

Human - Computer Interaction:

Theory and Practice (Part I)

Volume 1

Human Factors and Ergonomics
Gavriel Salvendy, Series Editor

Bullinger, H.-J., and Ziegler, J. (Eds.): Human-Computer Interaction: Ergonomics
and User Interfaces, Volume 1 of the Proceedings of the 8th International Conference
on Human-Computer Interaction

Bullinger, H.-J., and Ziegler, J. (Eds.): Human-Computer Interaction: Communication.
Cooperation, and Application Design, Volume 2 of the Proceedings of the 8th
International Conference on Human-Computer Interaction

Hollnagel, E. (Ed.) : Handbook of Cognitive Task Design
Meister, D. (Ed.) : Conceptual Foundations of Human Factors Measurement
Meister, D., and Enderwick, T. (Eds.) : Human Factors in System Design, Development,

and Testing
Smith, M. J., Salvendy, F., Harris, D., and Koubeck, R. J. (Eds.): Usability Evaluation

and Interface Design: Cognitive engineering, Intelligent Agents and Virtual Reality
Smith, M. J., and Salvendy, G. (Eds.): Systems, Social and Internationalization Design

of Human-Computer Interaction
Stephanidis, C. (Ed.) : Universal Access in HCI: Towards an Information Society for All
Stephanidis, C. (Ed.): User Interfaces for All: Concepts, Methods, and Tools
Ye, N. (Ed.): The Handbook of Data Mining

Jacko, J., and Stephanidis, C. (Eds.): Human-Computer Interaction: Theory
and Practice (Part I)

Stephanidis, C., and Jacko, J. (Eds.) : Human-Computer Interaction: Theory
and Practice (Part II)

Harris, D., Duffy, V., Smith, M., and Stephanidis, C. (Eds.): Human-Centred
Computing: Cognitive, Social and Ergonomic Aspects

Stephanidis, C. (Ed.): Universal Access in HCI: Inclusive Design in the Information
Society

Human - Computer Interaction:

Theory and Practice (Part I)

Volume 1 of the Proceedings of HCI International 2003
10th International Conference on Human - Computer Interaction
Symposium on Human Interface (Japan) 2003
5th International Conference on Engineering Psychology
and Cognitive Ergonomics
2nd International Conference on Universal Access
in Human - Computer Interaction
22 - 27 June 2003, Crete, Greece

Edited by

Julie Jacko
Georgia Institute of Technology

Constantine Stephanidis
ICS-FORTH and University of Crete

2003 LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Mahwah, New Jersey London

First published 2003 by Lawrence Erlbaum Associates, Inc.

Published 2021 by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
605 ThirdAvenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

Copyright © 2003 Taylor & Francis

All rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in writing from the
publishers.

Notice:
Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Human-Computer Interaction : Theory and Practice (Part I) I edited by Julie Jacko
and Constantine Stephanidis.

p. em.

Includes bibliographical references and index.
ISBN 13: 978-0-8058-4930-1 (hbk) (Valume 1)

ISBN 13: 978-0-8058-4931-8 (Valume 2)
ISBN 13: 978-0-8058-4932-5 (Volume 3)
ISBN 13: 978-0-8058-4933-2 (Volume 4)
ISBN 13: 978-0-8058-4934-9 (Set)

Preface
The 10th International Conference on Human-Computer Interaction, HCI International 2003, is held
in Crete, Greece, 22-27 June 2003, jointly with the Symposium on Human Interface (Japan) 2003, the
5th International Conference on Engineering Psychology and Cognitive Ergonomics, and the 2nd
International Conference on Universal Access in Human-Computer Interaction. A total of 2986
individuals from industry, academia, research institutes, and governmental agencies from 59
countries submitted their work for presentation, and only those submittals that were judged to be
of high scientific quality were included in the program. These papers address the latest research
and development efforts and highlight the human aspects of design and use of computing
systems. The papers accepted for presentation thoroughly cover the entire field of human-
computer interaction, including the cognitive, social, ergonomic, and health aspects of work with
computers. These papers also address major advances in knowledge and effective use of
computers in a variety of diversified application areas, including offices, financial institutions,
manufacturing, electronic publishing, construction, health care, disabled and elderly people, etc.

We are most grateful to the following cooperating organizations:

• Chinese Academy of Sciences • Asociacion Interaccion Persona
• Japan Management Association Ordenador - AIPO (Spain)
• Japan Ergonomics Society • Gesellschaft fur Informatik e.V - GI
• Human Interface Society (Japan) (Germany)
• Swedish Interdisciplinary Interest Group • European Research Consortium for

for Human Computer Interaction - Information and Mathematics - ERCIM
STIMDI

The 258 papers contributing to this volume (Vol. 1) cover the following areas:

• Design Approaches, Methods and • Web Design and Usability
Tools • Learning and Edutainment

• HCI Methodologies and Perspectives • Virtual, Mixed and Augmented
• Usability Environments
• Design and Evaluation Studies

The selected papers on other HCI topics are presented in the accompanying three volumes: Volume
2 by C. Stephanidis and J. Jacko, Volume 3 by D. Harris, V. Duffy, M. J. Smith and C. Stephanidis,
and Volume 4 by C. Stephanidis.

We wish to thank the Board members, listed below, who so diligently contributed to the overall
success of the conference and to the selection of papers constituting the content of the four
volumes.

Organizational Board
Niels Ole Bernsen, Denmark
Hans-Joerg Bullinger, Germany
Masaaki Kurosu, Japan
Zhengjie Liu, China
Ben Shneiderman, USA
Michael J. Smith, USA
Jean-Claude Sperandio, France
Hiroshi Tamura, Japan

Ergonomics and Health Aspects of Work
with Computers
Arne Aaras, Norway
Pascale Carayon, USA
Barbara G. Cohen, USA
Marvin J. Dainoff, USA
Martin Helander, Singapore
Bentzion Karsh, USA
Waldemar Karwowski, USA
Peter Kern, Germany
Danuta Koradecka, Poland
Helmut Krueger, Switzerland
Holger Luczak, Germany
Aura C. Matias, Philippines
Takao Ohkubo, Japan
Susumu Saito, Japan
Steven L. Sauter, USA
Dominique L. Scapin, France
Naomi Swanson, USA
Gunnela Westlander, Sweden

Human Interface and the Management of
Information
Lajos Balint, Hungary
Gunilla Bradley, Sweden
Alan H.S. Chan, Hong Kong
Helmut Degen, Germany
Michitaka Hirose, Japan
Yasufumi Kume, Japan
Mark R. Lehto, USA
Kee Yong Lim, Singapore
Fiona Nah, USA
Shogo Nishida, Japan
Leszek Pacholski, Poland
Jennifer J. Preece, USA
Robert W. Proctor, USA
Francois Sainfort, USA
Tjerk W. van der Schaaf, Netherlands
Lawrence M. Schleifer, USA
Karel Vredenburg, Canada

John R. Wilson, UK
Sakae Yamamoto, Japan
Li Zheng, China
Bernhard Zimolong, Germany

Human-Computer Interaction
Albert G. Arnold, Netherlands
Sebastiano Bagnara, Italy
Nigel Bevan, UK
Klaus-Peter Faehnrich, Germany
Pierre Falzon, France
Xiaowen Fang, USA
Sheue-Ling Hwang, ROC
Judy Kay, Australia
Nancy Lightner, USA
Kari Lindstroem, Finland
Aaron Marcus, USA
Masaki Nakagawa, Japan
Celestine A. Ntuen. USA
Katsuhiko Ogawa, Japan
Kjell Ohlsson, Sweden
Gary M. Olson, USA
Thomas Rist, Germany
Michelle M. Robertson. USA
Andrew L. Sears, USA
Pentti K. Seppala, Finland
Kay M. Stanney, USA
Tomio Watanabe. Japan
Nong Ye, USA
Wenli Zhu, USA
Juergen Ziegler, Germany

Engineering Psychology7 and Cognitive
Ergonomics
Chris Baber, UK
Kenneth R. Boff, USA
Guy Boy, France
Pietro Carlo Cacciabue, Italy
Judy Edworthy, UK
James Fisher, South Africa
Arthur Fisk, USA
Curt R. Graeber, USA
Erik Hollnagel, Sweden
Kenji Itoh, Japan
Peter Jorna, Netherlands
Kenneth R. Laughery, Sr.. USA
Nicolas Marmaras. Greece
David Morrison, Australia
Sundaram Narayanan. USA
Reiner Onken. Germanv

VI

Eduardo Salas, USA Arthur I. Karshmer, USA
Dirk Schaefer, France Alfred Kobsa, USA
Neville A. Stanton, UK Mark Maybury, USA

Michael Pieper, Germany
Universal Access in Human-Computer Angel R. Puerta, USA
Interaction Anthony Savidis, Greece
Julio Abascal, Spain Christian Stary, Austria
Demosthenes Akoumianakis, Greece Hirotada Ueda, Japan
Elizabeth Andre, Germany Jean Vanderdonckt, Belgium
David Benyon, UK Gregg C. Vanderheiden, USA
Noelle Carbonell, France Annika Waern, Sweden
Pier Luigi Emiliani, Italy Gerhard Weber, Germany
Michael C. Fairhurst, UK Harald Weber, Germany
Gerhard Fischer, USA Michael D. Wilson, UK
Ephraim Glinert, USA Toshiki Yamaoka, Japan
Jon Gunderson, USA
Ilias lakovidis, EU

We also wish to thank the following external reviewers:

Chrisoula Alexandraki, Greece Elizabeth Longmate, UK
Margherita Antona, Greece Fabrizia Mantovani, Italy
loannis Basdekis, Greece Panos Markopoulos, Netherlands
Boris De Ruyter, Netherlands Yannis Pachoulakis, Greece
Babak Farschian, Norway Zacharias Protogeros, Greece
Panagiotis Karampelas, Greece Vassilios Zarikas, Greece
Leta Karefilaki, Greece

This conference could not have been held without the diligent work and outstanding efforts of
Stella Vourou, the Registration Chair, Maria Pitsoulaki, the Program Administrator, Maria
Papadopoulou, the Conference Administrator, and George Papatzanis, the Student Volunteer Chair.
Also, special thanks to Manolis Verigakis, Zacharoula Petoussi, Antonis Natsis, Erasmia Piperaki,
Peggy Karaviti and Sifis Klironomos for their help towards the organization of the Conference.
Finally recognition and acknowledgement is due to all members of the HCI Laboratory of ICS-
FORTH.

Constantine Stephanidis Julie A. Jacko Don Harris
ICS-FORTH and University of Georgia Institute of Technology, Cranfield University,
Crete, GREECE USA UK

Vincent G. Duffy Michael J. Smith
Mississippi State University, University of Wisconsin-
USA Madison, USA

June 2003

vu

HCI International 2005

The llth International Conference on Human-Computer Interaction, HCI International 2005, will
take place jointly with:

Symposium on Human Interface (Japan) 2005
6th International Conference on Engineering Psychology and Cognitive Ergonomics
3rd International Conference on Universal Access in Human-Computer Interaction
1st International Conference on Virtual Reality
1st International Conference on Usability and Internationalization

The conference will be held in Las Vegas, Nevada, 22-27 July 2005. The conference will cover a
broad spectrum of HCI-related themes, including theoretical issues, methods, tools and processes
for HCI design, new interface techniques and applications. The conference will offer a pre-
conference program with tutorials and workshops, parallel paper sessions, panels, posters aid
exhibitions. For more information please visit the URL address: http://hcii2005.engr.wisc.edu

General Chair:

Gavriel Salvendy
Purdue University
School of Industrial Engineering
West Lafayette, IN 47907-2023 USA
Telephone: +1(765)494-5426 Fax: +1(765)494-0874
Email: salvendy@ecn.purdue.edu
http://gilbreth.ecn.purdue.edu/~salvendy

and
Department of Industrial Engineering
Tsinghua University, P.R. China

The proceedings will be published by Lawrence Erlbaum and Associates.

VHI

Table of Contents

Section 1. Design Approaches, Methods and Tools

Use Case Maps: A Visual Notation for Scenario-Based User Requirements 3
Asmaa Alsumait, Ahmed Seffah, Thiruvengadam Radhakrishnan

A Socio-centric Model of User Interactions 8
David Ambaye

Tools for task-based interaction and collaboration analysis 13
Nikolaos Avouris, George Fiotakis, Nikolaos Tselios, Vassilis Komis

The Semiotic Engineering Use of Models for Supporting Reflection-in-Action 18
Simone Barbosa, Clarisse Sieckenius de Souza, Maira Greco de Paula

Levels of Guidance 23
Andrew Basden

Guidelines and Freedom in Proximal User Interfaces 28
Andrew Basden

It's all in a days work of a software engineer 33
Inger Boivie, Jan Gulliksen, Bengt Goransson

Semiotic Conference: Work Signs and Participatory Design 38
Rodrigo Bonacin, M. Cecilia Baranauskas

Creative Design of Interactive Products and Use of Usability Guidelines - a Contradiction? 43
Michael Burmester, Joachim Machate

Study of Spatial Biological Systems using a Graphical User Interface 48
Nigel Burroughs, George Tsibidis, William Gaze, Liz Wellington

The use of Metaphors for Interaction between Children and Children's sites 53
Alessandra Carusi, VeraNojima

Can novice designers apply usability criteria and recommendations to make web sites easier to .„
o JOuse?

Aline Chevalier, Melody Ivory
Learning from Museum Visits: Shaping Design Sensitivities 63

Luigina Ciolfi, Liam Bannon
Scenarios in the model-based process for design and evolution of cooperative applications 68

Bertrand David, Rene Chalon, Olivier Delotte, Gerald Vaisman
Configuring the Design Process - Applying the JIET Design Process Framework 73

Helmut Degen, Sonja Pedell, Stefan Schoen
Finding Decisions Through Artefacts 78

Alan Dix, Devina Ramduny-Ellis, Paul Rayson, Victor Onditi, Ian
Sommerville, Adrian Mackenzie

The Constrained Ink Metaphor 83
Bjorn Eiderback, Sinna Lindquist, Bosse Westerlund

Meta—Design: Beyond User-Centered and Participatory Design 88
Gerhard Fischer

Usability Patterns in Software Architecture 93
Eelke Folmer, Jan Bosch

Bridging the Gap between Scenarios and Formal Models 98
Peter Forbrig, Anke Dittmar

A Layered Approach for Designing Multiple User Interfaces from Task and Domain Models 103
Elizabeth Furtado, Joao Jose Vasco Furtado, Quentin Limbourg, Jean
Vanderdonckt, Wilker Bezerra Silva, Daniel William Tavares Rodrigues,
Leandro da Silva Taddeo

A Pattern Framework for Eliciting and Delivering UCD Knowledge and Practices 108
Ashraf Gaffar, Homa Javahery, Ahmed Seffah

Towards virtual intuitive tools for computer aided design 113
Yvon Gardan, Erwan Malik, Estelle Perrin

IX

Engineering the HCI profession or softening development processes 118
Jan Gulliksen, Stefan Blomkvist, Bengt Goransson

Experiences with User Centered Development (UCD) for the Front End of the Virtual Medical _,.,
Campus Graz

Andreas Holzinger
Interface Metaphors for Automated Mobile Phone Services 128

Mark Howell, Steve Love, Mark Turner, Darren Van Laar
Ecological Interface Design in Practice: A Design for Petrochemical Processing Operations 133

Greg Jamieson, Wayne Ho, Dal Vernon Reising
Lightweight Contextual Design - a Case Study in Process Control Environment 138

Kirsi Kontio, Juhani Rauhamaa, Marko Nieminen, Toni Koskinen
Process Snapshots Supporting Operators' Expertise Management 143

Toni Koskinen. Marko Nieminen, Hannu Paunonen, Jaakko Oksanen
Aspect Model-Based Methods for Scenarios and Prototype Development 148

Youn-kyung Lim, Keiichi Sato
DESK-H: Building Meaningful Histories in an Editor of Dynamic Web Pages 153

Jose Antonio Macias Iglesias, Pablo Castells Azpilicueta
Metro Web: a Tool to Support Guideline-Based Web Evaluation 158

Celine Manage, Jean Vanderdonckt
Deriving Manuals from Formal Specifications 163

Mieke Massink, Diego Latella
Towards a Systematic Empirical Validation of HCI Knowledge Captured as Patterns 168

Eduard Metzker, Ahmed Seffah, Ashraf Gaffar
User-centered Design in the Software Engineering Lifecycle: Organizational, Cultural and _,,,
Educational Obstacles to a Successful Integration

Eduard Metzker. Ahmed Seffah
Delegation Systems: Staying in Charge of Highly Flexible Automation 178

Christopher Miller, Robert Goldman, Harry Funk, Raja Parasuraman
Designing for Proficient Users: Drawing from the Realities of Practice 1 83

Dimitris Nathanael, Nicolas Marmaras, Bill Papantoniou
Mindtape - a Technique in Verbal Protocol Analysis 188

Janni Nielsen, Nina Christiansen, Torkil Clemmensen, Carsten Yssing
Development of GUI Design Consistency Auto-Scoring System 193

Hidehiko Okada, Toshiyuki Asahi
Automatic Generation of Interactive Systems: Why A Task Model is not Enough 198

Philippe Palanque, Remi Bastide. Marco Winckler
Loosing Reality in the Modeling Process 203

Jenny Persson
Metaphors in Design - out of date? 208

Antti Pirhonen
A Theory of Information Scent 213

Peter Pirolli
Social Network Analysis of a Participatory Designed Online Foreign Language Course 218

Meenakshi Sundaram Rajasekaran, Panayiotis Zaphiris
A Comprehensive Process Model for Usable Information Architecture Systems: Integrating Top- .,,,,
down and Bottom-up Information Architecture

Arno Reichenauer, Tobias Komischke
A New Approach to Software Reuse Based on Interpretative Approach to Analogical Reasoning 228

Nima Reyhani, Kambiz Badie
MenuSelector: Automated Generation of Dynamic Menus with Guidelines Support 233

Jeremy Spoidenne, Jean Vanderdonckt
From Scenarios to Interactive Workflow Specifications 238

Chris Starv

Synthesising Creativity: Systems to support interactive human processes for aesthetic product . .-
design

Modestos Stavrakis, Thomas Spyrou, John Darzentas
Task-Object Models for the Development of Interactive Web Sites 248

Gerd Szwillus, Birgit Bomsdorf
Coordination Patterns -Towards Declarative Modeling of Coordination Requirements within .,,--,
Cooperative Work Arrangements

Peter Thies
System Development Influenced by Rituals and Taboos 258

Karin Tweddell Levinsen
TOMBOLA: Simulation and User-Specific Presentation of Executable Task Models 263

Holger Uhr
Development of a Crew Station Design Tool 268

Brett Walters, Susan Archer, Shannon Pray
A Methodology for the Component-Based Development of Web Applications 273

Michael Wissen, Jurgen Ziegler

Section 2. HCI Methodologies and Perspectives

Eighteen Classes of Functionality: The D.EU.PS. Model of Information Systems Use 281
Par Agerfalk, Emma Eliason

Use Cases and User Interface Artefacts 286
Tricia Balfe, Frank O'Connor

A: Modell ing Cognitive Performance 291
Laurent Bayssie, Laurent Chaudron

Expanding HCI Methodologies to Incorporate Motivational Evaluation 296
Winslow Burleson

Event Cycle and Knowledge Development in NASA Mission Control Center 301
Barrett Caldwell, Enlie Wang

Need for Action Oriented Design and Evaluation of Information Systems 306
Stefan Cronholm

Interaction Literacy: Form, Function and Fitness at the Interface 3 1 1
Elisabeth Davenport

Web Design, Interface Design, Usability, Software Ergonomics: Mixing All Those Approaches 3 16
Anamaria de Moraes, Robson Santos

Integrating Data Analysis, Navigation and Knowledge Transfer by Visualizing Conceptual Models 321
Maximilian Eibl

The Copernican Shift: HCI Education & the Design Enterprise 326
Anthony Faiola

Conceptualising an Experience Framework for HCI 331
Salvatore Fiore

Improving Knowledge Transfer Through Ubiquitous Multimedia Applications 336
Stephen Giff

The New Demographic: Transforming the HCI Curriculum 341
Wil l i am Gribbons

A Tentative Model for Procuring Usable Systems 346
Stefan Holmlid, Henrik Artman

Conceptual Modeling for Interaction Design 351
Qingyi Hua, Hui Wang, Matthias Hemmje

The HCI landscape: a historical perspective 356
Anker J0rgensen

Interaction and Distance Education 361
Stetano Levialdi, Maria De Marsico

The Etiquette Perspective on Human-Computer Interaction 366
Christopher Miller

XI

The Imaginative Powers of the User'S Mind - a prerequisite in human-computer interaction 371
Janni Nielsen

CII: A Taxonomic Model of Innovations in Human-Computer Interaction 376
Timo Partala

End-User Requirements for Seamless and Transparent Middleware 381
Paivi Poyry, Lauri Repokari

The Role of Voluntary Attention in HCI 386
Gabriella Pravettoni, Sebastiano Bagnara

The Challenges of Teaching HCI Online: It's Mostly About Creating Community 391
Jennifer J. Preece, Chadia Abras

"A Role With No Edges": The Work Practices of Information Architects 396
Toni Robertson, Cindy Hewlett, Sam Harvey, Jenny Edwards

Problem-Based Learning in New Media Education: The Case for Human-Computer Interaction 401
Howard Rosenbaum, Margaret Swan

Human-system Interaction Container Paradigm 406
Celestin Sedogbo, Pascal Bisson, Olivier Grisvard, Thierry Poibeau

Measuring the Immeasurable: System Usability, User Satisfaction and Quality Management 411
Marcin Sikorski

Section 3. Usability

Coping with Increasing SW Complexity - Stepwise Feature Introduction and User-Centred Design 419
Heikki Anttila, Ralph-Johan Back, Pekka Ketola, Katja Konkka. Jyrki
Leskela, Erkki Rysa

User-Centered Software Design and Development: Ensuring Customer Satisfaction 424
Nuray Aykin

Accreditation of Usability Professionals 429
Nigel Bevan

Usability-Net Methods for User Centred Design 434
Nigel Bevan

Usability Design for the Home Media Station 439
Konstantinos Chorianopoulos. Diomidis Spinellis

Usability Support for Managers 444
Nigel Claridge

Usage-Centered Design: Scalability and Integration with Software Engineering 449
Larry Constantine, Helmut Windl

User Research at Adobe: Establishing a User-Centered Culture 454
Sheryl Ehrlich

Usability Evaluation as a Component of the OPEN Development Framework 459
John Eklund, Matthew Baker, David Lowe

How to Integrate Usability and Functional Requirements: A Usability Requirements Model 464
Johan Fransson, Emma Bosson, Erika Svensson

ObSys - a Tool for Visualizing Usability Evaluation Patterns with Mousemaps 469
Michael Gellner, Peter Forbrig

Lightweight Usability Engineering Scaling Usability-Evaluation to a Minimum? 474
Ronald Hartwig, Cristina Darolti, Michael Herczeg

State of the Art: Approaches to Behaviour Coding in Usability Laboratories in German-Speaking
Countries

Brirta Hofmann, Marc Hummer, Peter Blachani
Communication across the HCI/SE divide: ISO 13407 and the Rational Unified Process!

Bonnie John, Len Bass, Robin J. Adams
Systematic Determination of Quantitative Usability Requirements

Timo Jokela, Netta livari
Diary as a Usability Testing Method

Eeva Kangas, Janne Sinisammal, Sami Paihonen

Xll

Usability of Ergonomics Softwares in the Design Process 499
Sultan Kaygin, Cigdem Erbug, Murat Alibaba

Why Can't Software Engineers and HCI Practitioners Work Together? 504
Rick Kazman, Junius Gunaratne, Bill Jerome

Usability Support for EU Projects Experiences and Actions 509
Jurek Kirakowski, Manfred Tscheligi, Verena Giller, Peter Froehlich

Designing the UsabilityNet Web Site: A Case Study 514
Jurek Kirakowski

Usability Testing on All Products (UTAP): how it was incorporated into software development
process

Tadashi Kobayashi
Usability in India - An Uneven Journey 524

Apala Lahiri Chavan
An Account of Factors that Determine HCI Design Uptake in a Techno-Centered Country Like <._„
Singapore

Kee Yong Lim
Promoting Usability Engineering in China 534

Zhengjie Liu, Haixin Zhang, Junliang Chen, Liping Zhang
Usability Metrics in Adaptive Agent-based Tutoring Systems 539

Victor Lopez-Jaquero, Francisco Montero, Antonio Fernandez-Caballero,
Maria Lozano Perez

Procuring Usable Systems - An Analysis of a Commercial Procurement Project
Erik Markensten

Usability of Software Online Documentation: A User Study
Abbas Moallem

The Common Industry Format: A Way for Vendors and Customers to Talk about Software
Usability

Jean Scholtz, Emile Morse, Sharon Laskowski, Anna Wichansky, Keith
Butler, Kent Sullivan

Ten Factors Affecting Adobe's Overseas Research 559
Lynn Shade

Usability and HCI in India: cultural and technological determinants 564
Andrew Smith, Kaushik Ghosh, Aniruidha Joshi

Usability Challenges in Social Projects in Brazil: Lessons Learned about the Digital Divide 569
Clarisse Sieckenius de Souza, Simone Barbosa, Raquel Oliveira Prates

Example of a motorcycle manufacturer's approaches to usability 574
Masamori Sugizaki

Scenarios, Models and the Design Process in Software Engineering and Interactive Systems Q

Design
Alistair Sutcliffe

A European Usability Forum Collaborating on Strategic Initiatives 584
Manfred Tscheligi, Verena Giller, Peter Froehlich

A Usability Study of an Object-Based Undo Facility 589
lomar Vargas, Jose Borges, Manuel Perez-Quinones

Usability Engineering in South Africa Today: Challenges and Opportunities 594
Janet Wesson, Darelle Van Greunen

Usability of Usability Engineers: Usability Activities in Developing Office Products 599
Makoto Yamasaki, Ryuichi Shimamura, Takako Inagaki

User Interface Design in Korea: Research Directions for a Digital Society 604
Wan C. Yoon, Seung-Hun Yoo, Dong-Seok Lee

Section 4. Design and Evaluation Studies

Establishing user requirements in HCI - a case-study in medical informatics 611
Hans Andersen, Verner Andersen

Xlll

Too Many Hierarchies? The Daily Struggle for Control of the Workspace 616
Richard Boardman, Robert Spence, Martina Angela Sasse

Do Interrupted Users Work Faster or Slower? The Micro-analysis of Computerized Text Editing ,,
Task " - b _ l

Ivan Burmistrov, Anna Leonova
Experimental evaluation of the effectiveness of expert online help strategies 626

Antonio Capobianco
Automatic vs. Intellectual Document Clustering: Evaluating 2D Topographic Maps 631

Maximilian Eibl, Thomas Mandl
Evaluation of Story-Based Content Structure and Navigation for a Learning Module in SCORM 636

Boris Gauss, Christopher Hausmanns, Rodolphe Zerry. Guenter Wozny. Leon
Urbas

Assessment and Improvement of the Integrated Hazard Avoidance System for General Aviation ,
Interface

Sheue-Ling Hwang, Wen-Ying Chen
Usability' Evaluation for the Commercial Aircraft Cockpit 646

David Kaber, Michael Clamann
A «Combinatory Evaluation)) Approach in the Case of a CBL Environment: The «Orestis» , .
Experience

Athanasis Karoulis, Stavros Demetriadis , Andreas Pombortsis
A Comparative Study of Design Solutions for Industrial Process Control Systems 656

Tobias Komischke, Govind Govindaraj, Kerstin Rose, Makoto Takahashi
Multimodal interfaces evaluation with virtual reality simulation 661

Laurent Le Bodic, Pierre Deloor, Julien Kahn
A Remote Camera Control Interface to Decrease the Influence of the Delay Time 666

Kazuyoshi Murata, Yu Shibuya, Itaru Kuramoto. Yoshihiro Tsujino
Mobile and Stationary User Interfaces - Differences and Similarities Based on T\so Examples 671

Erik Gosta Nilsson, Odd-Wiking Rahlff
Understanding the tradeoffs of Interface Evaluation Methods 676

Jose Luiz Nogueira, Ana Cristina Bicharra Garcia
Live the Vision character- and plot-driven scenarios in case-based material 681

Rikke Orngreen
A Comparison of Four New Communication Technologies 686

Ruth Rertie
Design Process for Product Families - a case study of a software application package for hearing q

acousticians
Nina Sandweg, Heinz Bergmeier, Sonja Pedell, Benno Knapp, Eduard Kaiser

Impact of Cognitive Style upon Sense of Presence
Corina Sas, Oregon' O'Hare

3D Modelling Is Not for WIMPs
Silvia Scali, Mark Wright, Ann Marie Shillito

PICK - A Scenario-based Approach to Sensor Selection for Interactive Applications
Jennifer Sheridan, Jen Allanson

A proposal of guideline for colour arrangement on screen design used in VDT works
Masanori Takemoto, Yusaku Okada

Development and Validation of a Tool for Measuring Online Trust
Christy Thomas, Cynthia Corritore, Beverly Kracher, Susan Wiedenbeck

User Interface Evaluation Methods for Internet Banking Web Sites: A Review. Evaluation and 7^
Case Study

David Wenham , Panayiotis Zaphiris
Analysis of interaction for shape modification during conceptual design 726

Tjamme Wiegers, Raluca Dumitrescu, Joris Vergeest, Chensheng Wang

XIV

Section 5. Web Design and Usability

A Fuzzy Model to Measure Colour Contrast as an aspect of Web Usability 733
Maysoon Abulkhair, Siobhan North

Brazil: Corporate Web Sites and Human-Computer Interaction, a Case Study 738
Luiz Agner, Anamaria de Moraes

Usability Evaluation of Architecture Based Web Sites 743
Canan Akoglu, Oguzhan Ozcan

MiLE: a reuse-oriented usability evaluation method for the web 748
Davide Bolchini, Luca Triacca, Marco Speroni

Evaluation of Tourism Website Effectiveness: Methodological Issues and Survey Results 753
Adriana Corfu, Laranja Manuel, Carlos Costa

At the Right Time: when to sort web history and bookmarks 758
Alan Dix, Jason Marshall

ANTS: An Automatic Navigability Testing System for Web Sites 763
Marcos Gonzalez Gallego, Maria del Puerto Paule Ruiz, Juan Ramon Perez
Perez, Martin Gonzalez Rodriguez

Presenting Results of a Search Engine for Recorded Lectures in order to Support Relevance ,„
Decisions by the User

Wolfgang Huerst
Characteristics of Web Site Designs: Reality vs. Recommendations 773

Melody Ivory
The Effects of Expertise in Web Searching 778

Christine Jenkins, Cynthia Corritore, Susan Wiedenbeck
Web-site quality evaluation^ case study on European cultural web-sites 783

Sofia Z. Karagiorgoudi, Emmanouil G. Karatzas, Theodore S. Papatheodorou
Improving web site usability through a clustering approach 788

Martha Koutri, Sophia Daskalaki
Web Usability: Its Impact on Human Factors and Consumer Search Behaviour 793

Bernie Lydon, Tom Fennell
Deconstructing Web Pages 798

Anthoula Maidou, Hariton Polatoglou
A Quality Model For Testing the Usability of Web Sites 803

Francisco Montero, Victor Lopez-Jaquero, Maria Lozano Perez, Pascual
Gonzalez Lopez

Usability Evaluation of a Web-based Authoring Tool for Building Intelligent Tutoring Systems 808
Maria Moundridou, Maria Virvou

WebTracer: Evaluating Web Usability with Browsing History and Eye Movement 813
Noboru Nakamichi, Makoto Sakai, Jian Hu, Kazuyuki Shima, Masahide
Nakamura, Ken'ichi Matsumoto

IOWA Intuitive-use Oriented Webtool for the creation of Adapted contents 818
Sergio Ocio Barriales, Maria del Puerto Paule Ruiz, Martin Gonzalez
Rodriguez, Juan Ramon Perez Perez

From Web Usability to Web Comfortability: A Paradigm Shift 823
Roberto Okada, Yuri Watanabe

Tools for Remote Web Usability Evaluation 828
Fabio Paterno

Feijoo.net: An Approach to Adapted Learning Using Learning Styles 833
Maria del Puerto Paule Ruiz, Juan Ramon Perez Perez, Martin Gonzalez
Rodriguez, Sergio Ocio Barriales

WebSCORE Expert Screening - a low-budget method for optimizing web applications 838
Matthias Peissner, Frank Heidmann, Inga Wagner

Interactive Design Elements to Improve Information Presentation on Web Pages 843
Christian Rathke, Valerie Schreiweis

XV

Usability evaluation of e-commerce sites based on design patterns and heuristic criteria 848
Maria Sartzetaki, Y. Psaromiligkos, Symeon Retalis. P. Avgeriou

A Web Agent for Automatic Extraction of Language Resources from Hypermedia Environments 853
Kyriakos Sgarbas. George E. Londos, Nikos D. Fakotakis. George K.
Kokkinakis

Supporting Novices in Detecting Web Site Usability' Problems: A Comparison of the Think-Aloud „.„
and Questionnaire Methods

Mikael Skov. Jan Stage
Web Browsine Activity Visualization Svstem For Administrator Assistance using Browsing 0,,
T r • " ' ' 86jInformation

Satoshi Togawa, Kazuhide Kanenishi, Yoneo Yano
Creating sophisticated web sites using well-known interfaces 868

Fabio Vitali
The Effectiveness of the Common Industry Format for Reporting Usability Testing: A Case Study
on an Online Shopping Website

Chui Yin Wong, Martin Maguire
An Ergonomical Analysis of the Information Architecture of Websites: Developers vs Users: a „_„
Case Study of Brazilian University's Websites

Renata Zilse, Anamaria de Moraes
Automatic Web Resource Discovery for Subject Gateways 883

Konstantinos Zygogiannis, Christos Papatheodorou, Konstantinos Chandrinos.
Konstantinos Makropoulos

Section 6. Learning and Edutainment

Social mechanisms for content quality' control in web-based learning: An agent approach 891
Nikolaos Avouris, Konstantinos Solomos

Reinventing the Lecture: Webcasting Made Interactive 896
Ronald Baecker, Gale Moore, Anita Zijdemans

Development of an Instructional Training Model and Diagnostics in Support of e-Leaming 901
Philip Callahan

Rapid Development of IMS compliant - E-Learning Content 906
Joerg Caumanns, Hatice Elmasgiines

Context-Based Autonomous Monitoring Module for Web Educational Environments 911
Theofanis Despotakis, George Palaigeorgiou, Panagiotis Siozos

Shared 3D Internet environments for education: usability, educational, psychological and „. ,
cognitive issues

Nicoletta Di Bias, Paolo Paolini, Caterina Poggi
Main Features of a CBIR Prototype supporting Cartoon Production 921

Tania Di Mascio, Laura Tarantino
Instructional Use of Engineering Visualization: Interaction-Design in e-Learning for Civil
Engineering

Martin Ebner. Andreas Holzinger
Multimedia in Education: Myths and Realities 931

Andreas Evaggelatos, Maria Constantopoulou
Innovating Web Based Collaborative Learning by Applying the Case Method 936

Christine Frank, Leena Suhl
A prototype application for helping to teach how to read numbers 941

Diamantino Freitas, Helder Ferreira, Vitor Carvalho. Darida Fernandes.
Fernando Pedrosa

Usability' Engineering in Computer Aided Learning Contexts Results from usability tests and q ,
questionnaires

Ronald Hartwig, Inga Schon, Michael Herczeg
Developing Context- and User Groups Sensitive Learning Scenarios with XML Configuration 951

Michael Hellenschmidt, Norbert Braun

XVI

Integrating Shared and Personal Spaces to Support Collaborative Learning 956
Kazuhiro Hosoi, Masanori Sugimoto

Exploring Medium-Tool Relations: Field Trials in Construction of Hypermedia in Schools 961
Anders Kluge

Learning to Dance via Multiple Representations 966
Lefteris Kolleros, Alan Parkes

Educational Software Interfaces and Teacher's Use 971
Walquiria Castelo-Branco Lins, Alex Sandro Gomes

Mindshifts - An adventure journey into the land of learning 976
Christine Merkel

Designing Appropriate Technology for Group Learning 981
Ingrid Mulder, Janine Swaak, Joseph Kessels

Visual Knowledge Construction Algorithms for Supporting Learner-Instructor Interaction 986
Shoichi Nakamura, Kazuhiko Sato, Youzou Miyadera, Akio Koyama, Zixue
Cheng

Bringing History Online: Plimoth Plantation's Online Learning Center 991
Lisa Neal

User-Centered Design of Workflows in E-Learning 996
Genesio Neto, Alex Sandro Gomes

A case-study application of tour & time travel metaphors to structure an e-learning software 1001
Wei Lieh NG, Kee Yong Lim

Making the Network Visible to the User in Virtual Environments and Online Games 1006
Manuel Oliveira, Mel Slater, Jon Crowcroft

DreamSD: Design and Implementation of an Online 3D Game Engine 1011
Tae-Joon Park, Soon Hyoung Pyo, Chang Woo Chu, Seong Won Ryu,
Dohyung Kim, Kwang Hyun Shim, Byoung Tae Choi

Added-Value Functionality for Learning Management Systems: the selection process within a „
German insurance company

Nadja Reckmann, Paula Swatman
Effects of WWW Cooperative Learning on Children Education 1021

Teresa Roselli, Eleonora Faggiano, Antonella Grasso, Paola Plantamura
DSTool: A Reflection-based debugger for data structures comprehension in Computing Science . „_ ,
Learning

Sergio Sama Villanueva, Juan Ramon Perez Perez, Sergio Ocio Barriales,
Martin Gonzalez Rodriguez

Artificial Ant Colonies and E-Learning: An Optimisation of Pedagogical Paths 1031
Yann Semet, Yannick Jamont, Raphael Biojout, Evelyne Lutton, Pierre Collet

The electronic bulletin board system "IS-Board" which supports the information education 1036
Yoshihisa Shinozawa, Tomofumi Uetake, Shinji Takao

MARILYN: A Novel Platform For Intelligent Interactive TV (IITV) 1041
Maad Soha

Speech Interaction for Networked Video Games 1046
Eleni Spyridou, Ian Palmer, Elric Williams

Is every kid having fun? A gender crossover approach to interactive toy design 1051
Marcelle Stienstra, Jettie Hoonhout

Investigating the Role of User Cognitive Style in an Adaptive Educational System 1056
Evangelos Triantafillou, Athanasis Karoulis, Andreas Pombortsis

A system for e-learning via annotated audio/video clips and asynchronous collaboration 1061
Nikos Tsoutsias, Symeon Retalis

Lecture Enhancement by Community Portal 1066
Hiroshi Tsuji

SpyCam and RoboCam: An Application of the Future Technology Workshop Method to the n7

Design of New Technology for Children
Giasemi Vavoula, Mike Sharpies, James Cross, Chris Baber

XV11

Enriching the Pedagogical Value of an Asynchronous HC1 Course: Adding Value Through imA
Synchronous Collaborative Knowledge Building

Rita Vick, Brent Auernheimer, Martha Crosby. Marie Iding
Learning to Learn: HCI-Methods for personalised eLearning 1081

Christian Voigt, Paula Svvatman
Saccadic Processes in Listening-Comprehension Processing as Cognitive Interactions between
Listeners and Texts in a Computer-Based Learning Environment

Setsuko Wakabayashi. Koichiro Kurahasi
Designing A Tool for Taking Class Notes 1091

Nigel Ward. Hajime Tatsukawa
Satisfaction and Learnability in Edutainment: A usability study of the knowledge game 'Laser „„
Challenge' at the Nobel e-museum

Charlotte Wiberg, Kalle Jegers

Section 7. Virtual, Mixed and Augmented Environments

Improving Interaction in an Augmented Reality System using Multiple Cameras 1103
Ingmar D. Baetge. Oregon, Baratoff. Holger Regenbrecht

Non-Zero-Sum Gaze in Immersive Virtual Environments 1108
Andrew Beall, Jeremy Bailenson, Jack Loomis. Jim Blascovich. Christopher
S. Rex

Augmented Reality on Handheld Computers to Flight Displays 1 1 1 3
Reinhold Behringer. Jose Molineros. Venkataraman Sundareswaran. Marius
Vassiliou

Interacting with Hierarchical Information Structures in Immersive Environments 1 1 1 8
Roland Blach, Hilko Hoffmann, Oliver Stefani, Manfred Dangelmaier

Virtual Reality - Ergonomic Solutions for Overcoming the Complexity Trap 1123
Alex Bullinger. Marcus F. Kuntze, Franz Mueller-Spahn. Angelos Amditis.
Ralph Mager

Crossing from Physical Workplace to Virtual Workspace: be AWARE! 1128
Nina Christiansen, Kelly Maglaughlin

Automatic Behavioral Responses as a Measure of Immersion in Virtual Environments 1133
Joseph Cohn, Carey Balaban, Eric Muth, Keith Brendley. Roy Stripling

Interaction with Human Models in Virtual Environments 1138
Manfred Dangelmaier, Oliver Stefani, Angelos Amditis

Developing a mixed reality co-visiting experience for local and remote museum companions 1 143
Areti Galani, Matthew Chalmers, Barn Brown, Ian MacColl. Cliff Randell.
Anthony Steed

Development of a Mixed-Mock-Up-Simulator for Work Science Related Studies 1148
Lorenz Hagenmeyer. Martin Braun. Dieter Spath

Collaborative City-Planning System based on Augmented Reality 1 153
Hirokazu Kato, Keihachiro Tachibana. Takeaki Nakajima. Yumiko Fukuda.
Masaaki Tanabe. Adrian Cheok

No Silver Bullet but Basic Rules User Interface Design for Virtual Environments 1158
Christian Knopfle

Comparison of Hand- and Wand Related Navigation in Virtual Environments 1 163
Mikko Laakso

Phobia Treatment Using a Virtual Reality System 1168
Miguel Leitao, Vitor Cunha

Being Confident - Development of a TV-based Tele-Assistance System 1173
Joachim Machate, loannis Karaseitanidis, Maria Fernanda Gabrera

Cognitive Ergonomics in the Development of Virtual Reality: A Neurophysiological approach 1178
Ralph Mager, Robert Stoermer, Marcus F. Kuntze, Franz Mueller-Spahn,
Angelos Amditis, Evangelos Bekiaris, Alex Bullinger

A User Interface for Virtual Maintainabilitv in Immersive Environments 1183

XV111

Luis Marcelino, Norman Murray, Terrence Fernando
Interactivity, Control of Movement and Realism: Establishing the Factors Influencing Virtual .. »„
Reality Training

Eleanor Marshall, Sarah Nichols, John Wilson
Developing 3D UIs using the IDEAS Tool: A case of study 1193

Jose Pascual Molina Masso, Pascual Gonzalez Lopez, Maria Lozano Perez
Visual Tracking for a Virtual Environment 1 198

Norman Murray, John Yannis Goulermas, Terrence Fernando
Mixed Systems: Combining Physical and Digital Worlds 1203

Laurence Nigay, Emmanuel Dubois, Philippe Renevier, Laurence Pasqualetti,
Jocelyne Troccaz

Virtual Assembly Based on Stereo Vision and Haptic Force Feedback Virtual Reality 1208
Georgios Nikolakis, Georgios Fergadis, Dimitrios Tzovaras

Virtual Environment Design for Gene Selection Using Gene Expression Data 1213
Kunihiro Nishimura, Shumpei Ishikawa, Koji Abe, Shuichi Tsutsumi,
Hiroyuki Aburatani, Koichi Hirota, Michitaka Hirose

RTSA - Reaction Time Sensitivity Analysis: A Methodology to Design an Augmented Reality . ?. „
User Interface for a Head Based Virtual Retinal Display

Olaf Oehme, Britta Sommer, Holger Luczak
ThumbsUp: Integrated Command and Pointer Interactions for Mobile Outdoor Augmented Reality . ?~0

Systems
Wayne Piekarski, Bruce H. Thomas

When a house controls its master - Universal design for smart living environments 1228
Brigitte Ringbauer, Frank Heidmann, Jakob Biesterfeldt

Immersive HMD-Delivered 360 Degree Panoramic Video Environments: Research on Creating „,
Useful and Usable Applications

Albert Rizzo, Kambiz Ghahremani, Larry Pryor, Susannah Gardner
Multimodal Interaction Techniques for Astronaut Training in Virtual Environments 1238

Jukka Ronkko, Raimo Launonen, Seppo Laukkanen, Enrico Gaia
The improvement of the perception of space and depth by the help of virtual reality (programmed . ? ,0

by VRML and HTML) ~ ' J

Cecilia Sik Lanyi, Adam Tilinger, Zsolt Kosztyan, Zsuzsanna Lanyi
Developing Virtual Environments Using Speech as an Input Device 1248

Alex Stedmon
Methodologies and Evidence in Support of a Human-Centred Approach to Virtual Environment . ̂ -.,
Systems Design

Robert Stone
Contribution to task representation in Model-Based user interface Design: application to new ., ,„
people-organization interactions

Dimitri Tabary, Mourad Abed, Christophe Kolski
User-Centred Evaluation Criteria for a Mixed Reality Authoring Application 1263

Marjaana Traskback, Toni Koskinen, Marko Nieminen
Continuity as a Usability Property 1268

Daniela Trevisan, Jean Vanderdonckt, BenoTt Macq
Model-Based Approach and Augmented Reality Systems 1273

Daniela Trevisan, Jean Vanderdonckt, Benoit Macq
Flexible Force Grid Field for Three Dimensional Modeling 1278

Daisuke Tsubouchi, Tetsuro Ogi, Toshio Yamada, Hirohisa Noguchi
Anticipation in a VR-based Anthropomorphic Construction Assistant 1283

Ian Voss, Ipke Wachsmuth
SR:DistoPointer using a tracked laser-range-meter as an augmented-reality ray-pick interaction . „,„„
device

Michael Wagner

XIX

Embedding Public Displays in Non-technical Artifacts: Critical Issues and Lessons Learned From ,,_.,
Augmenting a Traditional Office Door Whiteboard With Ubiquitous Computing Technology

Mikael Wiberg
Integration of 3D Sound Feedback into Virtual Assembly Environment 1298

Ying Zhang, Norman Murray, Terrence Fernando
A Bayesian Framework for Real-Time 3D Hand Tracking in High Clutter Background 1303

Manning Zhou. Thomas Huang

Author Index 1309

Subject Index 1315

XX

Section 1

Design Aproaches, Methods and Tools

http://taylorandfrancis.com

Use Case Maps: A Visual Notation for Scenario-Based User
Requirements

A. Alsumait, A. Seffah, and T. Radhakrishnan
Human-Centered Software Engineering Group

Computer Science Department, Concordia University,
Maisonneuve Blvd. W. Quebec, Canada

{alsumait, seffah, khrishnan}@cs.concordia.ca

Abstract
Among their popular and potential applications, scenarios and use cases provide an integrative
picture of the user tasks with its context (users and work). Our goal is to build a complete and
consistent user interface and usability requirement model that is simple, intuitive, unambiguous
and verifiable by extending the prospective standard the Use Case Maps (UCMs). In particular,
we provide step-by-step guidance for developing UCMs from scenarios.

1 Introduction and Background

During the last two decades, several HCI research efforts tried to develop appropriate
representations to support user interface and usability requirements. Among the various
representations, scenarios and use cases were proposed as a working design representation of user
experiences with, and reactions to, system functionality in the context of pursuing a task. Other
efforts have tried to combine use cases and task analysis as vehicle for bridging the current gaps
between user interface/usability and functional requirements. For example, Forbrig (1999)
introduced a framework for combining task models, user models, and object models. These
multiple dimensions require tools enabling the manipulation of all these models along the different
phases of software development ^utcliffe, 1998; Weidenhaupt, 1998). Related to this work,
Constantine and Lockwood (1999) proposed a use case model description that does not contain
any implicit user interface decisions; essential use cases. Later on, user interface designers can use
these essential use cases as input to create the user interface without being bound by any implicit
decisions. Our research aims to complement the scenario-based requirement approach using an
extended use case maps (UCMs) notation. We describe the process of building two UCM models
that provide an easy way to understand and validate the user interface and usability requirements.

2 The User Interface and Usability Requirement (UIUR) Model

The proposed UIUR model makes use of the
prospective standard Use Case Maps (UCMs) to bridge
the gap the between users' statements of requirements
in an informal natural languages and the target of
formal specifications. UCMs are intended to be a useful
tool for functional requirement of scenario-based
software development. However, their support for
designing user interfaces is still acknowledged to be
insufficient (Alsumait et all., 2002). Our strong belief
that UCMs are powerful for user interface and usability
requirements is based on the simplicity of UCMs

Figure 1: example of a Use Case
Map(Buhr, 1998)

notation (Buhr, 1998). The basic UCM notation is very simple (See Figure 1), and consists of
start-points (filled circles, representing pre-conditions), responsibilities (crosses, representing
tasks to be performed), end- points (bars, representing post-conditions). The responsibilities can be
bound to components, which are the entities or objects composing the system. The wiggly lines are
paths that connect start points, responsibilities, and end points. UCMs notation is easily
understandable by both the user and the user interface designer. In fact, this helps the designers to
handle different users' understanding and expectation of the interface, and bridge the gap by
refining the requirements earlier. Moreover, several studies are focusing on how to integrate
UCMs to UML and how to formalize UCMs in XML (Buhr, 1998). Finally, we will show that by
incorporating the extended UCMs to create our UIUR, we can express user interface and usability
requirements much better.

2.1 UIUR Process and Notation

The proposed UIUR model divides the process of transforming requirements stated described in
an informal language to formal specifications through a number of iterative phases. Each phase
aims at increasing the formality of representation by a small step. The use of UIUR model
includes four typical phases: (1) scenario analysis, (2) conceptual use case maps. (3) physical use
case maps, and (4) formal specification.

2.2 Scenario Analysis

At this phase, only very limited information is available. A process model of scenario analysis
consists of the following iterative and interactive activities: identification of scenarios, elicitation
of information and description of scenarios as well as building use cases.

2.3 Build Use Case Maps

By extending the UCM notation, we find that it can be used in the following four dimensions:
• Task Dimension: represents tasks that are relevant for interactions. Thus. UCMs are used as

a simple and expressive visual notation that allows describing task scenarios at an abstract
level in terms of sequences of responsibilities and tasks over a set of components.

• Dialog Dimension: explains the style of human-computer interaction and also describes the
sequence of dialogs that can take place between the user and the system. New notations are
introduced to provide UCMs with more expressive power for interaction design (Alsumait el.
al 2002).

• Structural Dimension: identifies the objects comprising the user interface, their grouping and
specifies their layout, e.g. by indicating approximate placement or by indicating topological
relations between groups.

• Usability Dimension: Measure the usability of the use case maps by using usability metrics.
Different metrics such as task simplicity and task performance can be used to measure the
usability of the use case map early in the requirement phase.

In the second phase, two types of UCMs are created: the conceptual use case map (CUCM) and
the physical use case map (PUCM). The CUCM and PUCM together integrate the four
dimensions stated above and capture a complete picture of user interface and usability
requirements. This helps in analyzing the consistency between requirements of different use cases,
and discovers if any conflicts between different types of users, different purposes of use and
different operating conditions.

Conceptual Use Case Map (CUCM)

The CUCM helps provide details on what information will be needed from the user and the system
to accomplish a task. Steps to create CUCM are:
• Partition the use cases: Consider only the use cases with human actors.
• Create Task Model: Decompose use cases into tasks and subtasks.
• Define components of the use case: Tasks can be bounded to components. This will help in

determining the entities and objects that compose the system
• Create Dialog Model: Tasks represent decision points in the use case. At any decision point, a

dialog will take place between the system and the user.
• Analysis of the consistency: Two properties of consistency are examined. The consistency

among a set of use cases where the requirements captured by a set of use cases are not in
conflict with each other. The consistency of a use case with respect to a requirements model
where the information contained in the use case does not conflict with the requirements model
and the information contained in the use case is a subset of the information contained in the
model. Both properties can be validated in our proposed use case model. If the use cases are
inconsistent, it will backtrack to the information elicitation and scenario description (phase 1)
to resolve the conflicts

• Analysis of completeness. Completeness is the property where all the information contained
in a requirement model is covered by at least one use case and does not contain any
information that cannot be inferred from the information contained in the use cases. If
incompleteness is discovered, it will backtrack to the scenario identification phase to identify
additional scenarios that will cover the missing situation.

Physical Use Case Map (PUCM)

The extended UCMs not only describes the sequence of tasks and dialogs that can take place
between the user and the system but also help to understand and reason about the requirements of
the user interface, including usability aspects. The PUCM represents the space within the user
interface of a system where the user interacts with all the functions, containers, and information
needed for carrying out some particular task or set of interrelated tasks. Moreover, successive
display of different screens and interactive objects are presented. The PUCM can greatly benefit
from the graphical representation of use cases. Steps to create PUCM:
• Identify the objects that make of the user interface.
• Convert the use case maps into an active prototype using a graphical user interface

development tool.
• Measure the usability of the screens

Further information on validating CUCM and PUCM can be found in (Seffah and J.A Poll, 2003).
Once the CUCM and PUCM are constructed and validated, further requirement analysis and
specification activities can start to produce formal requirement specifications according to the
requirement models. More research and investigations is required in this area.

3 A Case Study- Movie Recommender Software (MRS)

This section illustrates the description and analysis of the UIUR model using a case study that
simulates Movie Recommender Software (MRS) for a PDA. The software should provide
recommendations for movies based on preferences of other users.

The movie Recommender software allows the user to carry out the following scenarios: (1) View a
list of the latest movies by selecting (Any Genre, Action, Comedy, Drama), (2) Search for movies
of (any genre, For Action, For comedy, For drama), (3) View or add a movie to the (To See) list;
a list of movies to be seen in the future, (4) Rate a movie. On choosing the options 1 or 2. the user
can get detailed information of a movie generated by the Recommender system

As shown in Figure 2, the MRS system can be decomposed into five main tasks, (1) view latest
movies, (2) search for movie recommendations, (3) create user to see list, (4) rate a movie, and (5)
view movie detailed information. Different scenarios can be drawn, and details are delayed to sub-
UCMs. Figure 3 depicts the second level of the requirement model when a user rates a movie. A
dialog notation illustrates that a conversation between the user and the system is taking place. The
CUCM should be validated against the scenarios by analyzing whether the use cases are consistent
with each other. Examples of such validation are shown in (Seffah and J.A Pool. 2003).

Figure 2: CUCM for the movie Recommender Figure 3: UCM for movie rating

Figure 4: PUCM for movie Recommender software

The PUCM in Figure 4 describes the scenario where a user searches for a certain comedy movie
and rates the movie. The user interface consists of a tool bar. Main Menu Window, and a sub-

toolbar. Next, the PUCM can be converted into a prototype. Both the PUCM and this prototype
can be used by usability expert to predict the usability of the interface.

4 Conclusions

Our research effort leads to the development and analysis of a complete model for user interface
and usability requirements (UIUR). This model ensure that: (1) a consistent and complete
requirement specification can be captured using scenarios, (2) the specification is a valid reflection
of user requirements, (3) the derivation of early design artifacts such as low fidelity prototypes is
possible. The new model extends the UCMs to accommodate four dimensions of requirements
including the task, the dialog, the structure, and the usability of the user interface. New notations
are introduced to provide UCMs with more expressive power for interaction design. As a
consequence, the extended UCM helps not only describe the sequence of tasks and dialogs that
can take place between the user and the system but also assists to understand and reason about the
requirements of the user interface, including usability aspects. Future work includes more
investigation on formalizing the requirements according to the UIUR model.

References

Alsumait, A.; Seffah, A.; Radhakrishnan, T. (2002), Use Case Maps: A Roadmap for Usability
and Software Integrated Specification, In: Proceedings of IF IP World Computer Congress
2002, August 25-30, Montreal, Canada.

Buhr, R. (1998), Use case maps as architectural entities for complex systems, IEEE Transactions
on Software Engineering, 24(12), 1131-1155

Constantine, L.; Lockwood, A. (1999), Software for use: a practical guide to the models and
methods of usage-centered design. Reading, Massachusetts: Addison-Wesley.

Forbrig, P. (1999), Task and object-oriented development of interactive systems - how many
models are necessary? In: Proceedings of Design Specification and Verification of Interactive
Systems Workshop-DSVIS'99, Braga, Portugal, 225-237.

Jarke, M. (1999), Scenarios for modeling. Communications of the ACM, 42(1), 47-48.

Seffah A., J.A, Pool Combining UCMs and Formal Methods for Representing and Checking the
Validity of Scenarios as User Requirements, to appear in interact 2003. Human-Centered
Software Engineering Technical Paper 01-0203, Concordia University

Sutcliffe A.G., Maiden N.A., Minocha S. & Manual D. (1998), Supporting scenario-based
requirements engineering. IEEE Transactions on Software Engineering, 24(12), 1072-1088.

Weidenhaupt K., Pohl K., Jarke M. & Haumer P. (1998), Scenario usage in system development: a
report on current practice, in Proceedings of the International Requirements Engineering
Conference (ICRE '98).

A Socio-centric Model of User Interactions

David Ambaye

Interaction Design Group (IDC),
Middlesex University, London, UK

d.ambaye@mdx.ac.uk

Abstract

The investigation described in this paper is motivated by the paucity of socio-centric models of
user behaviour in relation to complex interactive systems such as collaborative technologies. It
argues that existing approaches to modelling users, such as those underlying task based
techniques, do not take sufficient account of the psychological and social issues surrounding the
usability of such systems. This fundamental weakness means that user-interface design and
evaluation are currently less holistic and effective than they ought to be. Two key premises are
thus presented. The first is that such holistic models form a proper basis for creating more
effective evaluation tools. The second is that the construction of such models needs to be rooted in
empirically derived understanding of interactions which occur between users and collaborative
systems. The paper reports on results from an empirical study of users interacting with
collaborative technologies known as groupware, where social and psychological issues are often
as important as other factors. It describes the research framework underlying a multi-method
ethnographic case study and summarises the observations.

1 Introduction

Few will dispute that collaborative software implementations such as groupware commonly fail to
fulfill both end-user and organisational expectations. Where failures have occurred, it is not
unusual to find that commentators and users alike point to root causes that have multifarious
socio-technical and psychological dimensions. This is not surprising in light of the fact that
collaboration or teamwork is a social phenomenon, and that collaborative technologies are aimed
at enriching activities that occur within such a context. This paper argues that such difficulties are
largely the result of a paucity of understanding of how7 users are really likely to behave when
interacting with such systems. Poor understanding makes it difficult to create effective
collaborative systems, in terms of users' and organisational needs. The result is that organisations
resist such technologies because they feel them to be constraining, instead of augmenting and
supporting their 'natural' communication and co-ordination processes. Moreover, systems which
appear to have few usability problems during design and evaluation, can prove awkward to use
and learn when placed in real work contexts (Pinelle & Gutwin, 2000). The importance of getting
to grips with this issue cannot be underestimated. The drivers within the business world for the
development and utilisation of collaborative technologies are unlikely to lessen with time.
Organisations are likely to continue to restructure using a variety of team constructs, and
globalisation is unlikely to decrease. Consequently, organisations will come to rely on such
technologies as critical technological levers for augmenting the creative and productive potentials
of teams and individuals. Such technologies will also be useful in the transitional role, enabling
organisations to cope with the downsides of rapid changes, which are increasingly becoming the
norm. Sudden change in structure or environment can have a chaotic effect on existing intra-team
co-ordination and communication strategies. Inspite of early hopes, the simpler types of

groupware such as e-mail, video-conferencing and shared diaries appear to have gained significant
foothold within the workplace today. In sharp contrast, technologies which have a more rigourous
dependence on principles of team collaboration, such as work-flow systems, group decision
support systems, shared document editing and application sharing systems appear to be much less
successful.

2 Evaluation Implications

There are two main conclusions to be drawn from the above discussion. The first is the pressing
need to develop new approaches and techniques which are better suited to assessing the usability
of technologies oriented towards teams. The second is that such assessment approaches and
techniques must be firmly rooted on improved understanding and identification of the critical
social, psychological factors and mechanisms that can contribute to the success or failure of such
implementations. Success in this respect will mean that designers and usability experts can feel
confident that they are designing team-aware technologies which fulfill functional, psychological
and social needs of teams and individuals in organisations (Baker, 2002). The next section
describes results from an investigation which attempts to assist the aforementioned objectives. In
particular, it describes the 3 Phase model which characterises observed interactions between team-
base users and a variety of collaborative technologies.

2.1 The research framework
Users in three organisations were observed over a period of four years. An ethnographically
derived analytical framework known as 3D was utilised to structure the observations. In brief, 3D
attempts to relate system usability to individual and team effectiveness (Ambaye 2002). The
framework postulates the existence of three usability components: Individual-empowerment,
Productive-empowerment and Cultural-empowerment. Taken together, these represent
psychological, productivity and social impacts of technology intervention on the effectiveness of
team-based users. This made it possible to categorise observed usability issues into one or more
of these components. The insight gained from applying the 3D framework has led to the
identification of three key emergent properties about how users may interact with collaborative
technologies. That is, the bulk of interactions observed in this investigation exhibited three key
characteristics:

• Team attributes were transformed in different ways through the intervention.
• The interaction between groupware and users occurred in temporally differentiated phases

which were directional, inter-dependent and cyclic.
• Perceived net-benefit was the main motivation that sustained and encouraged user

commitment towards a system.

2.1.1 Property 1: Team Attributes are Transformed
When collaborative technology is introduced into a team, team members and the team as a
collective may begin to undergo a process that changes many existing attributes, as well as causing
the development of new ones. For instance, it may necessitate team members learning new skills,
re-negotiating existing working relationships, adopting new norms, communicating differently and
generally experiencing changes to the nature of their work activities.

2.1.2 Property 2: The Existence of Temporally Differentiated Phases
The quality of interactions between the technology and users appears to be dependent on, not only
the impact a system has on users, but also when it has this impact. For instance, the response time

of a video-conference system under extreme conditions (such as large number of users, or
intensive use) is unlikely to be of paramount importance to first-time users. Rather, high in their
minds will be concern about issues such as: leam-ability, ease of use, video and audio quality, as
well as the consequences the system will have on the way they communicate with each other.
Performance under high load conditions, as influential as it can be, will more likely become
important at a later time when:

a) users are in such a position as to exploit and appreciate the full potential of its capabilities
b) there is sufficient load on the system.

However, this is not meant to imply that such factors cannot be important in more than one
'phase' of an interaction. Rather, it is simply a matter of priorities. Issues such as reliability,
underlying task-model or flexibility are important throughout the lifetime of a system, but may
have their most profound impact at particular times and less so in others. This suggests that such
interactions may progress through various inter-dependent, but temporally differentiated, phases.
More specifically, it is suggested that there may be an initial phase, where users learn and explore
the system's characteristics. In subsequent phases, users will evaluate the extent to which they can
rely on the system for augmenting or performing mission-critical tasks and w ill begin to exploit it
according to their conclusions.

2.1.3 Property 3: Perceived Net-Benefit is a Key Driver of Entrainment
The notion of entrainment is introduced here to describe the process of inclusion of and reliance
on, a system for accomplishing routine work. The above examples suggest that the net benefit a
system provides has a great influence on the extent of its entrainment. That is, it greatly
influences users' level of desire to use a system and whether they will continue to rely upon it for
performing routine work. So in the case of a shared diary system, initial usage difficulties
(perhaps because of poor training, policy deficiencies etc.) might prevent a majority of users from
exploring and using the system. In turn, this may lead to a situation where the system cannot gain
the needed critical mass of users (Greenberg, 1991) and by implication critical mass of
information. Not surprisingly, the remaining users find that a shared diary system that is used by
only a small proportion of users (and infrequently), is unlikely to contain information of value to
them. Eventually, they too become non-users.

3 Three Phases of Entrainment (3P)

Taken together the three emergent properties described above form the basis of the 3P interaction
model proposed in this paper. 3P conceptualises user interactions as progressing through three
key phases of development (property 2 above) that are temporally differentiated, directional and
have cyclic characteristics. These are described below.

From system developers' perspective, and in an ideal case, the level of entrainment of a system
and the resulting user experience in Phase 3, will generally be greater than for the other two.
Conversely, the Orientation phase will reflect a stage when systems have the lowest level of
entrainment. Each of these phases is described below. It should be noted that the term 'user' is
utilised here to mean primarily team-based users.

10

3.1 An Orientation Phase
Johansen (1988) observed long ago that a major obstacle to the adoption of groupware is the lack
of understanding of its purpose, or how it can be exploited. The Orientation phase in many ways
conforms to this observation. This is because it is an impressions phase, very much characterised
by whatever initial concerns, questions or opinions team members may have regarding a system.

In this phase, it is not uncommon to find that team member's differing roles, backgrounds and
experiences, lead users to react differently to a given system. As a result the issues of concern
may also differ between users. If a system is being introduced for the first time, then the
Orientation phase reflects first impressions. This may have been gained by observing the way that
others have used the system before, information they have read or heard about the system (such as
product reviews in trade journals) or through an organisational orientation program (i.e. training).
These issues may have even come to mind by simple analogy to previous similar systems users
may have been exposed to. If the system has been in use for some time, this phase largely reflects
impressions based on experiential evidence that users may have gained from previous contact with
the system, in the same or similar roles.

3.2 An Exploration-Evaluation Phase
3.2.1 Phase 2.1: Exploration
One element of Phase 2, Exploration, is intrinsically an experiential stage. It is a stage, where
team members actively investigate in greater detail whether the general impressions and concerns
which were gained in the Orientation phase are well grounded. If users do not perceive any
benefit they are unlikely to enter the Exploration phase. Through this exploration, users may
attempt to determine whether there are any benefits or consequences which have been overlooked.
Many of the issues that users will be eager to investigate further, will be those that were identified
as being important during Orientation. New issues may also emerge that were not considered
previously. The means for attempting to gain this understanding involve, exploratory use, a
training program, or even careful observation of how others are currently implementing the
system. In this phase, users also consider how they could adapt a system's attributes to suit their
own work process. They question what would be involved in terms of maintenance and ease of
use of the system.

3.2.2 Phase 2.2: Evaluation
A process of evaluation is also important in the second phase. Here, team members may make
decisions about what level of entrainment is warranted. This will be mediated in relation to the
experiential and other evidence collected about the system. In this sense, users weigh up the costs
and benefits of entraining the system (if at all), after having appraised how the variety of system
attributes will impact their work. For instance, two important considerations could be: the degree
of changes required to the way that existing tasks are performed and the way that users might have
to re-organise their work life. Based on the costs and benefits identified users make a decision as
to how deeply they will entrain the system into their work. If they are already using the system,
they decide whether they should increase or decrease the level of entrainment. Generally this
exploration and evaluation of a system occurs simultaneously.

3.3 An Exploitation Phase
Here team members begin the process of entraining a system into their work processes according
to the 'contract' details of the preceding phase. Users will begin to exploit whatever attributes of
the system they have decided to entrain. This phase can be characterised as follows:

11

• Users interact with the groupware as per the 'contract1 they concluded in Phase 2.
• System is used here as a part of routine work processes.
• Users input just enough effort to maintain the contract type agreed (relative to Phase 2).

To summarise, each of the three phases described above are depicted together in figure 1. When
the interaction progresses in time from orientation towards exploitation, the directionality of the
phases is such that user understanding and experience of the system increases in each phase.
Moreover, knowledge, experience and attitudes acquired in one phase are likely to influence
others which follow it. Entrainment is highest near the outer circle and lowest at the inner circle.
The outer and inner circles can also be viewed as representing high and low lev els of commitment,
respectively. The dimension of time is depicted by the clockwise arrow. Users will cycle through
each phase (clockwise) on a continuous basis, so long as users continue to entrain the system, even
at a minimum level. This cyclic characteristic also implies that the usability of a system can vary
substantively within the life cycle of a system. That is, each time users interact with a system,
ever changing circumstances will lead to it having a changed level of usability. Results have
demonstrated that representation to discuss and represent conditions under which this cyclic trend
can grow, decrease or terminate.

4 Conclusions

The 3P framework consolidates much of what has been learned from observations of users, in real
contexts. Its potential value as a conceptual and practical analysis tool for gaining insight into the
possible factors and mechanisms surrounding usability problems is currently the focus of a
number of researchers. At a base level, the framework attempts to provide a plausible description
of the essential elements of how users interact were observed to behave when interacting with
groupware. It models these interactions as interactive processes that progresses through several
temporally differentiated phases, that are directional and cyclic. Future work will concentrate on
exploring the generalisability of the key assumptions underlying the framework. In particular,
more work needs to be done in understanding whether the three emergent properties that form the
basis of the 3P framework are plausible. Work also will focus on how to derive practical design
and evaluation tools from the framework.

Figure 1: Three Phases of Interaction

12

Tools for task-based interaction and collaboration analysis

Nikolaos Avouris , Georgios Fiotakis , Nikolaos Tselios , Vassilis Komis
i ^Electrical & Computer Eng. Dept, HCI Group, Early Childhood Educ. Dept.,

University of Patras, 26500 Rio Patras, Greece
{ N.Avouris, Fiotakis, NiTse }@ ee.upatras.gr, komis@upatras.gr

Abstract

An innovative framework of interaction and collaboration analysis is proposed, jointly
with tools to support the process. The proposed framework is based on a collaboration analysis
first and individual task analysis subsequently, approach. The objective of this framework is to
facilitate understanding of the group's and individual user's tasks and goals and associate the
artifacts used with usability problems. An innovative aspect of the framework is the association of
tasks to artifacts (tools) engaged by the users during the activity. The typical use of this framework
is in interactive systems evaluation and design. The framework and the tools functionality are
described in the paper. The framework is inspired by the Activity Theory perspective, which
recognizes the importance of artifacts, actors and the context in which an activity takes place.

1 Introduction

Tools and techniques to support interaction and collaboration analysis have been proposed in the
frame of usability evaluation studies for many years now (Dix et al., 1998, Nielsen 1994). These
techniques involve analysis of data that are collected from field studies in various forms. Stream
media like audio and video, logfiles, as well as notes and comments of observers are used in these
studies. Discrete data items, like files containing solutions to problems, drawings, etc. may also be
used. All these data need to be correlated and processed in order the researchers to extract useful
patterns of behaviour of the actors involved, identify usability and conceptual flaws in the design
of the artifacts used and evaluate the approaches that have been pursued. This analysis process has
become tedious, since the high volume of data has made it more time-consuming and complex.
The need for adequate tools to support the analysis has therefore increased recently. A framework
of interactive systems analysis is proposed in this paper, which involves two complementary
views over an activity involving multiple actors, supported with relevant tools:
(a) The first one concerns analysis of collaboration, which involves collection of field data,
annotation of these observations and building of an abstract description of observed collaborative
task execution. A tool has been built for annotation of data and building of abstract multi-level
annotated views. This tool (Collaboration Analysis Tool, ColAT) bears interesting characteristics
among which the support for various annotation schemes, the capability to commend and annotate
at various levels of abstraction a sequence of events, interrelation of multiple media (video, audio,
log files, snapshots) to the multilevel annotation and to the cognitive structures built through the
second view.
(b) The second view is a cognitive one, which involves building of typical task structures, as
anticipated by the designers of the artifact (e.g. the computer tools that are used in the activity),
subsequently relating the observed task execution to the anticipated model by individuals who
participate in the activity. A tool has been built to support this task-based approach, the Cognitive
Modelling Tool (CMTool), also described in (Tselios & Avouris 2003). Analysis characteristics of

13

task models are stored in the CMTool database, together with qualifying information. The
possibility of analysing further the observed system usage according to a number of dimensions
permits evaluation of the artifacts both in terms of usability and effectiveness.
The proposed framework and analysis tools have been applied in non-routine task domains
(Tselios & Avouris 2003). The findings reported indicate the effectiveness of this structured
technique in identifying usability and interaction design problems. In the reported studies, we
focused on analysis and evaluation of collaborative tasks, involving a number of indiv iduals and
artifacts engaged in problem solving either at a distance or in the same place. The ethnographic
methodological approach used in the evaluation studies of this nature proved to be compatible to
the proposed theories underlying the framework and the tools.

2 Analysis of observed collaborative activity

The first phase of analysis involves collaboration analysis study. A new integrated environment of
analysis, the Collaboration Analysis Toolkit (ColAT), which integrates multiple sources of
behavioural data of multiple logging and monitoring devices is used in this phase. The main
emphasis of the ColAT environment is on the analysis of situations involving more than one
actors. Special attention has been put on scenarios of synchronous computer-supported
collaborative problem solving, in which the actors are spatially dislocated, a factor which imposes
additional complexity in the analysis task.
The most important phase of analysis relates to the interpretation and annotation of the collected
data, as well as generation of aggregate data of interpretative nature. An innovative feature of the
ColAT approach is the support for creation of a multi-level structure that describes and interprets
the logfile events. In figure 1 the concept of the multi-level logfile is shown.
The original sequence of events contained in the master logfile is level 1 (events level) of this
multilevel structure. The keystrokes or raw observations are included in this level. An example is
the event "User X selects option Y from the menu" or "User Z said"in case of a dialogue event.
A number of such events can be associated to an entry at level 2 by the analyst. Such an entry can
have the following structure:

< ID, User, entry _type, comment >
where ID is a unique identity of the entry, type is a classification of the entry according to a
typology that has been defined by the researcher, followed by a textual comment or attributes that
are relevant to this type of task entry. Examples of entries of this level are:" User X inserts a link
in the model", or "User Y contests the statement of User Z". In a similar manner the entries of the
higher levels are also created, which describe the activity at the strategy level as a sequence of
interrelated goals of the actors involved.
An implication of this approach is that the associated stream media are related to this multi-lev el
view of the activity and therefore the user of ColAT can decide to view the activity from any level
of abstraction he/she wishes. This approach results in a powerful analytical tool, since the
possibility of viewing a process from various levels of abstraction supports its deeper
understanding and interpretation.
A "ColAT project" is stored in a database to facilitate processing and navigation of the source data
and annotations. The integrated logfile can be exported in XML form to other applications and
data processing tools for further analysis. The main activ ity of this phase involves creation of the
higher-level logfile entries. In these higher levels of the logfile the typology of the Object-
Oriented Collaboration Analysis Framework (OCAF), see (Avouris et al. 2003a), has been used.
This framework is particularly suitable for analysis of collaborative activ ity, which involves
interleaving of actions and dialogue. OCAF puts emphasis on the objects of the jointly dev eloped
solution. Every object is assigned its own history of events (actions and messages) related to its

14

existence, as a sequence of events according to the following functional types: I = Insertion of the
item in the shared space, P= Proposal of an item or proposal of a state of an item, O Contestation
of a proposal, R= Rejection / refutation of a proposal, X= Acknowledgement/ acceptance of a
proposal, T= Test/Verify using tools or other means of an object or a construct.

Figure 1: Overview of the ColAT data navigation environment

As an example of an OCAF event, the introduction of a new object in the shared space, is
indicated as Object (X)= Iw, i.e. User 1 inserted the object (X) in the shared space.
The ColAT environment that supports navigation of the constructed multilevel logfiles is shown in
figure 1. A video window permits viewing of streaming data in association to selected events in
any level of the logflles. There are different modes of use of this environment: In the first mode,
navigation is controlled through the video. When a position of the video file is selected, the
corresponding event of the log hierarchy that the video is related to, is highlighted. In the second
mode, navigation is controlled from the logflles. In this case the user can select any event in the
first level of the log file and the video starts from that event onwards.
The user can hide the levels of abstraction he/she wishes to ignore, thus defining the desired view
over the field data. The ColAT navigation tool has been proven particularly useful in analysing the
data of reported experiments (Avouris etal. 2003b), following the OCAF framework.

3. The task analysis of individual actors

During the second phase, each individual actor is studied in relation to the tasks she undertook and
the goals she attempted to accomplish. The task analysis method adopted is the Hierarchical Task
Analysis (HTA), proposed by Shepherd (1989), accordingly modified, as discussed here. The
intention is to build a conceptual framework reflecting the way the user views the system and the
tasks undertaken in order to accomplish set goals. So the main objective of our analysis is to
reflect on the observable behaviour of users and identify bottlenecks in the human-system
dialogues rather than explicitly understand the internal cognitive processes as one performs a
given task. So we include in our analysis, even incorrect problem solving approaches, caused

15

either by limitations in the provided tools design or by conceptual misunderstandings related to
domain knowledge and use of available tools. These errors may lead to not satisfactory solutions
to a given problem, but often do contribute to better and deeper understanding of concepts.
Through the proposed task analysis technique, the typical or expected use of the software
environment by each individual user is reduced, to a sequence of tasks. However, this task
analysis can be achieved if the right level of abstraction is used, as fed from the previous phase of
the study. Kirwan and Ainsworth (1992) and Boy (1999) show methods of accomplishing this.

Figure 2: The Cognitive Modelling Tool (CMTool) Environment

One important aspect of our analysis framework is the classification of observed unexpected or
incorrect user behaviour, see Tselios et al. (2002) and Tselios & Avouris (2003). Through the
application and analysis of this technique, we have identified and classified five main categories of
errors: Severe syntactic error. Minor syntactic error. Conceptual error. Inconsistency. Design
principle violation. These errors can be identified during observation and analysis of problem-
solving activity during this phase. Also in plans (Shepherd, 1989), simple expressions are included
such as (!) and (x!) to denote subtasks containing errors, and { } to indicate occurrence of
unforeseen tasks according to the original designer model.
Display of an annotated log file at selected level of abstraction, shown on the left of fig. 2, next to
the task model structure, is supported. So both interaction details and cognitive goal hierarchies
are displayed simultaneously to the user of CMTool. Task models are stored in a relational
database, grouping the various tasks analysed, with additional identification information
(designer's model or revised designer's task model (DTM) or user's task models (UTM)). In
addition, quantitative analysis tools are supported to extract useful metrics related to the analysed
tasks. Examples of these metrics are the number of keystrokes required to achieve a specific goal
or sub-goal, the mean time required and the interaction complexity of specific user model,
compared to the original designer's expectations or to the revised and adapted model.
In CMTool, the evaluator can select parts of a task structure representing a specific problem
solving strategy, which can be stored for future reference or comparison with other users'
strategies. In addition, the possibility to analyse system's usage in five dimensions is a
contribution of the tool to the evaluation process. These are: (i) High level tasks, (i i) users, (i i i)
specific strategies, (iv) tools used, (v) usability problems detected. This process is carried out
through a visual information query environment. Field experiments could be analysed across any
possible element of the five different dimensions discussed (e.g. "Show all encountered problems

16

related to tool X", etc.). Complex analysis can be carried out according to any of these dimensions,
supporting study and analysis of encountered problems.

4 Conclusions

This paper describes the main functionality of tools to support multilevel analysis of field data
collected during evaluation studies of group collaboration. Both ColA T and CMTool have been
recently applied in evaluation studies of group problem solving activities. The theoretical
underpinning of this approach is Activity Theory (Kaptelinin etal. 1999). This is a conceptual
approach, that considers as the unit of analysis the activity, consisting of a subject (an individual
or group), an object or motive, artefacts, and sociocultural rules. Understanding thus human
activity requires a commitment to a complex unit of analysis. The multi-view approach proposed
covers this aspect. In the proposed framework we move from the group level analysis to the
individual human-computer interaction study in a smooth way. The multi-level annotation scheme
described here permits change of point of view and relates the observational data to the
annotations. These annotations can comply with a typology imposed by a methodological
framework, like the OCAF scheme used in our example. The framework permits shifting from
bottom up annotation of group activity data to top-down task level description of the observed
human-computer interaction
The concepts and tools discussed here are relevant to researchers who are involved in analysis and
evaluation of complex collaboration-support activities, in design and evaluation of new tools and
in support of users' meta-cognitive activities.

Acknowledgement

Partial funding of project IST-2000-25385 ModellingSpace, by the EC is acknowledged.

References

Avouris N.M., Dimitracopoulou A., Komis V., (2003a). On analysis of collaborative problem
solving: An object-oriented approach, Computers in Human Behavior, 19 (2), March, pp. 147-167.

Avouris N., Komis V., Margaritis M., Fiotakis G., (2003b). Tools for Interaction and
Collaboration Analysis of learning, Proc. Conf. CBLIS 2003, July, Nicosia, Cyprus.

Boy, G. A. (1998). Cognitive Function Analysis. Ablex Publ., Greenwood, Westport, CT, USA.
Dix A., Finlay J., Abowd G, Beale R., (1998), Human-Computer Interaction, Prentice Hall
Kaptelinin, V., Nardi B., Macaulay C., (1999). The Activity Checklist: A Tool for Representing

the "Space" of Context, Interactions, July, 27-39.
Kirwan, B. and Ainsworth, L.K. (1992). A Guide to Task Analysis. Taylor & Francis, London.
Nielsen, J., (1994). Usability inspection methods. In J.Nielsen, R.L. Mark (Ed.), Usability

Inspection Methods, John Willey, New York.
Paterno', F. (2000) Model-based design and evaluation of interactive applications, Springer

Series in Applied Computing, Springer-Verlag, London.
Shepherd, A. (1989). Analysis and training in information technology task. In Diaper, D.(Ed.)

Task Analysis for human computer interaction. Ellis Horwood Limited, 15-55.
Tselios N., Avouris N., (2003), Cognitive Task Modeling for system design and evaluation of

nonroutine task domains, E. Hollnagen (ed.) Handbook of Cognitive Task Design, LEA, 307-332.
Tselios N., Avouris N., Kordaki M., (2002), Student Task Modeling in design and evaluation of

open problem-solving environments, Education and Information Technologies, 7:1, 19-42.

17

The Semiotic Engineering Use of Models for
Supporting Reflection-in-Action

Simone D. J. Barbosa, Clarisse Sieckenius de Souza, Maira Greco de Paula

Departamento de Informatica, PUC-Rio
Rua Marques de Sao Vicente, 225

Gavea, Rio de Janeiro, RJ
Brasil, 22453-900

{simone, clarisse, mgreco}@inf.puc-rio.br

Abstract
Diverse models have been proposed to cope with the complexity of HCI design and increase
software usability, most of them based on cognitive theories. In this paper, we argue for the need
of complementary theories of HCI and present an alternative set of HCI design representations and
models based on Semiotic Engineering. These comprise extended scenarios and task models, and a
novel semiotically-based interaction model. In the latter, signs and communication breakdowns
handle cohesion and coherence issues for prospect conversations between users and the designer's
deputy - an entity capable of participating in all and only the designed conversations. Our goal is
to empower designers, supporting reflection about their interactive solutions.

1 Introduction
Diverse models have been proposed to represent HCI design, taking into account users'
characteristics, preferences and needs. Most of them are based on cognitiv e theories (Norman &
Draper, 1986). They focus mainly on the individual interacting with an application, considering
his/her physical (motor and perceptive) and mental processes. Their main goal is to understand
how these processes take place during interaction, in order to predict and avoid possible cognitiv e
problems. But software applications are intellectual artifacts, resulting from designers'
understanding, reasoning, and decision-making processes. Thus, we should support not only the
designers' intellectual processes (Schon, 1983), but also the expression and usage of such
processes' results through the user interface. This double enterprise is the object of study of
Semiotic Engineering (de Souza, 1993; de Souza, in preparation). In this paper, we describe how a
specific set of representations and models can support HCI design. We are concerned with
building a coherent and cohesive overall interface message, attempting to maximize the chances
that intellectual artifacts such as software will be interpreted as meant. As is the case with all
interaction about what goes on in one's mind, HCI should support conversation, even if non-
textual codes are extensively used to convey the designers' ideas and the products' affordances.

Semiotic Engineering views the interface as a designers)-to-users message, representing the
designers' response to what they believe are the users' problems, needs, preferences and
opportunities. In this message, they are telling users, directly or indirectly, what they have in
mind. In fact, user-system interaction is viewed as a conversation between the user and the
"designer's deputy" - a programmed representative of the designer. Since designers are no longer
there at the time such conversations are carried out, they must anticipate every possible
conversation. Thus, the designer's deputy is capable of participating in all and only the designed
conversations.

18

The semiotic engineering of human-computer interaction is focused on building the designer's
deputy, which will be implicitly or explicitly represented in the application's interface. And this
imposes certain additional requirements on design representations and models. For example, we
need to represent the nature of signs that conversational parties may use, the remedial actions for
interaction breakdowns, as well as the potential threads of conversation that can be followed
during interaction. We propose and use a classification of signs to describe every piece of
information relative to some concept in the domain or in the application itself. Signs are extracted
from scenario representations and provide a thread that binds all design models and
representations with the actual user interface. Also, because we take communication breakdowns
as an inherent part of HCI, we aim at helping designers to tell users not only how to perform their
tasks under normal conditions, but also how to ask for help or take remedial action in mistaken or
unsuccessful situations. To this end we propose a classification of communication breakdowns, to
be used in extended task models.

2 Extending scenarios and task modelling
Scenarios can be used throughout the development process, starting from the analysis of the
domain and the users' tasks and characteristics (Carroll, 1995). By means of scenarios, designers
not only learn about the users' vocabulary and thought processes, but they have a chance to make
this knowledge explicit in a language that is accessible to users. When writing scenarios, the
designer should have in mind what the purpose of each scenario is, allowing for user involvement
in: investigating certain aspects of a domain or socio-cultural environment; proposing a task
structure or an interaction solution; contrasting alternative task structures or interaction solutions;
and so on.

Our extension to scenarios is one of adding a semiotic dimension to their use. Designers should
carefully extract from scenarios the domain and application signs that are meaningful to users.
While these signs are usually treated as data, in Semiotic Engineering they acquire a new status.
They are analyzed and classified according to the degree of familiarity users are expected to have
with them. Domain signs are those directly transported from the users' world, such as "full name".
Application signs are those that have been introduced by the application and had no previous
meaning to the user, such as "your login account". Finally, transformed signs are those derived
from an existing sign in the world that has undergone some kind of transformation (e.g. based on
an analogy or metaphor) when transported to the application, such as "backup files".

Different kinds of signs may require different kinds of sense-making support. In general, a domain
sign would only require explanation if specific constraints are imposed by the application. For
example, the concept of "full name" is clear to users, but a restriction about the number of
characters allowed in the corresponding piece of information might not be, and thus need some
clarification from the designer's deputy. A transformed sign would require an explanation about
the boundaries of the analogy. For example, a folder in the desktop metaphor might require an
explanation about its "never" getting full, except when the hard disk which contains it lacks space.
Finally, an application sign may require a complete explanation about its purpose, utility and the
operations that can manipulate it. An example might be a sign for "zooming" in a graphics
application. There are of course some signs that can be classified in either group. In these cases, it
is the designer's responsibility to choose, based on the analyzed characteristics of users and their
tasks, the amount of support to provide in order to have users fully understand each sign.

From such semiotically-enriched scenarios, users' goals are identified and may be structured in a
hierarchical goal diagram. Each goal may be further decomposed into tasks that are necessary to
achieve it. We made simple adaptations to the structure chart notation in order to represent the

19

hierarchical decomposition of tasks, some task properties and relations between tasks, and
discrimination among sequential, alternative, and iterative tasks. We can thus represent tasks that
do not follow a predefined sequence, tasks that may be performed anywhere within the goal,
preconditions for performing a certain goal or task, optional tasks, and stereotypes as a reuse
mechanism.

Our approach is somewhat similar to Hierarchical Task Analysis (Annett & Duncan, 1967), but a
major difference is that our adaptations are specifically suited to represent signs and potential
breakdowns involved in each task. We allow designers to classify and represent the kind of
support they intend to provide in each problematic situation: passive prevention (PP: problems that
are prevented by documentation or online instructions); active prevention (AP: errors that will be
actively prevented by the system); supported prevention (SP: situations which the system detects
as being potential errors, but whose decision is left to the user); error capture (EC: errors that are
identified by the application and that should be notified to users, but for which there is no possible
remedial action within the application); and supported error handling (EH: errors that should be
corrected by the user, with application support).

3 A Semiotically-based Interaction Model
Task models describe the structure and organization of the tasks that will be supported by the
system, but more is needed to promote reflection about how design sense-making and decisions
will be conveyed to users through the interface, for example if explicitly or not, in detail or not.

The interaction model described here was conceived to be applied between the initial analysis and
the interface specification phases. It has shown to be useful in helping designers grasp a global
view of the conversations that comprise the application (Paula, 2003), and thus design a coherent
designer-to-users message, keeping in mind the communicative role of the designer's deputy. It
has a diagrammatic view coupled with a textual specification. The diagrammatic view gives
designers a global perspective on the interactive discourse, promoting reflection by representing
all of the potential user-system conversations. The textual specification delves into the details of
each user-system dialogue, and sets the stage for formal user interface specification.

The interaction model comprises scenes, system processes, and transitions between them. A scene
represents a user-deputy conversation about a certain matter or topic, in which it is the user's
"turn" to make a decision about where the conversation is going. This conversation may comprise
one or more dialogues, and each dialogue is composed of one or more user/deputy utterances. In a
GUI, for instance, it may be mapped onto a structured interface component, such as window or
dialog box, or a page in HTML. Figure 1 illustrates the representation of a scene called Search
documents, which contains two dialogues: [inform search criteria] and [choose presentation
format].

Figure 1: Diagrammatic representation of a scene called "Search documents".

The signs comprised in dialogues and scenes are included in a textual specification. When a sign is
uttered by the deputy, i.e., presented to the user, it is represented by the sign name followed by an
exclamation mark (e.g. date!). A sign about which the user must say something, i.e., which must

20

be manipulated by the user, is represented by a name followed by an interrogation mark (login?,
password?). Apart from signs, the remedial action for each predicted breakdown situation is also
represented. Figure 2 illustrates the textual specification of a "Search documents" scene1:

Search document {
[inform search criteria:

title?, author?, date? ([PP] dd/mm/yyyy)]

[choose presentation format:
format?(table, report)]

Figure 2: Textual representation of a scene, including its corresponding signs.

Going back to the diagrammatic view, in it a system process is represented by a black rectangle.
By using "black-boxes" for representing something users do not perceive directly, we encourage
the designer to carefully represent the deputy's utterances about the results of system processing,
as the only means to inform users about what goes on during interaction.

Transitions are changes in topic, and are represented by labeled arrows. An outgoing transition
from a scene represents a user's utterance that causes the transition, whereas an outgoing transition
from a process represents the result of the processing as it will be "told" by the designer's deputy.
In case there are pre- or post-conditions, they should be represented within the transition label,
following the keywords pre: and post:, respectively.

Some scenes may be accessed from any point in the application, i.e., from any other scene. The
access to these scenes, named ubiquitous access, is represented by a transition from a grayed scene
containing an identifier in the form U<number>. Moreover, there are portions of the interaction
that may be reused in various diagrams. Figure 3 presents a diagrammatic representation of part of
an interaction model corresponding to a goal of searching documents.

Figure 3: Sample interaction diagram.

The complete definition of the textual specification may be found in (Paula, 2003)

21

4 Concluding remarks
The semiotically-enriched scenarios and the proposed interaction model are epistemic design
tools. They support Schon's reflection in action epistemology (Schon, 1983) in that they explicitly
represent dimensions of semiotic classification for communication-centered design. The centrality
of communication and the importance of conversational affordances are justified by the
intellectual nature of software, be it in the traditional format of desktop applications or in
contemporary applications for mobile devices. In both, signs (visual, textual, gestural, aural, etc.)
must be used to convey ideas, create conventions and facilitate usage. The proposed epistemic
tools are so formatted that the construction of storyboards and prototypes should be as
straightforward as in the case of other popular notations.

Semiotically-enriched scenarios support communication with users, allowing for the identification,
exploration and verification of the application's purposes as far as designers and users are
concerned. Signs bring attention to what is known and unknown, what remains the same and what
is changed, what new language(s) or conventions must be learned, and so on. The extended task
model incorporates elements that are crucially important for sense-making, namely the kinds of
actions that handle breakdown situations. And the interaction model expands a blueprint of the
potential conversations that may be carried out between the user and the designer's deputy during
interaction. They help designers gain a sense of what are all and the only conversations (or
communicative exchanges, to incorporate non-textual interaction) that the designer's deputy is
equipped to entertain.

The design models under investigation have been used in the design of some Web and Windows
applications, and in undergraduate class assignments. We have gathered some informal indications
that they succeed in promoting the designer's reflection and as a result help produce better
interactive applications. However, further studies are necessary to provide stronger evidence.

Acknowledgments
Simone D.J. Barbosa and Clarisse S. de Souza thank CNPq for providing financial support to this
work. Maira Greco de Paula thanks CAPES for the scholarship granted for her M.Sc. program.

References
Annett, J., & Duncan, K. D. (1967). "Task analysis and training design". Journal of Occupational

Psychology, 41,211-221.

Carroll, J. M. (ed) (1995). Scenario-based design: envisioning work and technology in system
development, New York, Wiley.

de Souza, C.S. (1993). The Semiotic Engineering of User Interface Languages. International
Journal of Man-Machine Studies, 39, 753-773.

de Souza, C.S. (in preparation). The Semiotic Engineering of Human-Computer Interaction.

Norman, D. e Draper, S. (eds., 1986) User Centered System Design. Hillsdale, NJ. Lawrence
Erlbaum.

Paula, M.G. (2003) Projeto da Interacao Hurnano-Computador Baseado em Modelos
Fundamentados na Engenharia Semiotica: Construe, ao de urn Modelo de Interacao (in
Portuguese). Master's dissertation. Departamento de Informatica, PUC-Rio, Brazil. Available
online from http://www.serg.inf.puc-rio.br/

Schon, D. (1983). The Reflective Practitioner: How Professionals Think in Action. New York:
Basic Books.

22

Levels of Guidance

Andrew Basden

Information Systems Institute, University of Salford,
Salford, M5 4WT, U.K.
A.Basden@salford.ac.uk

Abstract

Many sets of guidelines have been offered for, for example, web site design. But how complete
are they? Often their categories overlap or lack an ordering principle. This paper shows how
philosophy (that of Hart and Dooyeweerd) can be used to identify guidelines and their categories
for web site design.

1 Introduction: Categories of Guidelines

Sets of guidelines for designing user interfaces, web sites, etc. abound. But, after using them for
some time, we find ourselves wondering whether they cover everything important, we find the
categories within some sets overlap or seem haphazard. This paper suggests a framework that can
help us critique and refine categories of guidelines that is based on philosophy. We focus on the
UI found in web sites, but at the end suggest how the framework may be extended to guidelines
for other types of software.

The Evidence-Based Guidelines on Web Design and Usability Issues by the National Cancer
Institute (NCI, 2003), contains 60 guidelines in the categories: Design process, Design
considerations, Titles and headings, Page length, Layout, Font/text size, Reading and scanning,
Links, Graphics, Searching, Navigation, Software and hardware, Accessibility. But these
categories exhibit problems by virtue of having been assembled from empirical findings and the
preferences of individuals found in other sources. Considerable overlap is evident, e.g. between
Links, Navigation and Search, and some guidelines, e.g. "Establish a high-to-low level of
importance for each category ..." occurs several times. The categories are not homogeneous
(properties of site mix with user and design activity) and their order appears haphazard. We need
categories in which the ordering principle is clear, not only to minimize overlap, but to allow us to
judge, as guidelines proliferate, whether new categories are needed or categories may be merged
or split.

The Web Content Accessibility Guidelines 2.0 (W3C, 2003) contains 21 guidelines under the
categories: Perceivable, Operable, Navigable, Understandable, Robust. Though there is no
overlap, their content is unbalanced in scope and depth. Navigable, for example, has six guidelines
('checkpoints') of general applicability while Operable has only three, all relevant only to
specialised conditions. We also wonder whether other categories should be included, covering
such issues as aesthetics, quality of content and cultural acceptability. We need categories that take
on their intuitive meaning, are balanced in scope and depth, and cover all important issues of web
site design.

23

2 Philosophy

Categorization involves ontological commitment. Hart (1984) has argued that, only philosophy,
which concerns itself with the diversity and coherence of our experience, can provide us with both
wide coverage and an ordering principle, and explores the philosophy of the late Dutch thinker.
Herman Dooyeweerd (1955). We cannot rehearse his arguments here, but will examine how this
philosophy can provide categories of guidelines. Dooyeweerd's ideas are interesting because he
radically questioned the presuppositions underlying Western thinking and constructed a
philosophical approach based on Meaning-oriented presuppositions that, while still in need of
some refinement, is breathtaking in its scope and diversity.

2.1 Aspects

Perhaps the best known portion of Dooyeweerd's thought is his notion of irreducible aspects. Each
aspect has a set of laws that enable meaningful functioning. Based on long reflection on both day
to day living and scholarly writing, Dooyeweerd offered the following suite of aspects (though he
made it clear his suite was to be criticised and refined):

• Quantitative aspect, of amount
• Spatial aspect, of continuous extension
• Kinematic aspect, of flowing movement
• Physical aspect, of energy and mass
• Organic aspect, of life functions and maintenance of organisms
• Sensory/psychic aspect, of sense, feeling and emotion
• Analytical aspect, of distinction, abstraction
• Formative aspect, of history, culture, creativity, achievement and technology
• Lingual aspect, of symbolic meaning and communication
• Social aspect, of social interaction, relationships and institutions
• Economic aspect, of frugality, skilled use of limited resources
• Aesthetic aspect, of harmony, surprise and fun
• Juridical aspect, of'what is due', rights, responsibilities
• Ethical aspect, of self-giving love, generosity, care
• Pistic aspect, of faith, commitment and vision.

While the earlier (at least first four) aspects have determinative laws, the later aspects are
normative, enabling freedom in our functioning but acting as guides for it. Guidelines may be seen
as verbal expressions of selected norms in the aspects. To Dooyeweerd, human activity and life
involves, in general, every aspect, in rich coherence. This includes using a web site. He claimed
that human activity works well when we function well in all aspects. Thus the web site works well
only if the user functions well in every aspect when using it. No aspect, nor its laws, may be
reduced to any other. This gives multiple levels of design freedom. But it also means we cannot
assume that good functioning in one aspect will automatically engender good functioning in any
other. So designers must consider each and every aspect in which the user will function and. since
much of our aspectual functioning is tacit (Polanyi, 1967), care must be taken not to overlook the
less obvious aspects.

The first proposal in this paper is that guidelines for web site design can be based on the norms of
the aspects of the user's use of the web site, which also provide useful categories for grouping
them. Being irreducible, each aspect provides a distinct level of analysis.

24

3 Identifying the Aspects of Web Site Use

But how do we identify which these aspects are? Normally, we use a web site for some purpose in
life, such as finding legal advice so that we might challenge genetically modified crops. We must
separate the aspects that are contingent on the purpose (which in this case include the juridical,
biotic and economic) from those of web browsing itself, those of searching, scanning, reading,
understanding, etc., which pertain across all purposes. (The set of contingent aspects, as we will
call them, might overlap with the set of aspects of web browsing.) To identify the aspects of web
browsing itself, we make use of three further elements of Dooyeweerd's thought.

First, in many human activities, especially specialised activities carried out for wider purposes as
web browsing is, one aspect is of primary importance; Dooyeweerd called this the qualifying
aspect. It is the lingual aspect that qualifies web browsing (and indeed most texts,
communications, etc.) because, whatever its purpose, its role is to convey meaning via symbols.

Second, Dooyeweerd claimed that proper functioning in any aspect depends on and involves
proper functioning in earlier aspects. The lingual aspect, therefore, depends on the formative,
analytical, sensory/psychic aspects. (We start at the sensory because it is where medium
differentiates into visual, aural and haptic, but a more detailed treatment would continue back at
least to the physical aspect.) These aspects correspond approximately with the levels found in
linguistics: semantics, syntax, lexics and sensory.

Third, each aspect contains 'echoes' of all the others that anticipate later aspects and retrocipate
earlier ones. Often, an aspect anticipates most strongly the one that follows it, paving the way for
it. Thus the lingual aspect strongly anticipates the social; so cultural context is important in
interpreting text etc.

Our second proposal is that in the case of web sites the relevant aspects for which we must provide
guidelines, the 'levels' of guidance, are the sensory/psychic, analytical, formative, lingual and
social, and the contingent aspects taken as a single category.

4 Aspects of a Web Site: Levels of Guidance

The sensory/psychic aspect is about sensing (seeing, hearing) and feeling (emotion). This offers us
guidelines about matching UI devices used with the sensory capabilities of people. Thus both NCI
and W3C sets contain guidelines about colour, colour blindness, sound, flicker, etc. Hardware
considerations can be of this aspect, since it is phenomena that emerge from hardware that we
sense. Long download times, while sometimes having economic repercussions, is mainly an
annoyance to users, so guidelines about this are usually expressions of the norm of feeling. Page
layout has a sensory aspect, but is an example of a multi-aspectual guideline that speaks of how
one aspect of the web site facilitates another; see below.

The main norm of the analytical aspect is that we should be able to make clear distinctions that are
meaningful. Thus the W3C guideline, "Ensure that foreground content is easily differentiable from
background for both auditory and visual presentations" expresses this norm, as do the NCI
guidelines, "... Headings provide strong cues ..." and "Always use underlines or some other visual
indicator ... to indicate that words are links." Guidelines about font size, graphics, screen
resolution, etc. where the thrust is about helping the user distinguish things express this norm.
Guidelines about helping the user to identify structures in meaning anticipate the next aspect.

25

The formative aspect is about formative power. Part of this focuses on structure. To understand the
site, users of a web site form their own structured mental model of its content, and this is
facilitated if the syntactic structure of the site supports its content. The NCI guideline "Put as
much important content as close to the top of the hierarchy as possible" is an expression of this. So
are those about splitting into paragraphs, sections and subsections (for which the headings are
analytical-aspect cues), about how pages are linked, etc. Part of this aspect is to do with
achievement. A major area of achievement in web site use is finding relevant knowledge.
Therefore guidelines about helping the user find the knowledge they want are expressions of the
norms of this aspect.

Dooyeweerd maintained that though the aspects are distinct, they 'resist' being separated from one
another, because they were meant (by their Creator) to form a coherent spectrum of Meaning. So it
is often difficult to clearly identify under which aspect a guideline belongs because it seems to
have several aspects. Such guidelines concern how earlier aspects provide the means by which
later aspects may be implemented, and how later aspects provide the purpose for implementing it
in the earlier aspects. As mentioned above, page layout has several aspects. Sometimes it is
aesthetically important, but most guidelines about it focus on how layout (itself of the sensory
aspect) can help the user distinguish what is important to them (analytical aspect) and thus reflect
the structure of the content (formative aspect). Recognising the various aspects in even a single
phenomenon like this helps us in des ign of that phenomenon.

The lingual aspect concerns meaning conveyed by symbols, and is the primary aspect of web sites.
As one guideline (NCI) says, "Content is the most critical element of a Web site." Some general
guidelines exist, such as NCI's "Use only graphics that enhance content or that lead to a better
understanding of the information being presented" and W3C's "Write as clearly and simply as is
appropriate / possible for the purpose of the content." But the norm of conveying meaning goes
further. Content should be accurate, consistent, interesting, relevant, polite, coherent, etc.; some of
these are Grice's (1967) maxims. Such quality issues are seldom expressed as guidelines, but
perhaps they should be.

The social aspect concerns social interaction and institutions. While web sites might help towards
these, the aspect's importance in web site design lies in it being strongly anticipated by the lingual
aspect. Cultural assumptions, expectations, etc. of the reader determine how the reader interprets
content, and are often of a tacit nature, so misunderstandings or offence can occur. The norm for
site designers is "Consider the person who will read this; do not be satisfied with just conveying
information." This aspect urges us to be careful and creative in use of humour (thus anticipating
the aesthetic aspect).

NCI offers guidelines about site goal, such as "Provide useful and usable content that supports the
Web site goal on each page." But does this refer to a communicative goal of what information is
conveyed or the goal of the user in accessing the site? Though usually not made clear, it is a
crucial difference. A communicative goal is covered by the aspects above, but the user's goal is
covered by the contingent aspects. Guidelines need to be made for each contingent aspect. When
the designer knows the purpose(s) for which the site will be used, then the contingent aspects can
be identified, and guidelines devised that will express their norms. For example, for a site that will
be used to give legal advice to campaigners, juridically-oriented guidelines might be useful, such
as "Because it will be used in courts of law, be particularly careful about the accuracy and
completeness of the content." But for many sites the uses may be diverse and not clearly known in

26

advance. So contingent-aspect guidelines will be more general, such as, for the ethical aspect, "As
far as possible, steer the user towards ethical rather than anti-ethical use of the information."

5 Discussion

We have shown how Dooyeweerd's (1955) theory of aspects can help identify categories of
guidelines for web site design, and also how, by considering each aspect in turn, we can be
stimulated into devising specific guidelines for aspects we might have overlooked. Our two-part
proposal is that guidelines are expressions of the norms of relevant aspects, and that we can
identify these as: the qualifying aspect, some of its preceding ones, its immediate successor, and
the set of contingent aspects considered as one.

By doing this, we avoid the problems identified earlier. The clear principle behind the categories is
to include relevant aspects that form the framework of Meaning for human activity, and the order
among the categories is that of the aspects. Minimizing overlap between categories is ensured by
the irreducible distinctness of the aspects. Some guidelines are multi-aspectual, so may be
included in several aspects, but there is now a rationale for such duplication. Categories based on
aspects are all of wide scope, none being applicable only in very specialised situations, but the
aspects offer us a framework for considering specialised situations. And, because Dooyeweerd
claimed that the kernel meanings of the aspects may be grasped intuitively, the categories take on
their intuitive meaning. Finally, by reference to the aspects, we have a scheme that can 'tap us on
the shoulder' when we have overlooked something important.

A similar approach might be used to provide guidelines for other types of software: devise
guidelines that express norms of its qualifying aspect, and those nearby. For example, computer
games are qualified by the aesthetic aspect, of surprise, play and fun, which is preceded by the
economic aspect of limited resources (as seen in the importance to many games of limiting
players' resources of ammunition, stamina, time, etc.). The approach outlined here shows
considerable promise and is worthy of further research.

References
Dooyeweerd, H. (1955). A New Critique of Theoretical Thought. Ontario: Paideia Press.

Grice, H.P. (1967). Logic and conversation. In Cole, P., Morgan, J. (Eds) Syntax and Semantics
Vol 3. New York: Academic Press.

Hart H, (1984), Understanding Our World: An Integral Ontology, University Press of America.

NCI, (2003). Evidence-Based Guidelines on Web Design and Usability Issues. National Cancer
Institute, Retrieved January 31, 2003 from http://usability.gov/guidelines/.

Polanyi, M. (1967). The Tacit Dimension. London U.K.: Routledge and Kegan Paul.

W3C. (2003). Web Content Accessibility Guidelines 2.0. Retrieved January 31, 2003 from
http://www.w3.org/TR/WCAG20/.

27

Guidelines and Freedom in Proximal User Interfaces

Andrew Basden

Information Systems Institute, University of Salford,
Salford, M5 4WT, U.K.
A.Basdenfesalford.ac.uk

Abstract

There is a tension between guidelines and freedom. It arises from certain philosophical
assumptions that we do well to question. An alternative view of freedom as 'ability to respond
appropriately to the diversity of the situation' is considered. It is shown how this can work out
within the guideline principles of Proximal User Interface for three classes of software.

1 Introduction: Guidelines and Freedom

Guidelines for the design of user interfaces (UIs) - such as style guidelines - can provide a
coherent look and feel to software across a platform, so that novices quickly become familiar with
new software. But they can be restrictive, constraining the design in unnecessary and inappropriate
ways. This is especially so when the user progresses from being a novice to an everyday user.
Somehow, we need to relate freedom to guidelines in such a way that both have appropriate power
and both are meaningful.

There are two main ways to approach the issue of freedom: 'freedom from' and 'freedom to1. The
'freedom from' view is epitomised by the British thinker Hobbes' stress on personal freedom from
interference and the German thinker Habermas1 norm of emancipation from unwarranted
constraints, as adopted by the critical system community (Lyytinen & Klein. 1985). In this view,
guidelines can be seen as interference and constraint, and thus inherently opposed to freedom. But
it often results in antinomy; as seen in Hobbes' monarchial Leviathan and in the paradox of
enforced emancipation (cf. Wilson, 1997).

We adopt the alternative notion, of 'freedom to'. This is found, for example in Milton's idea of
freedom as not being beholden (to lords) and thus being able to be what we should be. More
recently the notion has been worked out more precisely by the Dutch thinker. Dooyeweerd (1955).
who developed an idea of freedom as the ability to respond meaningfully to the diversity around
us. In this view, guidelines can enable and encourage such freedom rather than constrain - but only
high quality guidelines do so.

What are high quality guidelines? To Dooyeweerd, the ability to respond is made possible by the
'law side' of reality, which is a framework of Meaning in which everything exists and occurs. He
accounts for diversity by suggesting that this framework of Meaning comprises a number of
irreducibly distinct aspects, each with a different kernel meaning. Each aspect has a distinct set of
laws that enable a distinct type of meaningful functioning to which we respond in life (e.g. lingual
laws of syntax, semantics, etc. enable meaningful communication). The laws of earlier aspects
(quantitative, spatial, kinematic and physical) are determinative, while in the later aspects (biotic.

28

sensory, analytic, formative, lingual, social, economic, aesthetic, juridical, ethical and credal) they
are normative, allowing freedom. Human activity - including engaging with software via a user
interface - involves all aspects.

Guidelines for designing UIs can now be seen as an expression of this diversity of aspectual
Meaning. To be of high quality and facilitate freedom, they should be rooted in the aspects and
take all into account. This need not mean devising completely new guidelines or methodologies.
Basden & Wood-Harper (2002) have shown how Dooyeweerd's philosophy can underpin and
enrich soft systems methodology. Here we examine how it might underpin and enrich principles of
proximal user interface, discussed by Basden, Brown, Tetlow & Hibberd (1996).

2 Principle of Proximal User Interfaces

"The real problem with the interface," said Norman (1990), "is that it is an interface. Interfaces get
in the way. I don't want to focus my energies on an interface. I want to focus on the job." A
proximal user interface (PUI) is one that is so 'natural' that it does not "get in the way". It
embodies the norm that the software should be able to become, as it were, part of the user or, as
Polanyi (1967) stated, 'proximal'. By contrast, conventional UIs are 'distal', relating to the user via
a 'dialog' of commands, messages, clicks, menus, etc. To achieve proximality, the UI should not
consume the user's thinking and attention nor interrupt the flow of thinking within the task
(Basden & Hibberd, 1996).

The principles of PUI recognise that the real task for which the tool is being employed might be
more fluid, flexible, dynamic and sophisticated than its formal specification (given in design of
system, or in training of the user and work definition) might suggest. Of the nine principles, two
concern the overall relationship between user, task and tool, and bring together the notions of
direct manipulation and affordance, three concern what the user experiences via the UI, and the
remaining four with how the user can act. We focus on visual interfaces, but the principles apply
equally to aural and haptic devices. We illustrate how the principles apply to three different types
of software: word processors (WPs) (where Dooyeweerd's lingual aspect is important), computer
games of the Doom type, where the user moves about, finding objects, being ambushed and
fighting enemies (spatial and aesthetic aspects), and mind-mapping toolkits such as Istar (Basden
& Brown, 1996) that allow the user to build a knowledge base as a box and arrows diagram (the
analytical aspect).

2.1 Principle of Direct Semantics

The principle of direct semantics states that there should be a direct mapping from lexical
phenomena in the interface to the semantics of the user's task. For example, in computer games the
enemy is a recognisable shape on screen and sound from speakers, and pressing the joystick button
is directly linked to fighting it. In Istar, each item is a box and each relationship, an arrow, and
pressing the mouse button draws a new box (creates a new item). This principle is not unlike later
versions of direct manipulation (Shneiderman, 1992), but it concerns the user's view (e.g. shapes
seen, sounds heard) as well as user action (e.g. mouse gestures). In conventional, distal, UIs, the
mapping is indirect, via syntax of a 'dialog' between user and machine. Interpreting and managing
syntactic paraphernalia like toolbars, menus, dialog panels, commands, etc., incurs a heavy penalty
in cognitive load. Though excellent for novice users, they "get in the way" during everyday use, so
they are to be avoided.

29

2.2 Principle of Appropriateness

The principle of appropriateness states that mapping between lexical phenomena and semantics of
the application should be appropriate, or 'natural'. This implies three things. What is 'simple' in the
application domain should be expressed by simple lexical gestures and shapes. Bch lexical
phenomenon should 'afford' the semantic meaning it expresses (Greeno, 1994). And the diversity
encountered in the situation of use should be respected. If diversity is vested in distinct aspects
(Dooyeweerd, 1955) the UI must reflect this by a different lexical-semantic mapping for each. For
example, a line expresses a relationship in Istar, underlining in WPs and. say. the amount of
damage sustained in the game. Dragging the mouse draws a new relationship in Istar or selects a
region of text in WPs.

2.3 Principle of Large Easels

The 'easel' is what the user sees (or hears) at the user interface. In WPs, it is textual, not graphical,
in form. This art-related term 'easel' is chosen to reflect two notions: holistic access and active
engagement.

Just as the artist is aware of the whole even when focusing on a tiny part, so should the user be.
The UI should encourage, not hinder, such holistic awareness, and let the user access any part with
minimum cognitive effort. This implies a large easel within immediate reach. In Istar. this is
achieved by a large, smooth-scrolling screen. In Doom-like games the main screen shows a limited
view, but this easel is 'enlarged' to a more holistic awareness by provision of a map and by sounds.
In WPs holistic access is via markers in the text. But windowing systems can tend to parcel up the
detail separate from the whole, which reduces proximality.

Just as the artist not only views and examines the easel, but is continually making modifications,
so the easel of PUI is not just a representation but a stimulation of thinking, and not just a
stimulation but an invitation to make changes at the very instant of the stimulated thought. The
user is 'situated' in the easel. So, in the design of the PUI. there must be no barrier between
viewing and action. The page of a WP is a good example of this: as you read you type, without
having to think about it.

2.4 Principle of Visual Cues

Visual cues (or auditory or tactile) are those indicators of relevant meaning that occur on the easel.
Formal cues (e.g. colour codes) are mediated by the software. But informal cues are often more
important - such as the pattern of lines around a box in Istar. the size of a paragraph and the shape
of its ragged right hand edge in text. As the user draws, types or plays, such cues are left both on
the easel and in the user's memory, forming a direct link lexical phenomena with the semantics in
the user's mind. Visual cues should be encouraged and respected but desire for tidiness often
works against them. Automatic layout and tidying facilities, common in visual programming
software, destroy them. Icons all the same size in neat array, as on Windows, are less easily
located than those with gross visual differences (Byrne, 1993). However, in computer games,
disguise is important so cues should be such as to mislead.

30

2.5 The Clutter Principle

Clutter is lexical phenomena that distract from, rather than support, the meaning in the application.
The clutter principle recognises that clutter will always occur when the user is engaged with ill-
structured knowledge of non-trivial size, and thus demands proximal mechanisms to prevent and
manage it. In box and arrows diagrams, congestion is one type of clutter and in Istar it is first
minimized by a visually simple genre and then managed by making it very easy for the user to
move things around and make space (see Basden, et. al. 1996). In WPs, clutter is of other sorts,
such as unformatted paragraphs, spurious characters and bits of <html> that litter our emails, and
semantic clutter, where the content of what is written is not well structured. These are managed by
automatic formatting and spelling, grammar and style checkers. In computer games, clutter might
be employed to mislead.

2.6 Principle of the Wide Input Channel

When we consider user action, we must choose lexical gestures for each semantic operation, for
example, to create a new item (Istar), move along a corridor (game), start a new paragraph (WPs).
In each type of application, many different operations will be needed because of the diversity of
meaning in real life. But a two-button mouse allows only three operations - a very narrow lexical
input channel. This principle says that we must give careful consideration to how we widen the
lexical input channel. In street-fighter games complex gestures are used. In WPs, a multi-key
keyboard is used. In Istar the free (non-mouse) hand presses keys to qualify the operation and
different parts of the visual object give different operation.

2.7 Principle of Graded Effort

But remembering complex gestures, qualifying keys or the significance of different parts can
result in extra cognitive effort or interrupt flow of thought when compared with the simple mouse
operations of move, click or drag. The principle of graded effort recognises this, and says that we
must carefully design each operation so that those operations that 'deserve' less effort will have it.
Usually the most frequent operations should incur least effort, and thus mapped to the simplest
click or drag. (Note that, since in each type of application different types of operation will be more
common, this principle goes against established norms of implementing a standard 'look and feel'
across all types of application.)

2.8 The Danger Principle

The danger principle modifies the previous principle by saying that operations that are more
dangerous 'deserve' greater cognitive effort, and so should be designed to be more distal. But
danger is of different forms. In Istar deletion is dangerous, so is made distal with an 'Are you
sure?' dialog box (see Basden & Brown, 1996). But a game that kept asking 'Are you sure?' before
an enemy was killed would fall into disuse! In games, danger has a different meaning.

2.9 The Principle of Tentative Action

Tentative action is user action that might not have a significant semantic result but is an important
part of the user's thinking processes. Examples include 'doodling' while the user thinks something
through, or the setting down of fleeting thoughts before they are forgotten. The principle of
tentative action says that good, proximal support should be provided for such actions in the

31

software. In Istar, fleeting thoughts are recorded simply by creating a new box anywhere near. In
WPs, they can be written down. Doodling was observed in Istar (see Basden. et. al.. 1996): the
user picked up a box with the mouse and wiggled it about. Doodling is not usually supported in
WPs, but maybe should be. Both types are seldom necessary in games.

3 Guidelines for Freedom in PUI

We can see that the principles of proximal user interface may be applied to very different types of
software, taking different forms in each. We have noted howr some of them run counter to attempts
to standardize look and feel, as they support a diversity of lexical-semantic mappings. But. as
discussed in Basden (2000). this approach might, in the end. lead to a richer, more natural type of
standard. The main thread running through this has been seeing freedom as the ability to respond
appropriately to diversity, a notion derived from the philosophy of Dooyeweerd (1955).
Reviewing the discussion above, we can see that much of the flexibility with which the principles
are applied is influenced by Dooyeweerd's notion of aspects. Most pieces of software are aimed at
aiding human tasks in which certain aspects predominate. It is these aspects that should guide the
design of the UI, if we wish it to be proximal. We suggest that high quality guidelines, that will
enable rather than hinder freedom, may be constructed by a knowledge of the relevant aspects: the
analytical for mind-mappers, the lingual for word processors, and the spatial for games.

References
Basden, A.. (2000). Guidelines for a 'Proximal' User Interface. In J. Vanderdonckt. C. Faraenc

(Eds.) Tools for Working with Guidelines (p. 339-56). Springer-Verlag.

Basden, A.. Brown, A.J., (1996). Istar - a tool for creative design of knowledge bases. Expert
Systems, 13, (4). 259-276.

Basden, A., Brown, A.J., Tetlow, S.D.A., Hibberd, P.R., (1996). Design of a user interface for a
knowledge refinement tool. Int. J. Human Computer Studies. 45. 157-83.

Basden, A., Hibberd, P.R., (1996). User interface issues raised by knowledge refinement. Int. J.
Human Computer Studies, 45, 135-55.

Basden, A., Wood-Harper A.T.. (2002). A philosophical enrichment of CATWOE. A\rZSYS'2002.
Australia and New Zealand Systems Conference, 10-12 Dec 2002. University of Sunshine
Coast.

Byrne, M.D., (1993). Using icons to find documents: simplicity is critical. Proc. InterCHI '93.
April 1993, 446-453, ACM. USA.

Dooyeweerd, H., (1955). A New Critique of Theoretical Thought. Vol. HV.. Jordan Station.
Ontario: Paideia Press.

Greeno, J., (1994). Gibson's Affordances. Psychological Review. 101. 336-42.

Lyytinen, K.J., Klein, H.J., (1985). The critical theory of Jurgen Habermas as a basis for a theory
of information systems. In E. Mumford, R.A. Hirschheim, G. Fitzgerald. A.T. Wood-Harper
(Ed.), Research methods in information systems (p.219-3 1). North Holland.

Polanyi, M., (1967). The Tacit Dimension. London: Routledge and Kegan Paul.

Shneiderman, B., (1992). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison Wesley.

Wilson, F.A., (1997). The truth is out there: the search for emancipatory principles in information
systems design. Information Technology and People. 10. (3). 187-204.

32

It's all in a days work of a software engineer

Inger Boivie\ Jan Gulliksen1 and Bengt Goransson1'2

'Dept. for IT/HCI, Uppsala University, PO Box 337, SE-751 05 Uppsala, Sweden
2Enea Redina AB, Smedsgrand 9, SE-753 20, Uppsala, Sweden

Jan.Gulliksen@hci.uu.se

Abstract

This paper reports on two studies that have been performed in order to explore if and how soft-
ware engineers make design decisions that affect the usability of the software. Our conclusion is
that the main goal for software engineers is to produce program code. They consider usability
being the responsibility of others, for instance, the users or usability experts. They do not feel that
their code contributes to the overall usability of the software. Nevertheless, software developers
make numerous decisions that affect usability as part of their work with analysis, design and pro-
gramming. The conclusion one must draw from this is that there is a need for a strategic change of
attitude towards usability among software engineers.

1 Introduction

Despite the attention usability has received in the last number of years, poor usability is still a
major problem for users. According to Clegg, et al. (Clegg, Axtell, Damodaran, Farbey, Hull,
Lloyd-Jones, Nicholls, Sell and Tomlinson, 1997) usability issues are on the agenda in most IT
development projects. The respondents in their study estimate that as many as 60-70 % of the
projects addressed usability matters "successfully". They go on to say, however, that there is
criticism that the area is still not sufficiently understood, and that the view of usability is rather
mechanistic. This indicates that we need to know more about how usability is addressed in
software development projects. Not least, we need to know how software engineers think about
and work with usability.

We have conducted a couple of studies of how software engineers work, with particular focus on
if and how they address usability issues. If we can understand more about how the software
engineers work, we may be able to identify new tools for addressing usability in software
development or improve existing ones.

2 Method

In order to understand what type of support software engineers need to develop usable systems we
must study and analyse their work, i.e. their work practices, and how they think about their work.
It is difficult to analyse work practices since most workers, including software engineers, are not
fully aware of what they do. Their work practices are partly based on tacit knowledge and cannot

We use the ISO 9241-11 (1998) definition where usability is defined as follows:
"The extent to which a product can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use."

33

be described in all detail. Work studies must therefore be based on observations of the workers,
combined with interviews.

The first study consisted of a series of observation interviews (Aborg, Sandblad, Gulliksen & Lif,
2003) with 7 software developers (4 men and 3 women). The software developers worked in an
in-house development organisation with designing and developing user interfaces. The
respondents were software engineers, programmers, project managers and process owners at the
IT department of a large government organisation. Most of them worked in Stockholm but a few
w:orked in sub-departments in other towns around Sweden.

This interview study was part of a project developing an on-line interactive corporate style guide
(Olsson and Gulliksen, 1999). The main purpose of the study was to capture user requirements and
the software developers were interviewed as potential users of the style guide. The project worked
in accordance with the human-centred approach described in ISO 13407 (ISO, 1999). ISO 13407
prescribes activities for acquiring a good understanding of the users and their context of use, in
this case the software developers and the software development process.

The second study consisted of a series of open-ended interviews with eight people (six women and
two men) involved in software development projects in two in-house development organisations
(one of which was the same as in the first study). The respondents had backgrounds in and worked
with usability, user interface (UI) design and/or software development. The purpose of this study
was to investigate how design decisions, affecting usability, are made. Who makes them, when
and on what grounds?

3 Results

The two studies describe the software development process on two different levels. In the first
study, we identified how software engineers work on a day-to-day basis, solving particular
problems. Somebody, for instance, the project manager, typically hands down the design problem
to them. Each design problem can usually be solved within two days. The result of the task is a
piece of software that is delivered for integration with the rest of the system.

The observation interviews indicate that the developers could not fully understand the result of
their programming task. The quality of their work was determined by the robustness and stability
of the program code, rather than usability. The developers did not feel that they designed user
interaction. The design simply emerged as if by magic, as a result of the integration of the v arious
pieces of code produced by the developers. Nobody admitted to hav ing designed a particular part
of the user interaction. The below figure illustrates the workflow for the software developers.

34

Figure 1: Model of how developers work. The model is a general model, created after studying
several developers in one in-house development organisation.

In the second study, the respondents described the software development process. The typical
project starts with some kind of requirement specification or description from the client.
Requirements are captured by means of use case modelling and expressed mainly by use case
models Users and/or domain experts2 participate in the requirements capture process. The user
interface modelling is done in parallel with the use case modelling, with the same group of users
and domain experts. The use case models are then refined to analysis models and design models.
The user interface developers/use case specifiers develop a solution, which is reviewed by the
users and domain experts, and modified accordingly. The design solutions are often evaluated or
reviewed by users a few times, before they are implemented. The number of iterations/reviews is
determined by the date the implementation must start.

The focus of the interviews in the second study was design decisions. The respondents were asked
what kind of decisions they are allowed to make, and whether design decisions are made by them
or by other people.

When asked who makes the design decisions, none of the respondents said "I do". Instead, they
pointed to the user representatives and the client representatives. According to several of the
respondents the usability of the resulting system depends to a large extent on the user
representatives. Quite a few of the design decisions are made in workshops (modeling sessions)

Domain experts are representatives from the user organisations with expertise in the domain, e.g. laws and
regulations affecting the new system. These people will not necessarily be active users of the system.

35

together with the user representatives. There are also matters over which the development teams
do not have control, despite the fact that these matters are likely to affect the perceived usability of
the system.

The use cases are the most important information carrier in the projects. They are the basis of the
interaction design and thus limit the design "space". They specify, for instance, the workflow,
what information should be displayed when, how the information should be grouped, etc. The
respondents in both organisations reported difficulties with the use case modelling. One
respondent said that the people in her project had misunderstood the concept, resulting in far too
many, far too detailed system operations instead of real use cases. "/ still don't know what a use
case is. "

4 Discussion

The two studies gave us a rich picture of the problems involved in addressing usability issues in
the software development process

The development process often fails to provide the necessary support for addressing usability
The two descriptions of how software developers work differ on some point, mainly regarding the
extent of formalisation. Figure 1 shows a rather informal process, where contacts with "a suitable"
user are made by the individual software developer whenever he/she feels the need. In the process
described in the second study, users participated on a more formal basis, in modelling sessions and
by reviewing specifications, etc. The differences may, at least to some extent, ascribed to the
different data collection methods used in the studies. The first study is based on observations
wrhereas the other is based on interviews. When interviewed, the developers recount what they
think they do at work, which is probably fairly close to the official version of how they should
work, i.e. the software development model they are supposed to comply with. In an observation,
you can see what they really do at work. These two views of work correspond to an "explicit"
view and a "tacit" view as described by Kuhn (1996).

Software development w ork is often thought of as engineering-oriented, rational and described by
means of workflow models consisting of well-defined steps. But our results indicate that certain
parts of it are based on tacit knowledge, which is not easily captured and expressed in models.
Development work also seems less formal, less ordered and less rational than we would expect
from the "explicit" view of it.

The two pictures of software development do not have to be contradictory. Some of the
respondents in the second study also contacted users on an informal basis even though they also
described formal meetings and contacts. Thus, there is a need for quick, informal contacts with
users in software development. This indicates that the models used to capture the requirements and
other inputs are insufficient. They do not provide enough information for the software developers
to get on with their work. One interesting question is, what information is missing.

Decisions affecting usability just "happen" as part of the process instead of being "made'
The software developers, and basically everybody else in the project, make usability decisions
without being aware of it. These decisions encompass all lev els from what is to be included in a
certain release (i.e. what the user will be allowed to do in the system, in terms of tasks or
functionality) to the use case modelling, to detail decisions about input/output controls.

36

The respondents claimed that the user representatives and domain experts in the projects were
responsible for most of the interaction design decisions. Nevertheless, we would like to argue that
the developers make a lot of the decisions. This phenomenon may be explained by the fact that in
many cases design decisions just "happen" as part of a process, where the design slowly grows
and develops. Design decisions are explicitly made in those cases where a design issue has been
discussed, for instance, when not complying with the style guide or when there has been
disagreements.

Frustration with user involvement
The respondents in both studies expressed some frustration with how users were involved,
regardless of whether it was on an informal or formal basis. There was a great reluctance towards
making contacts with the users among most of the developers. They did not consider it their
responsibility to involve users. Nevertheless, they did contact users when they felt they had to, as
described above. The developers also expressed frustration with the disproportionate influence
some users get (for instance, the formally appointed user representatives).

In order to facilitate a focus on usability and the users' real needs in software development, we
need to:

• Shift the attitudes towards a more user-centred design and development process (UCSD),
and educate or train all software developers in UCSD.

• Make usability activities become Standard Operating Procedures within the organisation.
• Make management aware of their obligation to put usability on the agenda in

development work
• Provide success stories that can serve as a examples for successful deployment of UCSD
• Make commercial systems development processes support and prescribe usability

activities.
• Resolve the conflict between usability and deadlines.

References

Clegg, C. Axtell, C. Damodaran, L. Farbey, B. Hull, R. Lloyd-Jones, R. Nicholls, J. Sell, R.
Tomlinson, C. (1997). Information technology: a study of performance and the role of human
and organizational factors. Ergonomics, Vol. 40. No 9. pp. 851-87

Kuhn, S. (1996). Design for people at work. In Winograd, T. Bringing design to software. ACM
press. Addison Wesley. New York. pp. 273-289.

ISO 9241-11 (1998), Ergonomic Requirements for Office Work with Visual Display Terminals
(VDTs). Part 11: Guidance on Usability. International Organization for Standardization,
Geneva.

ISO 13407 (1999), Human Centered Design Processes for Interactive Systems. International
Organization for Standardization, Geneva.

Olsson, E. & Gulliksen, J. (1999) A corporate style guide that includes domain knowledge. In G.
Salvendy, M.J. Smith, & M. Oshima (eds.) International Journal of Human-Computer
Interaction. Vol. 11, No. 4, Ablex Publishing Corporation, Norwood, New Jersey.

Aborg, C., Sandblad, B., Gulliksen, J. & Lif, M. (in press) Integrating work environment
considerations into usability evaluation methods - the ADA approach. Accepted for
publication in Interacting with Computers.

37

Semiotic Conference: Work Signs and Participatory Design

Rodrigo Bonacin M. Cecilia C. Baranauskas

Institute of Computing, State University Institute of Computing, State University
of Campinas, Caixa Postal 6176 of Campinas, Caixa Postal 6176
13083 970 Campinas, SP - Brazil 13083 970 Campinas, SP - Brazil

+55 19 32958178 +55 19 37885870
ra000470@ic.unicamp.br cecilia@ic.unicamp.br

Abstract

In this paper we propose a participatory design technique named Semiotic Conference as a way to
explore process-oriented issues related to the social context of the workplace and its connections
with aspects of the product being designed. This technique was proposed to enable a design
process in which workers (final users) and designers construct a new organizational context
embedding the system in it. The software is a product of their social interaction and a new social
context appears as a consequence of the software design and use. Results of applying the proposed
technique to a real context are discussed.

1 Introduction

Literature in Software Engineering and Information Systems (Floyd. 1987: Muller et al 1998:
Mahemoff & Johnston, 1998) has shown two basic perspectives to software design: the product-
oriented, which focuses on the software artifact, and the process-oriented one. which focuses on
the human work processes that the computer artifact is intended to support. In agreement with
Floyd (1987), in this paper we argue that these approaches could be complementary to each other
when considered in the proper balance. According to Floyd, the process-oriented perspective
views the software in connection with human learning, work and communication, taking place in
an evolving world of changing needs.

The close contact between designers and users, and the direct participation of the users during the
system design are pointed out as way to promote the process-oriented design. In this paper we
propose a Participatory Design (PD) technique named Semiotic Conference as a way to explore
process issues from the social context of the human workplace and their connections with aspects
of the product being designed. The Semiotic Conference was proposed in order to promote the
participation and signification aspects (Baranauskas et al. 2002) during the design process.

This new PD technique enables a design process in which workers (final users) and designers
construct a new organizational context embedding the system in it. The software is a product of
their social interaction and a new social context appears as a consequence of the software design
and use. This technique was motivated by the concept of "mutual learning" in design defined by
Kyng (1991), where the application domain practitioners learn about the new possibilities brought
about by the technology while designers learn about the application domain. The mutual learning
is promoted through the participation of the users during the design using a semiotic model that

38

addresses at the same time the application being designed and the intended social context that the
application is supposed to support.

The paper is organized in the following way: Section 2 presents the theoretical background based
on the Participatory Design approach and methods from Organizational Semiotics, Section 3
describe the proposed technique, Section 4 shows results of using the technique in the design of a
CSCW system interface, and discuss the drawbacks and direct benefits of using it, and Section 5
concludes.

2 Participatory Design and Organizational Semiotics

The Semiotic Conference is based on two main theoretical backgrounds: the Participatory Design,
which promotes the participation of the user during the design and the Organizational Semiotics
that enables to model the signs system at the social level. The Participatory Design approach was
developed initially in the Scandinavia and it employs a variety of techniques to carry out design
with the user, rather than for the user (Muller et al 1997). The Participatory Design approach
stresses the importance of democracy in the workplace to improve the work methods, the
efficiency in the design processes (with the users backgrounds and feedback), to improve the
systems quality, and "to carry on" formative activities.

In order to develop a common view of both the technology and the organization, that is necessary
for users and designers to explore new organizational structures, we combined the use of PD with
Organizational Semiotics (OS) methods in a new PD technique. OS is defined as "the study of
organization using the concepts and methods of Semiotics" ("OSW," 1995). The study of the
organization is based on the observation that people affect all organized behaviors through the
communication of signs, individually and in groups.

A set of methods proposed by Stamper (1973) enables to study the use of signs in organizations
and their social effects. The two main methods of the OS used in the Semiotic Conference are the
Semantic Analysis and the Norm Analysis. Semantic Analysis (SA) focuses on the agents and
their pattern of behaviors to describe the organization. Some basic concepts of SA adopted in this
paper based in Liu (2000) are: (a)"The world" is socially constructed by the actions of agents, on
the basis of what is offered by the physical world itself, (b)"Affordance", the concept introduced
by Gibson (1979) can be used to express the behavior of an organism made available by some
combined structure of the organism and its environment, (c)"Agent" can be defined as something
that has responsible behaviour, an agent can be an individual person, a cultural group, a language
community, a society, etc., and (d)"An ontological dependency" is formed when an affordance is
possible only if certain other affordances are available.

A norm analysis is usually carried out on the basis of the result of the semantic analysis (Liu
2000). At the pragmatic level the norm analysis describe the relationships between an intentional
use of signs and the resulting behaviour of responsible agents in a social context. At the social
level it describes beliefs, expectations, commitments, contract, law, culture, as well as business.

3 The Semiotic Conference

In this paper we describe the proposed technique in terms of the attributes proposed by Muller
(1998) for Participatory Design techniques: the object model, the process model, the participation
model, expected results and position of the technique in the whole product life cycle.

39

Object Model: Copies of Organizational Semiotic Models: ontology charts (semantic analysis) and
norm analysis (pragmatic and social level analysis), prototype screen shots, and pens are the
material used for running the participatory practice. The ontology charts are the graphic
representation of relationships among concepts of the semantic analysis. The ontology charts
represent agents (circles), affordances (rectangles), ontological dependencies (lines from left to
right), role-name (parentheses) and whole-part (dot). The norm analysis are represented by
Deontic logic expressions with the following basic form:
<Norm>::= If <Condition> then <D> <Agent> <Action> Where <D> is a deontic operator that
specifies that the action is obligatory, permitted or prohibited. The norms are not necessarily
obeyed by all agents in all circumstances; they are social convention (laws, roles and informal
conventions) that should be obeyed. A more detailed description of ontology charts and norm
modelling can be found in Liu (2000).
Process Model: In the format of a Conference the designer shows concepts of the workplace
modeled in ontology charts that include the affordances made available or and that would made
available by the system. This model contains the concepts compiled by the designers during the
initial definition (the diagram must contain only the terms used by the users) of the system
obtained from application of other PD techniques or from the last model of the former prototype.
Copies of the models are distributed to all practitioners and if necessary the designer clarifies the
notation and concepts described by the diagram. For each concept quoted in the model that any
person of the group judge important, the practitioners discuss the semantic dependencies with
other concepts and the social norms associated. Members of the group, as a result of discussion,
propose changes in the semiotic models. Alternative solutions are raised on prototype screen shots
to reflect the conceptual changes in the model. The changes in the prototype can be directly drawn
in the prototype screen shots or, if necessary, other PD techniques can be used to define them.
Participation Model: Members from different levels and functions in the organization together
with the design team participate in the Conference. Facilitators mediate the interaction among the
group.
Results. Semantic and Norm models constructed during the conference with people from the
organizational context are produced. The establishment of social norms that will be applied at the
workplace considered with the prospective application is also produced as a result of the
technique. The user interface is also produced through the "mutual learning" promoted by the
technique.
Position in the product life cycle: The technique applies iteratively to several phases of the design
life cycle: Problem Identification & Clarification, Requirements & Analysis. High-Level Design.
Evaluation and Re-Design (after the creation of the first prototype).

4 Results of Using the Technique

The proposed technique was explored during the design of Pokayoke: a system prototype
constructed in the context of a partnership between our Institution and an automotive industry, for
supporting corrective and preventive actions related to problem solving in the factory (Bonacin &
Baranauskas, 2003). This technique was applied to five iterations of the prototype cycles during
the Pokayoke design: at the starting of each iteration, in order to review the concepts of the former
prototype and to redirect the design of the next prototype, and at other moments when necessary
for reviewing concepts. Figure 1 shows an example of using the Semiotic Conference during the
Pokayoke design. It refers to concepts in one of the steps of problem solving process (Step IV).
Figure la (left) presents part of the ontology chart for the second iteration of the prototype. It
shows the drawing made by a practitioner suggesting changes in the semantic model (He proposed

40

to include Brainstorming in this step). Figure Ib (right) shows the ontology chart of the third
prototype including the changes proposed by the practitioner.

Figure l(a and b): Changes in Ontology Charts

Figure 2 shows changes in the user interface caused by the alterations in the ontology charts
presented in Figure 1. The affordances marked with circles in Figure 1 are associated to the
interface constructions in Figure 2. The ontological dependencies of the objects are represented by
the conditions of enabling or disabling functions in the software system; for example, it is
necessary to exist a Multifunctional Team to enable the Brainstorming functionality. A norm
interpretation package was developed to interpret formal norms (rules of the organization) that
specify the responsibility, duties and permissions in the problem solving method. These norms
specify the permission to access some functions of Pokayoke, for example: any user is allowed to
include an idea in a brainstorming session but s/he is not allowed to specify actions to correct the
problem. These norms also specify who could be responsible for which task at different phases of
the problem solving processes. Changes in the norms specifications proposed during the Semiotic
Conference are reflected in attributes configured by the norm interpretation module.

Brainstorm

Solution Ideas

u$Ows Propostas :

> IA i d e m C o g o o

Actions

Figure 2(a and b): Changes in the system interface

The fifth prototype of Pokayoke has substituted the paper-based form of the "five steps" process.
A group of seven workers of different levels and areas at the organization have participated in the
Semiotic Conferences. These workers were in charge of training the other users of the system
showing evidence of the mutual learning occurred. The mutual learning allied with the feeling of
authorship was fundamental to the system acceptance. The workers have expressed this feeling
many times during the system design and use, such as: "... we have defined this in this way to
avoid... ". The main drawback of the proposed technique noticed during the Pokayoke design was
the necessity of explaining the semantic and norm analysis concepts at the first applications.

41

5 Conclusion

Methodologies for systems design and development have been traditionally drawn upon the
objectivist paradigm, which considers an objective reality to be discovered, modeled and
represented in the software. On the contrary to this assumption, the Organizational Semiotics
adopt the subjectivist paradigm, which understands reality as a social construct based on the
behavior of agents participating on it. The subjectivist paradigm has shown usefulness to deal with
the process-oriented issues during the Pokayoke design. People in different positions at the
organization have different opinions about how the software should support the work practices.
Therefore the approach considered not an objective truth about the best way of supporting problem
solving, but this truth was a social construct based on negotiations occurred during the
participatory practice. The formalism of the semiotic models and the use of the prototype screen-
shots in the Semiotic Conference have been useful to explore the connections between the
Process-Oriented and the Product-Oriented issues in the software design.

Acknowledge
This work was partially supported by grants from Brazilian Research Council (Capes 2214 02-4.
Cnpq 301656/84-3, Fapesp 2000/05460-0). The authors also thank Delphi Automotive Systems in
Jaguariuna, Brazil, and Nied-Unicamp for collaboration and partnership in the Pokayoke project.

References
Baranauskas, M. C. C., Bonacin, R. & Liu K., 2002. Participation and Signification: Towards

Cooperative System Design, in Proceedings of V Symposium on Human Factors in Computer
Systems, 3-14.

Bonacin, R. & Baranauskas, M. C. C. (2003) Designing Towards Supporting and Improving Co-
Operative Organisational Work Practices, in Proceedings 5th International Conference on
Enterprise Information Systems, to appear.

Floyd, C. (1987). Outline of a paradigm change in software engineering. In G. Bjerkners. P. Ehn.
& M. Kyng (Eds), Computers and democracy: A Scandinavian challenge. Brookfield VT:
Gower.

Gibson,J. J., (1968). The Ecological Approach to Visual Perception. Houghton Miffin Company.
Boston, Massachusetts.

Kyng, M.(1991). Designing for Cooperatin: Cooperating in Design. Communications of the ACM
34,12,65-73.

Liu K., (2000). Semiotics in information systems engineering, Cambridge University Press.

Mahemoff, M. J. & Johnston, L. J. (1998). Principles for a Usability-Oriented Pattern Language In
Calder, P. & Thomas, B. (Eds.), OZCHI '98 Proceedings, (pp. 132-139). Los Alamitos. CA.

Muller, M. J., Haslwanter. J. H., & Dayton, T. (1997) Participatory Pratices in the Software
Lifecycle. In M. Helander, T. K. Landauer, P. Prabhu (eds.). Handbook of Human-Computer
Interaction, (pp. 255-297), Elsevier Science, 2 ed.

Muller, J. M., Matheson, L., Page, C. & Gallup, R. (1998) Participatory Heuristic Evaluation.
Interactions. September + October 1998. V. 5, Issue 5, ACM Press. 13-18.

OSW, (1995). The circulation document in the Organizational Semiotic Workshop. Enschede.

Stamper, R. K., (1973). Information in Business and Administrative Systems. John Wiley & Sons.

42

Creative Design of Interactive Products and Use of Usability
Guidelines - a Contradiction?

Michael Burmester Joachim Mac hate

University of Applied Research - User Interface Design GmbH
Hochschule der Medien Teinacher Str. 38,

Wolframstr. 32, D-70191 Stuttgart D-71634 Ludwigsburg
burmester@hdm-stuttgart.de joachim.machate@uidesign.de

Abstract

Often the use of guidelines for the design of interactive products is criticized for several reasons.
A major point of criticism is that guidelines are not flexible enough, so that the design can be
adapted to the context of use. Furthermore, there is an anxiety that guidelines hinder creative
design solutions and innovations. In the following paper, the strategic use and definition of
guidelines associated with a user centred design process (UCDP) is proposed.

1 Guidelines

Guidelines have been used since the beginning of human-computer interaction (HCI). The main
goal of guidelines is to increase the usability of interactive products when designing them.
Guidelines are a way to put theories, empirical findings or good practice in to a form which is
intended to be useful for and adapted to the process of designing interactive products.

Two main categories of guidelines in HCI can be defined: design guidelines and process
guidelines (Stewart & Travis, 2002). Design guidelines are providing support for design decisions
and process guidelines to plan and structure design processes.

Design guidelines are differentiated by Stewart and Travis (2002) between guidelines, standards
and style guides. According to Stewart and Travis, guidelines can be seen as recommendations of
good practice relying on the credibility of their authors. Standards are "formal documents
published by standard making bodies that are developed through some form of consensus and
formal voting process" (Stewart & Travis, 2002, p. 992). Finally, style guides are "sets of
recommendations from software providers or agreed within development organizations to increase
consistency of design and to promote good practice within a design process of some kind"
(Stewart & Travis, 2002, p. 992). This categorisation is based on the question, who has generated
these guidelines.

Another possibility to categorize guidelines is along the degree of precision in guiding the design,
and the degree of freedom in interpretation for taking design decisions. We have identified five
categories: principles, rules, interaction patterns, standard interactions and user interface building
blocks.

43

(1) Principles or heuristics (Nielsen, 1993) describe basic usability aspects which are important
when designing user interfaces. In order to apply principles to design, the designer has to
understand the rationale behind the principles. For all design decisions, the meaning of a principle
for a specific design situation is a matter of interpretation. Examples for principles are the dialogue
principles for visual display terminals described in the ISO 9241 part 10. the ten usability
heuristics of Jakob Nielsen (1994).Ben Shneiderman's (1998. pp. 74-75) eight "golden rules" of
dialogue design, or Alan Cooper's principles for polite software (Cooper. 1999. p. 162). All of
these are principles in the sense of our definition.

(2) Rules focus on specific design decisions, e.g. if upper and lower case should be treated
equivalent in search dialogues or not (Smith & Mosier, 1986. cit. Steward & Travis. 2002. p. 995).
It is up to the designer to decide whether a particular rule is relevant and must be applied for the
design decision under discussion. Interpretation is still necessary.

(3) Interaction patterns (Tidwell, 1999; van Welie, van der Veer & Eliens. 2000) describe a
complete context of an interaction and do not focus on a single design decision. Usually,
interaction patterns are specified in a specific language, van Welie. van der Veer & Elie'ns (2000)
are describing for each pattern the name of the pattern, the usability principle behind it. the context
in which the pattern should be applied, the force influencing the user, the design solutions within
the pattern, examples where the pattern has been applied already, the usability impact, rationale
behind the pattern and known uses (e.g. products using the described interaction pattern). Example
interaction patterns are editor dialogues, browsers, warning message dialogues, wizard dialogues
etc. (for more see Tidwell. 1999 or van Welie. 2002). The designer has still freedom in
interpretation and in finding own solutions, but support is provided for a complete interaction task.

(4) Standard interactions are fully defined with regard to the way which steps need to be taken in
order to accomplish a particular input task, e.g.. single selection from a list There is no possibility
left for interpretation of the dynamic input and output structure. These structures are formally
described formalisms (e.g. in flow chart).Although the way of interaction is fixed, a user interface
designer still has the freedom to define the visual presentation and style. An example for a
description of standard interactions are the FACE guidelines for the design of electronic home
devices (Burmester. 1997).

(5) User interface building blocks are representing interactions which are completely defined with
regard to their interaction and sensual, e.g. visual and acoustic, presentation (Corner, Burmester &
Kaja, 1997). No freedom of interpretation is left to the designer. Building blocks are sometimes
also referred to as idioms (e.g. Sun Microsystems, 2001. pp. 65). Only selecting the right building
block for a specific user task and setting the right options of the building is required. Building
blocks are described in style guides (e.g. Microsoft Windows XP. 2002).

2 Problems with Guidelines

It is quite common that problems are reported in properly applying guidelines for a specific design
situation(e.g. Corner, Burmester & Kaja, 1997). One reason for that is that there is an inflation of
guidelines, which makes a designers' live quite hard: Smith & Mosier (1986. 944 HCI
guidelines)1, Brown (1988, 302 HCI guidelines)1, Mayhew (1992. 288 HCI guidelines)1.
Burmester (1997, -400 CE guidelines), ISO 9241 12 - 17 (1996-1999 -500 HCI guidelines).

cit. Nielsen (1993)

44

Nielsen Norman Gr. (2002, -600 Web guidelines), etc. Furthermore, guidelines are difficult to
understand, difficult to interpret, often too simplistic or too abstract, can be difficult to select, can
be conflicting, often have authority issues concerning their validity (see Spool, 2002) or are made
for a specific contexts (e.g. specific input output technology, tasks, user groups) which are not
obvious (van Welie, van der Veer & Eliens, 2000).

3 Guidelines as part of the user centred design process

3.1 Guidelines as input for user centred design

ISO 9241-11 formally defines usability as "the extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use". In other words, usability describes the fit between products, users, tasks and
environment. In order to achieve a good quality of use, or usability, there is a quite common
understanding in the international community of usability experts how this should be achieved. It
is the user centred design process (UCDP). Several more or less detailed process models are
available (e.g. ISO 13407, 1999; Mayhew 1999; IBM, 2002; Rosson & Carroll, 2002). Across the
different process models, four central phases of a UCDP can be identified: a) analysis of context
of use, b) designing, c) prototyping, and d) evaluation of the user interface.

All process models focus on the three main aspects of user interface design defined by Gould and
Lewis (1985): early focus on users and tasks, empirical measurement and iterative design. The
iterative process runs until a defined criteria derived from user requirements is achieved (for
further details see ISO 13407, 1999).

Guidelines of the different levels described above are an important input for a user centred design
process. Derived from project experience and some research literature (e.g. Rosenzweig, 1996) we
see the involvement of guidelines in the following UCDP phases.

(1) Context of use analysis: When having finished the context of use analysis the relevant
principles for the quality of use for a product can be selected and prioritized. Often it turns out that
not all available principles have the same importance. Basic principles like "suitability for the
task" (ISO 9241-10) are of central importance in most cases, but e.g. "suitability for
individualisation" (ISO 9241-10) has not always top priority. (2) Design phase: The high
prioritised principles should guide the process of finding design solutions. The first step in the
design phase is to design the main views of dialogues according to the actions of the important and
frequently performed tasks of the identified user roles (e.g. Rosson & Carroll, 2002). Here rules
and interaction patterns are important input for designing information views. The second step in
the design phase is to design single interactions. Here rules, interaction pattern, standard
interactions and user interface building blocks can be used as input for design solutions and
supporting design ideas. (3) Prototyping phase: Some prototyping tools provide user interface
building blocks, e.g. as libraries, which can be used for developing a prototype of the user
interface. Style guides help to ensure consistency with the underlying platform, and idioms
provide building blocks which are already available for a particular look and feel. (4) Evaluation
phase: In UCDP, usability testing is a crucial method to detect usability problems (Nielsen, 1995).
Before running a usability test, quite often expert based evaluation methods, e.g. heuristic
evaluation (Nielsen, 1993) are applied. For heuristic evaluation the selected and prioritized
principles set in the context of use analysis phase can be used to guide the evaluation. The
outcome of the evaluation phase is also be used to decide whether a further design iteration is

45

necessary. For this decision metrics are needed. The selection of such metrics (see ISO 9241-11)
can be guided by the top prioritized principles, e.g. if learnability is important, it might be useful
to measure the time and repetitions until a specific task has been carried out correctly.

3.2 Creativity, the user centred design process and guidelines

An important criticism concerning the use of guidelines is that innovations and creative ideas are
hindered by guidelines. On the one hand it is clear that guidelines have the goal to decrease the
number of possible design solutions in order to sort out solutions which are not usable or
inconsistent. On the other hand, new design solutions which are more appropriate for the context
of use might not be found. The idea behind that is that guidelines are treated as laws. In UCDP it
is more appropriate to take guidelines as an input for the design process in order to help the
selection of usable design alternatives. Design decisions can be seen as design hypotheses which
have to proved during the evaluation phase. This holds also for guidelines. If certain guidelines,
e.g. interaction patterns or even user interface building blocks have been used to construct a
dialogue, it is also the guidelines which must be tested in the evaluation phase. In many cases it
will turn out that the solution is good. Then it can be kept. In other cases, usability problems will
be detected although the design was based on sound guidelines. In these cases the design and also
the related guidelines have to be revised. Product design can also be seen as theory development
(Carroll, Singley & Rosson, 1992). In this view the product is a theory on how the user can be
optimally supported in a certain context of use. By continuous testing this theory is refined step by
step until it covers the main requirements of the context of use.

3.3 Guidelines as output of user centred design

If a UCDP brings about design solutions which contribute to an improved quality of use. the
design solutions can be formulated as new guidelines. Now, the underlying principles should be
described and interaction patterns, standard interactions or user interface building blocks should be
defined. These guidelines have proved their compatibility with the context of use in question.
Now, guidelines can ensure that the design solutions developed in a UCDP are consistently
applied during implementation. Style guides ensure consistent dialogues within a product or a
product family or platform. Rosenzweig (1996) pointed out that it is important to explain the
rationale of the guidelines to the development team and give them the chance to prov ide feedback
from their point of view. Our experience is that development teams must have the possibility to
discuss with the guideline authors upcoming questions and remarks (see also Gale. 1996).

4 Conclusion

We showed that treating guideline documents as living documents in the sense of Rosenzweig and
providing possibilities for continuously testing the guidelines and making revisions and
improvements will lead to a sustained increase of the acceptance of guidelines. By using and
generating guidelines in the framework of user centred design creative design of interactive
products and use of usability guidelines is NOT a contradiction.

References

Burmester, M. (Ed.). (1997). Guidelines and Rules for Design of User Interfaces for Electronic
Home Devices. Stuttgart: IRB.

46

Carroll, J.M., Singley, M.K. & Rosson, M.B. (1992). Integrating theory development with design
evaluation. Behaviour & Information Technology, 11[5], 247-255.

Cooper, A. (1999). The Inmates Are running the Asylum. Indianapolis, Indiana: SAMS Publ.

Gale, S. (1996). A Collaborative Approach to Developing Style Guides. In Proc. of the ACM
Conference on Human Factors in Computing Systems (pp. 361-366). New York: ACM Press.

Corner, C., Burmester, M. & Kaja, M. (1997). Dialogbausteine: Bin Konzept zur Verbesserung
der Konformitat von Benutzungsschnittstelle mit internationalen Standards. In Tagungsband
Software-Ergonomie 97 (pp. 157-166). Stuttgart: Teubner.

Gould, J.D. & Lewis, C.H. (1985). Designing for usability: key principles and what designers
think. Communications of the ACM, 28[3], 300-311.

IBM (2002). IBM Ease of Use: What is User-Centered Design? Retrieved Feb., 5 2003, from
www- 3. ibm. com/ibm/easy/eou_ext. nsf/EasyPrint/2.

ISO 9241 (1996-1999). Ergonomie requirements for office work with visual display terminals
(VDTs)Part 10, 12-17. Berlin: Beuth-Verlag.

ISO 13407 (1999). Human-centred design processes for interactive systems. International
Organization for Standardization. Berlin: Beuth-Verlag.

Mayhew, D.L. (1999). The usability engineering lifecycle. A practitioner's handbook for user
interface design. San Francisco, CA: Morgan Kaufmann.

Microsoft (2001). Windows XP - Guidelines for Applications. Retrieved February 5, 2003, from
www.microsoft.com/hwdev/windowsxp/downloads/

Nielsen, J. (1993). Usability Engineering. Boston, San Diego: Academic Press.

Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics. Proc. of the ACM.
CHI'94 Conference (pp. 152-158). New York: ACM Press.

Nielsen, J. (1995). Getting usability used. In Proc. of Human Computer Interaction- INTERACT
'95 (pp. 3-13). London: Chapman & Hall.

Nielsen - Norman- Group (2003). Retrieved Feb., 5 2003, from www.nngroup.com/reports
Rosenzweig, E. (1996). A Common Look and Feel or a Fantasy? Interactions, 5, 21-26.

Rosson, M.B. & Carroll, J.M. (2002). Usability Engineering - Scenario-based development of
human-computer interaction. San Francisco: Morgan Kaufmann.

Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer
Interaction (3r edn.). Reading Mass: Addison-Wesley.

Spool, J.M. (2002). Evolution Trumps Usability Guidelines. Retrieved Nov., 23 2002, from
www.uie.com/Articles/evolution_trumps_usability.htm

Steward, T. & Travis, D. (2002). Guidelines, Standards and Style Guides. In J.A. Jacko & A.
Sears (Eds.), The Human-Computer Interaction Handbook (pp. 991-1005). Mahwah: L.E.A.

Sun Microsystems (2001). Java Look and Feel Design Guidelines: Advanced Topics. Boston,
Mass.: Addison Wesley.

Tidwell, J. (1999). Common Ground - A Pattern Language for Human-Computer Interface
Design. Retrieved Feb., 5 2003, from www.mit.edu/~jtidwell/common_ground_onefile.html.

van Welie (2002). Interaction Design Patterns. Retrieved Feb., 5 2003, from
www.welie.com/patterns/index.html

van Welie, M., van der Veer, G.C. & Elie'ns, A. (2000). Patterns as Tools for User Interface
Design: In: Int. Workshop on Tools for Working with Guidelines (pp. 313-324). France.
Retrieved Feb., 5 2003, from www.cs.vu.nl/~martijn/gta/docs/TWG2000.pdf

47

Study Of Spatial Biological Systems Using a Graphical User
Interface

Nigel J. Burroughs, George D. Tsibidis William Gaze, Liz Wellington
Mathematics Institute, Department of Biology,

University of Warwick, Coventry, University of Warwick, Coventry,
CV47AL, UK CV47AL, UK

njb,tsibidis@maths.Warwick.ac.uk w.gaze,e.m.h.wellington@warwick.ac.uk

Abstract
In this paper, we describe a Graphical User Interface (GUI) designed to manage large quantities of
image data of a biological system. After setting the design requirements for the system, we
developed an ecology quantification GUI that assists biologists in analysing data. We focus on the
main features of the interface and we present the results and an evaluation of the system. Finally,
we provide some directions for some future work.

1. Introduction
Biologists experience difficulties in managing and analysing large amounts of data. To tackle this
problem, we designed a GUI, which incorporates tools for a systematic analysis of image data.
The objective of the interface is to enable biologists to manage and analyse a large number of
images by aiding classification of, and viewing of object groups that are present in image set. Its
design is based on a consideration of system requirements and an assessment was conducted by
allowing experts to evaluate the system. This paper focuses on three main aspects of the
development of the GUI:

• The requirements of the system design.
• The design and development of the interface.
• An evaluation of the system focusing on the quality of the results.

2. System requirements
The design of the system should be based on the following requirements: The interface should

• offer a rapid data overview
• require minimum intervention by the user for object classification.
• allow fast error identification,
• be dynamic and adaptive to changes,
• be reliable and robust.

3. Application and User Interface Design
A biology experiment was carried out in the Department of Biology at the University of Warwick
whose objective was the study of the ecology of a biological system (Acanthamoeba polyphaga. a
ubiquitous unicellar amoeba, and Salmonella typhimurium, an enteric bacterial pathogen on non
nutrient on agar). A large number of images were obtained (a series of at least 3.000 spatial
images, each image about 2MB, 1022 x!024) and within each image a number of biological
objects were present (see Figure 1). The aim of the analysis is to extract and classify all objects in
the data set, distinguish dead from live objects, group objects into classification categories and
finally carry out a detailed quantitative and qualitative spatial analysis of the results.

48

Basic Image analysis techniques (Weeks, 1996) were used and modified to locate and count all
objects. The refractive halo was used to locate all objects in each image by intensity thresholding,
giving morphological information about the objects such as perimeter, centre of mass and shape
details. To distinguish dead from live objects, a delayed image (4secs) comparison (image
subtraction) was performed.

Figure 1: Typical image containing amoeba and cysts, (perimeter and centre of mass shown) and bacteria,
e.g. filaments.
However, four problems are encountered with the automated procedure:

• Classification error,
• Incorrect perimeter,
• Missing objects,

• Multiple objects (refractive halo objects comprising more that one biological object)
To overcome these problems, we built a GUI (see Figure 2) using Matlab 6, which is one of a pair
of graphical interfaces we have developed, an amoeba classification GUI (this paper) and a
bacterial quantification GUI (not shown). The amoeba classification GUI allows the user to
intervene and correct interactively classification and morphological errors.
There exist two types of classification for the objects of the experiment, one is based on the type
of the object (amoeba, cyst, etc) while the second is based on the state of the object (live or dead).
The GUI can help the user to avoid a time consuming manual classification for every individual
object by running an automated classification procedure. The basis of these algorithms is
illustrated in the two plots in Figure 3; cysts and dead amoebae are clustered in the lower section
of the respective graphs and can thereby be classified based on approximate clustering. As a result,
the interface offers the facility to create clustering patterns that allow a faster classification and
decision making process. This is very important in minimising the effort of the user to achieve
object classification throughout the entire data set.
The GUI consists of viewing facilities and modification and analysis tools. It operates as a
management tool allowing the user to view summary information for individual objects or whole
categories of objects, and also conduct a detailed analysis. The modification tools enable the user
to either redraw the perimeter of an object if it is incorrect, introduce new objects if they were
missed by the automated image analysis and to modify an object's classification at any time. All
these manual changes are recorded and an overall analysis is adapted to the changes making the
GUI a dynamic interface.
The analysis tools are used to facilitate a fast quantitative and qualitative analysis for objects
belonging to a particular category by enabling the user to view graphical representations of the
results in terms of plots (see Figure 3).

49

Figure 2: The Graphical User Interface

•M*» II *•« I llli|
•,»«» it I— .,••«"< <*«•» i • '1

r
'i

Figure 3: Amoeba-cyst and Dead-live classification. Left panel: shape analysis, using relative, standard
deviation of object by radius. Right panel: maximum pixel intensity, in object (relative to an estimated
intensity standard deviation 0) by fraction of live, pixels in object (live being significantly above noise.
95%).

The viewing facilities aids the user to scan quickly a library of objects belonging to each category
(see Figure 4), compare them and decide whether a object classification change is required. The
decision of the user can be assisted by the fact he/she is able to compare all objects that are in the
same category and determine an optimal object classification criterion. If the classification of an
object has been modified, it is indicated to inform the user of the change. In the dead or live object
category, a library of images resulting from the delayed image comparison for all objects is
produced and it provides a clear and fast view of the dead-live classification.

50

Figure 4: Library of images (upper row: cysts, lower row: amoeba)

The user can also employ the viewing tools to obtain data, measurements, confidence statistics and
images for individual objects. In Figure 5, the first row shows the image of an extracted object
(left box) and the same figure with the perimeter of the object drawn (right box) while the second
row provides a summary of measurement and results (left box) and the delayed image subtraction
for live or dead analysis (right box).
Another useful feature of the viewing facility is that it allows to view the full image sequence
displaying all existing objects and their perimeters and centres of mass. The advantage of
supplying a tool that allows to go through the whole set of images and see this type of
characteristics provides a fast process of determining which objects will be used in the analysis
and which objects must be included and redrawn manually.

CiA - S.M88M

Qt^cdt • Amoeba. L

Figure 5: Images and measurements for an individual object

Both analysis and viewing facilities are very helpful tools because they simplify data management
and reduce the number of objects requiring manual reclassification. This is a very important issue
in terms of speeding up the analysis of a huge data set.
Finally, the efficiency of the interface can be tested by comparing the results derived from the
automated and manual classifications of the objects and measuring the level of accuracy and
confidence level of the automated procedure.

51

4. Evaluation
The interface was run on a Sun (Unix) platform with 1Gb of memory. It is mobile in the sense that
it can run on Windows or Mac platforms provided there is substantial memory and the computer is
equipped with a drive that can accommodate a large number of data.
The main objective of the evaluation procedure was to assess the set of requirements against the
decision of experts. Two biologists from the Department of Biology at the University of Warwick
helped the evaluation of the system. The focus was centred on the efficiency of the GUI and the
simplicity it provided in the analysis of the data:

• The accuracy in the object classification was very high; More than 85% of the objects
in the dataset did not require manual classification.

• The number of the objects that required their shape to be redrawn or had to be
introduced manually was very small (-5% of the total number of objects).

• The pattern recognition for the objects through the ROI clustering led to a faster object
classification.

• The GUI is user friendly.
These demonstrate that the GUI leads to an efficient fast classification, minimises the need for the
user intervention and simplifies the analysis.

5. Conclusions-Future Work
This GUI helped to analyse data collected in the Department of Biology at the University of
Warwick. The aim of this project was primarily the simplification of object analysis by providing
the means to assist a researcher in analysing a biology experiment in a fast and efficient way. The
fundamental findings of our inquiry are that the GUI:

• operates as an information management tool,
• helps to group data and produce graphical representations that simplify the analysis.
• enables pattern recognition for object identification,
• minimises user intervention in object classification,
• is dynamic and adaptive to changes.
• is mobile provided the hardware requirements are satisfied

The present interface is one of a pair of GUIs (the other focuses on bacteria extraction and bacteria
coverage in a huge set of images) that have been implemented with excellent results. An
improvement would be to build an on-line version of the interface. A further study is ongoing that
analyses sequences of images (videos) by studying trajectories of biological objects.

6. References
Weeks A.R. Jr., (1996). Fundamentals of Electronic Image Processing. IEEE press.

52

The use of Metaphors for Interaction
between Children and Children's sites

Alessandra Carusi

PUC - Catholic University
of Rio de Janeiro

Rua Henrique Stamile Coutinho,
470/

201 - Rio de Janeiro - RJ - Brasil
alecarusi@alternex.com.br

Vera Nojima

PUC - Catholic University
of Rio de Janeiro

Rua Marques de Sao Vicente, 225
Rio de Janeiro - RJ - Brasil

nojima@dsg.puc-rio.br

Abstract

This project puts in evidence the importance of observing principles and presupposes related to
communicational issues, mainly in what concerns the production of meaning in which web design
projects are involved. Hence, defining message is the starting point, until its minimal unit the
sign. Thus, this study focus on the construction of meaning, which is accomplished through the
use of metaphors in graphic interfaces.

1 Introduction

The Internet is gradually becoming more and more present in the routine of those children who
have a computer at hand in their environment. It can be considered that the construction of
meaning of graphic representations, which comprises the interfaces of these sites, is the issue
which is responsible for the achievement of these communicative goals. These children take
decisions once they realize the design elements, emphasizing the designer's need of knowing their
tendencies of perception while producing web sites for them.

This assembly of children is growing up surrounded by digital media, spending their upbringing
years in a context and environment quite different from those of their parents. They learn,
communicate and play with video games, CD-ROMs and computers connected to the Internet.
Novelties are plenty. Knowledge isnot only acquired through reading and doing written exercis es
or by the presentation of the information by their teachers. It is believed that the computer
intervenes in these children's routine and intelligence development.

The Internet operates as a means for children to find the latest news and have fun in children'sweb
sites, which are presented by their parents, friends or television. TV networks see the Internet as a
vehiclefor presenting, advertising and interacting with its public. Therefore, children's sites linked
to television channels are increasing in number and working as a complement to TV programs and
as a publicityentreaty. However, the rise of available sites for children on the Web does not mean
that these sitesare effectively stimulating their visits or interactions with the messages displayed

53

on their interfaces. This fact will only take place under the condition of the graphic interfaces
presenting a language, which is understood by its public. The designer does not always know the
expectations and repertoire of his or her children's public.

2 The Use of Metaphors in Interfaces

Graphic interfaces facilitate the way human beings interact with computers, making the
communicative process feasible between them. The graphic interface was the feature, which
contributed to make the usage of computers something simpler, acting like a translator of a signals
and symbols language, proper to its functioning. In people's homes and in daily life there was a
mounting of the presence of textual and pictorial interface computers, which helped user and
machine interact in a semantic relationship, characterized by meaning and expression.

According to Peirce (1977), all thinking has subjective and emotional qualities, which are
attributed to its sign, in an absolute or relative way. or through a convention. The sign comes up to
the human mind through words, concepts, images, sounds and associations. Johnson (2001)
declared that a man's visual memory of pictorial contents is far more lasting than verbal one.
Therefore it is easier to forget a name than a face or remember the place where a specific text
segment was located on a site, even if what was written there was forgotten. When it comes to
graphic interfaces the value of images is considerable. The user associates the images on the
screen to objects and actions of his or her daily life, and thus, considers pleasant the environment
of the site.

The representations of graphic interfaces frequently take the form of metaphors. According to
Fiorin & Savioli (1998), the metaphor is characterized by changing the meaning of a word by
attaching a second meaning which shares a relation of similarity between thefirst and the second
one. That is, when theyshare semantic characteristics. A command line constituted of 'zeros'and
'ones' is substituted by a metaphorof a virtual folder in a virtual desktop. This manner of
representing the message expanded the capacity of using a computer amongst people who do not
have the knowledge ofthe antecedent language expressed by 'command lines'.Johnson (2001)
comments that visual metaphors, presented for the first time in the sixties, probably had more to
do with the digital revolution than any other advance ever recorded within the software field.

3 The Relevance ofthe Representation Forms of Information

The metaphors on the interfaces are elements which, whether associated with others or not. lead to
a meaning which is constituted by the associations of other meanings. Its interpretations are
influenced by their public'sculture and context. A child, as a receptor of information, while
accessing a site, not only decides if she orhe should click an icon, but should also decide which
one to click. Understanding text combinations and images in their different colors and shapes,
motioned or not, and transform them in meaning is a process which demands the understanding of
each of these elements as well as the relations amongst them. To interact in a site, this child needs
to feel encouraged. Nevertheless,motivation will only turns out if there is enough comprehension
ofthe content ofthe communication object that is being presented.

Fiorin & Savioli (1998) gave the definition of a communication object: it is any product which has
the aim of communicating something to someone, once it must establish a relation between its
parts. What will determine a unique sense to the product will be the many relations between these
parts and not the mere adding of them. When analyzing a text it is possible to be noticed that it is a

54

context in which smaller units, as sentences, are part of and function as context to other words.
Each word has a particular meaning, denotation, or a second meaning, connotation, which can
vary according to the context in which it isinserted.

'A hat in a peasant's head is just a sun protecting outfit; over a lady's head in a
ceremony, it is an adornment; in front of a clergymanit is a symbol of power; in a
beggar's supplicating hand it means a demand for help. To sum up: meaning is
defined by relations'. (Fiorin & Savioli, 1998)

Therefore, context influences the reading of any product, pictorial or verbal. It is not possible to
base oneself on isolated fragments, because the meaning of the parts is determined by the whole to
which they belong. For this reason, graphic elements such as texts, images, colors, and contrasts of
a communication object are fundamental to constitute a exclusive element with an intelligible
voice. This will be expressed by language.

Andrade & Medeiros (1997) state that the language used for interpersonal communication is also
helpful for man to structure his inner world. Consequently, language is used to think and
communicate thoughts and emotions. Communication needs to use a common language between
the transmitters and receptorsof the message, being it a language or a dialect, spoken or written,
gestures, taps, colors, light or sound signals, etc. Communicating is not only transmitting
information. An effective communication process occurs when the receptor, after having
understood, makes a move or changes his or her behavior. The importance of the message isequal
as its power of persuasion, which is the act of leading another person to accept what isbeing stated.
Consequently, communicating is not only the knowledge of how to say something but, more than
that, make others believe it and do what the transmitter has in mind. The acceptance depends on a
series of factors such as emotions, feelings, values, ideology, vision of the world, political
convictions etc. These values should be organized in a language known by the speakers of the
message. There is no such thing as neutral communication. Somehow, all communication aims to
convince the receptor of something.

Andrade & Medeiros (1977) claim that language, knowledge and communication are mixed, being
on that account any knowledge is considered incomplete if it is not capable of being
communicated through language.

A message may be constituted by verbal and non-verbal language, or by one of them separately.
Fiorin & Savioli (1998) remark that there are many forms of language. Men, besides articulated
verbal language, also display of other language systems, some of each are non-verbal ones.
According to these authors, language is structured in two levels: content, which comprehends the
meanings conveyed, and expression, which is constituted by the vehicle of these meanings. In
what concerns expression, two voices are implicated: one which affirms and another which refutes
former information. This is how contrast is fully and clearly expressed. This opposition of the
senses provides unityto the elements of the message, because it establishes a relation among each
element within the context. To understand the organization of these relations is what will
determine the apprehension of concrete meaning within an specific context. An isolated figure
does not have only one meaning. It can imply many ideas.

The smallest unit in a language system is the sign. According to Noth (1995), the sign does not
have the role of a class of objects but the function of an object in the communication process. The
interpretation of a signis a dynamic process that happens within the receptor's mind. The
apprehension process of a sign is called semiosis. Eco (1973) used to comment that the sign is

55

used to transmit an information, to indicate to someone, something known by another person, who
by his or her turn, wants to share this information with other people.Fiorin & Savioli (1998)
believe that this relation is constituted by three elements: the objector referent, the sign or
representant, and the interpreter. The relation, which takes place between signand referent,
determines the existence of three types of signs: whether the relation is arbitrary, there is a symbol
(word). If there is contiguity, proximity between sign and object (smoke - fire: footsteps- people:
yell - pain; wet ground - rain), there is an index. If the relation is based on similarity, there is an
icon (map, photograph, drawings, comic strip, caricature, metaphor).

Being the sign the unit of a message, it can be concluded that its significant, its information and its
meaning are based on the relations amid the signs which are part ofthis message. The organization
of the relations between these signs is formed by coherent nets, which are comprised of the theme
of the message or product. Fiorin & Savioli (1998) allege that coherence is a tight union amongst
many parts. Furthermore, it is the relation between ideas which are in harmony, causing an
absence of contradiction. Coherence distinguishesa product amidst an assemble of things, creating
a unit of meanings. In a graphic interface, for example.the elements enchain themselves in a
special way to express a particular theme. Thus, they must be compatible ones with others, on the
contrary the user will not distinguish which theme is being conveyed. A very same theme may be
treated in many different ways, but its coherence is fundamental for it to be plausible. A graphic
interface for kids may lose its verisimilitude if it contains a design constituted of a gray scale of
colorstogether withfew iconic images. If this occurs, the power of persuasion becomes weaker
because the user will not believe in the message, consequently, he or she will not make the
expected moves.

4 Semiotic applied to the Language of Sites

Santaella (2002) makes a commentary that the classification of signs is the division of Peirce's
most important semiotictheory 'When it isintendedto analyze manifest languages in a semiotic
way, it can be observedthat semiotics furnishes us with the definitions and general classifications
of all types of codes, languages, signals andsigns of any species and the main aspects which
embrace them, for instance: signification, representation, setting objectives and interpretation'.
Therefore, semiotic offersbacking for the relations established in a semiosis. allowing the
foreshadowing of meaning and the applicability of what was elaborated.

Semiotic provides information and knowledge, to put in other words, semiotic theoretical base
allows the elaboration of a webdesign project based on the solutions of its communicational issues
and meaning, in the relation between product - user. Any webdesign project contains elements
which are signs and which convey meaning to the public to whom this project is somehow
addressed to. Through the study of signs, which interact in the project, the process of production
of meaning can be amended and evaluated if it will meet its public'needs.

5 Conclusion

A webdesign project organization should not be based on formal resources as color sets, shapes
and words, with the mere intention of adorning it. The most important circumstance is to ascertain
the best manner of displaying signs because doing it exclusively this way. it will be possible to
generate coherent and cohesive messages.

56

While creating a communication object composed of many metaphors, due to the fact that it
occurs in many sites for children, the designer and his or her target public must share multiple
information.In the intersection ofthis knowledge, the metaphor constitutes and provides, for the
children's public, the meaning idealized by its creators. This metaphoric content within graphic
interfaces will be likely to unchain feelingsandemotions which are necessary to arouse the child to
take many moves while accessing a site addressed to children.

An analysis of how children identify structured images as language could reveal the importance of
doing a specific study about howinformation will be presented in projects. One should be cautions
when publicity for children is being conveyed and it should avoided, for instance, pages with too
much information, incorrect use of typography or colors,metaphors which are out of context or are
repetitive etc. The way of presenting graphic elements is fundamental so they do not become mere
points of exploitation. Consequently,it is possfcle to conclude that , facing all new possibilities
offered by the latest technologies of communication, the most adequate solution would be the
observation of children's behavior and their interaction with sites which already exist. It would
also be useful to observe children's interaction with projects which are being developed. Once this
observation takes place, it would be possible to make propositions for further projects.

Adults often forget that children are children. The designer can manage the elements present on
graphic interfaces to facilitate a child's perceptive process, terminating with obstacles that make
reading and understanding difficult. If the designer, during the project, is aware of the mechanisms
that construct the meaning of these dements, the child will understand their content in a better
manner.

Thereafter, the designer's message to the computer user by the intermediacy of the graphic
interface of a site becomes an effective communication process, where the targets outlined during
the design project are achieved.

References
Andrade, Maria Margarida de & Medeiros, Joao Bosco (1997). Curso de lingua portuguesa: para
a area de humanas: enfoque no uso da linguagemjornalistica, literdria, publicitdria. Sao Paulo:
Atlas.

Eco, Umberto (1973). O Signo. Lisboa: Editorial Presenca.

Fiorin, Jose Luiz & Savioli, Francisco Platao (1998). Liqoes de Texto: Leitura e Redacao. Sao
Paulo: Atica.

Johnson, Steven (2001). Cultura da interface: como o computador transforma nossa maneira de
criar e comunicar. Rio de Janeiro: Jorge Zahar.

Noth, Winfried (1995). Panorama da Semiotica. Sao Paulo: Annablume.

Peirce, Charles S. (1997). Tradu9&o : COELHO NETO, Jose Teixeira. Semiotica. Sao Paulo:
Perpectiva.

Sataella, Lucia (2002). Semiotica Aplicada. Sao Paulo: Pioneira Thomson Learning.

Tiski-Franckowiak, Irene T. (1997). Homem, comunicacao e cor. Sao Paulo: Icone, 1997.

57

Can novice designers apply usability criteria and
recommendations to make web sites easier to use?

Aline Chevalier Melody Y. Ivory

Research Center in Psychology of The Information School
Cognition, Language and Emotion University of Washington

University of Provence Seattle, WA 98195-2840 USA
29, avenue Robert Schuman myivory(S;u.washington.edu

13621 Aix en Provence, France
alinech@up.univ-aix.fr

Abstract

We present two studies that we conducted to determine the effect of a short training program in
applying usability criteria and recommendations on the evaluation and improvement of a web site,
which contained usability problems. This training program presented web site usability criteria
and recommendations. We conducted the two studies with novice web site designers, who had or
had not participated in the short training program, to compare their performances. Study results
showed that the trained novices identified 30.7% more usability problems than the untrained
novices. Moreover, the trained novices managed to make several usability-related modifications to
the web site to make it easier to use.
These first results have to be verified by other studies, but they are encouraging. They suggest that
web site designers, who have no university training in ergonomics, can use usability criteria.
Furthermore, results suggest that usability criteria should be integrated into web site design
training.

1 Introduction

In an experimental study, Scapin and Bastien (1997) asked 17 cognitive ergonomics and human
factors students to evaluate a music application that had usability problems. Students conducted
evaluations in one of three conditions:

Condition 1: Six students used a list of usability criteria for the design of hypermedia
interfaces (defined by Bastien, Scapin, & Leulier, 1997).

Condition 2: Five students used the ISO/DIS 9241-10 standard (International Organization for
Standardization, 1994).

Condition 3: Six students used no guidelines (control group).

Results showed that students identified 51% more usability problems in the condition with the
usability criteria than in the conditions without guidelines or with the ISO/DIS 9241-10 standard.
Nevertheless, we must underline that in this study, participants were familiar with ergonomic and
usability aspects (they were in a cognitive ergonomics university program). We argue that it
remains to be determined whether people, who do not have a background in ergonomics or human
factors, can similarly apply usability criteria.

58

2 General presentation of the two studies

2.1 Objective

Bastien et al. (1998) adapted the usability criteria for the design of hypermedia interfaces (used in
the study described above) to the design of web sites. We wanted to determine whether web site
designers could apply the adapted usability criteria to improve web sites; thus, we conducted two
studies with novice designers. We chose this domain, because in most cases, web site designers
have not had any training in human factors or in usability, yet these aspects are very important in
their design activities. Indeed, designers must address the needs of the client (person who requests
the site) and of the users (Chevalier, 2002; Chevalier & Ivory, 2003) while designing web sites.

These two studies aim at determining the effect of a short training session on a designer's ability to
use usability criteria to evaluate and improve a web site that had a set of usability problems.

2.2 Web site designers

Numerous HTML authoring tools (e.g. Netscape Composer*, Macromedia Dreamweaver") are
available and their use, after a short training time, is not very complex. Therefore, many short
training programs are available for people who want learn how to create web sites. So, more and
more persons can be considered as web site designers. On this basis, the two studies were led with
novice designers, who had just followed a short training program in using the Macromedia
Dreamweaver" authoring tool. These designers had not yet dealt with real web site clients, and
they had created only one site during their training program.

We chose to focus on novice designers for two main reasons:
• A request from the University of Mediterranean (Marseille -France) for training students in

how to consider and apply usability criteria during web site design was suggested to us.
• Novice designers, who had never dealt with clients, would not have developed any

procedure or skill linked with clients' needs (see Chevalier & Ivory, 2003).

2.3 Web site to evaluate

For the two studies, we created a web site in HTML for a music store, which commercialised
music products (CD, concert tickets, etc.). The web pages were hyperlinked such that we could
navigate on the site. The site comprised 18 pages and had a total of 337 usability problems (34 of
them were unique); example problems included: the absence of page titles, the lack of color
changes to indicate visited links, the use of too much text, and so on. We chose the nature and the
number of usability problems based on a previous study, wherein we analysed similar HTML web
sites produced by web site designers (see Chevalier & Ivory, 2003).

2.4 Hypothesis

One specificity of web site design is that designers are also web users, which is not the case for
most design situations (e.g., the design of aerospace products). Nevertheless, designers can
become, with experience, expert web users. This statute will allow them to navigate easily on the
Web. So, they may not be able to recognize usability problems, which can be considered as such
by non-expert web site users. On the contrary, the training program in applying usability criteria

59

and recommendations will support novice designers to activate user knowledge as opposed to
client knowledge (by guiding their evaluation activity). Therefore, they should identify more
usability problems in the web site than untrained novices. On this basis, we hypothesized that
trained designers will manage to apply user knowledge to improve certain usability problems that
exist in the study web site. To test this hypothesis, we led two studies with novice designers.

3 First study: Evaluation without receiving training in the
application of usability criteria

3.1 Procedure and objective

Seven novice designers evaluated the web site without receiving training in the application of
usability criteria. They had completed the same training in using the Macromedia Dreamweaver"
authoring tool. All the designers had to evaluate the study web site while using the same Personal
Computer (PC). They had to inform the experimenter of the positive or negative aspects of the
web site (i.e., "to think aloud;" see Ericsson & Simon. 1993); There was no time constraint for this
task. We videotaped their verbal protocols and their use of the site. More precisely, this study
aimed at determining:

• The number of web pages that designers did not visit in order to identify their navigational
behaviour.

• The number of usability problems that designers could identify in the web site

3.2 Results

We recorded designers' verbal protocols and then transcribed them for analysis by two different
persons. Study results showed that novice designers did not visit in mean 8.2 of the 18 web pages
(see Table 1). Moreover, they identified very few usability problems introduced in the web site to
evaluate (see Table 1). One natural question that arises from these study results is whether or not
designers, who completed a training program in the application of usability criteria, would manage
to identify and to improve more usability problems than the untrained novice designers did.

Table 1: Number of identified usability problems and unvisited web pages for untrained novice
designers (in mean and percentage)

Identified usability Unvisited web
problems pages

Mean 16.2 of 337 8.2 of 18

Percentage 4.8% 45.6%

4 Second study: Evaluation with receiving training in the application
of usability criteria

4.1 Procedure and objective

Six novice designers evaluated and modified the web site. These designers had recently completed
the training program on developing web sites with the Macromedia Dreamweaver" authoring tool.

60

In our first study, seven novice designers evaluated the web site without receiving training in the
application of usability criteria. In this second study, the novice designers completed a short
training session in the application of usability criteria. During the six-hour training session, the
instructor used several existing web sites to demonstrate how to identify usability problems as
well as how to modify sites to mitigate problems (i.e., how to respect usability criteria). After the
training session, the designers evaluated the web site. To further determine if designers could
apply the usability criteria, we asked them to rectify usability problems on one web page in the
site. We instructed designers to indicate positive or negative aspects of the site and to make the
home page easier to use; Thus, the corrected page had to have fewer usability problems than the
original page.

4.2 Results

Verbal protocols were analyzed by two different persons. Study results showed that the designers
visited all the web pages. They identified, in mean, 35.7% of the usability problems introduced in
the site. They also managed to address usability problems of the home page by implementing, in
mean, 6.3 modifications. The home page had thirteen usability problems, and the designers
managed to correct 6.3 (48.6%) of them, (see Table 2). For example, if we compare the original
home page (Figure 1) with the one modified by a novice designer (Figure 2), we can see that the
designer modified certain usability problems like reducing the page's length or modifying the fonts
used However, other problems still exist in the modified design (e.g., the page's background color
or the presence of animations may impede user's navigation). Therefore, we can conclude that the
designers, who had no background in ergonomics and human factors, were able to successfully
apply the usability criteria, because the modified home pages had fewer usability problems than
the original pages.

Table 2: Number of identified usability problems, usability problems in the modified home page,
and unvisited web pages for trained novice designers (in mean and percentage)

Mean
Percentage

Identified usability
problems
119.5 of 337
35.7%

Modified usability
problems
6. 3 of 13
48.5%

Unvisited web
pages
Oof 18
0%

Figure 1 : Original home page Figure 2: Example of a modified home page

61

5 Discussion and future work

Although these preliminary results need to be verified by additional studies, they are encouraging.
Designers who completed a short training in applying usability criteria and recommendations were
able to identify more usability problems in the study site than untrained designers did (119.5% v.v
16.2%; F(l,l 1)=95.399: /?<.0001). Moreover, trained designers visited all pages, whereas
untrained designers did not. Untrained designers were hindered by the usability problems on some
pages, which kept them from visiting all pages. For instance, they did not see a hyperlink to visit
another page, because this hyperlink was at the bottom of a web page. Moreover, the trained
designers managed to modify the home page, but we do not know whether these modifications
actually improved usability. Future work entails asking users to evaluate the modified home pages.

These results suggest that novice web site designers, who have no background in human factors,
can apply usability criteria with some training. Therefore, usability criteria need to be integrated
into web site development training. In addition, usability criteria need to be adapted such that
designers, who do not have a background in human factors, can apply them.

Toward this end, several questions could be explored. First, these two studies have to be replicated
with professional web designers to determine whether they produce the same results. According to
the obtained results, a new study could be led. It would aim at determining the influence of
usability criteria, not in evaluation or modification situations, but in a design situation with both
professional and novice web designers.

References

Bastien, J. M. C., Leulier, C., Scapin, D. L. (1998). L'ergonomie des .sites web. Creer et maintenir
un service web. Cours INRIA, ADBS, Paris. 1 1 1 -173.

Chevalier. A. (2002). Le role du contexte et du niveau d'expertise des concepteur.s de sites web sur
la prise en compte de contraintes. Ph. D. thesis. University of Provence (France). Cognitive
Psychology Department.

Chevalier. A.. & Ivory, M. Y. (2003). Web Site Designs: Influence of Designer's Experience and
Design Constraints. International Journal of Human-Computer Studies. 58. 57-87.

Ericsson, K. A., & Simon. H. A. (1993). Protocol analvsis: Verbal reports as data (Revised
edition). Cambridge (MA): MIT Press.

International Organization for Standardization (1994). ISO 9241-10. Ergonomic requirements for
office work with visual display terminals (VDTs) — Pan 10: Dialogue principles. Draft
International Standard.

Scapin, D. L., & Bastien, J. M. C. (1997). Ergonomic criteria for evaluating the ergonomic quality
of interactive systems. Behavior & Information Technology-, 16, 220-231.

Acknowledgements

We thank Nathalie Bonnardel for her advices and the web site designers for their participation.

62

Learning from Museum Visits: Shaping Design Sensitivities

Luigina Ciolfi & Liam J. Bannon

Interaction Design Centre
Department of Computer Science & Information Systems

University of Limerick, Ireland
Luigina.ciolfi@ul.ie, liam.bannon@ul.ie

Abstract

This paper describes an observational study of visitors interacting with artefacts in a museum, and
attempts to draw from these studies a number of design considerations. Gaining a thorough
understanding of the context, and the way visitors move through the exhibitions and interact
around the objects on display, is crucial in designing effective museum installations. In our
research, we are designing novel installations that will engage visitors in a natural and unobtrusive
way. Our designs - which are ongoing at the moment - are informed by our field study work at
the museum site. Our purpose here is to show how our observations can indeed be made relevant
to design concerns, a topic that is fundamental to the development of successful pervasive
technology.

1 Introduction

Despite the increasing prevalence of computer-based museum installations, visitor experiences
with computer technology remain mixed, at best. Many of the most insipid and uninspiring
multimedia kiosk-type installations that proliferated in the mid-nineties have thankfully been
removed. These kiosk installations tended to separate the person from the actual artefacts, and
called attention to the computer interface itself as the object of interest, rather than the actual
artefacts. Far from augmenting the artefacts, they served to distance visitors from the items in the
collection. People are not happy about moving away from the exhibitions to consult a kiosk, they
would prefer to focus on the displayed objects. These kiosk technologies also provide essentially
an individual experience, whereas visitors usually go to museums in small groups. Nowadays,
there is a greater realization within the computing community that the technology needs to be in
the service of the exhibition, rather than stand out from it. The increasing interest in such areas as
ubiquitous or pervasive computing, where computational power is taken "out of the box",
distributed and attached to material objects, provides interesting new possibilities for how one
might augment museum exhibits. "Traditional" desktop computers are not an effective form of
technology for supporting visitor behaviour within such a rich, interesting and complex
environment as a museum. Novel mobile, "ultralight" appliances and "Disappearing Computer"
technologies could be more effectively employed in order to design better technological
installations in the museum, both for supporting the visit and for creating interesting visitor
experiences or educational activities.

63

This paper provides a number of insights derived from observing visitors, and interviewing them,
at a specific site - the Hunt Museum in Limerick, Ireland. The purpose of these studies is to
provide some background material that will inform and inspire our creativity in designing new
augmented museum exhibits. However, within the design community, while there is interest in
ethnographic and other forms of field studies, there is increasing concern as how one can take the
results of such studies and make them relevant for design. Often, social scientists focus on issues
that do not seem of relevance to design, and they do not have the training or expertise to be able to
move from observation to the specification of requirements. Our own expertise crosses the human
and social sciences, but also extends to concept and software design, a somewhat unusual
combination. Thus we are especially interested in ensuring our observational studies are of
relevance to the design process. In an effort to show how such observations can indeed be shown
to be relevant for design, we, along with colleagues, have been involved in exercises that attempt
to shape the design process so as to be sensitive to various issues, as determined from the
observational studies. In a word, we are looking for "design sensitiv ities", rather than requirements
per se.
Our work has been conducted within the EU-Disappearing Computer SHAPE1 project (Situating
Hybrid Assemblies in Public Environments). The SHAPE project is not strictly concerned with
introducing technology within museums and galleries, rather the project focus is on creating
hybrid public environments that allow visitors to actively interact with features of the physical,
and of the digital, space. However, museums and exploratoria are the chosen context to inspire and
support the development of such installations. The SHAPE team at the IDC, University of
Limerick, jointly with the Hunt Museum, are currently developing a full design scenario informed
and inspired by the analysis of a corpus of field studies aimed at understanding human behaviour
within the museum environment, and, specifically, the way visitors approach and make sense of
particular exhibits and specific objects. In this paper, we attempt to match specific vignetttes
culled from our video studies, and pair them to design sensitivities, to show how particular user
behaviours around existing objects and exhibits might sensitize us to certain issues, which we may
wish to explore further in our computer-augmented installation.

2 Cabinets of Curiosities

The Hunt Museum has three "cabinets of curiosities" exhibits: they are wooden closets where
objects are arranged both on the upper shelves and in the drawers that the visitors can open if they
wish. The objects are protected by glass on the top of each drawer. The nature of the objects
contained in the cabinets is varied: ivory pieces, tapestry, drawings, coins, etc (see Figure 1).
We conducted numerous observations on the behaviour of people in the "Study Collection" room,
where one of the most important of the cabinets is located. We were interested in understanding
the way visitors relate to the exhibit and their interaction with the drawers. These cabinets are
particularly appreciated by the visitors. An evident reason is the potential of drawers, chests and
boxes to stimulate curiosity and exploration. Containers suggest the presence of secrets (Eisner &
Cardinal, 1994), or of objects that have some kind of symbolic relevance for being sheltered from
the eyes of the public (Bachelard, 1958). "Curiosity is a major factor in determining whether
environments are appealing, and indeed curiosity triggers interaction towards its object." (Falk &
Dierking, 2000, p. 115). The interactions around the drawers reveal interesting visitor activities,
often involving collaborative understanding and appreciation of the objects.

1 Members of the SHAPE Consortium are: the Royal Institute of Technology-KTH (Sweden: Coordinating
Partner), King's College London (UK), the University of Nottingham (UK) and the University of Limerick
(Ireland).

64

Fig.l. A cabinet of curiosities in the Hunt Museum

3 From Field Studies to Design Sensitivities

In what follows, we list in more detail a few of the interesting observations and our interpretation
of their relevance to a potential design process.
Observation 1. People tend to interact with the drawers in one of two ways: they open either a
few drawers or all of them in sequence. Those who cannot resist opening all the drawers usually
spend a longer time on each, and tend to comment more on the objects with their companions.
Design concern 1. To keep the user's interest and engagement high, we must envision ways to
support different 'layers of activity': this could provide participants with the ability to engage in a
progressive sequence of actions (both alone and with others)in order to provide successive
surprises and discoveries. For example, more, and varied information on assemblies of objects
and their mutual relationships is provided to those who want to explore all the parts of the exhibit.
Observation 2. In the case of couples visiting the exhibit, each person usually takes control of one
side of the cabinet, resulting in two drawers being open at the same time. This pattern of
interaction facilitates the exchange of opinions and comments among the two visitors, usually
comparing the contents of the respective drawers. Gestures accompany verbal comments on
objects' similarities, possible relations, visual features, etc.
Design concern 2. The augmented cabinet of curiosities should provide the possibility of parallel
discovery and of making comparisons in order to support collaborative understanding of objects:
the interactivity we support should not be limited to the one between individual and exhibit, but we
should consider the different degrees and combinations of verbal gestural interaction amongst
individuals. The installation should also provide some kind of added value associated with
collaborative interaction around the drawers.
Observation 3. The glass surface on top of each drawer is often used for sketching or taking
notes: children especially spend time in taking notes and drawing sketches of the objects contained
in the drawer, using the drawer itself as support. In many cases, we observed children visiting the
Study Collection with their parents, and literally taking the lead in discovering the content of the
drawers and showing to and commenting on it with their parents (see Figure 2).

Figure 2. A child is leading his parents through the exploration of the drawers

65

Design concern 3. Children should be allowed to take part in the activity and be able to take
notes or sketches around the augmented cabinet of curiosities. The installation should also give
children the possibility to lead the process of discovery and to show it to their companions.
Observation 4. Some people think that it is not possible to touch or open the drawers and they
might open one only after seeing somebody else doing it, and in this way being reassured they are
actually allowed to interact with the exhibit. Even if one of the drawers is left slightly open to
suggest its real use, these visitors did not seem to investigate further, assuming the open drawer
was the result of some work being done by museum personnel. When visitors proceed to open the
drawers and discover what they contain, all of them express their surprise.
Design Concern 4. The technologically augmented cabinet should provide clues, triggers and
adequate qffordances to make visible which actions the visitors are allowed to perform on each
component of the installation. We must consider possible ways of encouraging interaction with,
and around, the exhibition, and specifically collaborative interaction.
Observation 5. Unlike couples, members of larger groups of visitors cannot all simultaneously
open the drawers: usually, two people act as "openers" on the two sides of the cabinet, but all the
people in the group comment on the objects and tend to draw each other's attention to what has
been discovered.
Design Concern 5. The augmented cabinet should support the group visit experience with
appropriate feedback that all the members of the group can appreciate. The possibility for the
visitors to talk to each other must also be insured, as discussing the objects together is an
essential part of the group experience around the cabinet. This means that devices as head-
mounted displays or headphones are not appropriate for such an installation.

4 Developing an augmented cabinet of curiosities

Following the data analysis sessions and an initial phase of reflection on our collected material, we
are developing an augmented reality Study Collection room. The existing cabinet has some
important features that make it a successful and inspiring installation: it is robust, the visibility is
good, it allows for collaborative interactions and supports small groups. It is also easily accessible
by children. The cabinet adds value to the experience of museum visit as it includes an element of
active discovery and plays on a natural curiosity towards drawers and cabinets. Each object is
interesting by itself, but multiple objects are connected by similarities or unexpected connections.
What can pervasive technologies do to achieve such features in the technologically enhanced
exhibits? At a minimum, we need to seamlessly integrate aspects of the exhibit with a visually
pleasing structure, react to collaborative behaviour, and provide ambient feedback. We need to
create a space that integrates with the rest of the museum. This is our design brief. Currently
several researchers at the Interaction Design Centre, are engaged in concept design, inspired by the
material presented above. We have found that the video material has helped us in creating outline
scenarios, and storyboards. In the process of defining what kind of added value a technology-
enhanced cabinet of curiosities could provide to people, we noticed that the only element currently
missing in the process of interaction with the cabinet and its objects is the "physical" one: what if
the visitors could handle the objects and explore them directly? Experiencing the exhibit has a
physical aspect as well as a reflective one. As museum researchers have noted: "Exhibits . . . allow
people to see, touch, taste, feel, and hear real things from the real world. ... Visitors devote most
of their time to looking, touching, smelling, and listening, not to reading. Visitors tend to be very
attentive to objects, and only occasionally attentive to labels." (Falk & Dierking. 1995. p. 77). As
emerged in our series of observations, interaction among visitors, collaborative content discussion
and discovery all happen around the objects. The current cabinets in the Museum do not provide a
way to experience features such as the look and feel of the surface of an object, the light and
shadow it presents, the shape, texture, weight, etc. Our scenarios and prototypes are exploring

66

narratives and progressive unfolding of events, attempting to focus attention on aspects of the
artefacts themselves and their context of discovery and use. Space does not permit us to detail our
designs here, but we will show some of our prototypes during the Conference presentation.

5 Conclusion

The field studies conducted at the Hunt Museum have provided a useful corpus of material
concerning the nature of exhibits, and visitor interaction around these exhibits, that is still under
analysis. The elaboration of the "cabinet of curiosities" represents the first prototype we are
developing, where we wish to augment these physical cabinets in a variety of ways with new
technologies. Outline scenarios include cabinets where people can actually handle replicas of the
real objects and experience some of the characteristics of these real objects. Our interest in this
scenario has been driven by analyses of visitor engagement with exhibits and their interactions
during specific "handling sessions" supervised by museum personnel that we have analysed (see
Ciolfi & Bannon, 2002.)
This scenario, in which the objects themselves are envisioned as interfaces through which visitors
can make sense of the object, of their history and their multiple relationships and features, poses a
challenge for designers. Several projects are underway regarding the design of graspable interfaces
and physical icons instead of GUIs (e.g. Ishii & Ullmer, 1997), but usually the object itself is not
the locus of information, nor the focus of attention. Rather, objects are essentially tools for
interacting with a computer system, and they are intended to act as a physical representation of
surface interface elements such as icons and pointers. Thus our approach would be distinct, as we
are interested in objects as both material and symbolic devices in their own right, with a history,
context of use, etc, both mediating, and being the object of, interaction. Work in the coming
months will involve further exploration of a variety of technical devices and platforms that may
assist us in achieving some of our objectives for the prototypes, such as RFID tags, use of
accelerometers and potentiometers for sensors, projection surfaces, webcam tracking etc., and we
will show the results of our design and development work in the Conference presentation.

References

Bachelard, G. (1958). The Poetics of Space, Boston: Beacon Press.

Ciolfi, L. & L.J. Bannon (2002). Designing Interactive Museum Exhibits : Enhancing visitor
curiosity through augmented artefacts. Proceedings of ECCE11, European Conference on
Cognitive Ergonomics, Catania (Italy) September 2002, pp. 311-317.
Eisner, J. & Cardinal, R. (eds.) (1994). The Cultures of Collecting, Cambridge, MA: Harvard

University Press.

Falk, J.H. and Dierking, L.D. (1995). The Museum Experience, Washington, D.C.: Whalesback.

Ishii, H. & Ullmer, B. (1997). "Tangible Bits: Towards seamless Interfaces between People, Bits
and Atoms", Proceedings of CHI'97, New York: ACM Press.

67

Scenarios in the model-based process for design and evolution of
cooperative applications

Bertrand David, Rene Chalon, Olivier Delotfe, Gerald Vaisman

Laboratoire ICTT, Ecole Centrale de Lyon
36, avenue Guy de Collongue, 69134 ECULLY, France

(Bertrand.David, Rene.Chalon, Olivier.Delotte, Gerald.Vaisman}(aec-lyon.fr

Abstract

In this paper we describe the role of the scenario-based approach which we integrate in a more
global perspective of a well-organized process based on a collection of models which are used in
design and evolution to transform scenarios in an operational cooperative application.

1 Introduction

CSCW (computer supported cooperative work) [Ellis-94, Andriessen-03] research proposes a new
type of software, called groupware, which is an interactive multi-participant application allowing
participants to carry out a "joint" task working from their own workstations. It is now a question of
managing not only the man-machine interface but also the man-man interface mediated by the
machine. The relationship between the participants can be considered from various points of view.
Ellis et al. [Ellis-94] proposed a matrix which classifies the nature of cooperation in regard to time
- synchronous or asynchronous, and to distance - local or remote aspects of cooperation. This
classification was extended later, introducing awareness of cooperation, foreseeability or
unpredictability of collaboration and location. The possibility of bringing together geographically
distant people is an important contribution of groupware. The first aim of groupware is thus to
propose a support for the abolition of space and time distances. Moreover, knowledge and
management of the interventions of the multiple participants appear necessary. In fact, the
participants constitute a work group that has to be organized with respect to working conditions,
time and location. The organization can lead to the definition of different roles, sub-groups and
phases of project work. The success of cooperative work can be measured by the way in which the
groupware is able to create and support good group dynamics, which contributes to the
disappearance of the virtuality of participants' presence. The project must be able to proceed as
naturally as in collocation and without IT support. It must even take advantage from an
organization of more effective work based on the new possibilities offered by information
technologies (IT). The technological devices used should not interfere with the work or the group
dynamics needed for project accomplishment. When designing cooperative systems, it is thus
necessary to be aware that the usability aspect, the aim of which is to validate the environment
suggested, is at least as significant as the engineering aspect. The evolution of users' practices
during the project life-cycle must be taken into account in order to provide an effective and
adaptable environment.

In-depth analysis of cooperation reveals several dimensions which must be examined, as ini t ial ly
proposed by Ellis [Ellis-94] with the Clover model, i.e. a support of production, conversation
communication and coordination between participants.

68

2 Scenario-based Design and CAB Model

Carroll's view of Scenarios-Based Design [Carroll-00] is an interesting starting point for
collaborative system design and evolution. However, it seems important to go further. We propose
to approach this scenario-based approach in a more organized way. In particular, in respect with
the Clover model, it is important to locate each scenario in production, coordination or
conversation space or in their intersections. More globally, it seems important to synthesize these
scenarios in a model integrating collaborative application behaviors. We call this model a CAB
model (Collaborative Application Behavior Model).

"Scenarios are stories", as Carroll wrote [Carroll-00], which, to be useful, can be expressed more
or less freely or formally. We consider that it is important to integrate them as soon as possible in
CAB perspective i.e. to ask the scenario writers to express explicitly the position of the scenario in
relation with the CAB Model. The main goal of the CAB model is to describe explicitly the
structure of actors, artifacts, contexts and tasks that characterize the behavior of the cooperative
application in three Qover spaces (co-production, coordination, conversation). Each scenario
expressing a task, might indicate its position in relation with these actors, processes, artifacts and
contexts. In this way it is possible to elaborate progressively the CAB model for a given
application. The CAB model for a specific collaborative application, contains concrete actors,
artifacts, tasks and contexts which the cooperative application will take into account. Tasks
expressed in different scenarios are studied in order to organize them. The goal is to eliminate
redundancies and to elaborate a task tree and a task process. The task tree can be expressed in
ConcurTaskTree formalism proposed by Paterno [Paterno-00]. The process view is a workflow
view with temporal and logical dependencies between tasks. The context view is an expression of
different contexts (logical or physical) related to environment and devices constraints, if any. Once
we have collected several scenarios, we can start to elaborate the CAB model. This model will be
used in the elaboration stage (development or prototyping).

3 Software infrastructure

With respect with software engineering considerations, the cooperative application cannot be
carried out from scratch. It is necessary to identify different levels of development which are more
or less dependent on the application. Usually, three functional layers are recognized.

The top layer corresponds to the collaborative application level. It contains all the cooperative
software employed by the users. This fevel is definitely user-oriented, which means that it
manages interaction control and proposes interfaces for notification and access controls. This
model is called CUO-M (Collaboration User-Oriented Model). It uses multi-user services
provided by a second layer called the groupware infrastructure, called CSA-M (Collaborative
System Architecture Model). It is a generic layer between applications and the distributed system.
This layer contains the common elements of group activities and acts as an operating system
dedicated to groups. It supports collaborative work by managing sessions, users, it groups and
provides generic cooperative tools (e.g. telepointer) and is responsible for concurrency control. It
also implements notification protocols and provides access control mechanisms. The last layer is
essentially in charge of message multicast and consistency control. We call it DSI-M (Distributed
System Infrastructure Model). Usually, it is a computer-oriented layer which provides transparent
mechanisms for communication and synchronization of distributed components which misfit with
CSCW aims but which are very useful.

69

The degree of generality (and genericity) is not the same for these tree layers and models. The
lowest layer (DSI-M) is for the most part independent from the collaborative applications. The
middle level (CSA-M) can be dependent on a category of applications, but is stable for each
category and each application during its life-cycle. The highest level (CUO-M) is. by construction,
dependent on the application, because it is constructed (or specialized) with respect to the CAB-M.

4 AMF-C as CUO Model

An appropriate CUO model should fulfi l l three main objectives. Firstly, it organizes the software
structure to improve implementation, portability and maintenance. Secondly, it helps identify the
functional components, which is essential during the analysis and design process. Its third role is
to facilitate the understanding of a complex system, not only for designers, but also for end-users.

AMF-C (the French acronym for Collaborative Multi-Faceted Agent) [Tarpin-Bemard-97] is our
proposal for the CUO model for collaborative software which fulfil ls all these objectives. AMF-C
is a generic and flexible model that can be used with design and implementation tools. It includes
a graphical formalism that expresses the structures of software, and a run-time model that allows
dynamic control of interactions.

The current trend in software engineering is to identify design patterns [Gamma-95]. which help
developers to share architectural knowledge, help people to reuse architectural style, and help new
developers to avoid traps and pitfalls traditionally learned only as a result of costly experience.

AMF proposes a multi-faceted approach, in which each facet can be a pattern. Each new identified
behavior which seems to be reusable, can be formalized as a new facet, i.e. a new pattern. AMF
also proposes a very powerful graphical formalism which helps understand complex systems. This
formalism is used as a design tool by editors and builders. It represents agents and facets with
overlapped boxes, communication ports with rectangles which contain the associated services, and
control administrators with symbols which express their behavior.

5 Evolution during the life-cycle

During application life-cycle, users progressively change their perception of the system and their
use. The cooperative application could, during its use. take into account requirements concerning
evolution expressed explicitly or implicitly by its users. This is particularly the case in the context
of Capillary CSCW (cooperative work using handheld devices) [David-03. Brown-02] in which
behavior evolution is more important related to context condition (connected or disconnected
work) and the device used. To take into account this evolution in an explicit way. new scenarios
can be presented which upgrade or extend initial the COB model. The Cooperative Application
Behavior model evolves smoothly and it is important to be able to take this evolution into account.
This evolution can vary in importance and its impact can be taken into account in different ways:

• If the evolution is within the scope of the system, i.e. these adjustments have been
imagined and they are at the disposal of the user in the "configuration panel" (use of
different interaction modalities, modification of awareness, choice of different
WYSIWIS relaxation, plasticity of user interface, etc.)

• If the evolution is more important and leads to modification of the CAB model, two
different solutions are possible:

70

Change of interaction pattern with the same algorithmic behavior: this evolution is
relatively easy and can be performed by the end-user (i.e. by visual programming
using AMF-C graphic formalism),
Change is more important also with algorithmic behavior evolution: in this case a
developer intervention seems inevitable.

Figure 1: model-based process for design and evolution.

To take into account this re-configurability, adaptability and flexibility, we need new scenarios,
which can also replace or modify existing ones. Their processing leads to modification of the CAB
model and has an impact on the CUO model. The evolution can either be implemented on the
existing IT support or this support can evolve too. We expect that the latter evolution, which
concerns the CSA and DSI models, will seem to be out of scope of the evolutions which can be
taken into account dynamically. To be able to modify dynamically CUO, we need to have at our
disposal a meta-model of the CUO model to create dynamically new AMF-C agents in the relation
with the re-configuration of the COB model. This co-evolution can be implemented either by the
end-user himself or at least expressed by him, on his directives or under his control, by the
developer.

6 Conclusions

We propose a development process which is based on a scenario-based approach and a collection
of well-organized models. The synthesis of collected scenarios leads to the definition of a CAB
model. These scenarios contribute to the elaboration of task and process models which are the

71

components of the CAB model. It synthesizes different scenarios and constructs a comprehensive
model of the cooperative application with its users, processes, tasks, data and contexts.

Initial design is in this way properly assisted and the evolution during the application life-cycle
needs new concepts. In actual fact, the CAB model seems to be appropriate for the evolutions.
Lower level software models (CSA and DSI) are generic enough to be able to support these
evolutions. The problem is mainly between CAB and CUO models. Dynamic evolution of the
CUO model in relation to changes in the CAB model requires access to the meta-model of CUO.
to be able to construct the new CUO model. We are working in this direction so as to take into
account the evolution in a comprehensive way.

The second direction of our research relates to the automation, or at least assistance, of the design
and evolution processes. We aim at assisting the initial transformation between a set of scenarios
and the CAB model, between the CAB model and the CUO model in relation with design patterns
which can be used, and the projection of the CUO on CSA and DSI. We would also be able to
assist evolutions expressed by new or alternative scenarios and their impact on other models.
Consideration of this joint evolution (known as co-evolution) is a significant challenge in the field
of CSCW research.

References

Andriessen J.H.E., Working with Groupware: Understanding and Evaluating Collaboration
Technology, Springer. CSCW Series 2003

Carroll J. M, Making Use : Scenario-Based Design of Human-Computer Interactions. The MIT
Press 2000

David B., Chalon R., Vaisman G., Delotte O.. Capillary CSCW. to be published at HCI
International 2003

Dewan P., An Integrated Approach to Designing and Evaluating Collaborative Applications and
Infrastructures, Journal os Computer-Supported Cooperative Work. 2001. Vol: 10. N° l . p. 75-
111. Kluwer Academic Publishers

Ellis C.A.. Wainer J.. A Conceptual Model of Groupware. ACM CSCW'94 Conference, p. 79-88.
ACM Press

Gamma E.. Helm R., Johnson R., Vlissides J. (1995), Design Patterns : Elements of Reusable
Object-Oriented Software. Addison Wesley. Reading. MA.

Paterno F., Model-Based Design and Evaluation of Interactive Applications, Applied Computing
Series, Springer. 2000

Seffah. A.and Forbrig. P. Multiple User Interfaces: Towards a Task-Driven and Patterns-Oriented
Design Model, Proceedings of DSVIS 2002 (Rostock. Germany. June 2002) p. 160-174. to
appear in Lecture Notes in Computer Science.

Tarpin-Bernard F.. David B.T.. AMF a new design pattern for complex interactive software ?.
International HCF97. Elsevier. ISBN: 0 444 82183 X. San Francisco. Vol. 2IB. p. 351-354.
August 1997.

Tarpin-Bernard F., David B.T., Primet P.. Frameworks and patterns for synchronous groupware :
AMF-C approach. IFIP Working Conference on Engineering for HCI : EHCT98. Kluwer
Academic Publishers. Greece, p. 225-241. September 1998

72

Configuring the Design Process -
Applying the JIET Design Process Framework

Helmut Degen Sonja Pedell Stefan Schoen

Vodafone Holding GmbH
Global Products & Services

Berger Allee 25
D-40213 Duesseldorf,

Germany
Emails:

helmut.degen@vodafone.com
hdegen@acm.org

Abstract

The University of Melbourne
Department of Information

Systems
111, Barry Street

3010 Victoria, Australia
Emails:

spedell@studentmail.dis.unim
elb.edu.au, pedell@acm.org

Siemens AG
Corporate Technology

Otto-Hahn-Ring 6
D-81730 Munich, Germany

Email:
stefan.schoen@siemens.com

To be able to offer appropriate and efficient design processes, the JIET design process framework
developed for web based e-business applications is presented. By means of a configuration model,
the appropriate design process can be tailored respective to the conditions of industrial Tippfehler
projects. The configuration model consist of four parameters to identify a suggest process:
availability of users (or not), existing user interfaces (or not), available resources, and intended
quality standard. The JIET design process framework and one part of the configuration model is
outlined.

1 Introduction

Several publications deal with design processes, also known as usability engineering processes
(e.g. 2002; Constantine & Lockwood, 1999; Beyer & Holtzblatt, 1998). These design processes
seem to be carried out from one starting point in a very similar way. However, in some industrial
projects user interfaces already exist, while in others they do not. Sometimes users can be
involved, sometimes not. Also the goal, i.e. the intended quality of user interfaces, may differ from
project to project. One of the key questions in industrial projects is: Which parts of the design
process should be carried out, if you have only 70 %, 50 %, or even 30 % of necessary resources
available?
The published design processes do not consider different starting conditions explicitly and directly
applicable for tailoring user interface projects in industry with a short time to market. Beyer &
Holtzblatt offer an heuristic approach to tailor the process, but this is focussed on the contextual
inquiry method only (Wood, 2002). Constantine (2000, 2002) offers some methods around his
model based approach, but it is only implicitly described and therefore not directly applicable.
Therefore a user interface design process that takes these different conditions into account, and
that can be customized to the needs of individual projects, is needed (Vredenburg, Isensee & Righi
2002). How does a design process look like when different steps have to be left out because of
restricted time or resources, or where steps have already been carried out? The idea is to develop a
design process framework together with a configuration model. With this configuration model, an
appropriate design process can be tailored according to existing project conditions.
This paper is structured in four further sections: In the following section related work is sketched.
Then the development of the JIET Design process is described. The third section describes the

73

JIET design process framework, and why it is a usable design process. The last section
summarizes and shows future work.
For better understanding, we would like to introduce some basic terms. There is a provider of an
e-business solution, e.g. Siemens. The client is the sponsor of the user interface designers and
often responsible for developing the application, e.g. Boston Consulting Group. The users are the
persons who use the e-business application. User interface designers are people with two core
competencies: The interaction designer is responsible for the interaction architecture as well as
usability work. The visual designer is responsible for finding and designing the visual language of
the user interface.
The presented design process framework was elaborated during industrial practice in an inductive
way over the last 2.5 years. We followed the following steps: 1. New e-business methods modules
were developed or existing modules were adapted to the specific requirements of e-business
projects. We optimized them during many e-business projects. 2. The structure of the new design
process framework was reorganized. In order to find a structured framework, a literature research
was conducted. The most relevant result of the literature research was the process model of ISO
13407. We used this model as a starting point and enhanced it according to the requirements of e-
business design processes. 3. This design process framework was applied in even,' new e-business
project followed by a systematic evaluation and improvement. 4. Within a 2-day process
workshop, eight usability experts from the Competence Center "User Interface Design" (Siemens
AG, Munich) reviewed and improved the process framework.

2 JIET Design Process Framework

2.1 Overview
We call this new design process framework for e-business applications "JIET Design Process
Framework" (herein called JIET = Just in ETime). Goal of the framework is to offer a set of
method modules in order to be able to deliver user interfaces with the highest possible quality
according to project conditions and goals. The JIET framework consists of nine phases that are
shortly described (see Table 1).
Project setup (phase 0) is the start of the user interface design project. The user interface designers
obtain an understanding of the project, the client, the audience, the application and the expected
kind of support regarding the intention of involving user interface experts. The starting conditions
of the project will be identified, and the decision process will be tailored. After obtaining the
signed contract, the audience identification (phase 1) is the next phase. The purpose of the
audience identification phase (1) is to understand the business of the provider and to identify the
user roles. Within the use context analysis (phase 2). the use context of the target audience will be
analyzed. For each user role we identify job-related goals, tasks, core tasks, scenarios, processes,
tools, and content objects. The purposes of the requirements gathering phase (3) is to gather use
scenarios and requirements for each scenario and user role. The purpose of the user interface
design phase (4) is to create the user interface architecture. Within the evaluation phase (5) . the
designed user interfaces are evaluated. The results of the evaluation phase are considered to
improve the user interface architecture within the redesign phase (6). All existing results of the
design phase (4) will be improved. Within the design specification phase (7) the design
specification is compiled based on the results of the last design phase. In the last phase (8 Process
Improvement), the applied design process is analyzed, and improvement potentials of applied
method modules are identified, based on the results of the usability evaluation (phase 6).

74

Table 1: JIET Design Process Framework

Phase

0 Project Setup*

1 Audience Identification*

2 Use Context Analysis*

3 Requirements Gathering*

4 User Interface Design*

5 Evaluation

6 Redesign

7 Design Specification
8 Process Improvement

Available method modules

0.1 Project Characteristics (Client)**
0.2 Project Planning**
0.3 Proposal**
1.1 Enterprise Profile (Provider)**
1 .2 Business Process Profile**
1 .3 Business Customer Profile (Provider)
1 .4 Private Customer Profile (Provider)
1 .5 Supplier Profile .(Provider)
1.6 Competitor Profile (Provider)
2.1 Enterprise Profile (User)**
2.2 Business Process Profile (refined)**
2.3 Job Profile (User)**
2.4 Activity Profile (User)**
2.5 User Profile (User)
2.6 Competitor Profile (User)
2.7 Process Profile (User)
2.8 Content Profile (User)
2.9 Tool Profile (User)
2.10 User Role Profile (User)*
2.11 Usability Goals
3.1 NOGAP**
3.2 Card Sorting
4.1 Interaction Architecture**
4.2 Content Architecture
4.3 User Interface Architecture**
4.4 Prototype
5.1 Usability Check
5.2 Optimization Profile**
5.3 Usability Inspection
5.4 Usability Test (summative)
5.5 Usability Test (formative)
6.1 Optimized Interaction Architecture**
6.2 Optimized Content Architecture
6.3 Optimized User Interface Architecture**
6.4 Optimized Prototype
7.1 Design Specification**
8.1 Process Control**

Legend
* This is a duty phase in each user interface project and should be applied in any case
** This method module is a duty module within its phase and should be applied in any case

2.2 Configuration Model

Each project has several starting conditions. In order to be able to offer the most efficient design
process for certain project conditions an adapted design process is necessary. For this purpose, a
configuration model is required. One particular task in creating a configuration model means to
identify all of these starting conditions that help to select an appropriate design process. These
relevant starting conditions are herein called starting parameters. All in all, four parameters could
be identified that enable us to select the appropriate design process. Two of the four parameters
are basis parameters. One parameter stands for the status of user interfaces (do they already exist

75

or not), the other for the availability of users during the process (they are involved or not). With
these two starting parameters, we have four different configuration variants, shown in Table 2.

Table 2: Configuration Variants, based on two basis parameters

Users ara not available Configuration Variant 1 Configuration Variant 3

Configuration Variant 2 Configuration Variant 4

Table 3: Configuration Variant 3

Pfms0s

/i jcprtluser;

Audience Identification
(Provider)
Use Context Analysis
(User)
Requirements Gathering

User Interface Design

Evaluation

Redesign

Design Specification

Required Resources
Achievable Quality

"IMWr • OTMIIM l.'.WMWHMy.VIPt̂ ^Rn̂ NM.- > '
rf^l -, n fr ̂ M ' <* " ' * •*

rlvOMK .

0.1 Project Characteristics (Client)
5.1 Usability Check
0.2 Project Planning
0.3 Proposal
1.1 Enterprise Profile (Provider)
1 .2 Business Process Profile
1 .3 Business Customer Profile (Provider)
1 .4 Private Customer Profile (Provider)
1 .5 Supplier Profile (Provider)
2.1 Enterprise Profile (User)
2.2 Business Process Profile (refined)
2.3 Job Profile (User)
2.4 Activity Profile (User)
2.10 User Role Profile (User)
5.2 Optimization Profile
5.3 Usability Inspection

AffMk t̂a^kJfe^ " ' *UUie**

4.1 Interaction Architecture
4.2 Content Architecture
4.3 User Interface Architecture
5.3 Usability Inspection
6.1 Optimized Interaction Architecture
6.2 Optimized Content Architecture
6.3 Optimized User Interface Architecture
7.1 Design Specification

«atf--
ID,C
ID
ID
ID

ID,P
ID,P
ID,P
ID,P*
ID,P*
ID.P
ID,P
ID,P
ID'.P
ID,P
fb",p

ID,P""

ID,P —

ID,P""
ID

JD

Low
Medium -

'• '•MMIIV'

ID,C
ID.VD
ID.VD
ID.VD
ID,P
ID.P
ID,P
ID,P*
ID'.P

ID,VD,P
ib,vb,p
ID,VD,P
ID.VD.P
ID.VD.P
ID.VD.P
D,VD,P"

ID.P""

ID,VD,P""

ID,VD,P*"*
ID.VD !
ID.VD !
ID.VD i

ID,VD,P !
ID.VD !
ID.VD !
ID.VD i
ID.VD i

Medium
Medium o

Legend
* Will be carried out. if this profile is relevant for the project.
** Will be carried out. if the usability check (phase 0) established that the user interface quality is

sufficient for a usability test.
*** Will be conducted, if a separate order is requested for the second basis process (user centered

design):
**** wju be carried out. if additional information is required.
ID: Interaction designer involved: VD: Visual designer involved: C: Client involved: P: Provider involved:
U: User involved

76

For each configuration variant, the configuration model offers different alternatives. Each of the
further alternatives is identified by the third and fourth parameter: Resources and Quality. To
describe how to apply this configuration model, we selected the configuration variant 3 (user
interfaces already exist, but users are not available). A usability test is required to achieve a high
quality standard. Since users are not available we cannot conduct such tests and therefore the
achievable quality can be only "medium" for variant 3. Therefore, we offer two alternatives (see
Table 3), a "Small" and a "Medium" alternative.
The "small" version begins with the project setup (phase 0). To ensure that the existing user
interfaces have a necessary quality standard, a short usability check has to be carried out. If the
quality is too bad we cancel the rest of the usability assessment and suggest to design new user
interfaces. If the usability quality achieves a certain quality standard, we carry out the usability
assessment. After setting up the project the target audience (phase 1) will be identified. We carry
out a use context analysis (phase 2). These results are used for the evaluation (phase 5). Within the
"small" variation the evaluation is an open interview (5.2 Optimization Profile). In the "medium"
variation a usability inspection is carried out (5.3 Usability Inspection). In both cases the interview
or inspection partners are representatives of the provider.
The second basis process uses the results of the usability assessment. The purpose is to improve
the user interfaces. The first four phases (Project Setup, Audience Identification, Use Context
Analysis, Requirements Gathering), or parts of it, are only repeated if necessary information is
missing. Within the "small" variation, the user interface design consists of the interaction and the
user interface architecture. Within the "medium" variation, the content architecture will be carried
out in addition. Since we do not evaluate the user interfaces by means of a usability test, we do not
need a (interactive) prototype. Only the "medium" version consists of another evaluation (phase 5)
and redesign (phase 6) phase. If required a design specification (phase 7) will be compiled.
Apart from these different method modules, competence of the people is a relevant distinction
between the "small" and "medium" version . In the "small" version, only an interaction designer is
involved, because of the intended quality and available resources, whereas in the "medium"
version, a visual designer is involved in addition.

3 Conclusions and Future Work
Compared to ISO 13407 user-centered design process, two important phases are added: The
"Audience Identification" (Phase 1) because in e-business projects the target audience is not
obvious. Another new phase is the "Process Improvement" (Phase 8), which is applied to evaluate
and improve the applied design process.
During industrial practice, the JIET design process framework should be improved. We assume
the framework itself can be applied to other domains outside e-business.

4 References
Beyer, H. & Holtzblatt, K. (1998): Contextual Design. San Francisco, USA: Morgan Kaufmann.
Constantine, L. L. & Lockwood, L. D. (1999): Software for Use; Reading, USA: Addison-Wesley,
ACM Press.
Constantine, L. (2000): Cutting Corners: Shortcuts in Model-Driven Web Design. Retrieved
February 10, 2003, from http://foruse.com/articles/shortcuts.htm.
Constantine, L. (2002): Process Agility and Software Usability: Toward Lightweight Usage-
Centered Design. Retrieved February 10, 2003, from http://foruse.com/articles/agiledesign.htm.
Vredenburg, K.; Isensee, S. & Righi, C. (2002): User-Centred Design. Upper Saddle River, USA:
Prentice Hall.
Wood, S. (2002): Targeted Contextual Design — Scope Your Project. Document sent by email at
12th of November 2002.

77

Finding Decisions Through Artefacts

Alan Dix, Devina Ramduny, Paul Rayson, Victor Onditi,
Ian Sommerville and Adrian Mackenzie

Lancaster University, Computing Department
Lancaster, LAI 4YR, UK

alan@hcibook.com, devina@comp.lancs.ac.uk, paul@comp.lancs.ac.uk.
v.onditi@lancaster.ac.uk, is@comp.lancs.ac.uk, a.mackenzie@lancaster.ac.uk

http://www.hcibook.com/alan/papers/HCII2003-artefacts/

Abstract

This paper addresses the use of artefacts as a resource for analysis. Artefacts are particularly
useful in situations where direct observation is ineffective, in particular for infrequent activities.
We discuss two classes of techniques: focusing on the 'artefact as designed1 as a means of
recovering designers' explicit and implicit knowledge and 'artefacts as used' as a means of
uncovering the trail left by currently inactive processes. These techniques have been applied using
a meeting capture system and meeting minutes as the artefact resources. This is part of a wider
study to understand the nature of decisions and so reduce rework.

1 Introduction

The ethnographic literature is full of the importance of artefacts as the means with which
individuals represent, mediate and negotiate work in collaborative settings (Hughes. O'Brien.
Rouncefield, Sommerville & Rodden 1995). This is also recognised in approaches such as
distributed cognition (Hutchins, 1990) and situated action (Suchman, 1987) as well as some more
traditional cognitive models (Howes & Payne, 1990). In our previous work, we have studied the
way in which artefacts in their setting act as triggers for action (Dix, Ramduny & Wilkinson.
1998) (Dix, Ramduny & Wilkinson, 2003) and placeholders for formal and informal processes
(Dix. Wilkinson & Ramduny. 1998). In related work, we emphasised the centrality of artefacts as
the focus of work and as the locus of communication through the artefact or feedthrough (Dix.
1994).

Because of this we have proposed various forms of artefact-centred analysis to run alongside more
direct methods of observation (Dix, Ramduny, Rayson & Sommerville. 2001). We consider both:
• the artefact as designed - looking at the ways in which the explicit and implicit knowledge of

the designer are exposed in artefacts
• the artefact as used - looking at the way on which people have appropriated, annotated and

located artefacts in their work environment

Artefact centred sources are particularly useful where an activity occurs or is only active
infrequently so that direct observation may fail to record any instance or part of the activity at all.
In the Tracker1 project we are seeking to understand the nature of decisions in teams and

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/tracker/

78

organisations (Rayson et al., 2003); in particular the way past decisions are acted on, referred to,
forgotten about and otherwise function as part of long term organisational activity. In one of the
ethnographic studies we carried out, we found that 'real' decisions were made between meetings or
implicitly assumed, but rarely explicitly voiced during official meetings. Furthermore,
interactions between decisions take place over periods of month or years. In other words, they
have exactly the properties that make artefact-centred approaches attractive.

2 The artefacts as a resource

Like the fossil left where the soft parts of the body have decomposed, artefacts act as a residual
record of work done and work in progress. In and of themselves they form a resource for analysis.
Furthermore, just like the palaeontologist looking at fossils, there are a variety of circumstances in
work domains where the 'soft tissue' of lived work, the ephemeral actions and words, are difficult
or impossible to collect and so the matrix of artefacts that remains needs to be interpreted.

This may be because the actions have already taken place and so the physical remains are our only
resource. In the Tracker project we have access to a corpus of meeting minutes. The meetings
have long past; we cannot go back and observe what happened; at best we can interview some of
the participants; but the formal minutes remain - fossils of the moment. We will return to these
formal minutes later.

Perhaps more fundamentally there are some classes of human activity that direct observation
cannot, or cannot easily, capture. Where a class of activity is frequent and short lived we can
expect that periods of direct observation, such as ethnographic studies, will completely capture
some instances of the activity from end to end. Where activities are longer lived, direct
observation can at best hope to capture aspects of the activity at different points and so piece
together the complete story from parts. But where a class of activity happens infrequently or is
only active infrequently, direct observation can only record the activity if it happens to overlap
with one of the infrequent episodes.

However, these activities, even when inactive must in some way still have a representation within
the organisational ecology: in people's memories and in physical or electronic artefacts. The 'and'
in the previous sentence is not just in the sense that both will be present, but in the more holistic
recognition that the interpretation of artefacts is itself invested within the human understanding of
the context. Artefacts tell a story to the extent that they invoke stories. To some extent as analysts
we may understand the contexts well enough to 'read' artefacts, in others the artefacts can form the
prompts to evoke memories during formal and informal interviews.

3 The artefact as designed

Long lasting artefacts: tools, procedures, documentation, buildings, organisational structures, have
all by explicit action been 'designed'. As we know these designs can often fail and so are not
paradigmatic. However, they are a powerful resource embodying the knowledge, skills and
assumptions of the original designer. We call this archaeologically-inspired artefact analysis. An
archaeologist will look at the artefacts produced by long-dead civilisations and by considering the
design infer the patterns of use, work and social activity that surrounds those artefacts. This
process is problematic as we may draw tenuous conclusions from meagre evidence, but is in fact
more robust as a contemporary technique as we are in a better position to understand the target
context and may also be in a position to use this as a resource in participative critique.

79

In the early stages of the Tracker project, we reviewed a number of meeting support systems. We
analysed in greatest detail TeamSpace' (Richter et al., 2001), which is related to the very
successful Classroom2000 (eClass) system (Abowd, 1999). In the version of TeamSpace we
tested, we found various classes of context assumptions. Some are explicitly embedded in the
software; for example. TeamSpace requires meetings to be scheduled. Some are explicit in the
documentation but not enforced; for example, the suggestion that a facilitator is necessary. Some
are implicit in the software; for example, if you stop and then restart a meeting, the audio
recording for part of the meeting is lost, implicitly assuming meetings do not break and reconvene.

4 The artefact as used

In previous work we have focused especially on the fact that artefacts encode the state and trigger
action not just by their explicit content or significance, but also by their disposition in the
environment. A piece of paper at a particular location on the desk may mean "file me"; in another
location, perhaps in a straight pile means "in progress"; and on the same pile, but higgledy-
piggledy at an odd angle means "to be read". By taking an office at the end or beginning of a day
we can use these artefacts to tell the story of the activities that are. in a temporal sense, passing
through the office at that moment. Most significantly this includes activities which are not
currently captured in the 'official1 systems or whose state is indeterminate or intermediate between
'official' stages. We call this transect analysis as it is similar to the field biologist's use of a
transect through an ecosystem such as a shoreline.

Unfortunately meetings are an extreme case of 'clean desk policy'. The documents and artefacts
are removed from the room with the participants - the only remnant of the meeting is the explicit
records and the changed memories and attitudes of the participants.

The one obvious artefact that is left behind by a meeting is the formal minutes. These are
problematic as they are not a record of what happened at the meeting, but rather a sanitised
account prepared for a purpose, by an individual. Although problematic the minutes are
significant as they are the foci by which the participants agree (or are forced to agree) to a fiction
that in some way legitimises future actions. In the extreme, in certain legal situations, minutes of
meetings are created which never occurred - quite literally legitimising the desired end state by an
agreed legal fiction of the process.

To some extent the artificial nature of the formal minutes reflects the artificial nature (in the sense
of artifice) of collaborative activity. Ethnomethodology makes a strong focus on the
accountability of individuals - that they can make stories (accounts) about their actions that
legitimise them socially. We have to read formal minutes carefully, more like an historical
document, written by someone, for a purpose, but nonetheless exposing aspects of the real process.

As noted our focus is on decisions and this has proved even more problematic. In ethnography of
actual meetings one of the marked results was the fact that decisions did not 'happen' in the
meeting. This is not to say that formal minutes would not record decisions (or their
consequences), but that there are not clear points of decision-making. Instead decisions have
either clearly been made prior to the meeting and are merely brought into the meeting to validate
them, or alternatively decisions are 'made' implicitly by simply discussing an issue that the minute
taker reads later as a particular outcome.

http://www.research.ibm.com/teamspace/

80

This problematic nature is also evident in the minutes themselves. Formal minutes do not
explicitly record 'decisions' but instead either note agreed statements or 'actions', usually relating
to formally numbered items in the meeting. Whereas formal actions are explicitly marked there is
no such explicit marking for decisions (or related topics such as options, issues etc.). Instead an
extensive manual analysis was required to identify salient features.

When the analysis started we had some discussion about the level of structure required in the
analysis. The minutes we studied themselves had a fairly consistent formal structure: date,
participant list, numbered items, comments and listed actions against each item. Also there are a
number of ontologies of decision making from the design rationale and decisions support literature
(e.g. IBIS (Conklin & Begeman, 1988), QOC (MacLean, Young, Bellotti & Moran, 1991), DRL
(Lee & Kai, 1991). Based on these a database structure was created to record decisions, actions,
issues and relations between them. So, for example, a decision would have associated actions,
actions would have responsible persons and optionally a deadline.

As the analysis proceeded, it became increasingly clear that the reality of the 'formal' minutes was,
perhaps not surprisingly, far less structured and far more ad hoc than our predefined structure.
Even the explicit 'actions' sometimes turn out to be more comments or statements of intent and
some actions are not marked as such. Decisions are far more complicated as they are sometimes
explicit in the text and sometimes inferred from context (e.g. an action presupposes a decision to
take action).

In the end the rigid structure has been dropped, except for the record of the explicit structure of the
minutes themselves, and the analysis uses a simple recording (in a database to make it amenable to
search and analysis) of 'things' and relations between them. With this more flexible structure, the
analyst is no longer restricted to a fixed repertoire of concepts. While the analyst is reading the
minutes, if she feels that any issue ought to be recorded she can now easily do so by adding a
'thing' with as many named attributes as desired. Only a short title/description, link to the raw
transcript and 'type' field are required. The last of these is to enable the recording of terms such as
'decision', 'action' and the like, but not constrained to a predetermined vocabulary. The aim is to
see an ecologically valid ontology emerge from the ongoing analysis.

5 Conclusion

We have seen using the example of TeamSpace, how it is possible to use the artefact as designed
as the analytic resource. Similarly, our analysis of minutes is an example of using artefacts as
used. In both cases, the permanent record embodied in artefacts has given us an understanding of
the nature of decisions which otherwise prove elusive to direct observation.

6 Acknowledgement

The Tracker project is supported under the EPSRC Systems Integration programme in the UK,
project number GR/R12183/01.

7 References

Abowd, G. (1999). Classroom 2000: An Experiment with the Instrumentation of a Living
Educational Environment. IBM Systems Journal, Special issue on Pervasive Computing, 38(4)
508-530.

81

Conklin, J., & Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory policy discussion.
In Proceedings of the Second Conferences on Computer-Supported Co-operative Work. New
York, USA. ACM Press, 140-152.

Dix, A. (1994). Computer-supported cooperative work - a framework. In D. Rosenburg and C.
Hutchison (Eds.) Design Issues in CSCW (pp 23-37). Springer Verlag.

Dix, A., Ramduny D., & Wilkinson, J. (1998). Interaction in the Large. Interacting with
Computers, 11(1), 9-32.

Dix, A., Wilkinson, J., & Ramduny, D. (1998). Redefining Organisational Memory - artefacts,
and the distribution and coordination of work. In Understanding work and designing artefacts
(York, 21st Sept., 1998). http://www.hiraeth.com/alan/papers/artefacts98/

Dix A., Ramduny, D., Rayson, P., & Sommerville, I. (2001). Artefact-centred analysis - transect
and archaeological approaches. In Team-Ethno Online, Issue I - Field(work) of Dreams. Lancaster
University, UK. http://www.teamethno-online.org/Issuel/Dix.html

Dix, A., Ramduny-Ellis, & D., Wilkinson, J. (2003). Trigger Analysis - understanding broken
tasks. In D. Diaper & N. Stanton (Eds.) The Handbook of Task Analysis for Human-Computer
Interaction. Lawrence Erlbaum Associates.

Hughes, J., O'Brien, J., Rouncefield, M., Sommerville. I.. & Rodden. T. (1995). Presenting
ethnography in the requirements process. In Proceedings of IEEE Conf. on Requirements
Engineering, RE'95. IEEE Press, 27-34.

Howes, A., & Payne, S. (1990). Display-based competence: towards user models for menu-
driven interfaces. International Journal of Man-Machine Studies. 33. 637-655.

Hutchins, E. (1990). The Technology of team navigation. In Gallagher. J.. Kraut. R. and Egido. C..
(Eds.) Intellectual teamwork: social and technical bases of collaborative work. Lawrence
Erlbaum.

Lee, J., & Lai, K.-Y. (1991). What's in Design Rationale? Human-Computer Interaction. 6(3&4).
251-280.

MacLean, A., Young, R., Bellotti, V., & Moran, T. (1991). Questions, options and criteria:
Elements of design space analysis. Human-Computer Interaction. 6(3 & 4), 201-250.

Suchman, L. (1987). Plans and Situated Actions: The problem of human-machine
communication. Cambridge University Press.

Rayson, P., Sharp, B., Alderson, A., Cartmell, J., Chibelushi. C.. Clarke. R.. Dix. A.. Onditi. V..
Quek, A., Ramduny, D., Salter, A., Shah, H., Sommerville, I.. & Windridge, P. (2003). Tracker: a
framework to support reducing rework through decision management. To appear in 5th
International Conference on Enterprise Infonnation Systems ICEIS2003. Angers. France. April
23-26, 2003.

Richter, H., Abowd, G., Geyer, W., Fuchs, L., Daijavad, & S.. Poltrock. S. (2001) "Integrating
Meeting Capture within a Collaborative Team Environment". In Proceedings of the International
Conference on Ubiquitous Computing, Ubicomp 2001, Atlanta. GA. September. Springer. 123-
138.

82

The Constrained Ink Metaphor

Bjorn Eiderbdck Sinna Lindquist Bosse Westerlund
CID/KTH CID/KTH CID/KTH

SE-100 44 Stockholm SE-100 44 Stockholm SE-100 44 Stockholm
Sweden Sweden Sweden

bjorne@nada.kth.se sinna@nada.kth.se bosse@nada.kth.se

Abstract

In this paper we describe a novel metaphor for developing interactive computer applications, the
constrained ink metaphor. Crucial to the development of the constrained ink was an aim to find
simple and natural means for defining and implementing interaction among persons. We will
describe how we was lead to considering this metaphor, some basic inks following the metaphor,
and finally some typical applications and their impact on the development of the metaphor.

1 Background, Goals and Influences

1.1 The inter Living Project

The interLiving project aims to study and develop, together with families, technologies that
facilitate generations of family members living together with the objectives: to understand the
needs of diverse families; to develop innovative artefacts that support the needs of co-located and
distributed families; to understand the impact such technologies can have on families (Beaudouin-
Lafon, 2002, Hutchinson, 2003).

1.2 Goals and Research Questions

A key objective of the interLiving project is to experiment with different design methodologies.
We would like to develop better ways of letting the family members directly influence and shape
the design of communication technologies we develop together with them.
The premiere goal with the particular work described in this paper is: to develop an infrastructure
and metaphor that will enable us to build applications were we leave as much us possible open to
the co-development with families, even late in the development process. Secondary goals are: i)
that it should be easy and natural to develop all our intended applications by means of this
infrastructure and metaphor; ii) that the metaphor should encourage development of applications
that are fun to use (and develop!)
Research Questions are:

• Is it possible to create an infrastructure and metaphor of the type we strive for in the goals?
• For which types of applications is the metaphor well suited and for which types is it not naturally

applicable?

1.3 Technology Probes

As inspiration and triggering techniques we have used technology probes. A 'technology probe'
combines the social science goal of collecting data about the use of the technology in a real-world
setting, the engineering goal of field-testing the technology and the design goal of inspiring users
(and designers) to think of new kinds of technology (Beaudouin-Lafon, 2002 Chapter 2). The

83

probe that influenced the development of the applications we currently are working on most is The
Message Probe, a simple application that enables members of a distributed family to communicate
w ith digital notes using a pen and tablet interface. Already at early stages of the development of
applications inspired by these probes we realized that we required something that both was fun to
use and easily adoptable to various and changing requirements. This in turn led us to the
development of The Constrained Ink Metaphor.

1.4 Influencing Approaches

There are of course a lot of achievements in the history that has inspired, or at least influenced, our
development. For instance Ivan Sutherlands pioneering work on Sketchpad (Sutherland, 1963), the
NLS system in the SRI project (Engelbart, 1975), the very direct manipulated A Reality Toolkit
(ARK) (Smith, 1987), editors for drawing and animation like Macro Mind Director, Calendaring
facilities (Beaudouin-Lafon, 2002), and the more recent KidPad (Benford, 2000). We have also
been inspired by work done in CSCW and design patterns (Eiderback 2001).

2 Ink of Various Kind and their Usage

2.1 The Metaphor: What, Why, and How

The constrained ink metaphor is a novel metaphor for developing interactive computer
applications. The idea of it sprung from an attempt to develop a common base for a message
central and a distributed shared drawing editor, intended for communication between family
members possible living in different households. In the former case we focus on the same place
different time aspects were we want to provide for submitting shared notes visible within certain
time frames. In the latter case we focus on same time different place aspects were we for instance
want to provide for co-operative drawing, communication and address awareness aspects. Our
intention is to enabling communication of both important facts and more informal chatting in a
way youngsters, adults, and elder members of the family, computer literate or not, could find
useful and "fun"! We discussed the concept together with the families and agreed that it seemed to
be promising, useful and fun.

2.2 Ink

Central to the Constrained Ink Metaphor, as its name suggests, is the Ink!

2.2.1 Natural Inks
There are a lot of different types of ink that could be considered natural in the sense that they more
or less have their counterparts in the real world. For instance, we have the invisible ink that even a
small children most likely have experiences from using a special purposes pen with ink that only
appears after one heat the paper it is written on. Another natural ink is the aging ink; actually this
is the way all inks work, where the ink slowly disappears from the material it is written on.
However in our computerized versions we have speeded up and made the aging more controllable.

The Coloured Ink

As a basis we use ordinary coloured ink, i.e. all inks have a defined colour or texture. On top of
this basic ink all the other inks was developed, by applying various constraining schemas that
made them behave and response to external events.

84

The Invisible Ink

The Invisible Ink is the most natural of all the constrained inks.

Context
The user wants to write a note that should be presented at a specified time in the future. Thereafter the
note should stay until someone actively removes it.

Problem
How could we provide model providing a means to construct entities that should appear at a specific
time in the future? How could we develop a model that fits into and is suitable for all the various
applications we are developing within the project?

Forces
The model should be natural to use. The usage of the model should not constrain the process or the
interaction. The model should be natural for handling constrained entities of various kinds as graphical
one, e.g. lines and ovals, and non graphical ones, e.g. email and speech. It must be feasible to
implement the model in software.

Solution
Make a computerized version of an invisible ink. For convenience for programmers incorporate the ink
model into the system's ordinary model of drawing with various colours and textures, i.e. it should be
possible to use the ink for colouring objects even in "non-ink aware" applications. Therefore separate
parts for handling the interaction with the ink from ones handling its behaviour and ones handling its
visible appearance. In this way one could easily change or adopt new behaviour to ink and at a very
fined grained level control its constraints.

The Aging Ink

The Aging Ink is ink that disappears after a pre-defined time. It works as ordinary ink, but we have
speeded up the decaying process and also made it more abrupt.

Context
The user wants to write a note that is valid from the time the note is written until a certain time in the
future.

Problem and Forces
The problem forces are the same as for the Invisible Ink but now the entities should disappear after a
while instead.

Solution
The solution follows the same lines as the one for the Invisible Ink. With the separation of controlling
and behaviour from appearance we only has to replace the constraint controller for one that makes the
ink disappear after a certain time, instead of appear as for the former ink.

2.2.2 Generally Constrained Inks
After discussing applications, and reflecting on our earlier prototypes among ourselves but also
with our families we considered the ink metaphor in more dept. We realised that the natural inks
would not solve all the problems that we intended. We require to entities responding to general
events, as someone pushing a button or joining a family's network. Therefore we decided to
expand the metaphor further to see if it could be useful even in ways that not have their direct
counterparts in ink from the natural world.

2.2.3 Asymmetric Inks
We also want to be able to show things differently, or at different times, at diverse platforms.
Sometimes everything should be visible to all users in the same way at other times some parts are
not visible to all users or just presented differently to some of them. Entities could even be
handled on dissimilar platforms and by different media by various users, i.e. on use speech at a

85

PDA whereas another user has a graphical platform with a text interface. Therefore we try to
investigate the impacts these situations has on the ink and try to develop ink that also are suitable
for them.

2.2.4 Inks Intended for Sharing
In some senses we could use the previously described inks for sharing. We have inks visible at all
platforms, inks that appear differently for diverse users, etc. However, only relying on these inks
makes sharing of artefacts required in a more general sense very clumsy. To address this we have
played with inks that could define certain (filled) areas where all other inks painted on the area
should be visible by a shared and connected community. Thereby we could easily, within the
limits of the constrained ink metaphor, even provide for shared desktops and other means of co-
operative work. Therefore we also investigate how this type of ink is usable and fits into the
metaphor.

3 Some Typical (Ink Based) Applications

3.1 Type of Application

The applications we currently are working on affect the type of ink required in different ways. In
this section we very briefly exemplify of the various types of applications we consider. These
considerations are a basis for our further development and exploration of the constrained ink
metaphor. Some typical kinds of applications are:

• Synchronous vs. Non-Synchronous Applications. There is an obvious difference between
synchronous and non-synchronous applications. In the former case communication takes
effect momentarily whereas the latter case is more indirect, probably taken its way via
some server, storage medium, or alike.

• Shared vs. Non-Shared Applications. Another situation we must consider is if the
application should be shared, i.e. everyone manipulates a shared set of entities, or non-
shared where different users could manipulate their own restrictive set of the entities.

• (Just) Graphical vs. Multimedia. Typical shared applications of today also provide for
other media than graphics. Examples are telephony over IP, and v ideoconferences.

• Sinking Ships. An archetypical application where different users at certain times sees
different parts of the entities or even presented in different ways is the famous game
Sinking Ships.

3.2 Applications

Currently we are focusing on two different applications. The InkPad and the Door. We also
explore some types of interaction, not central in the other two, in a Pie Diagram framew ork. In the
sense of exploring the constrained ink metaphor the InkPad is the most central and new kinds of
ink and constraints are first tested writhin this application.

3.2.1 A Shared (Drawing) Editor, InkPad
The InkPad is a tool with the main aim to enabling free and non-formal communication among
family members of all ages. To support free communication we try to make InkPad an as relaxed
environment as possible. The focus on this prototype is on enabling communication of both
important facts and more informal chatting in a way both youngsters, adults, and elder members of
the family, computer literate or not, could find useful and "fun".

86

The user could choose ink from any of the previously described types of ink. In this way the user
could achieve effects as writing messages and notes that will appear or disappear at specific times.
We have also considered other media, such as audio, video, and speech.

3.2.2 Message Central, the Door
We also develop a message central nick named The Door, from the first intended placement in the
household. The Door prototype is an effort to improve the communication and scheduling of
activities among family members. At the start we concentrate on communication between
members living in the same household. In this case we use the ink metaphor for controlling and
delivering messages.

3.2.3 Pie Diagrams
Pie Diagrams are just like ordinary pop up menus but circular. In particular we investigate how
invisible ink could be used to supporting expert users that now the relative location of certain
submenus and the items they want to chose. The ink is constrained to only paint a certain sub-pie
if the user "fires a certain event", by for instance stopping the movement more than a pre-defined
time limit. In such a case the ink reacts by switching from transparent colour to non-transparent
ones and thereby makes the pie visible.

4 Conclusions and Future Work
In this paper we have described the Constrained Ink Metaphor by describing various forms of
(constrained) inks and their usage. We demonstrated that the metaphor is both natural and useful
for developing a various set of interactive and distributed applications.
From now on we will investigate the metaphor further by using it to full extent while continuing
the development of a various set of applications within the interLiving project.

5 References
Beaudouin-Lafon M., Bederson B, Conversy S., Druin A., Eiderback B., Evans H., Hansen H.,
Harvard A., Hutchinson H., Lindquist S., Mackay W., Plaisant C., Roussel N., Sundblad Y.,
Westerlund B (2002). Co-design and new technologies with family users, Deliverable 1.2 & 2.2,
2002-09-23.
Benford, S., Bederson, B., Akesson., K., Bayon, V., Druin, D., Hansson, P., Hourcade, J., Ingram,
R., Neale, H., O'Malley, C., Simsarian, K., Stanton, D., Sundblad, Y., and Taxen, G (2000).
Designing Storytelling Technologies to Encourage Collaboration Between Young Children.
Proceedings of CHI, pp. 556-563.
Eiderback B. (2001) Object Oriented Frameworks with Design Patterns for Building Distributed
Information Sharing. PhD thesis, ISBN 91-7265-240-3, http://www.nada.kth.se/~bjorne/th/.
Engelbart, D.C. (\915), NLS tele-conferencing features: the journal and shared-screen
telephoning, in Proceeding Fall COMPCON, Sept. 1975.
Hutchinson, Mackay, Westerlund, Bederson, Druin, Plaisant, Beaudouin-Lafon, Conversy, Evans,
Hansen, Roussel, Eiderback, Lindquist, Sundblad. (2003). Technology Probes: Inspiring Design

for and with Families. Proceedings of ACM CHI 2003.
Smith, R (1987). Experiences with the alternate reality kit: an example of the tension between
literalism and magic, Proceedings of CHI + GI.
Sutherland, I (1963). SketchPad: A man-machine graphical communication system, AFIPS Spring
Joint Computer Conference, No 23.

87

Meta—Design: Beyond User-Centered and Participatory Design

Gerhard Fischer

University of Colorado, Center for LifeLong Learning and Design (L3D)
Department of Computer Science, 430 UCB

Boulder, CO 80309-0430 - USA
gerhard@cs.colorado.edu

Abstract

Meta-design characterizes objectives, techniques, and processes for creating new media and
environments that allow the owners of problems to act as designers. A fundamental objective of
meta-design is to create socio-technical environments that empower users to engage in informed
participation rather than being restricted to the use of existing systems. The seeding, evolutionary
growth, reseeding model is a process model that supports meta-design. We have explored and
assessed meta-design approaches in the development of innovative computational environments
and in our teaching and learning activities.

1 Introduction

Our research interest is in designing the social and technical infrastructures in which new forms of
collaborative design can take place. For most of the design domains that we have studied over
many years (ranging from urban design to graphics and software design) [Arias et al., 2000], the
knowledge to understand, frame, and solve problems is not given, but is constructed and evolved
during the problem-solving process.

2 Design Time and Use Time

In all design processes, two basic stages can be differentiated: design time and use time. At design
time, system developers (with or without user involvement) create environments and tools. In
conventional design approaches they create complete systems. At use time, users or "stakeholders"
use the system but their needs, objectives, and situational contexts can only be anticipated at
design time, thus, creating a system that often requires modification to fit the user's needs. In
order to accommodate unexpected issues at use time, systems need to be underdesigned at design
time. Underdesign in this context does not mean less work and demands for the design team, but is
fundamentally different from creating complete systems. The primary challenge of underdesign is
in developing environments and not the solutions allowing the "owners of problems" at use time
to create the solutions themselves. This can be done by providing a context and an interpretive
background against which situated cases coming up later can be interpreted. Underdesign is a
defining activity for meta-design by creating design spaces for others.

88

3 User-Centered Design and Participatory Design

User-centered design approaches [Norman & Draper, 1986] (whether done for users, by users, or
with users) have focused primarily on activities and processes taking place at design time in the
systems' original development and have given little emphasis and provided few mechanisms to
support systems as living entities which can be evolved by their users. In user-centered design,
designers generate solutions placing users mainly in a reactive role.

Participatory design approaches [Schuler & Namioka, 1993] seek to involve users more deeply in
the process as co-designers by empowering them to propose and generate design alternatives
themselves. Participatory design supports diverse ways of thinking, planning, and acting making
work, technologies, and social institutions more responsive to human needs. It requires the social
inclusion and active participation of the users. Participatory design has focused on system
development at design time by bringing developers and users together to envision the contexts of
use. But despite the best efforts at design time, systems need to be evolvable to fit new needs,
account for changing tasks, and incorporate new technologies.

4 Meta-Design

Meta-design [Fischer & Scharff, 2000] extends the traditional notion of system design beyond the
original development of a system to include an ongoing process in which stakeholders become co-
designers—not only at design time, but throughout the whole existence of the system. A
necessary, although not sufficient condition for meta-design is that software systems include
advanced features permitting users in creating complex customizations and extensions. Rather
than presenting users with closed systems, meta-design provides them with opportunities, tools,
and social reward structures to extend the system to fit their needs. Meta-design shares some
important objectives with user-centered and participatory design, but it transcends these objectives
in several important dimensions and it has changed the processes by which systems and content is
designed. Meta-design has shifted the control from designers to users and empowered users to
create and contribute their own visions and objectives. Meta-design is a useful perspective for
projects where 'designing the design process' is a first-class activity, meaning that creating the
technical and social conditions for broad participation in design activities is as important as
creating the artifact itself [Wright et al., 2002].

The Seeding, Evolutionary Growth, and Reseeding (SER) Process Model. The major
conceptual framework which we have developed to support meta-design is the seeding,
evolutionary growth, and reseeding (SER) process model [Fischer & Ostwald, 2002]. The SER
model is a descriptive and prescriptive model for large evolving systems and information
repositories postulating that systems that evolve over a sustained time span must continually
alternate between periods of activity and unplanned evolutions and periods of deliberate
(re)structuring and enhancement. The SER model encourages designers to conceptualize their
activity as meta-design, thereby supporting users as designers in their own right, rather than
restricting them to being passive consumers. Figure 1 provides a graphical illustration of the SER
model.

89

Figure 1: The Seeding, Evolutionary Growth, and Reseeding Process Model

Informed Participation and Unselfconscious Cultures of Design, Informed participation
[Brown & Duguid, 2000] is a form of collaborative design in which participants from all walks of
life—not just skilled computer professionals—transcend beyond the information given to
incrementally acquire ownership in problems and to contribute actively to their solutions. It
addresses the challenges associated with open-ended and multidisciplinary design problems. These
problems involving a combination of social and technological issues, do not have right answers.
and the knowledge to understand and resolve them changes rapidly. To successfully cope with
informed participation requires social changes as well as new interactive systems that provide the
opportunity and resources for social debate and discussion rather than merely delivering
predigested information to users.

Being ill-defined, design problems cannot be delegated (e.g., from users to professionals), because
they are not understood well enough that they can be described in sufficient detail. Partial
solutions need to "talk back" [Schon, 1983] to the owners of the problems who have the necessary
knowledge to incrementally refine them. Alexander [Alexander, 1964] has introduced the
distinction between an unselfconscious culture of design and a selfconscious culture of design. In
an unselfconscious culture of design, the failure or inadequacy of the form leads directly to an
action to change or improve it. This closeness of contact between designer and product allows
constant rearrangement of unsatisfactory details. By putting owners of problems in charge, the
positive elements of an unselfconscious culture of design can be exploited in meta-design
approaches by creating media that support people in working on their tasks, rather than requiring
them to focus their intellectual resources on the medium itself.

5 Environments Supporting Meta-Design

The goal of making systems modifiable by users does not imply transferring the responsibility of
good system design to the user. In general, "normal" users do not build tools of the quality a
professional designer would since users are not concerned with the tool per se. but in doing their
work. Domain-oriented design environments support meta-design by advancing human-computer
interaction to human problem-domain interaction. Because systems are modelled at a conceptual
level with which users are familiar, the interaction mechanisms take advantage of existing user
knowledge and make the functionality of the system transparent and accessible so that the
computational drudgery required of users can be substantially reduced. The Envisionment and

90

Discovery Collaboratory [Arias et al., 2000] is a second generation design environment focused
on the support of collaborative design by integrating physical and computational components to
encourage and facilitate informed participation by all stakeholders in the design process.

6 Application of Meta-Design Approaches

Social Creativity. Complex design problems require more knowledge than any single person can
possess, and the knowledge relevant to a problem is often distributed among all stakeholders who
have different perspectives and background knowledge, thus providing the foundation for social
creativity [Arias et al., 2000]. Bringing together different points of view and trying to create a
shared understanding among all stakeholders can lead to new insights, new ideas, and new
artifacts. Social creativity can be supported by innovative computer systems that allow all
stakeholders to contribute to framing and solving these problems collaboratively.

Open Source. Open source development [Raymond & Young, 2001] is an activity in which a
community of software developers collaboratively constructs systems to help solve problems of
shared interest and for mutual benefit. The ability to change source code is an enabling condition
for collaborative construction of software by changing software from a fixed entity that is
produced and controlled by a closed group of designers to an open effort that allows a community
to design collaboratively based on personal desires following the framework provided by the
seeding, evolutionary growth, and reseeding process model. Open source invites passive
consumers to become active contributors [Fischer, 2002].

Learning Communities. Courses-as-seeds [dePaula et al., 2001] is an educational model that
explores meta-design in the context of university courses by creating a culture of informed
participation. Courses are conceptualized as seeds, rather than as finished products, and students
are viewed as informed participants who play an active role in defining the problems they
investigate. The output of each course contributes to an evolving information space that is
collaboratively designed by all course participants, past and present.

Interactive Art. Interactive art, conceptualized as meta-design, focuses on collaboration and co-
creation. The original design (representing a seed in our framework) establishes a context in which
users can create content. Interactive art puts the tools rather than the object of design in the hands
of users. It creates interactive systems that do not define content and processes, but the conditions
for the process of interaction. Interactive art puts the emphasis on different objectives compared to
traditional design approaches, including shifts from (1) guidelines and rules to exceptions and
negotiations; (2) from content to context; (3) from objects to process, and (4) from certainty to
contingency (these "cultural shifts" have been developed jointly with Elisa Giaccardi who has
explored the concept of meta-design in interactive arts [Giaccardi, 2003]).

7 Conclusions

We have evaluated our approaches in different settings, with different task domains, and with
different stakeholders. While meta-design is a promising approach to overcome the limitations of
closed systems and to support social creativity, it creates many fundamental challenges: in the
technical domain as well as in the social domain including the need for social capital, the
willingness of users to engage in additional learning to become designers, and the additional
efforts to integrate the work into the shared environment. Meta-design addresses one of the
fundamental challenges of a knowledge society [Florida, 2002]: to invent and design a culture in

91

which all participants in a collaborative design process can express themselves and engage in
personally meaningful activities.

8 Acknowledgements

The author thanks the members of the Center for LifeLong Learning & Design at the University of
Colorado, who have made major contributions to the conceptual framework described in this
paper. The research was supported by (1) the National Science Foundation, Grants (a) REC-
0106976 "Social Creativity and Meta-Design in Lifelong Learning Communities", and (b) CCR-
0204277 "A Social-Technical Approach to the Evolutionary Construction of Reusable Software
Component Repositories"; (2) SRA Key Technology Laboratory, Inc., Tokyo, Japan; and (3) the
Coleman Initiative, San Jose, CA.

9 References

Alexander, C. (1964) The Synthesis of Form. Harvard University Press, Cambridge, MA.
Arias, E. G., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (2000) "Transcending the
Individual Human Mind—Creating Shared Understanding through Collaborative Design," ACM
Transactions on Computer Human-Interaction. 7(1), pp. 84-113.
Brown, J. S., & Duguid, P. (2000) The Social Life of Information. Harvard Business School Press.
Boston, MA.
dePaula, R., Fischer, G., & Ostwald, J. (2001) "Courses as Seeds: Expectations and Realities."
Proceedings of the Second European Conference on Computer-Supported Collaborative Learning
(Euro-CSCL'2001), Maastricht, Netherlands, pp. 494-501.
Fischer, G. (2002) Beyond 'Couch Potatoes': From Consumers to Designers and Active
Contributors, in FirstMonday (Peer-Reviewed Journal on the Internet;. Available at
http://firstmonday.org/issues/issue 7_12/fischer/.
Fischer, G., & Ostwald, J. (2002) "Seeding, Evolutionary Growth, and Reseeding: Enriching
Participatory Design with Informed Participation," Proceedings of the Participator)- Design
Conference (PDC'02), Malmo University, Sweden, pp. 135-143.
Fischer, G., & Scharff, E. (2000) "Meta-Design—Design for Designers," 3rd International
Conference on Designing Interactive Systems (DIS 2000), New York, pp. 396-405.
Florida, R. (2002) The Rise of the Creative Class and How It's Transforming Work. Leisure.
Community and Everyday Life. Basic Books, New York, NY.
Giaccardi, E. (2003) Meta-Design. Available at http://x.i-dat.org/-eg/research.htm.
Norman, D. A., & Draper, S. W. (Eds.) (1986) User-Centered System Design. \ew Perspectives
on Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Hillsdale. NJ.
Raymond, E. S., & Young, B. (2001) The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O'Reilly & Associates, Sebastopol, CA.
Schon, D. A. (1983) The Reflective Practitioner: How Professionals Think in Action. Basic Books.
New York.
Schuler, D., & Namioka, A. (Eds.) (1993) Participatory Design: Principles and Practices.
Lawrence Erlbaum Associates, Hillsdale, NJ.
Wright, M., Marlino, M., & Sumner, T. (2002) Meta-Design of a Community Digital Library. D-
Lib Magazine. 8 (5). Available at http://www.dlib.org/dlib/may02/wrighty05vvright.html.

92

Usability Patterns in Software Architecture

Eelke Folmer and Jan Bosch

Department of Mathematics and Computing Science
University of Groningen, PO Box 800, 9700 AV the Netherlands

mail@eelke.com, Jan.Bosch@cs.rug.nl

Abstract

Over the years the software engineering community has increasingly realized the important role
software architecture plays in fulfilling the quality requirements of a system. Practice shows that
for current software systems, most usability issues are still only detected during testing and
deployment. To improve the usability of a software system, usability patterns can be applied.
However, too often software systems prove to be inflexible towards such modifications which lead
to potentially prohibitively high costs for implementing them afterwards. The reason for this
shortcoming is that the software architecture of a system restricts certain usability patterns from
being implemented after implementation. Several of these usability patterns are "architecture
sensitive", such modifications are costly to implement due through their structural impact on the
system. Our research has identified several usability patterns that require architectural support. We
argue the importance of the relation between usability and software architecture. Software
engineers and usability engineers should be aware of the importance of this relation. The
framework which illustrates this relation can be used as a source to inform architecture design for
usability.

1 Introduction
In the last decades it has become clear that the most challenging task of software development is
not just to provide the required functionality, but rather to fulfil specific properties of software
such as performance, security or maintainability, which contribute to the quality of software
(Folmer & Bosch, 2002). Usability is an essential part of software quality; issues such as whether
a product is easy to learn to use, whether it is responsive to the user and whether the user can
efficiently complete tasks using it may greatly affect a product's acceptance and success in the
marketplace. Modern software systems are continually increasing in size and complexity. An
explicit defined architecture can be used as a tool to manage this size and complexity. The quality
attributes of a software system however, are to a large extent determined by a system's software
architecture. Quality attributes such as performance or maintainability require explicit attention
during development in order to achieve the required levels (Bosch & Bengtsson 2002). It is our
conjecture that this statement also holds for usability. Some changes that affect usability, for
example changes to the appearance of a system's user interface, may easily be made late in the
development process without incurring great costs. These are changes that are localised to a small
section of the source code. Changes that relate to the interactions that take place between the
system and the user are likely to require a much greater degree of modification. Restructuring the
system at a late stage will be extremely and possibly prohibitively, expensive. To improve on this
situation, it would be beneficial for knowledge pertaining to usability to be captured in a form that
can be used to inform architectural design, so that engineering for usability is possible early in the
design process. The usability engineering community has collected and developed various design
solutions such as usability patterns that can be applied to a system to improve usability. Where
these prescribe sequences or styles of interaction between the system and the user, they are likely

93

to have architectural implications. For example, consider the case where the software allows a user
to perform a particularly complex task, where a lot of users make mistakes. To address this
usability issue a wizard pattern can be employed. This pattern guides the users through the
complex task by decomposing the task into a set of manageable steps. However implementing
such a pattern as the result of a design decision made late on proves to be very costly. There needs
to be provision in the architecture for a wizard component, which can be connected to other
relevant components, the one triggering the operation and the one receiving the data gathered by
the wizard. The problem with this late detection of usability issues is that sometimes it is very
difficult to apply certain usability patterns after the majority of a system has been implemented
because these patterns are 'architecture sensitive'. The contribution of this paper is to make
software engineers aware that certain 'design solutions' that may improve usability are extremely
difficult to retro-fit into applications because these patterns require architectural support.
Therefore being able to design architectures with support for usability is very important. The
framework that we present in the next section can be used as an informative source during design.

2 Usability Framework
Through participation in the STATUS1 project we have investigated the relationship between
usability and software architecture. Before the relationship between usability and software
architecture was investigated an accurate definition of usability was tried to obtain by surveying
existing literature and practice. Initially a survey was undertaken to try and find a commonly
accepted definition for usability in terms of a decomposition into usability attributes. It was soon
discovered that the term usability attribute is quite ambiguous. People from industry and academia
have quite different perceptions of what they consider to be a useful usability attribute. The
number of "usability attributes" obtained in this way grew quite large therefore we needed a way
to organise and group the different attributes. Next to the need for organising these different
interpretations of usability attributes, a relation between usability and software architecture was
tried to discover. The only 'obvious' relation between usability and architecture is that there are
some usability patterns that have a positive effect on usability and that are architecture sensitive.
However, it was soon discovered that it was extremely difficult to draw a direct relationship
between usability attributes and software architecture. An attempt was made to decompose the set
of usability attributes into more detailed elements such as: "the number of errors made during a
specific task", which is an indication of reliability, or "time to learn a specific task" which is an
indication of learnability, but this decomposition still did not lead to a convincing connecting
relationship with architecture. The reason is that traditionally usability requirements have been
specified such that these can be verified for an implemented system. However, such requirements
are largely useless in a forward engineering process. For example, it could be stated that a goal for
the system could be that it should be easy to learn, or that new users should require no more than
30 minutes instruction, however, a requirement at this level does not help guide the design
process. Usability requirements need to take a more concrete form expressed in terms of the
solution domain to influence architectural design. To address to these problems discussed a
framework has been developed. Figure 1 shows the framework developed so far. It shows a
collection of attributes, properties and patterns and shows how these are linked to give the
relationship between usability and software architecture. This relation is illustrated by means of an
example. Figure 1 shows the wizard pattern linked to the "guidance" usability property which in

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in its Information
Society Technologies Program. The partners are Information Highway Group (IHG), Universidad Politecnica
de Madrid (UPM), University of Groningen (RUG), Imperial College of Science. Technology and Medicine
(ICSTM), LOGICDIS S.A.

94

turn is linked to the "learnability"
usability attribute. The wizard pattern
guides the user through a complex
task by decomposing the task into a
set of manageable subtasks. To
implement a wizard a provision is
needed in the architecture for a
wizard component, which can be
connected to other relevant
components: the one triggering the
operation and the one receiving the
data gathered by the wizard. The
wizard is related to usability because
it uses the primitive of guidance to
"guide" the user through the task.
Guidance on its turn has two
"obvious" relations with usability.
Guidance has a positive effect on
learnability and a negative effect on
efficiency. The concept of "guidance"
is defined as a usability property; a
usability property is a more concrete
form of a usability requirement
specified in terms of the solution
domain. Patterns relate to one or
more of these usability properties.
Properties on their turn relate to one
or more usability attributes. This
relation is not necessarily a one to
one mapping. The relationship can be
positive as well as negative. To avoid
the table becoming too cluttered, and
the risk of possibly producing a fully
connected graph, only the links
thought to be strongest and positive

Attributes

Satisfaction

Learnabi

Efficiency _ »

Reliability

Satisfactio

Learna

Efficiency

Reliabili

Usability Properties

Provide feedback *— — tfrogress indication

ror management

• error correction

error prevention

user interface

functional

• evolutionary

Adaptability

matching user
ferences

tching user
expertise

Guidance

*\ Explicit user control

Natural mapping ^

Accessibility

~* • Disabilities

• Multi channel

\ • internationalisation

Minimize cognitive load

Usability Patterns

Alerts

Status indication

History logging

Undo

Form or Field
validation

Model/View/Controller
separation
Emulation

Workflow model

Actions for multiple
objects

User profile

User modes

Shortcuts

Context sensitive help

Wizard

Selection indication

Cancel

Multi-tasking

Macros

PROBLEM

Figure 1: Usability Framework

are indicated in the table. The framework relates the problem to the solution domain; a usability
attribute can be measured on a completed solution, whereas a usability property exists in the
problem domain, and can be used as a requirement for system design. A usability pattern bridges
the gap between problem and solution domains, providing us with a mechanism to fulfil a
requirement, providing us with a solution for which the corresponding usability attribute can be
measured. The next sections enumerate the concepts of usability attributes, properties and patterns
which comprise our framework.

3 Usability Attributes
A comprehensive survey of the literature (Folmer & Bosch, 2002) revealed that different
researchers have different definitions for the term usability attribute, but the generally accepted
meaning is that a usability attribute is a precise and measurable component of the abstract concept
that is usability. After an extensive search of the work of various authors, the following set of
usability attributes is identified for which software systems in our work are assessed. No

95

innovation was applied in this area, since abundant research has already focussed on finding and
defining the optimal set of attributes that compose usability. Therefore, merely the set of attributes
most commonly cited amongst authors in the usability field has been taken. The four attributes
that are chosen are: Learnability - how quickly and easily users can begin to do productive work
with a system that is new to them, combined with the ease of remembering the way a system must
be operated. Efficiency of use - the number of tasks per unit time that the user can perform using
the system. Reliability in use - this attribute refers to the error rate in using the system and the time
it takes to recover from errors. Satisfaction - the subjective opinions that users form in using the
system. These attributes can be measured directly by observing and interviewing users of the final
system using techniques that are well established in the field of usability engineering.

4 Usability Properties
Essentially, our usability properties embody the heuristics and design principles that researchers in
the usability field have found to have a direct influence on system usability. These properties can
be used as requirements at the design stage, for instance by specifying: "the system must provide
feedback". They are not strict requirements in a way that they are requirements that should be
fulfilled at all costs. It is up to the software engineer to decide how and at which levels these
properties are implemented by using usability patterns of which it is known they have an effect on
this usability property. For instance providing feedback when printing in an application can be
very usable, however if every possible user action would result in feedback from the system it
would be quite annoying and hence not usable. Therefore these properties should be implemented
with care. The following properties have been identified: Providing feedback - the system provides
continuous feedback as to system operation to the user. Error management - includes error
prevention and recovery. Consistency - consistency of both the user interface and functional
operation of the system. Guidance • on-line guidance as to the operation of the system. Minimise
cognitive load - system design should recognise human cognitive limitations, short-term memory
etc. Natural mapping - includes predictability of operation, semiotic significance of symbols and
ease of navigation. Accessibility - includes multi-mode access, internationalisation and support for
disabled users.

5 Usability Patterns
One of the products of the research on this project into the relationship between software
architecture and usability is the concept of a usability pattern. The term "usability pattern" is
chosen to refer to a technique or mechanism that can be applied to the design of the architecture of
a software system in order to address a need identified by a usability property at the requirements
stage. Various usability pattern collections have been defined (Welie & Trastteberg 2000).
(Tidwell 1998). Our collection is different from those because we only consider patterns which
should be applied during the design of a system's software architecture, rather than during the
detailed design stage. (Bass et al, 2001) have investigated the relationship between the usability
and software architecture through the definition of a set of 26 scenarios. These scenarios are in
some way equivalent to our properties and usability patterns. However there are some differences.
They have used a bottom up approach from the scenarios whereas we have taken a top down
approach from the definition of usability. Our approach has in our opion resulted in a more clearly
documented and illustrated relationship between those usability issues addressed by the design
principles and the software architecture design decisions required to fullfill usability requirements.
Another difference is that our patterns have been obtained from an inductive process from
different practical cases (e-commerce software developed by the industrial partners in this project)
whereas their scenarios result from personal experience and literature surveys. Their work has
been useful to support our statement that usability and software are related through usability

96

patterns. A full catalogue of patterns identified is presented on http://www.designforquality.com.
There is not a one-to-one mapping between usability patterns and the usability properties that they
affect. A pattern may be related to any number of properties, and each property may be improved
(or impaired) by a number of different patterns. The choice of which pattern to apply may be made
on the basis of cost and the trade off between different usability properties or between usability
and other quality attributes such as security or performance. This list of patterns presented in
Figure 1 is not intended to be exhaustive, and it is envisaged that future work on this project will
lead to the expansion and reworking of the set of patterns presented here, including work to fill out
the description of each pattern to include more of the sections which traditionally make up a
pattern description, for instance what the pros and cons of using each pattern may be.

6 Summary and conclusions
Our research has argued the importance of the relation between usability and software
architecture. A framework has been developed which illustrates this relation.The list of usability
patterns and properties identified/defined in our framework is substantial but incomplete, new
usability patterns or properties that are developed or discovered can be fitted in the existing
framework. Future research should focus on verifying the architectural sensitiveness of the
usability patterns that have been identified. For validation only e-commerce software provided by
our industrial partners in this project has been considered. To achieve more accurate results our
view should be expanded to other application domains. The usability properties can be used as
requirements for design, it is up to the software architect to select patterns related to specific
properties that need to be improved for a system. It is not claimed that a particular usability pattern
will improve usability for any system because many other factors may be involved that determine
the usability of a system.. The relationships in the framework indicate potential relationships.
Further work is required to substantiate these relationships and to provide models and assessment
procedures for the precise way that the relationships operate. This framework provides the basis
for developing techniques for assessing software architectures for their support of usability. This
technique allows for iteratively designing for usability on the architectural level.

References
Bass, Lenn; Kates, Jessie & John, Bonnie. E.(2002) Achieving Usability through software
architecture, http://www.sei.cmu.edu/publications/documents/Ql.reports/01tr005.html

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a Product
Line Approach, Pearson Education (Addison-Wesley and ACM Press).

Bosch, J. & Bengtsson, P. O. (2002), Assessing optimal software architecture maintainability. In
proceedings of Fifth European Conference on Software Maintenance and Reengineering
(CSMR'Ol), IEEE Computer Society Press, Los Alamitos, CA pp. 168-175

Folmer, E. & Bosch, J. (2003). Architecting for usability; a survey. Submitted for the Journal of
systems and software. Accepted for the Journal of systems and software.

Tidwell, J. (1998). Interaction Design Patterns. Conference on Pattern Languages of
Programming.

Welie, M. & Trastteberg, H., (2000). Interaction Patterns in User Interfaces. 7th Conference on
Pattern Languages of Programming (PloP).

97

Bridging the Gap between Scenarios and Formal Models

Peter Forbrig and Anke Dittmar

University of Rostock, Department of Computer Science
Albert-Einstein-Str. 21, D-18051 Rostock, Germany

[pforbrig ad]@informatik.uni-rostock.de

Abstract

A software design process has to consider both the user- and system-oriented aspects. On the one
hand, scenarios are often used to illustrate the interface between a system and its application
context. On the other hand, abstract design models with a preferably constructive character are
requested for implementing software systems. This paper shows a combination of the scenario -
and model-based approaches to fulfil the demands mentioned above.

1 Introduction

Scenario-based design (SBD) as well as model-based design (MBD) aim to support a user-centred
design process. Both approaches emphasize that software developers have to pay attention to the
application context to get usable systems. It is necessary to analyse the current working situation
to know about the activities users have to perform, the objects they manipulate, tools they apply,
and the way they cooperate. The analysis results in a set of goals showing which current practices
have to be changed and which things are worth to maintain. Goals describe an intended state,
called envisioned working situation. Thus, it is not enough to design a software system fulf i l l ing
these requirements only but the whole context of use has to be designed.
By taking this point of view one has to accept software design as a process which involves many
stakeholders. Although MBD approaches catch different perspectives on the system design in
different kinds of models, they don't really support a participatory design. The process is rather
specification driven. That is. the main focus is on the construction of models with a more or less
formalized structure and it is not guaranteed that all stakeholders are able to participate. SBD
approaches claim to give every stakeholder an active role by "telling stories" (scenarios) which he
can understand and which evoke his interest and empathy. Nevertheless, the system-centred side
of the design process cannot be ignored. A precise constructive specification of the software
system under development which can serve as a direct input to the implementation is necessary.
Hence, SBD approaches have to be seen as reasonable supplement to a specification driven design
[Car02]. The problem of linking scenarios and formal models effectively is still an active field of
research. In this paper, it is argued that an effective combination of ideas corning from SBD and
MBD is possible. It is shown how task models can mediate between scenarios and software
specifications.

2 Scenarios

Prof. Thiel goes through the results of the examination the 213 students of the 1 .term had to write to pass the
course about programming techniques. The students had to work on 5 exercises. He sighs. 51 students got
less than 20 points. That means they have to repeat the exam to he allowed to continue their studies. Prof.
Thiel asks his assistant Peter Meyer who compiled the list of the total numbers of points to check the list once
more. While Peter is checking the list. Anne Hoi: who had to mark the second exercise sent him. he discovers

98

that 6 students got no points. He wonders if Anne forgot to record some results. Furthermore, he decides to
ask Prof. Thiel how to treat the 12 students who got 18 or 19 points. Perhaps it would be reasonable to
review their exam papers.

A "scenario is a story about people and their activities" [RC02]. The above example gives an
impression. It can be seen as a problem scenario describing aspects of a current practice. Problem
scenarios are developed during a requirements analysis. Together with claims which give an
evaluation of the current setting they serve as basis for the description of requirements on the
system under design. It is further distinguished between activity, information, and interaction
scenarios on design level.
Rosson and Carroll emphasize that scenarios are rather constructions based on general descriptions
about actors, tasks, artifacts etc. than stories based on pure observation or imagination. Perhaps
this is surprising. Surely, SBD aims to evoke the interest and participation of all stakeholders by
"concrete" stories - but not without purpose. This participation should lead to a better system
design. Hence, the stories have to be told in a way which people let think more consciously about
the impact a system design would have on working practices. The stories should force people to
think about alternative design ideas. Scenarios also comprise planning and evaluating activities of
the actors.
A slightly different view on scenarios is used in the object-oriented software development. Here, a
scenario describes a path through a use case. Thus, the focus is on the description of the
interaction between the actor and the system. There is nothing told about mental activities of the
users and the description of the application context is more restricted. Whereas Rosson and Carroll
say "much of the richness of a scenario is in the things that are not said" and allow partial task
descriptions and the involvement of more than one task in a scenario, scenarios as instances of use
cases are more rigid. They are suitable for test cases in later phases of the system development.

3 Models in MBD

In MBD, one can distinguish between two main groups of sub-models. One group forms the
specification of the software system itself. There exists at least an application model to describe
the application core and a dialogue model to specify the UI. The other group constitutes the task
model. Here, the same concepts are considered as in SBD but in an abstract and formalized way
to make a transformation of task knowledge to formal system specifications (as finally requested
in the software development) easier. Consequently, task models are suited to mediate between
scenarios and system specifications. In this section, the sub-models of a task model are explained
shortly. [FD03] gives a more detailed description of the interdependencies between task models
and appropriate system specifications.
Task models consist of sub-models specifying goals, actions, business objects, and actors. A goal
is represented by a network of sub-goals each describing an intended sub-state of the domain. The
refinement of a goal has to result in an action structure. Actions are hierarchically decomposed
into sub-actions until the level of basic actions. The objects of a business object model character-
ized by a name and a set of attribute-value-pairs serve to specify states of the domain. In contrast
to most object-oriented modelling approaches, it is not distinguished between objects and classes
but objects can be instances of other ones as will be explained in the next section.
There are inner and outer relationships between elements of the sub-models. For example, two
sub-goals can be related by operators describing that both/at least one/at most one of them have to
be achieved (and-/or-/xor-operator) etc.. Temporal constraints between the sub-actions of a super-
action are specified by using temporal operators in a temporal equation with the super-action on
the left hand side and the sub-actions on the right hand side. Attributes of objects reflect relation-
ships between different objects.

99

Figure 1: The sub-models of an example task model

A goal cannot be fulfilled without performing some appropriate actions changing the state of the
domain. In order to emphasize the central role of actions only the relationships between the action
model and the other ones are sketched out in the example of Fig. 1 which partly explores the task
of educating students. Every sub-action supports or hinders some sub-goals. Thus, the action
hierarchy reflects the compromises made in planning the achievement of the goal.
Executing an action means to create, destroy, use, or change some business objects. In other
words, an action needs a set of objects in a certain state (precondition) and supplies a set of objects
in a certain state (post condition or effect). Actions at a higher level of the hierarchy and. finally,
the goals represent approximations of or views on affected business objects and their states. For
example, the effect of compiling the total list in Fig. 1 is the object Total list (abbrev. TL. I/T mark
pre-/post conditions). With respect to an action a business object can play the role of an artefact or
a means of work. Means are applied to change the state of the artefact which is essential for the
achievement of the goal. They are further divided into tools used and resources consumed in
actions. The artefact of compiling the total list is Total list, a set of Single lists and the object
Criteria of marks are used as tools.
A task can demand the participation of a whole group of people. In this paper, the division of
labour is simply modelled by assigning actors to the nodes of an action hierarchy. Consequently, it
is reasonable not to stop the action decomposition until the basic actions (the leaf nodes) are
executed by single persons. Otherwise, questions concerning the division of labour are still open.
In Fig.l, Prof, and (set of) Assistant(s) are the actors in organizing examination. Task models are
described e.g. in [Dit02] more formal and detailed.

100

4 Task Models as Mediator between Scenarios and Formal System
Specifications

4.1 Scenario Elements are Instances of Model Elements

An action model describes a set of sequences of basic actions which all lead to task completion.
Each sequence is a kind of instance of the action model. An object O] is an instance of an object
O2 in the business object model (denoted by Oi::O2) if for all attributes a;:vj of O? there is an
attribute a j i v ' j in O] and v'j is an instance of v,. Further, instance relations between actors are
assumed.
Let rbe a task model with the action model A, the business object model O and the user model R.
A complete scenario is a sequence (ai(ri,{o i,...,o n]}),...,am(rm,{omi,...,om

nm}} where a; are basic
actions in A and <ai(Ri,{O' i,...,O'ni}),...,am(Rm,{Om|,...,Om

nm}) is a possible sequence in A with

Figure 2: Complete scenarios derived from a task model

actors RJ from R and objects dj from O assigned to a (for brevity pre-and post conditions,
artefacts and means are not distinguished). Further, i; resp. o jj have to be instances of RJ resp. O'j
(i=l,..,m, j=l,2, . . .) . The notion P(O) (e.g. P(SL) in Fig. 1) describes a set of instances of O.
A task model describes a (mostly infinite) set of complete scenarios. Fig.2 visualizes this idea by a
small abstract example. The used temporal operators are [] for alternative and » for sequential
sub-actions.
Comparing the scenario at the beginning of Sect.2 with the task model in Fig.l it should be clear
now that Prof. Thiel is an instance of Prof., Peter Meyer and Anne Holz are instances of Assistant,
Prof. Thiel is evaluating the results of an instance of Total list and so on.

4.2 Scenarios as Stories vs. Scenarios as Test Cases

This paper proposes a distinction between two kinds of scenarios.
Scenarios as stories have an incomplete character in that sense that they are constructed from
different parts of the appropriate task model. This kind reflects rather the approach taken by
Rosson and Carroll. Scenarios can involve different actors and actions, and can even refer to goals
or pieces of action models to describe mental activities of actors. Scenarios as stories are mainly
used to improve and illustrate (initial) task rrodels. For example, the scenario in Sect.2 was

101

constructed on the basis of the task model in Fig. 1 and revealed the sub-action rechecking the total
list which was added afterwards to the task model (indicated with dotted lines in the figure). "In
SBD new activities are always grounded in current activities" [RC02]. Scenarios as stories support
the transition from current to envisioned models. Taken the scenario in Sect.2, for example, one
can easily imagine that in the envisioned practice the compiling of the total list out of the single
lists for each of the 5 exercises can be done automatically by the software system under
development. It is also of advantage that the system can label the "borderline cases" (the entries of
the students who miss 1 or 2 points to pass the examination). An envisioned task model has to
reflect the application of the software system by the actors.

Figure 3: A combination of MBD and SBD

Scenarios as test cases are complete scenarios in the sense of Sect. 4.1. They can be generated
from sub-trees of the action hierarchy as should be underlined by Fig.2. They are useful for
validating a system specification with respect to a task model and vice versa because they describe
the interaction between a user and the system precisely. Scenarios of this kind are rather
comparable with scenarios as paths through use cases.
Fig.3 illustrates possible applications of scenarios to supplement a model-based design process.

5 Summary

A combination of SBD and MBD to improve the software design process was shown. Task
models play a mediating role. They supply a general description which is useful for constructing
scenarios on the one side but also for deriving formal system specifications on the other side. A
distinction between scenarios as stories and scenarios as test cases was proposed and their
different fields of application were explored. There are a lot of open questions. The problem of
choosing a representative set of test case scenarios out of a possibly infinite set is only one of
them. The interested reader is referred to [FD03] where tool support is described.

References

[Car02] J.M.Carroll: Scenarios and Design Cognition. Proc. of the Int. Conf. On Requirements
Engineering RE2002. Essen. Germany.

[RC02] M.B.Rosson. J.M.Carroll: Usability Engineering - Scenario-Based Development of
Human-Computer Interaction, Morgan Kaufmann Publishers. 2002.

[FD03] P.Forbrig, A.Dittmar: Interfacing Business Object and User Models with Action Models
in this Proceedings of HCI 2003.

[Dit02] A.Dittmar: Ein formales Metamodell fur den aufgabenbasierten Entwurf interaktiver

Svsteme. PhD-Thesis. Universitat Rostock. 2002.

102

A Layered Approach for Designing Multiple User Interfaces
from Task and Domain Models

Elizabeth Furtado, Joao Jose Vasco Furtado, Quentin Limbourg*, Jean
Vanderdonckt*, Wilker Bezerra Silva, Daniel William Tavares Rodrigues, and

Leandro da Silva Taddeo

Universidade de Fortaleza, NATI - Celula BAD - Fortaleza, BR-60455770 Brazil
{elizabet, vasco, wilker, danielw, taddeo}@unifor.br

Universite catholique de Louvain, BCHI - B-1348 Louvain-la-Neuve (Belgium)
{limbourg,vanderdonckt}@isys.ucl.ac.be

Abstract
More frequently, design of user interfaces covers design issues related to multiple contexts of use
where multiple stereotypes of users may carry out multiple tasks, possibly on multiple domains of
interest. Existing development methods do not necessarily support developing such user interfaces
as they do not factor out common parts between similar cases while putting aside uncommon parts
that are specific to some user stereotypes. To address this need, a new development method is
presented based on three layers: (i) a conceptual layer where a domain expert defines an ontology
of concepts, relationships, and attributes of the domain of discourse, including user modeling; (i i)
a logical layer where a designer specifies multiple models based on the previously defined
ontology and its allowed rules; and (iii) a physical layer where a developer develops multiple user
interfaces from the previously specified models with design alternatives depending on
characteristics maintained in the user models.

1 Introduction
Universal design (Savidis, Akoumianakis & Stephanidis, 2001) adheres to a vision where user
interfaces (Uls) of interactive applications are developed for the widest population of users in
different contexts of use by taking into account differences such as preferences, cognitive style,
language, culture, habits, conventions, and system experience. Universal design of Uls poses some
difficulties due to the consideration of these multiple parameters depending on the supported
differences. In particular, the multiplicity of parameters dramatically increases the complexity of
the design phase by adding many design options among which to decide. In addition, methods for
developing Uls do not mesh well with this variety of parameters as they are not necessarily
identified and manipulated in a structured way nor truly considered in the design process. The
method structures the UI design in three levels of abstraction as represented in fig. 1 so as to
delegate specific conditions and decisions the latest possible in the whole development life cycle:
1. The conceptual level enables a domain expert to define ontology of concepts, relationships,

and attributes involved in the production of multiple Uls.
2. The logical level allows designers to capture requirements of a specific UI design case by

instantiating concepts, relationships, and attributes with a graphical editor. Each set of
instantiations results in a set of models for each considered design case (n designs in fig. 1) .

3. The physical level helps developers in deriving multiple Uls from each set of models thanks
to a model-based UI generator: in fig. 1, m possible Uls are obtained for UI design # 1, /; for
UI design #2,..., r for UI design #n. The generation is then exported to imported in a
traditional development environment for any manual edition (here, MS Visual Basic).

103

Universal design

Figure 1: The different levels of the proposed method for universal design of user interfaces

2 Ontology Editor
An ontology (Guarino, 1995) explicitly defines any set of concepts, relationships, and attributes
that need to be manipulated in a particular situation, including universal design. The ontology
notion comes from the Artificial Intelligence context where it is identified as the set of formal
terms with one represents knowledge, since the representation completely determines what
"exists" for the system. We define a context of use as the global environment in which a user
population, perhaps with different profiles, skills, and preferences, are carrying out a series of
interactive tasks on one or multiple semantic domains. In universal design, it is expected to benefit
from the advantage of considering any type of the above information to produce multiple UIs
depending on the varying conditions. These pieces of information of a context of use can be
captured in different models (Puerta, 1997). In order to input model properly, an ontology of these
models is needed so as to preserve not only their syntactical aspects, but also their semantics. For
this purpose, an ontology defines a specification language with which any model can be specified.
The concepts and relations of interest at this layer are here introduced as meta-concepts and meta-
relations belonging to the meta-modeling stage. An ontology defines a kind of reference ncta-
model. Of course, several meta-models can be defined, but only one reference is used here.
Moreover, the ontology may allow the transformation of concepts expressed according to one
meta-model to another one. Fig. 2 exemplifies how these fundamental concepts can be defined in
an ontology editor that will serve ultimately to constrain any model that will be further defined
and instantiated. The core entity of fig. 2 is the concept, characterized by one or many attributes.

104

each having here a data type (e.g., string, real, integer, Boolean, or symbol). Concepts can be
related to each other thanks to relations. Some particular, yet useful, relations include inheritance
(i.e., "is"), aggregation (i.e., "composed of); and characterization (i.e., "has"). At the meta-
modeling stage, we do know that concepts, relations, and attributes will be manipulated, but we do
not know yet of what type. Any UI model, can be expressed in terms of the basic entities as
specified in fig. 2.

Figure 2: The different basic elements (concepts, relations, attributes) in the ontology editor

3 Concept Graphical Editor
Once the basic elements have been defined, any instance of these elements can be used at the
subsequent level to define the models used to capture the specifications of a single UI or for
several ones. In particular, it is important to separate, when appropriate, aspects that are
independent of the context of use (e.g., a task or a sub-task that needs to be carried out) from
aspects that are dependent of this context of use. Therefore, it is likely that each model (i.e., task,
domain, user, presentation, dialogue) (Puerta, 1997) will be subject to identifying and separating
dependent parts from independent parts. The concept graphical editor is now used to instantiate
the context of use, the relationships and attributes of models for the Medical Attendance domain
involved in patient admission. Fig. 3 graphically depicts the Urgency Admission context of use
and the attributes of models of task, user and domain. There are two tasks instantiated: to admit
patient and to show patient data. The first one is activated by a secretary and uses patient
information during its execution. For the user model of the secretary, the following parameters are
considered: her/his experience layer, input preference, information density with the enumerated
values low and high. The information items describing a patient are the following: date of the day,
first name, last name, birth date, address, phone number, gender, and civil status. Information
items regarding insurance affiliation and medical regimen can be described similarly. The
parameters of an information item of a domain model depend on the UI design process. For
instance, parameters and values of an information item used to generate UIs are (Vanderdonckt,
2000): data type (date, Boolean, graphic, integer, real, or alphanumeric), length («>1), domain
definition (know, unknown, or mixed), interaction way (input, output, or input/output), orientation
(horizontal, vertical, circular, or undefined), number of possible values («>1), number of values to
choose (n> 1), and precision (low or high).

105

Figure 3: Instantiating the basic elements for a particular model in the concept graphical editor

4 Model-based generator
Once a particular model is obtained, each model can initiate a UI generation process. Here, the
SEGUIA (Vanderdonckt and Bodart. 1993) tool is used (fig. 4): it consists of a model-based
interface development that is capable of automatically generating code for a running UI from a file
containing the specifications defined in the previous step. For this purpose, any model stored in
the graphical editor can be exported from this editor and imported in SEGUIA. as a simple file or a
DSL file (Dynamic Specification Language) (fig. 4a). Of course, any other tool which is compliant
with the model format and/or which can import the specification file may be intended to produce
running UI for other design situations, contexts of use. user models, or computing platforms.
SEGUIA is able to automatically generate several UI presentations to obtain multiple LIs. These
different presentations are obtained
• In an automated manner, where the developer only launches the generation process by

selecting which layout algorithm to rely on (e.g. two-column format or right bottom strategy).
• In a computer-aided manner, where the developer can see at each step what are the results of

the generation, can cooperate in a mixed-initiative manner, and govern the process before
reaching a final status.

Once a file is opened, the designer may ask the tool to generate a presentation model, if not done
before by relying on the concepts of presentation units and logical windows (fig. 4b). A
presentation unit is a set of logical windows all related to a same interactive task, but not all these
logical windows should be presented simultaneously. For instance, a first input logical window
may be presented and a second one afterwards, depending on the status of information acquired in
the first one. Logical windows (e.g.. a window, a dialog box. a tabbed dialog box) can be
determined according to various strategies: maximal, minimal, input/output, functional, and free.
Once a presentation model is finalised, the generation process is performed into 4 steps (fig. 4c):
1. Selection of Abstract Interaction Objects: the tools selects interaction objects to

input/output information items contained in the model. The objects are tried to be
independent from any context of use.

2. Transformation of Abstract Interaction Objects into Concrete Interaction Objects: once a
context of use is known, the abstract part can be mapped onto a concrete part that is
context-dependent. For instance, once a computing platform is targeted, it univocally
determines the possible objects, turned into widgets, upon availability on this platform.

106

Placement of Concrete Interaction Objects: once the context is fixed, the physical
constraints imposed by this context can restrict the design space for producing the

running UI. Widgets can be laid out in containers, containers can be arranged together so
as to create a final UI. Several algorithms exist that lay these widgets out.
Manual edition of Concrete Interaction Objects: after being laid out by the algorithm, the
layout can be manually retouched using any traditional graphical editor, such as the one
we can find in the Microsoft Visual Basic Development environment. This step is
sometimes referred to as beautification, as it attempts to improve the final layout. Fig. 5
shows a sample of UIs generated for the example above.

Figure 4: Menus of the model-based generator to generate a running UI

Figure 5: Sample of user interfaces generated for the task "patient admission"

References
Guarino, N. (1995). Formal Ontology, Conceptual Analysis and Knowledge Representation: The Role of

Formal Ontology in the Information Technology. International Journal of Human-Computer Studies,
43(5-6), 625-640.

Savidis, A., Akoumianakis, D., and Stephanidis, C. (2001). The Unified User Interface Design Method.
Chapter 21. In C. Stephanidis (Ed.), User Interfaces for All: Concepts, Methods, and Tools (pp. 417-
440). Mahwah: Lawrence Erlbaum Associates Pub.

Puerta, A.R. (1997). A Model-Based Interface Development Environment. IEEE Software, 14(4), 41-47.
Top, J. and Akkermans, H. (1994). Tasks and Ontologies in Engineering Modelling. International Journal of

Human-Computer Studies, 41(4), 585-617.
Vanderdonckt, J. and Bodart, F. (1993). Encapsulating Knowledge for Intelligent Automatic Interaction

Objects Selection, in S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, and T. White (Eds.),
Proceedings of the ACM Conf. on Human Factors in Computing Systems INTERCHI'93 (Amsterdam,
24-29 April 1993) (pp. 424-429). New York: ACM Press.

Vanderdonckt, J. (2000). A Small Knowledge-Based System for Selecting Interaction Styles. In Proceedings
of International Workshop on Tools for Working with Guidelines TFWWG'2000 (Biarritz, 7-8 October
2000) (pp. 247-262). London: Springer-Verlag.

107

A Pattern Framework for Eliciting and Delivering UCD
Knowledge and Practices

A. Gaffar, H. Javahery and A. Seffah
Human-Centered Software Engineering Group, Concordia University, Montreal

{gaffar, hjavahe, seffah}@cs.concordia.ca

Abstract: In the software and usability engineering community, there exist various tools for
gathering and disseminating design knowledge. These tools aim to capture the best practices about
the design of usable systems and to disseminate, or distribute, this knowledge. Examples of such
tools include guidelines, patterns, various databases, and repositories of information. Guidelines
and patterns are by far the most popular tools. This paper proposes a methodology supported by a
tool for capturing and disseminating UCD knowledge and practices.

Introduction

There are many approaches to knowledge management and patterns is just one of those. Patterns
do more than capture good UCD practices; they are also useful for documenting process and
organizational strategies. They are an ideal vehicle for transferring, by means of software
development tools, the design expertise of human-factor experts and UI designers to software
engineers, who are usually unfamiliar with UI design and usability principles. However, the lack
of common fulcrum and central repository for patterns make it hard to achieve this goal. Several
pattern writers have introduced their own terminology and ontology of patterns. Our goal is to
develop and validate a methodology, which will highlight a path through the heterogeneous
pattern world, and result in a comprehensive framework for disseminating and sharing HCI
patterns. In addition to the above, a further challenge is the lack of tool support, which makes it
difficult to capture, disseminate and apply patterns effectively and efficiently [7]. Pattern writers,
who are most often usability engineers with a background in psychology and cognitive science,
must try to convey complex information to describe the user problem and design solutions in a
comprehensible and comfortable way. Pattern users, who are most often software developers
unfamiliar with usability engineering techniques, need also tools to understand when a pattern can
be applied (context), how it works (solution), why it works (rationale), and how it should be
implemented. To address this problem, our team is developing MOUDIL (Montreal Online
Usability Patterns Digital Library) which is a method + a tool for capturing and disseminating
patterns.

UCD Patterns Variety

Like the whole software engineering community [Gamma et al., 1995], the user interface design
community has been a forum for a vigorous discussion on pattern languages for user interface
design and usability engineering. It has been also reported that patterns are useful for a variety of
reasons [10, 7].
Within our approach, we have been using three different categories of patterns:

Interactive system design patterns. The aim of these patterns is to discuss and show a number
of object-oriented design techniques and architectures for building flexible, portable,
modifiable and extensible systems. A classical pattern of this category is the Observer that
decouples between the user interface and the model [4}. For example, you might have a
spreadsheet that has an underlying data model. Whenever the data model changes, the
spreadsheet will need to update the spreadsheet screen and an embedded graph. In this

108

example, the subject is the data model and the observers are the screen and graph. When the
observers receive notification that the model has changes, they can update themselves.
Human computer interaction design patterns. These are proven user experiences and solutions
to common usability problems. Different pattern languages have been developed and are
being used as an alternative/complementary design tool to guidelines [3, 5, 9, 10].
Process patterns [8] that describe user-centered design best practices. Such patterns have the
potential to support UCD practices such as iterative design, low-fidelity prototyping as well as
conducting a user satisfaction-oriented test using a questionnaire.
Organizational patterns that depicted an effective organizational strategy for establishing the
usability function in an organization. Basic patterns include training a champion, motivating
developers, building a usability group.
Software process improvements that describe a maturity scale for the assessment of an
organization's progress towards human-centredness in system development and management.
The scale is based on a number of models including Flanaghan's Usability Leadership
Maturity Model, Sherwood-Jones' Total Systems Maturity Model and ISO 13407 human-
centered Design Processes for Interactive Systems.
UCD to software engineers' communication patterns which describes proven, successful
approaches for organizing and managing the multidisciplinary team generals needed.
Examples of this category of patterns include engage user patterns, build and use a persona,
etc.
Pedagogical patterns that implement effective approach for training developers in UCD skills.
For example, the DIRR (Design-Implement-Redesign-Reimplement) pattern described in
Table 6 attempts to explain new concepts and methods based on legacy concepts (for instance,
learning object-oriented fundamental concepts using structural software design methods).

Figure 1: Pattern Supported Integration Framework

We use the term UCD pattern to refer to any of these categories of patterns. We also define a
pattern supported integration framework as a collection of patterns and the relationships between
them. A UCD pattern supported integration framework is a proven solution for integrating UCD
practices and knowledge at the organizational, process, product and people levels (Figure 1). Each
pattern is a three-part rule, which expresses a relation between a certain context, a certain system
of forces that occurs repeatedly in that context, and a solution that allows these forces to resolve
themselves.

109

The Seven C'S Methodology

However, each of these pattern collections introduces its own terminology, classification system
and notation/format [8]. Our methodology called "The seven C's" aims of centralizing and
organizing patterns into one repository, as well as disseminating pattern knowledge to the HCI
community. Our methodology distinguishes seven steps:
• Collect: Place Different Research Work on Patterns in One Central Data Repository
• Cleanup: Change from Different Formats/Presentations into One Style
• Certify: Define a Domain and Clear Terminology for Our Collection
• Contribute: Receive Input from Pattern Community
• Categorize: Define Clear Categories and relationships for our Collection
• Connect: The Second Level of Complexity - Establishing Semantic Relationships between

Patterns in a Relationship Model
• Control - Machine Readable Format for Future Tools

Collect: Place Different Research Work on Patterns in One Central Data Repository
Numerous works on patterns have been developed in the HCI community, however they are scattered in
different places. A central repository of patterns will allow the user to concentrate on knowledge retrieval,
rather than wasting time on searching for patterns. For this reason, we are collecting known references on
patterns into one corpus. Currently our corpus includes more than 300 patters.

Cleanup: Change from Different Formats/Presentations into One Style
Ideally, different works on patterns deal with different problems. However, as we went through step 1. we
were able to identify- that some patterns are dealing with different sides of the same problem (correlated
patterns), some patterns are offering different solutions to the same problem (peer patterns/competitors) and
some are even presenting the same solution to the same problem (similar), only in different collections with
different presentation formats (redundant patterns). Since a large number of patterns have differing
presentation formats, it is difficult to detect these and their relations with other patterns.
Putting patterns in a unified format will help discover these relationships, put related patterns closer together,
and possibly remove the redundancies/inconsistencies. This is an extremely important for building a common
ground. We are conducting further research to improve the presentation format and change it from an art.
requiring a lot of creativity and expertise, to a systematic and possibly automated approach. This w i l l be
developed further in the Control step.

Certify: Define a Domain and Clear Terminology1 for Our Collection
The available work on patterns is tremendous; it is not wise, feasible or even useful to collect even-thing in
one place. To make any collection useful, it has to focus on a specific domain. For this reason we are working
on terminology to clearly define what belongs in our collection to make it inclusive and concise.

Contribute: Receive Input from Pattern Community
New patterns emerge all the time in all areas of the scientific community, including HCI. It is very difficult to
keep track of these emerging patterns. Typically, it would take years before an expert can come up with a
thorough collection of patterns [1, 2, 4] or have time to update an existing collection [9. 10]. Having one
central repository for patterns wi l l help to unify pattern knowledge captured by different individuals.
Furthermore, such a repository will help to add emerging patterns quickly, so that they are made available to
the community. We will therefore have a continuously evolving collection of patterns.

Categorize: Define Clear Categories for our Collection
Within our collection, we need to be able to create a hierarchy of categories to make them manageable. The
first goal of categorization is to reduce the complexity of searching for, or understanding, the relationship
between patterns. The second, and more important goal, is to build a model for our categories. We are
inspired by the evolution process in other domains like C++ (hierarchies in I O classes. STL hierarchies, etc)
and Java (evolving hierarchies in event handling models, etc).

110

Connect: The Second Level of Complexity - Establishing Semantic Relationships between Patterns in a
Relationship Model
A significant part of knowledge associated with patterns lies in the relationships between them. Finding and
documenting these relationships will allow developers to easily use patterns as one integrated part to develop
an application, instead of relying on their common sense and instinct to pick up some patterns that seem to be
suitable. A proven model for the pattern collection will help to define an ontology for the pattern research
area with all proper relationships such as inference, equivalence and subsumption between patterns.

Control - Machine Readable Format for Future Tools
Once a model is established, it will enhance the process of automating the UI design. The ultimate goal of
many applications is to interact with the machine as a viable partner that can read, understand our work, and
then contribute to it in an intelligent way. In short, having a machine-readable format can help automate the
process of UI design using patterns.

Tools Support

In order to accelerate the implementation of our seven C's methodology, tool support is necessary. Each step
requires a certain tool. Our research team is currently developing an Integrated Pattern Environment (IPE),
called MOUDIL, which will unite all necessary functionality. MOUDIL was originally designed with two
major objectives: Firstly, as a service to UI designers and software engineers for UI development. Secondly,
as a research forum for understanding how patterns are really discovered, validated, used and perceived. One
last objective for MOUDIL, in addition to the above two, is to use it as a prototypical implementation of an
IPE. It will be able to provide functionality that supports every step of the seven C's methodology.
In particular, MOUDIL as medium for delivering patterns provides the following key features:
• At the heart of MOUDIL is a database designed specifically to serve as a central repository for patterns.

These patterns can be backed up with examples and supported by other content areas - guidelines, case
studies, checklists, reusable assets and components, templates, and resources.

• MOUDIL has been designed to accept proposed or potential patterns in many different formats or
notations. Therefore patterns in versatile formats can be submitted for reviewing.

• Reviewing tools that can allow an international editorial board to evaluate patterns. Before publishing,
collected and contributed patterns must be accessed and acknowledged by the editorial committee.

• Pattern Ontology editor captures our understanding of pattern concepts and puts them into relation with
each other (Taxonomy).

• The MOUDIL Pattern Editor allows us to attach semantic information to the patterns. Based on this
information and our ontology, patterns will be placed in relationships, grouped, categorized and
displayed.

• The pattern navigator provides different ways to navigate through patterns or to locate a specific pattern.
The pattern catalogue can be browsed by pattern groups or searched by keyword. Moreover, a pattern
wizard will find particular patterns by questioning the user.

• The pattern viewer provides different views of the pattern, adjusted to the preferences of the specific
user.

MOUDIL should include the following features:
• Quality assurance checklists
• A glossary of pattern terminology
• Booklist defined by category and includes ratings and links to an internal company book site or external

book site, such as amazon.com
• Resources for developing patterns-oriented designs. Examples of resources available to developers and

users include graphics, tables, and templates
• Case studies that add contextual meaning. These patterns can be backed up with examples and supported

by MOUDIL other content areas such as case studies, checklists, and resources.

111

Figure 2: MOUDIL Architecture

Conclusion

Patterns are useful in gathering
and documenting experiences for
future developers. A great deal
of work has been done on HCI
patterns by many different
individuals. Patterns do not only
provide help in applying UCD
practices, but also provide
support for understanding and
mastering UCD concepts and
applying related methods. The
lack of knowledge
centralization, however, requires
users to hunt for suitable
patterns, and extract them for
their own use. Gathering
relevant patterns in one
repository will help overcome
this difficulty. In our future
research, we want to use the
gathered information from the
collected and analyzed patterns
to come up with a formal pattern
notation. Such a notation will
help capture and disseminate
pattern knowledge effectively.

References
1. Alexander, C. The Timeless Way of Building. New York: Oxford University Press, 1979.
2. Alexander C., Ishikavva S., Silverstein M., Jacobson M, Fiksdahl-King I., and Angel S., A

Pattern Language: Towns. Buildings, Construction. New York: Oxford University Press.
1977.

3. Coram, T., Lee, J. Experiences - A Pattern Language for User Interface Design. Available at
http://www.maplefish.com/todd/papers/experiences/Experiences.html.

4. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

5. Griffiths, R. Brighton Usability Pattern Collection. Available at
http://www.it.bton.ac.uk/cil/usability/patterns/.

6. HCI Department, Concordia University, Montreal. MOUDIL: Montreal Online Usability
Digital Library. Available at http://hci.cs.concordia.ca/moudil/homepage.php.

7. Seffah, A., Javahery, H. A Model for Usability Pattern-Oriented Design. In Proceedings of
TAMODIA 2002, (Bucharest, Romania, July 2002).

8. Seffah, A., Javahery, H. On the Usability of Usability Patterns. Workshop entitled Patterns in
Practice, CHI 2002, (Minneapolis, Mi, April 2002).

9. Tidwell, J. COMMON GROUND: A Pattern Language for Human-Computer Interface
Design. Available at http://vvAvvv.mit.edii/~jtidwell/interactionjattems.html

10. Welie, M. Interaction Design Patterns. Available at http^/wvvvv.welie.com'pattems .

112

Towards Virtual Intuitive Tools for Computer Aided Design

Yvon Gardan Envan Malik Estelle Perrin

CMCAO Team / IFTS CMCAO Team / IFTS CMCAO Team /
Pole de Haute Pole de Haute University of Metz
Technologic Technologic lie du Saulcy

08000 Charleville- 08000 Charleville- 57045 METZ Cedex 01,
Mezieres, France Mezieres, France France

gardan@infonie.fr erwan.malik@univ- perrin@sciences.univ-
reims.fr metz.fr

Abstract

The main objective of the DIJA project is to provide a CAD system through the internet and to
help designers from the early phases of the design with an intuitive interface. Distributing a CAD
system over the World Wide Web implies that this system has not any knowledge about its user
(his computer and CAD skills, his trade, etc.). The particularity of our system is that it is based on
a new design method, called the "synthetic" approach. In this paper, we focus our attention on the
man-machine interface part of the DIJA project: our goal is to provide the user with the ability to
express his intent. We propose a set of virtual tools used to control the design and we consider the
importance of the media in the user-system dialog.

1 Introduction

Current CAD systems are monolithic and their computer-human interface is not easily accessible
for a non-expert user. It is common that the latter has to learn about a CAD system before use. The
reason is that CAD systems do not integrate properly functions from requirements. In fact, they
completely forget and hide functional intent, design intent and trade know-how. They just deal
with features, which is inadequate to really take into account design intent. Features are very close
to classical geometric models (such as Boundary representation, Constructive Solid Geometry,
...), so they are enclosed in a way of modeling that imposes the user a method to build models,
essentially based on basic objects and operations. At the same time, CAD systems have a rustic
interface that is based on standard devices (such as mouse) and number of menus soars with
increase of services.
We propose, in this paper, an interface to provide the user with the ability to express his intent,
based on a modeling method, called the "synthetic method". Both interface and modeling method
are parts of the DIJA project (Danesi, Denis, Gardan & Perrin, 2002). The main objective of the
DIJA project is to provide a CAD system through Internet and to help designers from the early
phases of the design of an object with an intuitive interface. The basic idea of the synthetic method
is that the user, even by giving a function or by choosing a form, obtains a very approximate
shape. This shape, from a certain point of view, only represents the topology of the object. The
user can then deform this shape using some dedicated tools. The initial form can be very close to
or far away from the goal. It does not have really influence, the method being always the same,
requiring more or less steps. Obviously, an expert user will choose a form necessitating only a
little number of steps.

113

The synthetic method respects a top down methodology which seems very interesting for many
applications. It considers basic deformable objects depending on domain of the application. Each
domain has its proper rules of design and its own vocabulary. The words are different and even the
same words can lead to different signification according to the trade. Then the language which is
at the disposal of the user is domain dependent. A word (specifically a verb) of the language can
lead to a general behaviour (that means that this word has a shared meaning, which is the case of
those we describe hereafter) or to a domain dependent behaviour. Three kinds of behaviour or tool
are defined:

• deformation: the object is deformed following some rules described later;
• dividing: an object is divided in several parts of the same type;
• transmutation: the type of the object changes (for instance a cylinder becomes a box).

In this paper, we only focus on the deformation tool of the DIJA project. The user deforms the
object, by stretching one of the shape surfaces (surface deformation), or by deforming the shape
globally (shape deformation). Both deformations perform the same interactions which are fully
described in the next section: selection of a shape, choice of a tool and applying the tool. In the
last interaction, the user has to describe how the tool will affect the shape in terms of direction and
strength. Such notions are not easily received by a standard device. In this context, we present
(section 3) an interface based on a camera that we think to be more intuitive.

2 Virtual Intuitive Tools of Dija Project

Traditionally, with CAD systems, the user has to express deformation by using a geometric or
mathematic description (references). On the contrary, by using tools, the user can focus on his
design rather than on geometric aspects of the object he wants to achieve. Then he can consider his
design more like a virtual object and thus, he can use deformations close to those from real world.
In DIJA, to deform an object, the user has to define the shape of the tool he w i l l use - like bending
a bar using the sharp edge of a table corner or the smooth shape of a large cylinder. Through this,
we want to increase the relation between the user and his working environment by very simple
meanings.

We define a tool by associating a shape with some vocabulary terms. For example, the tool shape
represented in figure la is associated with the term "to swell" in a knowledge based model. This
knowledge based model associates a shape to a term in function of a trade context. For example,
the maximum or minimum of swelling depends on mechanical considerations. Considering two
different trades, the system would not propose the same shape for the same term. This is realised
by using fuzzy parameters (Zadeh, 1997). Nonetheless, other terms fully specify the tool shape
like "sharp" or "narrow". Obviously, an internal geometric representation is also used by the
system (by example, "to swell" is represented by conies such as a circle or ellipse) but the user is
not aware of it. He only manipulates a trade vocabulary that protects him from geometric
reflections.

The method we use to get the tool shape follows the same synthetic approach than the rest of our
project. The user starts the process by choosing a trade and a term which qualifies the deformation.
Our system deals with this term to propose a standard shape as we mentioned above. Finally, the
shape is refined by using adverbs and/or adjectives belonging to the tool's vocabulary through an
iterative process. Once again, the system reactions will depend on the previous user interactions. If
the user asks for "more sharp" for the fourth time, the result will not be the same as the first time.
As for trade-oriented tool definition, this is realised by fuzzy parameters.

114

