3.4 DErLEcTION EQUATIONS

The remaining equations to be established are the radial deflection relationships. It is
necessary here to determine the relative radial movement of the rings caused by the misalign-
ment as well as that owing to radial loading. To assist in the first determination, Figure 1.13
shows schematically an inner ring-roller assembly misaligned with respect to the outer ring.
From this sketch, it is evident that one half of the roller included angle is described by

_— f

FIGURE 1.13 Schematic diagram of misaligned roller—inner ring assembly showing interference with
outer ring.
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(1.43)

and

/
[(dw — D)* + 1]

sinf3 = (1.44)

The maximum radial interference between a roller and the outer ring owing to misalignment is
given by

89 = Rcos(B —6;) — RcosB (1.45)
where

R=0.5x [(dy — D)* + I*]'/? (1.46)

In developing Equation 1.45 and Equation 1.46, the effect of crown drop was investigated and
found to be negligible.
Expanding Equation 1.46 in terms of the trigonometric identity further yields

89 = R(cos B cosB; + sin B sinf; — cos B) (1.47)
As 6;is small, cos 6; — 1, and sin ; — 6,. Moreover, §; = =+6 cos; andsin 8 = //2R; therefore,
89 = £} 16 cosy; (1.48)

The shift of the inner-ring center relative to the outer-ring center owing to radial loading and
clearance, and the subsequent relative radial movement at any roller location are shown in
Figure 1.14. The sum of the relative radial movement of the rings at each roller angular location
minus the clearance is equal to the sum of the inner and outer raceway maximum contact
deformations at the same angular location. Stating this relationship in equation format:

Outer-ring |
center

FIGURE 1.14 Displacement of ring centers caused by radial loading showing relative radial movement.
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Radial load = 31,600 N (7,100 Ib)

. _.8=0
— 8=20'
10,000 — 10,000 —
1,500 1,500
8,000 8,000
< 2
£ £
5 6,000 1,000 & 6,000 1,000
el
g E 3 £
54000 Z 54000 >
s 50 9 500

2,000 — 2,000

0 20 40 60 80 100 0 20 40 60 80 100
Distance along roller (percentage of /) Distance along roller (percentage of /)
(@) (b)
FIGURE 1.15 Roller loading vs. axial and circumferential location—309 cylindrical roller bearing: (a)
ideally crowned rollers; (b) fully crowned rollers.

1

1 Py 1
[8r + 51(9] cos¢j—7—2{Aj + 50()\ —E)vvcoswj—cA]maX:O (1.49)

Equation 1.39, Equation 1.42, and Equation 1.49 constitute a set of Z/2+ 3 simultaneous
nonlinear equations that can be solved for §,, 6, and A; using numerical analysis techniques.
Thereafter, the variation of roller load per unit length, and subsequently the roller load, may
be determined for each roller location using Equation 1.36 and Equation 1.37, respectively.

Using this method of digital computation, Harris [5] analyzed a 309 cylindrical roller
bearing having the following dimensions and loading:

Number of rollers 12

Roller effective length 12.6 mm (0.496 in.)
Roller straight lengths 4.78, 7.770, 12.6 mm
Roller crown radius 1,245 mm (49 in.)
Roller diameter 14 mm (0.551 in.)
Bearing pitch diameter 72.39 mm (2.85 in.)
Applied radial load 31,600 N (7,100 Ib)

For these conditions, Figure 1.15 shows the loading on various rollers for the bearing with
ideally crowned rollers (/; = 12.6 mm [0.496 in.]) and with fully crowned rollers (/; = 0).

Figure 1.16 shows the effect of roller crowning on bearing radial deflection as a function
of misalignment.

1.4 THRUST LOADING OF RADIAL CYLINDRICAL ROLLER BEARINGS

When radial cylindrical roller bearings have fixed flanges on both inner and outer rings, they
can carry some thrust load in addition to radial load. The greater the amount of radial load
applied, the more is the thrust load that can be carried. As shown by Harris [6] and seen in
Figure 1.17, the thrust load causes each roller to tilt an amount {;.
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FIGURE 1.16 Roller deflection vs. misalignment and crowning—309 cylindrical roller bearing at 31,600 N
(7,100 1b) radial load.

Again, it is assumed that a roller-raceway contact can be subdivided into laminae in
planes parallel to the radial plane of the bearing. When a radial cylindrical roller bearing is
subjected to applied thrust load, the inner ring shifts axially relative to the outer ring.
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FIGURE 1.17 Thrust couple, roller tilting, and interference owing to applied thrust load.
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FIGURE 1.18 Components of roller-raceway deflection at opposing raceways due to radial load, thrust
load, and crowning.

Assuming deflections owing to roller end—flange contacts are negligible, the interference at
any axial location (lamina) is

1
8,\]':Aj + é’/()\ — 2)W — C), )\Zl,kj (150)

where ¢, is given by Equation 1.26 through Equation 1.30. Figure 1.18 illustrates the
component deflections in Equation 1.50. Substituting Equation 1.50 into Equation 1.35 yields

g0 -Pwoa]™

Y124 % 105 (kow)™ !

(1.51)

and at any azimuth i;, the total roller loading is

w089 Ak, | 111
0= 124 x 10-54011 Z [Aj-l-{j(/\ —§>w— CA:| (1.52)
’ A=l
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1.4.1 EqQuiLiBRIUM EQUATIONS

To determine roller loading, it is necessary to satisfy static equilibrium requirements. Hence,
for applied radial load

F AN =05 ;=0
E_ Orcosy, =0 U9 =0, 1.53
2 Z;TQW“% =1 g A0 (1.53)

Substituting Equation 1.52 into Equation 1.53 yields

0.62 x 107°F, j:Z/z“q-jcos(pA)‘:kf 1 111
——w Z (')AHJZ A+ G(A—5)w —a| =0 (1.54)
v J=1 k./ A=1 2

For an applied centric thrust load, the equilibrium condition to be satisfied is

F.mZ2H
5= D 70y =0 (1.55)
Jj=1

At each roller location, the thrust couple is balanced by a radial load couple caused by the
skewed axial load distribution. Thus, 2Q,; = 2Qse; and

Z/2+1

F, 277 =05 ¢.=0, 7
=% 50e=0 7 > VT 1.56
2 = 7705¢) =1 g #0, w (1.56)

where ¢; is the eccentricity of loading indicated in Figure 1.12 and defined by

A=k,
p 1%‘()‘ —Jw
e =— purs ~ 3 (1.57)
Z q)\]
A=l
Substitution of Equation 1.52 and Equation 1.57 into Equation 1.56 yields
031 x 105F, =& 4
0.89 - 0.11
W =5
A=k; 1 111 1 /
A £ (A—2)w — ——)w—= 1.58
X{;{ G(a-gr o] () (1:3%)
A=k,

111 1.
S PE—
X [A, + ¢ ()\—l)w - c;\} —0 772 v i
k 2 T =1 ll{l-;«éO,W



