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¿is is a book about the foundations of mathematics—a topic once of
interest to outstandingmathematicians, such asDedekind, Poincaré, and
Hilbert, but today sadly neglected.¿is neglect is unfortunate for several
reasons:

• As mathematics splits into more and more specialties, the need for a uni-
fying viewpoint becomes more acute.

• Foundations unify not only mathematics but also the neighboring disci-
plines of computer science and physics.

• Recent advances in mathematical logic throw new light on the founda-
tions of analysis, and on the elusive concept of mathematical “depth.”

¿is book aims at the last point in particular, by focusing on the topic
of reverse mathematics.

As its name suggests, reverse mathematics looks at the concept of
proof in the opposite to normal direction. Instead of seeking the con-
sequences of given axioms, it seeks the axioms needed to prove given
theorems. ¿is is actually an old idea, at least in the foundations of geo-
metry. From the time of Euclid until the nineteenth century it was a burn-
ing question whether the parallel axiom was needed to prove theorems
such as the Pythagorean theorem. We review the history of the parallel
axiom in chapter  of this book, as a case study in reverse mathemati-
cal ideas, together with the similar story of the axiom of choice in set
theory.

Although both these axioms illustrate the idea of reverse mathemat-
ics, the subject as it is understood today liesmostly in a narrowbut impor-
tant region between geometry and set theory: the theory of real numbers,
which is the foundation of calculus, analysis, and most of mathematical
physics. (Reversemathematics has alsomade interesting contributions to
algebra, combinatorics, and topology which we mention more brie�y.)



xii ■ PREFACE

¿e real numbers, as we understand them today, emerged from nine-
teenth century e�orts to arithmetize analysis and geometry. By building
real numbers from sets of rational numbers (and hence, ultimately, from
sets of natural numbers) it becomes possible to encode sequences of real
numbers and arbitrary continuous functions—and hencemost of the ob-
jects of analysis—by sets of natural numbers.We review the arithmetiza-
tion of analysis, and also the basic theorems of analysis, in chapters  and
. A er this we are ready to ask: which axioms do we need to prove these
basic theorems? ¿e answer, roughly, is a set of axioms for the natural
numbers (the Peano axioms) plus a suitable set existence axiom.

Now set existence axioms come in various strengths, depending on
the strength of the theorems we wish to prove.¿e lowest useful strength
turns out to be intimately related to the foundations of computation: it
asserts the existence of computable sets. ¿is in turn involves a study of
the concept of computation, which merges with analysis because both
have a common basis in arithmetic. A er an informal introduction to
computability in chapter  we develop a formal concept of computation,
and its arithmetization, in chapter .

In chapters  and we bring together the ideas of analysis, arithmetic,
and computation in some axiom systems for analysis, known as RCA,
WKL, and ACA. ¿ese systems, which are distinguished mainly by set
existence axioms of increasing strength, between them provemost of the
basic theorems of analysis.More remarkably, they sort the basic theorems
into three levels because, once above the “base” level of RCA, most the-
orems are equivalent to the set existence axiom of the system that proves
them.¿is makes each of these set existence axioms the “right axiom” in
the sense articulated by Friedman ():

When a theorem is proved from the right axioms, the axioms can
be proved from the theorem.

We will see, for example, that RCA can prove the intermediate value
theorem; the de�ning axiom of WKL is the right axiom to prove the
Heine-Borel theorem and the extreme value theorem; and the de�ning
axiom of ACA is the right axiom to prove the Cauchy convergence cri-
terion and the Bolzano-Weierstrass theorem.

¿us in reverse mathematics we meet the usual cast of characters
from an introductory real analysis course, but in an entirely new story.
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In chapter  we give some glimpses of the bigger picture of analysis,
computation, and logic, which will hopefully prepare the reader for spe-
cialist treatments of reverse mathematics, notably Simpson (). ¿e
present book is very much for non-specialists—in some ways a sequel
to my book Elements of Mathematics. From Euclid to Gödel. It develops
computability and logic far enough to explain results that Elements of
Mathematics could onlymention, but the latter book is not a prerequisite
for this one. Anyone at an upper undergraduate level with an interest in
foundations should be able to approach the reverse mathematics in this
book directly.¿e same goes, of course, for professional mathematicians
who want to refresh their memory of foundations and to see how the
subject has reinvented itself in recent times.

Acknowledgements. I thank Harvey Friedman for information on
the history of reverse mathematics, Keita Yokoyama for his insights on
topology, and two anonymous referees for many helpful comments and
corrections. My wife Elaine as usual did sterling work in proofreading,
and Vickie Kearn and her team at Princeton University Press were ever-
helpful and meticulous in the production of the book.

John Stillwell
San Francisco,  November 
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Historical Introduction

¿e purpose of this introductory chapter is to prepare the reader’s mind
for reverse mathematics. As its name suggests, reverse mathematics seeks
not theorems but the right axioms to prove theorems already known.¿e
criterion for an axiom to be “right” was expressed by Friedman () as
follows:

When the theorem is proved from the right axioms, the axioms can
be proved from the theorem.

Reversemathematics began as a technical �eld ofmathematical logic, but
its main ideas have precedents in the ancient �eld of geometry and the
early twentieth-century �eld of set theory.

In geometry, the parallel axiom is the right axiom to prove many the-
orems of Euclidean geometry, such as the Pythagorean theorem. To see
why, we need to separate the parallel axiom from the base theory of Eu-
clid’s other axioms, and show that the parallel axiom is not a theorem of
the base theory. ¿is was not achieved until . It is easier to see that
the base theory can prove the parallel axiom equivalent to many other
theorems, including the Pythagorean theorem. ¿is is the hallmark of a
good base theory: what it cannot prove outright it can prove equivalent
to the “right axioms.”

Set theory o�ers a more modern example: a base theory called ZF, a
theorem that ZF cannot prove (thewell-ordering theorem) and the “right
axiom” for proving it—the axiom of choice.

From these and similar examples we can guess at a base theory for
analysis, and the “right axioms” for proving some of its well-known
theorems.
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. EUCLID AND THE PARALLEL AXIOM

¿e search for the “right axioms” for mathematics began with Euclid,
around  bce, when he proposed axioms for what we now call Eu-
clidean geometry. Euclid’s axioms are now known to be incomplete; nev-
ertheless, they outline a complete system, and they distinguish between
really obvious “basic” axioms and a less obvious one that is crucial for
obtaining the most important theorems. For historical commentary on
the axioms, see Heath ().

¿e basic axioms say, for example, that there is a unique line through
two distinct points and that lines are unbounded in length. Also basic,
though expressed only vaguely by Euclid, are criteria for congruence of
triangles, such as what we call the “side angle side” or SAS criterion: if
two triangles agree in two sides and the included angle then they agree
in all sides and all angles. (Likewise ASA: they agree if they agree in two
angles and the side between them.)

Using the basic axioms it is possible to prove many theorems of a
rather unsurprising kind. An example is the isosceles triangle theorem: if
a triangle ABC has side AB = side AC then the angles at B and C are
equal. However, the basic axioms fail to prove the signature theorem of
Euclidean geometry, the Pythagorean theorem, illustrated by �gure ..

Figure . : ¿e Pythagorean theorem

As everybody knows, the theorem says that the gray square is equal
to the sum of the black squares, but the basic axioms cannot even prove
the existence of squares. To prove the Pythagorean theorem, as Euclid
realized, we need an axiom about in�nity: the parallel axiom.



HISTORICAL INTRODUCTION ■ 

¿e Parallel Axiom

I call the parallel axiom an axiom about in�nity because it is about lines
that do not meet, no matter how far they are extended—and one of Eu-
clid’s basic axioms is that lines can be extended inde�nitely. ¿us paral-
lelism cannot be “seen” unless we have the power to see to in�nity, and
Euclid preferred not to assume such a superhuman power. Instead, he
gave a criterion for lines not to be parallel, since a meeting of lines can
be “seen” a �nite distance away.

Parallel axiom. If a line n falling on lines l and m (�gure .) makes
angles α and β with α + β less than two right angles, then l and mmeet
on the side on which α and β occur.

l

m
n

β

α

Figure . : Angles involved in the parallel axiom

It follows that if α+β equals two right angles (that is, a straight angle)
then l and m do not meet. Because if they meet on one side (forming
a triangle) they must meet on the other (forming a congruent triangle,
by ASA), since there are angles α and β on both sides and one side in
common (�gure .).¿is contradicts uniqueness of the line through any
two points.

l

m
n

α β

αβ

Figure . : Parallel lines


