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Preface

This book grew out of an invited paper session, An Invitation to Geometric Group
Theory, at the 2010 MAA MathFest in Pittsburgh. Geometric group theory is an
exciting, relatively new field of mathematics that explores groups using tools and
techniques from geometry and topology. A common theme throughout the field is:

Algebraic properties of a group are reflected in the geometry of spaces
on which the group acts.

While the notion of a group forms a key component of an undergraduate
education in mathematics, the above viewpoint is rarely taken. The typical under-
graduate algebra curriculum focuses mainly on finite groups and students can
graduate without being exposed to the vast and interesting world of infinite groups.
The purpose of this book is to invite undergraduates, beginning graduates students,
and curious researchers to explore this world by means of considering examples
central to geometric group theory.

Each chapter—rather, office hour—of this book, driven by examples, covers one
topic from geometric group theory. The authors were charged with the task of
writing their answer to an undergraduate who had posed one of the following
questions:

• Will you tell me about your research?
• Will you help me find a topic for a senior project?

As such, the office hours have an intentionally informal tone, each conveying
the individual voice of the author. Ideally, the student reading this book should
feel as if he or she is visiting a professor during office hours. When a student
comes to your office curious about advanced topics in mathematics, you don’t start
the conversation by: “An amalgamated free product decomposition is.” Rather,
you draw a picture of SL(2,Z) acting on the hyperbolic plane and explain how this
action naturally decomposes the group. We hope that this style conveys the authors’
enthusiasm for the subject and helps to inspire the next generation of researchers.

To facilitate the introduction to mathematical research, each office hour ends
with suggestions for further reading and a selection of advanced exercises and
research projects.

We do not think of this book as a replacement for John Meier’s excellent text,
Groups, Graphs and Trees, but instead we see it more as an undergraduate version
of Pierre de la Harpe’s book, Topics in Geometric Group Theory. In choosing topics
for this book, we focused on the concepts that appear in several areas of geomet-
ric group theory—such as quasi-isometry—or on the classes of groups that prevail
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throughout geometric group theory—such as Coxeter groups and right-angled Artin
groups. We also tried to choose topics that we felt were accessible to an undergrad-
uate who had taken a first course in abstract algebra, at least with the help of a
patient adviser. Thus, we omitted some key geometric group theory concepts such
as finiteness properties. In the rare office hours that deal with a specialized topic,
such as asymptotic dimension, we felt that a student could find some interesting
concept to latch onto, such as that of finding appropriate arrangements of bricks.

With the exception of the two introductory office hours, the office hours do not
depend on one another, although connections within the material are highlighted.
The topics covered in introductory office hours are:

• Groups
• Free groups and free abelian groups
• Group actions
• Cayley graphs
• Metric spaces

After reading the introductory office hours, an undergraduate should be able to
browse the remaining office hours independently and focus on the topics that grab
his or her interest.

We would be remiss not to list some of the other excellent general reference
books on geometric group theory:

• A Course in Geometric Group Theory, Brian H. Bowditch
• Metric Spaces of Non-positive Curvature, Martin Bridson & André Haefliger
• Topics in Geometric Group Theory, Pierre de la Harpe
• Groups, Graphs and Trees, John Meier
• Classical Topology and Combinatorial Group Theory, John Stillwell

It has been a great pleasure working with the 15 other authors to compile some
of our favorite gems of geometric group theory. We would like to thank them all for
their hard work, persistence, patience, and enthusiasm. Most of all we would like
to thank them for sharing their mathematical knowledge and their unique voices,
and for believing in this project when we started with little more than an idea six
years ago. The process has been invigorating and inspiring for us. We hope that
you enjoy your journey through geometric group theory as much as we enjoyed
laying down the path.

Matt Clay and Dan Margalit

Fayetteville and Atlanta, November 2016
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PART 1

Groups and Spaces





Office Hour One

Groups

Matt Clay and Dan Margalit

Symmetry, as wide or as narrow as you define its meaning, is one idea
by which man through the ages has tried to comprehend and create
order, beauty and perfection.

Hermann Weyl

An important problem in mathematics is to determine the symmetries of objects.
The objects we are interested in might be concrete things such as planar shapes,
higher-dimensional solids, or the universe. Or they might be more abstract, such as
groups, spaces of functions, or electric fields.

We’ll begin in this office hour with a general discussion of groups; the focus will
be on interpreting every group as a group of symmetries of some object. In the
second office hour we will make precise what it means for a group to be a group
of symmetries of an object. These ideas are at the very heart of geometric group
theory, the study of groups, spaces, and the interactions between them.

Symmetry. By understanding the symmetries of an object we come closer to fully
understanding the object itself. For instance, consider a cube in Euclidean 3–space:
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A symmetry of the cube is a rigid transformation of the cube (for now, no reflections
allowed). In other words, a symmetry of the cube is what you get if you pick the
cube up, rotate it with your hands, and then put in back in the same spot where it
started. One way to obtain a symmetry is to skewer the cube through the centers
of two opposite faces and rotate by any multiple of π/2. We could also skewer the
cube through the midpoints of two opposite edges, or through two opposite corners.

Here is a question:

What are all of the symmetries of the cube?

If we don’t know the answer to this question, then we don’t know the cube!
There is a fairly straightforward analysis which tells us that there are exactly 24

symmetries of the cube: there are eight places to send any given corner, and once a
corner is fixed, there are three choices for how to turn the cube at that corner.

This is a start, but leaves a lot to be desired: What is a good way to list the 24
symmetries? If we do one symmetry followed by another symmetry, we get a third
symmetry; where is this third symmetry on our list?

Here is a simple idea that completely illuminates the problem. Draw the four
long diagonals of the cube:

We can check the following two facts:

• Any symmetry of the cube gives a permutation of the four long diagonals.
• Any permutation of the four long diagonals gives a unique symmetry of the

cube.

The validity of the first statement is not too hard to see. The second one takes
a little thought. First notice that if we take the permutation that swaps two long
diagonals, then we obtain a symmetry of the cube, namely, a symmetry obtained
by skewering the cube through the midpoints of the two edges that connect the
endpoints of the two long diagonals in question. But an arbitrary permutation of
the four long diagonals can be obtained by swapping two long diagonals at a time,
so we are done.

It follows that the set of symmetries of the cube is in bijection with the set of
permutations of its four long diagonals. There are 4! = 24 permutations of the
four long diagonals, agreeing with our calculation that there are 24 symmetries of
the cube. Moreover, since a permutation is just a bijective function from a set to
itself, we know what happens when we do one permutation, then another—we get
the composition of the two functions. We’ll say more about permutations in a few
minutes, when we talk about symmetric groups.
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That was satisfying—we certainly understand the cube better now than we did
at the start. In geometric group theory we aim to understand symmetries of much
more complicated (and beautiful!) objects.

Here is the plan for this first office hour. We’ll start by revisiting the basic exam-
ples of groups from any undergraduate course in abstract algebra. But we will look
at these groups from the point of view that every group should be the collection of
symmetries of some geometric object, just as the symmetric group on four letters
is the collection of symmetries of a three-dimensional cube. To some extent, a lot
of the material in this first office hour is a review of some of the important ideas
from a first course in abstract algebra; you may want to skim through it if you are
comfortable with those concepts.

In the next office hour, we will make sense of and prove the following theorem
(Theorem 2.2 below):

Every group is naturally identified with the collection of symmetries of
some geometric object, namely, the Cayley graph of the group.

The goal of this book is to convince you that this theorem—along with the many
other theorems in this book—is the beginning of a beautiful and fruitful dictionary
relating the algebraic and geometric structures arising in the wild and fascinating
world of infinite groups.

1.1 GROUPS

Let’s recall the definition of a group. Then we’ll explain why you should think of a
group in terms of symmetries.

First, a multiplication on a set G is a function

G×G→ G.

The image of (g, h) is usually written gh. In other words, a multiplication is a way
of combining two elements of G in order to get a third one.

Then, a group is a set G together with a multiplication that satisfies the following
three properties:

• Identity. There is an element 1 of G such that 1g = g1 = g for all g ∈ G. The
element 1 is called the identity element of G.
• Inverses. For each g ∈ G, there is an element h ∈ G such that gh = hg = 1.

The element h is often denoted by g−1 and is called the inverse of g.
• Associativity. The multiplication on G is associative, that is:

(fg)h = f (gh)

for all f, g, h ∈ G.

What does this abstract, formal definition have to do with symmetries? Let’s first
think about this in the case of the cube. We defined a symmetry of the cube as a
rigid transformation of the cube. The way we multiply two symmetries g and h is:
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“do h, then do g.” This is just like composing functions: in the composition g ◦ h

we apply h first.
We now see that the set of symmetries of the cube satisfies the definition of a

group. The identity symmetry 1 is the rigid transformation of the cube that leaves
it alone. Indeed, doing one rigid transformation g and then doing 1 is the same as
doing g. The inverse of a symmetry g is the symmetry that undoes g. Associativity
follows from the associativity of composition of functions: doing h, then g and f

is the same as doing h and g, then f .
As we already said, we’d like to eventually convince you that every group—

that is, every set with a multiplication as above—is the set of symmetries of some
object. First, let’s look at a few examples of groups and explain how they each can
be thought of as a set of symmetries.

The dihedral group. The dihedral group Dn is the set of symmetries (rigid trans-
formations) of a regular n–gon in the plane. The multiplication is the same as in the
example of the cube. Two symmetries of the regular pentagon are the reflections s

and t shown here:

t

s

For general n we can take s to be the reflection through any line that passes through
the center of the n–gon and a vertex of the n–gon, and t to be the reflection about
the line that differs from the first line by a π/n rotation. The elements s and t

generate the group Dn, by which we mean that every symmetry of Dn is obtained
by multiplying, s, t , s−1, and t−1 (actually, in this example s = s−1 and t = t−1).
For example, the clockwise rotation by m “clicks” is (st)m.

Adam Piggott’s Office Hour 13 on Coxeter groups discusses examples of groups
that are all based on the idea of the dihedral groups.

The symmetric group. The symmetric group Sn is the set of permutations of
the set {1, . . . , n}, with multiplication given by composition of functions. This
makes sense since a permutation of {1, . . . , n} is really just a bijective function
{1, . . . , n} → {1, . . . , n}. If we want to think of Sn as the set of symmetries of
some object, we can think of it as the symmetries of a set of n points.
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A cycle in Sn is a permutation that can be described as ii �→ i2 �→ · · · �→ ik �→ i1

(and all other elements of {1, . . . , n} stay where they are). We write this cycle as
(i1 i2 · · · ik−1 ik). For instance, the cycle (1 2 4) in S6 sends 1 to 2, 2 to 4, and 4
to 1, while sending 3, 5, and 6 to themselves.

Every element of Sn is a product of disjoint cycles (disjoint means that each ele-
ment of {1, . . . , n} appears in at most one cycle). For instance, in S6 the
element

(1 2 4)(3 5)

is the product of the disjoint cycles (1 2 4) and (3 5). This is the permutation
that sends 1 to 2, 2 to 4, and 4 to 1, and also 3 to 5 and 5 to 3, and finally 6 to
itself.

As we said, the multiplication is function composition. Say, for example, we
want to multiply (1 2 4)(3 5) by (2 6):

(2 6) · (1 2 4)(3 5).

Where does this product send 1? Well, the first permutation (on the right) sends 1 to
2, and the second permutation sends 2 to 6, so the product (= composition) sends 1
to 6. You can use the same procedure to determine where this product sends 2, 3,
4, 5, and 6. You will find that (2 6) · (1 2 4)(3 5) = (1 6 2 4)(3 5).

A transposition is a cycle of length 2, for instance, (3 5). It is an important fact
that Sn is generated by transpositions of the form (i i + 1), where 1 ≤ i ≤ n− 1
(we actually used this fact implicitly in our discussion of the cube at the beginning).
Let us check that we can write (1 2 4)(3 5) as a product of such elements in S6. We
can draw a diagram of this permutation as follows:

1

1

2

2

3

3

4

4

5

5

6

6

(3 4)

(3 4)

(2 3)

(4 5)

(1 2)
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Each crossing in the diagram corresponds to an element of S6 of the
form (i i + 1). Reading top to bottom (and writing right to left), we find:

(1 2 4)(3 5) = (3 4)(1 2)(4 5)(2 3)(3 4).

The point is that multiplication in Sn can be realized by stacking diagrams. And
the diagram for (1 2 4)(3 5) can be obtained by stacking the diagrams for the five
permutations on the right-hand side of the equation. Since we can always make a
diagram where the crossings occur at different heights, this argument can be used
to show that every element of Sn is equal to a product of transpositions (i i + 1).

Exercise 1. Use the idea of stacking diagrams to prove that Sn is generated by
{(i i + 1) | 1 ≤ i ≤ n− 1}.

The picture we drew of the permutation (1 2 4)(3 5) can be called a braid dia-
gram. See Aaron Abrams’ Office Hour 18 on braid groups for more on this idea.

Exercise 2. We showed that S4 is the collection of symmetries of a three-
dimensional cube. Can any of the other symmetric groups be thought of as the
symmetries of higher-dimensional cubes? Or other shapes?

The integers modulo n. Let n be an integer greater than 1. The integers modulo
n is the set

Z/nZ = {0, 1, . . . , n− 1}
with the multiplication

(a, b) �→
{

a + b a + b ≤ n− 1

a + b − n a + b ≥ n.

The identity for Z/nZ is 0. The inverse of 0 is 0, and the inverse of any other m

is n−m. Associativity is a little trickier: to check that (a + b)+ c = a + (b + c),
there are a few cases, depending on which sums are greater than n. We’ll leave this
as an exercise.

Exercise 3. Show that if m is any element of {0, . . . , n− 1} with gcd(m, n) = 1,
then {m} is a generating set for Z/nZ.

You are most familiar with Z/nZ in three cases:

• When n = 12, the multiplication we defined is clock arithmetic. For example,
3:00 plus 5:00 is 8:00, and 9:00 plus 4:00 is 1:00 (although perhaps we should
think of 12:00 as 0:00 instead).
• When n = 10, the multiplication we defined is an operation you use when

balancing your checkbook. By just keeping track of the last digit, you have a
quick first check for whether the sum of many big numbers is equal to what
your bank says it is.
• When n = 2, the multiplication is light switch arithmetic. Identify 1 with

flipping the switch and 0 with do nothing. Then flip plus flip is the same as
doing nothing, flip plus do nothing is the same as flip, etc.
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The idea of light switch arithmetic inspires a whole class of groups called lamp-
lighter groups; see Jen Taback’s Office Hour 15.

For what object isZ/nZ the group of symmetries? Using the idea of the clock we
might try to use a regular n–gon. We can certainly see Z/nZ as a set of symmetries
of the n–gon, namely, the rotational symmetries. Thus, Z/nZ can be regarded as a
subgroup of the full symmetry group, Dn. This means that we have realized Z/nZ

as a subset of Dn in such a way that the multiplication in Z/nZ agrees with the
multiplication in Dn. We can see that Z/nZ is a proper subgroup of Dn (i.e., it is
not the whole thing), since Dn also has reflectional symmetries.

That’s pretty good. But we can modify the n–gon so that Z/nZ is exactly the
group of symmetries. One way to do this is to draw a little arrow in the middle of
each edge:

We think of the arrow as defining a preferred direction on each edge. Then we
define a symmetry of this modified n–gon to be a rigid transformation that pre-
serves the directions of the arrows. This is still a perfectly fine notion of symmetry!
The group Z/nZ is the full group of symmetries of the n–gon in this modified
sense.

1.2 INFINITE GROUPS

Many undergraduate courses in abstract algebra give short shrift to infinite groups.
As we will see in this book, this is where all of the fun is! Let’s start with the
simplest infinite group.

The integers. You are probably familiar with the set of integers, or whole num-
bers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
The multiplication Z× Z→ Z is the usual addition of integers:

(m, n) �→ m+ n.

The group Z is generated by {1}. But it is also generated by {2, 3}, for example.
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Of what object is Z the set of symmetries? A first guess is that Z is the symme-
tries of the number line L, by which we mean the real line R with a distinguished
point at each integer:

Here, by a symmetry of L, we just mean a rigid transformation of L that pre-
serves the set of distinguished points. Examples of symmetries of L are: translate
L to the left or right by n units, where n is a positive integer; reflect it about an
integer point; and reflect it about a half-integer point.

The group Z gives a set of symmetries of L as follows: the integer n is the
symmetry that translates L by n units to the right if n ≥ 0 and translates L by −n

units to the left if n < 0. If we think of L as an∞–gon, this is analogous to what
we did for Z/nZ. As in the case of Z/nZ, this identifies Z as a proper subgroup of
the set of symmetries of L, since we don’t get any of the reflections.

We can use the same trick as in the Z/nZ case to modify L in such a way that Z
is the full symmetry group: on each edge we draw a little arrow that points to the
right:

The integers squared. Our next group is

Z
2 = {(m, n) : m, n ∈ Z}

with the multiplication

((m, n), (m′, n′)) �→ (m+m′, n+ n′).

If we think of Z2 as the set of vectors in R2 with integer coordinates, then this is
simply vector addition. One generating set for Z2 is {(1, 0), (0, 1)}.

We can use the same idea as above to build an object whose symmetries are
exactly described by Z2:
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In order for this to work, we need to again refine what we mean by symmetry:
this time we insist that colors are preserved as well as the red points and the
arrows. The symmetry corresponding to (m, n) ∈ Z2 is the translation by m units
to the right and n units up. (If m or n are negative, then translate left and down
accordingly.)

Multiplicative groups of numbers. We would be remiss to not mention two
important groups, R� and C�. These are the groups of nonzero real numbers and
nonzero complex numbers. The group multiplication in each group is the usual
multiplication in R and C. In both cases the identity is 1. An important distinction
between these groups and our previous examples is that R� and C� are not finitely
generated, that is, there does not exist a finite generating set.

If you’ve already seen these groups, you might want to learn about the quater-
nions, a generalization of the complex numbers which is very important in physics.
Instead of just i, the quaternions have i, j , and k! There is a corresponding multi-
plicative group, consisting again of the nonzero elements.

Matrix groups. There is another set of examples of groups that you learned
about in linear algebra (although in such a class you might not have used the word
“group”). Denote by GL(n,R) the set of real n× n matrices with nonzero deter-
minant. Why is this a group? Well, given two matrices, we already know how to
multiply them. Note that this multiplication is closed (that is, the product of two
matrices with nonzero determinant is another matrix with nonzero determinant).
Indeed, this follows immediately from the following basic fact you learned in
linear algebra:

det(MN) = det(M) det(N).

Two other things you learned in linear algebra is that every square matrix with
nonzero determinant is invertible and that multiplication is associative. The identity
matrix has determinant 1, which is not zero, so we have checked that GL(n,R) is
indeed a group. It is called the general linear group. There are really lots of general
linear groups, since n can be any nonnegative integer and R can be replaced with
any ring (see below), but when the context is clear we still call it the general linear
group.

There are many variations. The group SL(n,R) is the subgroup of GL(n,R)

consisting of matrices with determinant 1 (this is the special linear group). The
group GL(n,Z) is the subgroup of GL(n,R) consisting of all invertible integral
matrices (note: these are exactly the integral matrices with determinant ±1). Then
SL(n,Z) is the subgroup of GL(n,Z) consisting of integral matrices with determi-
nant 1. There is also GL(n,C), the group of complex n× n matrices with nonzero
determinant, and SL(n,C), the subgroup of GL(n,C) consisting of n× n matrices
with determinant 1. All of the above examples are subgroups of GL(n,C), and
there are many other examples of interesting subgroups of GL(n,C) (subgroups of
GL(n,C) are called linear groups).

We will study SL(2,Z) in detail in Office Hour 3, giving a finite presentation for
this group as well as many of its relatives.
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Exercise 4. Construct a matrix group whose entries lie in a finite field.

The free group of rank 2. Our next example is the most complicated (and
interesting!) one yet. And it is most probably not a group that you saw in your
undergraduate algebra course.

First we define a word in the letters a and b to be an arbitrary finite string made
up of the symbols a, b, a−1, and b−1. Some examples are:

abababa, aaaaaaa, aba−1b−1, and aa−1.

We allow the empty word as well; this is the string containing no letters. We can
multiply two words by concatenating them:

(ab, b−1a) �→ abb−1a.

Next, we define a reduced word to be a word with the property that we never see an
a followed by an a−1 (or vice versa) or a b followed by a b−1 (or vice versa). If we
have a word that is not reduced, we can make it shorter by deleting an offending
pair of symbols:

aa−1abb−1a � abb−1a.

Performing this procedure inductively will eventually lead to a reduced word. You
should check that this reduction procedure always results in the same reduced word.
In the above example, there are three places where we could start reducing. In this
case, though, no matter what we do we will end up with the reduced word aa.

Exercise 5. Show that every word in a, b, a−1, and b−1 can be reduced to a unique
reduced word.

We are finally ready to define the free group of rank 2. It is the set

F2 = {reduced words in a and b}
with the multiplication:

concatenate, then reduce.

Let’s check that this is a group. The identity is the empty word. The inverse of a
word is obtained by reversing the word, and then replacing each a by a−1, a−1 by
a, b by b−1, and b−1 by b. For example, the inverse of

aba−1b

is

b−1ab−1a−1

Indeed, if we concatenate these two (in either order!) and reduce, we obtain
the empty word. Associativity follows immediately from the fact that the reduc-
tion procedure always results in the same reduced word (but this fact needs to be
proved!). By the very definition of F2, we see that this group is generated by {a, b}.



GROUPS CLAY AND MARGALIT 13

Exercise 6. Check the details of the construction of the free group of rank 2, in
particular the assertion that the multiplication is associative. Hint: Show by induc-
tion on the length of (unreduced) words that if there are two choices for a reduction,
then either choice leads to the same reduced word. There are two cases, according
to whether the two reductions are adjacent or not.

Free groups are important examples of groups in geometric group theory. Office
Hours 3, 4, 5, and 6 explore these groups in more detail.

How can we construct an object whose symmetry group is F2? This is not so
easy! In Office Hour 2 we will explain a way to do this for an arbitrary group.

Other free groups. Given a set S, we can define a free group F (S) as follows.
First, we artificially create inverses for each element of S. For s ∈ S, we can write
this inverse as s−1 (let’s not allow s and s−1 to both be elements of S). Then the
elements of F (S) are reduced words in the elements of S, and the multiplication
is defined in the same way as for F2. As such, when S is a finite set with n ele-
ments, we can denote F (S) by Fn (different choices of S with |S| = n technically
give different groups, but they are all isomorphic in the sense defined below). Con-
vince yourself that F (S) still is a well-defined group when S is infinite, or even
uncountable. In general, the cardinality of S is the rank of the corresponding free
group.

As we will explain in more detail in the next section, free groups are important
because every group is the quotient of a free group.

And many more. One aspect of geometric group theory is to explore the zoo of
infinite groups that are out there. Some examples of interesting classes of groups
in this book are the Coxeter groups already mentioned (Adam Piggott’s Office
Hour 13), the right-angled Artin groups (Bob Bell and Matt Clay’s
Office Hour 14), the lamplighter groups (Jen Taback’s Office Hour 15), Thompson’s
groups (Sean Cleary’s Office Hour 16), the mapping class groups (Tara Brendle
and Leah Childers’ Office Hour 17), and the braid groups (Aaron Abrams’ Office
Hour 18).

1.3 HOMOMORPHISMS AND NORMAL SUBGROUPS

We’ll now take a few minutes to give a quick overview of the most basic and
important ideas from a first course in group theory. If you already know all about
the first isomorphism theorem and about group presentations, then you might want
to skip ahead to the next office hour.

Homomorphisms. We have talked about groups and we now have some
examples. Next we would like to discuss how groups relate to each other. A
homomorphism from a group G to a group H is a function

f : G→ H
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so that

f (ab) = f (a)f (b)

for all a, b ∈ G. We can say this succinctly as: f is a function that preserves the
multiplication in G. A homomorphism is an isomorphism if it is bijective, and two
groups are isomorphic if there is an isomorphism from one to the other. Convince
yourself that isomorphic groups are essentially the same group.

To illustrate the idea of an isomorphism, let’s look at a pair of groups. Con-
sider the group Z on one hand, and the free group F1 on one generator a on the
other hand. Elements of F1 are finite, freely reduced strings in a and a−1, and the
multiplication is given as usual by concatenation and free reduction. What is an
isomorphism Z→ F1? (There is more than one!)

Besides isomorphisms, we might also be interested in injective homomorphisms
and surjective homomorphisms. A homomorphism is injective if and only if the
preimage of the identity in H is the identity in G. (Why?)

Note that any homomorphism f : G→ H can be turned into a surjective
homomorphism by replacing H with f (G). For that reason, the surjectivity of
a homomorphism is not nearly as crucial as the injectivity. As such we will focus
on injective and non-injective homomorphisms.

Injective homomorphisms. If we have an injective homomorphism f : G→H ,
then we can think of f as realizing G as a subgroup of H . Here are a few examples:

1. There is an injective homomorphism Z/nZ→ Dn where m maps to rotation
by 2πm/n.

2. There is an injective homomorphism Z/2Z→ Dn where the nontrivial
element of Z/2Z maps to any reflection.

3. There is an injective homomorphism Z/2Z→ Sn where the nontrivial
element of Z/2Z maps to any product of disjoint transpositions.

4. For any integer m 
= 0, there is an injective homomorphism Z→ Z given by
multiplication by m.

5. For any choice of (a, b) 
= (0, 0), there is an injective homomorphism
Z→ Z2, where n maps to (na, nb).

6. For any choice of nontrivial element w ∈ F2, there is an injective homomor-
phism Z→ F2 given by n �→ wn.

Exercise 7. How many other injective homomorphisms can you find between the
groups we have already discussed?

Non-injective homomorphisms. Non-injective homomorphisms can be just as
interesting and just as useful. Since we have multiple elements of G mapping to
the same element of H , we are definitely losing some information. But the fact that
a homomorphism preserves the multiplication of G means we are still remember-
ing some important data. Often we can set up a non-injective homomorphism to
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remember exactly the data we care about and throw away everything else. Here are
some examples:

1. The most basic example is the homomorphism Z→ Z/2Z where 1 maps
to 1. A light switch is a great example of this: it does not remember how
many times it has been flipped, just whether it has been flipped an even or an
odd number of times.

2. There is a homomorphism GL(n,R)→ R� given by the determinant. So if
you want to know the determinant of a product of matrices, you do not need
to remember the actual matrices, just their determinants.

3. There is a homomorphism R� → Z/2Z where positive numbers map to 0 and
negative numbers map to 1. The fact that this is a homomorphism can be
rephrased as: in order to tell if a product of nonzero numbers is positive or
negative, you do not need to remember what the numbers are, just whether
they are positive or negative.

4. The composition GL(n,R)→ R� → Z/2Z is a homomorphism that remem-
bers whether an element of GL(n,R) has positive or negative determinant.

5. There is a homomorphism Sn → Z/2Z that records whether the diagram for
a permutation (as above) has an even or an odd number of crossings. In other
words, this homomorphism records the parity of the number of transpositions
needed to write a given element of Sn.

6. There is a homomorphism Dn → Z/2Z where rotations map to 0 and
reflections map to 1. This homomorphism remembers whether the polygon
has been flipped over or not.

7. There is a homomorphism F2 → Z2 where the generators a and b for F2 map
to (1, 0) and (0, 1), respectively. This homomorphism remembers the sum of
the exponents on a and b in any element of F2.

8. Any linear map Rn → Rm is a homomorphism. For example, the map
R

2→R that projects to the x–axis is a homomorphism that remembers just
the first coordinate. This is a fancy way to state the obvious fact that in order
to know the first coordinate of a sum of vectors, you need to know just the
first coordinate of each vector.

Exercise 8. How many other non-injective homomorphisms can you find between
the groups we have already discussed?

Normal subgroups. Next we will present a definition that will seem unrelated to
homomorphisms; and then we will make a deep connection. A normal subgroup
of a group G is a group N where N is a subset of G and where gng−1 lies in N for
all n ∈ N and all g ∈ G.

Why are normal subgroups important? Well, one way to make a normal subgroup
of G is to find a group homomorphism f from G to another group H . The kernel
of f is the set of g ∈ G so that f (g) is the identity (we use the same terminology
in linear algebra). We have the following basic fact: the kernel of a homomorphism
f : G→ H is a normal subgroup of G.
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Here is why: if n is in the kernel of f , then

f (gng−1) = f (g)f (n)f (g−1) = f (g) 1 f (g−1)

= f (g)f (g−1) = f (gg−1) = f (1) = 1,

and so gng−1 is also in the kernel of f . Thus the kernel of f is normal.
The above examples of non-injective homomorphisms have kernels as follows:

1. The kernel of our Z→ Z/2Z is 2Z.
2. The kernel of our GL(n,R)→ R� is SL(n,R).
3. The kernel of our R� → Z/2Z is R+.
4. The kernel of our GL(n,R)→ R� → Z/2Z is the subgroup GL+(n,R) con-

sisting of matrices with positive determinant.
5. The kernel of our Sn → Z/2Z is the alternating group An; this consists of

the elements that can be written as the product of an even number of transpo-
sitions.

6. The kernel of our Dn → Z/2Z is the subgroup consisting of rotations; this
subgroup is isomorphic to Z/nZ.

7. The kernel of our F2 → Z2 is the set of elements whose a–exponents and
b–exponents both add to zero, e.g., a7b−5a−10b5a3. This group is also known
as the commutator subgroup of F2 and is denoted by [F2, F2].

8. The kernel of the projection R2 → R is the same as the kernel from linear
algebra; in this case it is isomorphic to R.

So non-injective homomorphisms give us nontrivial normal subgroups. Can we
go the other way? That is, if N is a normal subgroup of G, is there a homomorphism
G→ H so that N is the kernel? The answer is yes! Let’s explain this. The first
step is to define the quotient group G/N . Informally, this is the group obtained
from G by declaring every element of N to be trivial.

Let us make this more precise. Declare two elements g1, g2 of G to be equivalent
if g1g−1

2 ∈ N , and write [g] for the equivalence class of g. Then the elements of
G/N are the equivalence classes of the elements of G (notice that the equivalence
class of the identity is precisely N ). Now we need to say how to multiply two
equivalence classes. We declare that the product of the equivalence class [g1] with
the equivalence class [g2] is the equivalence class [g1g2]. This is precisely the place
where the definition of a normal subgroup comes from—it is exactly what is needed
so that this multiplication is well defined.

Exercise 9. Check that the multiplication in G/N is well defined if and only if N

is normal.

There is an obvious homomorphism G→ G/N , where g ∈ G maps to [g] ∈
G/N . It is not hard to see that the kernel of this homomorphism is precisely N . So
we have completed the loop: normal subgroups and surjective homomorphisms are
the same thing!

The first isomorphism theorem. The so-called first isomorphism theorem
succinctly summarizes the relationship between homomorphisms and normal
subgroups that we have just described.
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Theorem 1.1 (First isomorphism theorem). If G→ H is a surjective homo-
morphism with kernel K , then H is isomorphic to G/K .

Again using our above examples, we have the following isomorphisms:

1. (Z)/(2Z) ∼= Z/2Z (this explains the notation Z/2Z)
2. GL(n,R)/ SL(n,R) ∼= R�

3. R�/R+ ∼= Z/2Z
4. GL(n,R)/ GL+(n,R) ∼= Z/2Z
5. Sn/An

∼= Z/2Z
6. Dn/(Z/nZ) ∼= Z/2Z
7. F2/[F2, F2] ∼= Z2

8. R2/R ∼= R
Exercise 10. Use the first isomorphism theorem to come up with your own iso-
morphisms.

1.4 GROUP PRESENTATIONS

You may not have covered group presentations in your first course in abstract
algebra, but they are closely tied to the other topics in this section and will loom
large in this book.

One naive way to completely describe a group is to list all of the elements and
write down the multiplication table (that is, explicitly give the product of any two
elements). For a very small finite group, this is a reasonable way of understanding
the group. But once you start considering larger—or even infinite—groups this
approach becomes unwieldy.

We already have a more economical way of listing the elements of a group: we
can list a set of generators. Often the infinite groups we care about have finite sets
of generators. This is good, but it certainly doesn’t tell us enough about a group:
the free group F2 and the free abelian group Z2 both have generating sets with two
elements and we know that these are different groups since one is abelian and the
other is not. We need a way of describing the multiplication table. But obviously
we don’t want to just list all of the entries.

The key observation is that some entries in the multiplication table imply other
entries. In other words, equations between group elements imply other equations.
For instance, if gh = k and h = pq, then (substituting pq for h in the first equation)
we know that gpq = k. So what we can hope for is that we don’t need to write down
the entire multiplication table, but rather a small set of equalities that imply all the
others. So now we have exactly hit upon the idea of what a group presentation is:
it is firstly a list of generators and secondly a list of defining equalities so that all
equalities follow from the listed ones.

Here is a first example, the group Z/nZ. Let’s denote the elements of Z/nZ by
a0, . . . , an−1 instead of 0, . . . , n− 1. Naturally, the multiplication is aj ak = aj+k ,
where the exponents are all taken modulo n. With this notation, Z/nZ has the
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presentation

Z/nZ ∼= 〈a | an = 1〉.
So the generating set is a and the only defining equality is an = 1. Every entry in
the multiplication table for Z/nZ follows from this one equality. For instance, one
entry in the multiplication table is an−3a4 = a. But we can easily derive this using
the defining equality an = 1 as follows:

an−3a4 = an+1 = ana1 = 1 · a = a.

A second important example of a group presentation is the following:

Z
2 = 〈x, y | xy = yx〉.

Can you see why this is a presentation of Z2? We’ll come back to this in a little bit.

Exercise 11. Convince yourself that Z2 indeed has the purported presentation.

Hopefully these examples give you an idea of what a group presentation is. The
way we make things formal—and the way we really think about group
presentations—is through the use of free groups. At first our definition of a pre-
sentation won’t look exactly like the examples we just gave, but we’ll eventually
explain why it is really the same thing.

A group presentation is a pair (S, R), where S is a set and R is a set of words in
S. If we freely reduce the elements of R, then we can regard them as elements of
the free group F (S), and indeed it will be important to take this point of view. The
presentation is finite when both sets S and R are finite.

We say that a group G has the presentation 〈S |R〉 if G is isomorphic to the
quotient of F (S) by the normal closure of R, the smallest normal subgroup of
F (S) containing R (equivalently, the subgroup of F (S) generated by all conjugates
of all elements of R). We write:

G ∼= 〈S | R〉.
Here is how we think of this: the group G consists of reduced words in S ∪ S−1

but with the added caveat that words in R are the same as the empty word (this is
where the normal closure comes in: if some element of R is supposed to represent
the identity, then any conjugate of that element in F (S) should also represent the
identity, and any products of conjugates of such elements ...). The elements of S

are called generators for G and the elements of the normal closure of R are called
relators for G, and the elements of R are called defining relators. If we have a
presentation (as in our above discussion) with a relation like ab = ba or aba =
bab, then we turn this into a relator by moving everything to one side: aba−1b−1

or abab−1a−1a−1.
How does this formal definition match up with what we said before? Let’s look

more closely at Z2. This group has the presentation

Z
2 ∼= 〈a, b | aba−1b−1〉.

(Notice that this is different from the presentation we gave a few minutes ago, but
bear with us!) What are the elements of the group 〈a, b | aba−1b−1〉? Well, we
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start with the free group on a and b, which consists of all freely reduced words in
a and b. Then we need to take the quotient by the normal closure of aba−1b−1.
What is the quotient as a set? Well, in the quotient we can change a word w into
an equivalent word by inserting aba−1b−1 anywhere in w, or removing it from
anywhere in w.

Why is that the same as our first presentation of Z2 as 〈x, y | xy = yx〉? Well,
we claim that two elements of the free group on {a, b} are equivalent in the quotient
(by the normal quotient by aba−1b−1) if and only if they differ by a sequence of
swaps, where we swap ab for ba or vice versa. Let’s convince ourselves of this.
Start with a word wbaw′, where w and w′ are both words in a and b. We said we
can insert aba−1b−1 anywhere we want; so in the quotient,

wbaw′ = w(aba−1b−1)baw′ = wab(a−1b−1ba)w′ = wabw′.

By applying swaps like this we see that every element of the quotient is equivalent
to ambn for some m and n. But this gives us an obvious isomorphism between our
quotient and Z2; the isomorphism is given by ambn ↔ (m, n).

We can also see from the above discussion how our new presentation of Z2 (with
generators a and b) matches up with our old one (with generators x and y). Both
presentations are really saying the same thing. So which one you use just de-
pends on your preference. When we have an equality between generators like
xy = yx, then the equality is called a relation. And when we have an equality
like aba−1b−1 = 1 we say that aba−1b−1 is a relator, as in our formal definition.
We can always change a relation to a relator by moving all of the generators to one
side (as in our Z2 example), and the net effect is the same. In this book we will
tend to use relators more than relations, but both will come up.

Every group can be given by a group presentation. In particular:

Every group is a quotient of a free group.

This is one reason why free groups are so important. In many ways, geometric
group theory grew out of the study of combinatorial group theory, a subject largely
concerned with studying groups via their presentations.

Exercise 12. Show that every group has a presentation. Hint: Your presentation
does not have to be efficient.

Exercise 13. Find (nice) group presentations for Fn, Dn, and Sn.

Armed with the notion of a group presentation, you can start to list lots of differ-
ent groups. Which presentations represent isomorphic groups? It turns out that this
is an unsolvable problem in general; there is no algorithm that will take two presen-
tations and decide in finite time if they present the same group. It is good to keep
this in mind: group presentations are very helpful, but they do have limitations.

That’s it for the first office hour—we introduced a number of examples of groups
that will play key roles in the rest of the book. We want to understand these groups
from as many points of view as possible. At first glance you might wonder what
there is to learn about a free abelian group or a free group. The answer: more than
you might imagine!
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Hopefully we have convinced you that the concept of a group is deeply inter-
twined with the idea of symmetries: groups lead to symmetries and symmetries
lead to groups. In order to study infinite groups, we will want to take advantage of
this and think of groups geometrically. A key step on this path is to show that every
group really is the group of symmetries of some geometric object. That’s the goal
of the next office hour—see you there!



Office Hour Two

... and Spaces

Matt Clay and Dan Margalit

As we said at the outset of Office Hour 1, our goal is to exhibit every group as
a collection of symmetries of some geometric object. We have given some exam-
ples of finite and infinite groups and in some cases we have given an appropriate
geometric object with that group as its symmetries.

Our first task in this office hour is to say precisely what it means for a group to
be a group of symmetries of a geometric object (answer: group actions). We will
then define, for any group G, the Cayley graph of G and show that the group of
symmetries of this graph is precisely the group G.

We will then introduce metric spaces, which formalize the notion of a geometric
object. We’ll see lots of metric spaces that groups can act on. Furthermore, we will
see that groups themselves are metric spaces; in other words, groups themselves
can be thought of as geometric objects. At the end we will use these ideas to frame
the motivating questions of geometric group theory.

Group actions. In Office Hour 1 we got the idea that groups can do things to
geometric objects (or sets) in the sense that elements of the group give symmetries
of the object. For instance, each element of the dihedral group Dn does something
to the n–gon, each element of the symmetric group Sn does something to the set
{1, . . . , n}, and each element of Z does something to the real line. In other words,
we can say that these groups act on those objects. This is precisely the idea of a
group action.
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Formally, an action of a group G on a set X is a function

G×X→ X

where the image of (g, x) is written g · x and where

• 1 · x = x for all x ∈ X and
• g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X.

If A is a subset of X then g · A is the set {g · a | a ∈ A}. When there is no confusion
we sometimes write gx and gA instead of g · x and g · A.

Notice that for any group G and any set X we always have the trivial action,
defined by g · x = x for all g ∈ G and x ∈ X.

Let SX denote the symmetric group of X, that is, the group of permutations of X

(this makes sense even if X is infinite). So not only does each element of G give rise
to a permutation of X, but it does so in such a way as to respect the multiplications
in the two groups.

The group SX is the group of symmetries of X, thought of as a set (hence the
name). An action of G on X is the same thing as a homomorphism G→ SX. So
an action of G on X is the formal way to realize G as a group of symmetries of the
set X.

Exercise 1. Check that actions of G on X are the same as homomorphisms
G→ SX.

Here are some examples of group actions on sets:

1. Sn acts on {1, . . . , n}
2. Dn acts on the set of vertices (or edges, or diagonals ...) of an n–gon
3. GL(n,R) acts on the set of vectors (or planes, or bases ...) in Rn

4. Z/2Z acts on Z via multiplication by ±1
5. Z acts on Rn via m · v = Amv, where A is some fixed n× n matrix
6. Z acts on the unit circle in C via the formula m · z = eimθ z, where θ is any

real number (so m rotates the circle by mθ )

Exercise 2. List some other group actions.

If we have an action of a group G on a set X, then the orbit of x ∈ X under G is
the set

G · x = {g · x | g ∈ G}.
So, for example, the orbit of a vertex of an n–gon under the action of Dn on the set
of vertices is the full set of all vertices; in such a situation we say that the action
is transitive. At the other extreme, the orbit of x under the trivial action is simply
{x}. If no nontrivial element of G fixes any x ∈ X, we say that the action of G on
X is free.

Exercise 3. List all of the orbits for your favorite group actions (for instance, the
ones listed above).
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Groups acting on themselves. If G is any group, then G acts on itself in
two ways:

1. G acts on itself by left multiplication: g · h = gh

2. G acts on itself by conjugation: g · h = ghg−1

The first action is transitive and free, but the second usually is not (the orbits in the
second case are called conjugacy classes).

Exercise 4. Check that the purported actions of G on itself are really actions.

Exercise 5. Describe the conjugacy classes in Sn, Dn, Fn, and Zn.

The action of G on itself by left multiplication gives a homomorphism
G→ SG. This homomorphism is injective (why?). Therefore, we have the
following theorem.

Theorem 2.1 (Cayley’s theorem). Every group is isomorphic to a subgroup of
some symmetric group.

Cayley’s theorem already tells us that every group can be thought of as a set of
symmetries (of the group itself). However, there is no geometry here: we are just
thinking of the group as a discrete set of points. The real goal is to find group
actions on geometric objects so that we can use geometry to study the group. In
this book the geometric objects we will think about are graphs and metric spaces,
the subjects of the next two sections.

2.1 GRAPHS

We’ll now describe our first class of geometric objects—graphs. We’ll say what it
means for a group to act on a graph, and finally we will show that every group is
the group of symmetries of some graph, its Cayley graph.

Graphs. A graph � is a combinatorial object defined as follows: there is a
nonempty set V (the set of vertices) and a set E (the set of edges), and a func-
tion from E to the set of unordered pairs of (not necessarily distinct) elements
of V ; we’ll call this function the endpoint function. We sometimes say that an edge
connects its two endpoints.

We can draw a picture of � by drawing one dot for each element of V and
connecting dots with arcs—one for each edge—according to the endpoint function;
see, for instance, Figure 2.1.

Exercise 6. Write down a formal description of the graph in Figure 2.1, using sets
V and E and the endpoint function.

The valence of a vertex in a graph is the number of times that vertex appears as
the endpoint of an edge. In other words, this is the number of half-edges incident
to the vertex. In Figure 2.1 every vertex has valence 4.
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Figure 2.1 A graph.

Graphs usually are described not by explicitly listing the sets V and E, but rather
by giving some rule for listing the vertices and edges. Here are some examples:

1. The complete graph on n–vertices Kn has vertex set {1, . . . , n} and an edge
for every pair of distinct vertices.

Notice that in our picture of K4 there is an intersection right in the middle.
This is not a vertex! It is simply an artifact of the picture. Can you find a
picture of K4 without any extra crossings like this? What about K5?

K3 K4 K5

2. The complete bipartite graph on Km,n has vertex set V = V1
∐

V2 where
V1 and V2 have m and n elements, respectively. There is an edge for each
pair {v, w}, where v ∈ V1 and w ∈ V2. If we think of the elements of V1

as “red vertices” and the elements of V2 as “green vertices,” then there are
edges connecting every red vertex to every green vertex, and no edges con-
necting vertices of the same color. (More generally, a bipartite graph is one
where there are “red” and “green” vertices and all edges connect vertices of
different colors.)

K2,2 K2,3 K3,3

3. Here’s an interesting example: consider the graph where the vertices are the
two-element subsets of {1, 2, 3, 4, 5} and where there is an edge between two
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subsets if they are disjoint. This graph is known as the Petersen graph; it is a
famous and important example in graph theory. Each vertex of the Petersen
graph has valence 3. For example, the vertex {1, 2} is adjacent to {3, 4}, {3, 5},
and {4, 5}.

{2, 4}

{1,3}

{2, 5} {1, 4}

{3, 5}

{1, 5}

{4, 5}

{3, 4} {2, 3}

{1, 2}

4. A tree is a connected graph without a cycle. Finite trees are very important
when studying searching and sorting algorithms in computer science. They
also make an appearance in Sean Cleary’s Office Hour 16 on Thompson’s
group. Infinite trees play an essential role in geometric group theory; see
Office Hour 3. Below are two pictures of trees, the one on the right is a
portion of T3, the tree in which every vertex has valence 3. Sometimes T3 is
called a regular 3–valent tree.

5. Graphs are commonly used to describe networks or to show complex relation-
ships. For instance, we could create a graph whose vertices are the members
of a social network (such as Facebook) and whose edges connect two mem-
bers that are friends. (In some social networks, such as Google Plus, it is
possible for friendships to be one-directional; to describe such a social net-
work we need directed graphs, which we’ll get to in a little bit.)

Here is a similar example: consider the graph that has as vertex set the
set of movie actors and has edges between actors who have appeared in the
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Figure 2.2 Two isomorphic graphs.

same movie. Extensive knowledge of this graph would be useful in playing
the parlor game Six Degrees of Kevin Bacon.

Variations. In certain contexts, we might be interested in variations on the defi-
nition of a graph. For instance, in some cases we will care about loopless graphs
(no edges connecting a vertex to itself) or simple graphs (at most one edge between
two given vertices).

We also might be interested in directed graphs, where the edges have preferred
directions, and in labeled graphs, where the vertices and/or edges come with a label
(e.g., a letter or a color). When we draw a picture of a directed graph, we usually
draw little arrows on the edges to indicate the preferred direction. We already
encountered directed graphs in Office Hour 1 with edge labels when we constructed
the geometric object that has Z2 as its group of symmetries.

Exercise 7. Give the formal definitions of simple graphs, loopless graphs, directed
graphs, and labeled graphs.

Graph isomorphisms. You should have some intuitive idea of when two graphs
are the same, for example, the two graphs in Figure 2.2. Formally, if � and �′ are
graphs with vertex sets V and V ′ and edge sets E and E′, then an isomorphism
�→ �′ is a pair of bijections V → V ′ and E→ E′ that are compatible with the
endpoint function in the sense that the endpoints of the image of an edge are the
images of the endpoints of the edge. So just as an isomorphism of groups is a
bijection that preserves all of the group structure, an isomorphism of graphs is a
bijection (or rather a pair of bijections) that preserves all of the graph structure. For
either groups or graphs, an isomorphism is a certificate that two a priori different
objects are really the same object.

Sometimes the isomorphism is not clear, as in Figure 2.2. You might be surprised
to learn that both graphs in Figure 2.3 are isomorphic to the Petersen graph!

Exercise 8. Find an explicit isomorphism between the graphs in Figure 2.2.

Exercise 9. Show that Km,n is isomorphic to Kn,m.

Exercise 10. Show that both graphs in Figure 2.3 are isomorphic to the
Petersen graph.



... AND SPACES CLAY AND MARGALIT 27

Figure 2.3 Two graphs isomorphic to the Petersen graph.

If we are working with graphs that have extra structure (i.e. directed and/or
labeled edges) then an isomorphism must preserve this extra structure. For instance,
if we have two graphs with blue and green edges, then an isomorphism should take
blue edges to blue edges and green edges to green edges. Similarly, if we have
directed graphs, then a graph isomorphism should respect the arrows on the edges.

Graph automorphisms. An isomorphism from a graph to itself is called an
automorphism. The automorphisms of a graph are exactly what you should think
of as its symmetries. The set of automorphisms of a graph � forms a group denoted
by Aut(�).

The graph on the left-hand side of Figure 2.2 has lots of obvious automor-
phisms, for instance, rotation by π/2 and reflection about the horizontal. It also has
less-obvious automorphisms, for instance, ones that interchange the inner and
outer squares.

Since the graph on the right-hand side of Figure 2.2 is isomorphic to the one
on the left-hand side, it has the same group of automorphisms. What do the less-
obvious automorphisms from the left-hand side look like on the right-hand side?

Exercise 11. Determine the automorphism group of the graph in Figure 2.2. Hint:
the discussion at the beginning of Office Hour 1 should help.

We already have a number of examples of graphs. Here are some of their
automorphisms:

1. Since each vertex in Kn is connected to every other vertex, all vertices are
interchangeable; thus Aut(Kn) ∼= Sn.

2. Similarly, we find that if m �= n, then Aut(Km,n) ∼= Sm × Sn. What about
Aut(Kn,n)?

3. From our original definition of the Petersen graph (using subsets of {1, 2, 3,

4, 5}) we see that S5 is a subgroup of the automorphism group.
4. The regular 3–valent tree T3 has lots of automorphisms. For instance, we can

rotate by 2π/3 at any vertex or swap two branches at a vertex (of course we
need to be careful about how to define the automorphism on the rest of the
tree). There are infinite order automorphisms as well. It turns out that Aut(T3)

is uncountable!
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5. If two people have the same friends on Facebook, then there is an automor-
phism of the Facebook graph that interchanges these two people and fixes
every other vertex (whether or not the two people are friends with
each other!).

Exercise 12. Is S5 the full group of automorphisms of the Petersen graph?

Exercise 13. Describe an infinite order element in Aut(T3).

Exercise 14. Besides the one mentioned above, can you think of other scenarios
that lead to graph automorphisms of the Facebook graph?

If a graph � has extra structure (i.e., directed and/or labeled edges), then auto-
morphisms of the graph are required to preserve this extra structure (after all, a
graph automorphism is a special case of a graph isomorphism). The result is still
a group and is still denoted by Aut(�). For instance, in Office Hour 1 we consid-
ered automorphisms of a regular n–gon, thought of as a directed graph where the
edges are all directed in the counterclockwise direction. As we saw, the group of
automorphisms of this directed graph is Z/nZ.

Group actions on graphs. An action of a group G on a (possibly directed, possi-
bly labeled) graph � is a homomorphism G→ Aut(�). So it is based on the same
idea as a group action, but an action on a graph needs to preserve the structure of
the graph.

If we unravel the definition of a group action of G on an (unlabeled, undirected)
graph � with vertex set V and edge set E, we have:

• for each g ∈ G and v ∈ V a choice of element of V , denoted by g · v,
• for each g ∈ G and e ∈ E a choice of element of E, denoted by g · e,
• for x in either V or E, we have 1 · x = x,
• for g, h ∈ G and x in V or E, we have g · (h · x) = (gh) · x, and
• if the endpoints of e ∈ E are v and w, then the endpoints of g · e are g · v

and g · w.

In (yet) other words, a group action of G on � is a pair of group actions of G on V

and E that are compatible with the endpoint function.
If we take � to be a labeled graph, then the second condition above would further

stipulate that the labels on e and g · e need to be the same.
If we take � to be a directed graph, then the last condition above would say: if

the initial and terminal endpoints of e ∈ E are v and w, respectively, then the initial
and terminal endpoints of g · e are g · v and g · w, respectively.

We can rephrase our list of automorphisms of graphs in terms of group actions:

1. Sn acts on Kn by permuting the vertices
2. Sm × Sn acts on Km,n by permuting the two sets of vertices
3. S5 acts on the Petersen graph via its action on {1, 2, 3, 4, 5}
4. Z/3Z acts on the regular 3–valent tree T3 (as do Z/2Z and Z)
5. Z/2Z sometimes acts on the Facebook graph (for instance, when there are

two people with the same set of friends, as above)
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Cayley graphs. Finally, we come to the whole reason we have been studying
graphs. Let G be an arbitrary group and let S be a generating set for G. For
simplicity we assume that S does not contain the identity. The Cayley graph for G

with respect to S is a directed, labeled graph �(G, S) given as follows: the vertex
set is G, there is a directed edge from g to gs for every g ∈ G and s ∈ S, and we
label the edge from g to gs by the element s of G. (If S is small we can sometimes
use colors for the edges instead of labels.)

You might wonder what happens if you take two different generating sets for the
same group. How are the two Cayley graphs related? They might not be isomorphic
(for instance, if the cardinalities of the generating sets are different). However, there
is a sense in which they are the same; see Office Hour 7 on quasi-isometries for
an explanation.

The Cayley graphs for Z with respect to {1} and for Z2 with respect to {(1, 0),

(0, 1)} are familiar. Indeed, we already discovered them in Office Hour 1! Each
blue edge in the graph for Z corresponds to the generator {1}. The green and blue
edges in the graph for Z2 correspond to the generators (1, 0) and (0, 1), respec-
tively. (Of course, 1 here is the number 1, not the identity.)

1 (1,0)
(0,1)

Here is the Cayley graph for S3 with respect to the generating set {(1 2), (2 3)}.
The blue edges correspond to the generator (1 2) and the green edges correspond
to the generator (2 3).

(1 2 3)(1 2)

1

(2 3) (1 3 2)

(1 3)
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1

s1

s1

s2

s1s2

s1s2· · ·sn−1

sn

g = s1s2· · ·sn

Figure 2.4 Part of a Cayley graph.

Exercise 15. Draw the Cayley graph for Z with the generating set {2, 3}, for D4

with the generating set (s, t), for S3 with the generating set {(1 2), (1 2 3)}, and for
S4 with the generating set {(1 2), (2 3), (3 4)}.

Here’s a useful observation about the Cayley graph made evident by Figure 2.4:

If s1, s2, . . . , sn are the labels (in order) on an edge path in �(G, S)

from 1 to g, then g = s1s2 · · · sn. And vice versa, if g = s1s2 · · · sn, then
there is an edge path from 1 to g in �(G, S) whose labels are s1, s2,
. . . , sn (in that order).

(We allow si to be the inverse of an element s of S, meaning that our path crosses
an s–edge against the direction of the edge.) So there is a correspondence between
paths in the Cayley graph from 1 to g on one hand and words in the generators
representing g on the other hand.

Exercise 16. What do the labels on an edge path from g to h in �(G, S) tell you
about g and h?

Automorphisms of the Cayley graph. Each element of a group G gives rise to
an automorphism of the Cayley graph �(G, S), as follows. The automorphism �g

associated to g ∈ G is given on the vertices by:

�g(v) = gv.

This is just the action of G on itself by left multiplication. Since there is at most
one directed edge connecting any two vertices with a specified direction, and since
no edges connect a vertex to itself, there is only one way to extend this to an auto-
morphism of the entire directed, labeled graph: �g sends the edge v→− vs to the
edge gv→− gvs. This works since �g(v) = gv and �g(vs) = gvs.

Theorem 2.2. Let S be a generating set for G. Then the map G→ Aut(�(G, S))

is an isomorphism.

The proof requires one new idea. Let S−1 denote the set of inverses of elements
of S. The word length of g ∈ G with respect to S is the length of the shortest word
in S ∪ S−1 that is equal to g in G. The identity 1 ∈ G has word length 0. By
the definition of a generating set, every element of G has finite word length with
respect to S.

Our earlier observation about edge paths in Cayley graphs shows that we can
also think of word length geometrically: the word length of g is the fewest number
of edges in an edge path from 1 to g.
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Let’s prove Theorem 2.2. To simplify notation, let � = �(G, S). It is not hard
to see that the map G→ Aut(�) we have already defined is a homomorphism. It
is injective since different elements of G send the identity vertex of � to different
vertices. The main thing is to show that it is surjective, that is, every element of
Aut(�) is equal to some �g .

Let � ∈ Aut(�), that is, � is an isomorphism �→ �, where � is regarded as
a directed graph with edge labels. Suppose that �(1) = g (we are using the same
symbol for a vertex and the corresponding element of �). We will show that � =
�g . As above, since directed edges are determined by their endpoints, it is enough
to show that � agrees with �g on the vertices of �.

We use induction on word length in G with respect to S. The base case is word
length 0, which is just the statement �(1) = g = �g(1). Assume � agrees with
�g on all elements of G of word length n with respect to S. Suppose v ∈ G has
word length n+ 1. This means that v = ws, where the word length of w is n and
s ∈ S ∪ S−1. To simplify matters, assume s ∈ S; the other case is similar.

By assumption, �(w) = �g(w). There is a unique edge labeled s emanating
from w, namely, the edge from w to ws = v. Similarly, there is a unique edge
labeled s emanating from �(w), with ending point �(w)s. Since � and �g

both respect edge labels, it must be that �(v) = �g(v) = �(w)s. In particular,
�(v) = �g(v), which is what we wanted to show!

The Cayley graph for the free group. By Theorem 2.2, we know there is a
geometric object with F2 as its group of symmetries, namely, the Cayley graph
for F2 (with respect to any generating set). But what does such a Cayley graph
look like?

Let a and b be the standard generators for F2. We can draw a picture of the
Cayley graph � = �(F2, {a, b}) as follows. We start by drawing the vertex for the
identity element 1 of F2 (the empty word):

1

The four edges containing 1 connect 1 to the vertices a, b, a−1, and b−1, the four
elements of F2 with word length 1:

1a−1 a

b−1

b


