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P R E F A C E

A preface seldom makes for exciting reading, as the bulk of
its square footage is typically used to thank people the vast
majority of readers have never heard of and never will meet.
Nonetheless, anyone going through the process of publishing a
book accumulates debts that must be acknowledged. So let’s first
do this, swiftly but in true heartfelt and thankful spirit, and then
move on with the real stuff.

The material in many of the book’s chapters grew from class
notes and end-of-term projects I developed for the first-year
undegraduate course “Introduction to computational physics,”
offered at the Physics Department of the Université de Montréal,
and which I had the opportunity to teach for many years. I am
grateful for constructive feedback by generations of students and
colleagues, far too numerous to list in full. A few went above and
beyond the call of duty, in some cases years after having taken
the class, as these notes evolved into a book and the associated
codes went from C to Python. This is why I do feel an irresistible
urge to thank by name: Vincent Aymong, Vincent Dumoulin,
Mirjam Fines-Neuschild, David Lafrenière, Myriam Latulippe,
Guillaume Lenoir-Craig, Dário Passos, Antoine Strugarek, and
Félix Thouin.

Expanding these class notes and term projects into the first
draft of the present book was made possible by a one-year paid
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sabbatical leave for which I should at the very least express
gratitude to my employer. Turning that first draft into the actual
book you now have in hand involved a lot of hard work by
many people at Princeton University Press, including in the front
row Ingrid Gnerlich, Eric Henney, and Kathleen Cioffi. Those
in the other rows I never interacted with directly, but I know
you are there somewhere, so thank you too. I am particularly
indebted to Alison Durham for her outstanding copyediting
work, Don Komarechka and Ken Libbrecht for sharing their
snowflake photographs; and last but certainly not least, my family
for putting up with me during the more intense chapters of this
saga.

Finally, I wish to acknowledge many valuable suggestions and
constructive criticism by the two anonymous readers appointed
by Princeton University Press to review the first draft of this book.
Needless to say, any remaining error, inaccuracy, or omission is
not intentional, and neither one of these two individuals nor any
other named earlier holds any responsibility for their (probable)
occurrence; but I do, so if you find any, please let me know so I
can do something about it next time around, if there is one.

Paul Charbonneau
Orford, November 2016
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1
I N T R O D U C T I O N : W H AT I S

C O M P L E X I T Y ?

There is all the difference in the world between knowing
about and knowing how to do.

— J. EVANS, The History and Practice of Ancient Astronomy,
1997)

1.1 Complexity Is Not Simple

If turbulence is the graveyard of theories, then complexity is surely
the tombstone of definitions. Many books on complexity have
been written, and the bravest of their authors have attempted to
define complexity, with limited success. Being nowhere as coura-
geous, I have simply decided not to try. Although complexity is
the central topic of this book, I hereby pledge to steer clear of any
attempt to formally define it.

This difficulty in formally defining complexity is actually
surprising because we each have our own intuitive definition of
what is “complex” and what is not, and we can usually decide
pretty quickly if it is one or the other. To most people a Bartok
string quartet “sounds” complex, and a drawing by Escher “looks”
complex. Such intuitive definitions can even take an egocentric
flavor, i.e., an Escher drawing is complex because “I could not
draw it” or a Mozart piano piece is complex because “I could not
play it.”
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The many guises of the complex systems to be encoun-
tered further in this book often involve many (relatively) sim-
ple individual elements interacting locally with one another.
This characterization—it should definitely not be considered a
definition—does capture a surprisingly wide range of events,
structures, or phenomena occurring in the natural world, that
most of us would intuitively label as complex. It even applies
to many artificial constructs and products of the human mind.
While novels by Thomas Pynchon are typically replete with
oddball characters, events therein are for the most part con-
strained by the laws of physics and usually follow a relatively
straightforward timeline. What makes Pynchon’s novels complex
is that they involve many, many such characters interacting
with one another. The complexity arises not from the characters
themselves, however singularly they may behave, but rather from
their mutual interactions over time. Likewise, many of Escher’s
celebrated drawings1 are based on the tiling of relatively simple
pictorial elements, which undergo slow, gradual change across the
drawing. The complexity lies in the higher-level patterns that arise
globally from the mutual relationship of neighboring pictorial
units, which are themselves (relatively) simple.

Nice and fine perhaps, but turning this into a formal definition
of complexity remains an open challenge. One can turn the
problem on its head by coming up instead with a definition of
what is not complex, i.e., a formal definition of “simple.” Again
purely intuitive and/or egocentric definitions are possible, such
as “simple = my five-year-old could do this.” Like complexity,
simplicity is, to a good part, in the eye of the beholder. I am a
physicist by training and an astrophysicist and teacher by trade; I
am well aware that my own personal definition of what is “simple”
does not intersect fully with that of most people I know. Yet such

1See www.mcescher.com/gallery/transformation-prints for reproductions of
artwork by Maurits Cornelis Escher.

http://www.mcescher.com/gallery/transformation-prints
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divergences of opinions are often grounded in the language used
to describe and characterize a phenomenon.

Consider, for example, the game of pool.2 Even without any
formal knowledge of energy and momentum conservation, a
beginner develops fairly rapidly a good intuitive feel for how
the cue ball should be hit to propel a targeted, numbered ball
into a nearby pocket; reliably executing the operation is what
requires skill and practice. Now, armed with Newton’s laws of
motion, and knowing the positions of the pocket and the two
participating balls, the required impact point of the cue ball can
be calculated to arbitrarily high accuracy; the practical problem
posed by the production of the proper trajectory of the cue ball,
of course, remains. Whichever way one looks at it, the collision of
two (perfectly spherical) pool balls is definitely simple, provided
it takes place on a perfectly flat table.

If physical laws allow, in principle, the computation of the
exact trajectories of two colliding pool balls, the same laws applied
repeatedly should also allow generalization to many balls colliding
in turn with one another. Experience shows that the situation
rapidly degrades as the number of balls increases. I have not
played pool much, but that is still enough to state confidently that
upon starting the game, no single pool break is ever exactly alike
another, despite the fact that the initial configuration of the 15
numbered balls (the “rack”) is always the same and geometrically
regular—closely packed in a triangular shape. The unfolding of
the break depends not just on the speed, trajectory angle, and
impact position of the cue ball, but also on the exact distances
between the balls in the rack and on whether one ball actually
touches another, i.e., on the exact position of each ball. For all
practical purposes, the break is unpredictable because it exhibits

2The reader unfamiliar with this game will find, on the following Wikipedia
page, just enough information to make sense of the foregoing discussion:
en.wikipedia.org/wiki/Eight-ball.

http://en.wikipedia.org/wiki/Eight-ball
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extreme sensitivity to the initial conditions, even though the
interaction between any pair of colliding balls is simple and fully
deterministic.

Is complexity then just a matter of sheer number? If the
definition of complexity is hiding somewhere in the interactions
between many basic elements, then at least from a modeling point
of view we may perhaps be in business. If the underlying physical
laws are known, computers nowadays allow us to simulate the
evolution of systems made up of many, many components, to
a degree of accuracy presumably limited only by the number of
significant digits with which numbers are encoded in the com-
puter’s memory. This “brute-force” approach, as straightforward
as it may appear in principle, is plagued by many problems, some
purely practical but others more fundamental. Looking into these
will prove useful to start better pinning down what complexity
is not.

1.2 Randomness Is Not Complexity

If we are to seriously consider the brute-force approach to the
modeling of complex systems, we first need to get a better feel for
what is meant by “large number.” One simple (!) example should
suffice to quantify this important point.

Consider a medium-size classroom, say a 3 m high room with
a 10 × 10 m floor. With air density at ρ = 1.225 kg m−3, this
300 m3 volume contains 367 kg of N2 and O2 molecules, adding
up to some 1028 individual molecules. Written out long that
number is

10,000,000,000,000,000,000,000,000,000.

It doesn’t look so bad, but this is actually a very large number,
even by astronomical standards; just consider that the total
number of stars in all galaxies within the visible universe is
estimated to be in the range 1022–1024. Another way to appreciate
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the sheer numerical magnitude of 1028 is to reflect upon the
fact that 1028 close-packed sand grains of diameter 0.25 mm—
“medium-grade sand” according to the ISO 14688 standard, but
quality beach stuff nonetheless—would cover the whole surface
of the Earth, oceans included, with a sandy layer 1 km thick.
That is how many molecules we need to track—positions and
velocities—to “simulate” air in our classroom.

At this writing, the supercomputers with the largest memory
can hold up to ∼ 103 TB = 1015 bytes in RAM. Assuming
64-bit encoding of position and velocity components, each mole-
cule requires 48 bytes, so that at most 2 × 1013 molecules can
be followed “in-RAM.”3 This is equivalent to a cubic volume
element of air smaller than a grain of very fine sand. We are a
long way from simulating air in our classroom, and let’s not even
think about weather forecasting! This is a frustrating situation:
we know the physical laws governing the motion and interaction
of air molecules, but don’t have the computing power needed to
apply them to our problem.

Now, back to reality. No one in their right mind would
seriously advocate such a brute-force approach to atmospheric
modeling, even if it were technically possible, and not only be-
cause brute force is seldom the optimal modeling strategy. Simply
put, complete detailed knowledge of the state of motion of every
single air molecule in our classroom is just not useful in practice.
When I walk into a classroom, I am typically interested in global
measures such as temperature, humidity level, and perhaps the
concentration gradient of Magnum 45 aftershave, so as to pin-
point the location of the source and expel the offending emitter.

It is indeed possible to describe, understand, and predict the
behavior of gas mixtures, such as air, through the statistical

3Molecules also have so-called “internal” degrees of freedom, associated with
vibrational and rotational excitation, but for the sake of the present argument
these complications can be safely ignored.
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definition of global measures based on the physical properties
of individual molecules and of the various forces governing their
interactions. This statistical approach stands as one of the great
successes of nineteenth-century physics. Once again, a simple
example can illustrate this point.

The two panels atop figure 1.1 display two different realiza-
tions of the spatially random distribution of N = 300 particles
within the unit square. Even though the horizontal and vertical
coordinates of each particle are randomly drawn from a uniform
distribution in the unit interval, the resulting spatial distributions
are not spatially homogeneous, showing instead clumps and
holes, which is expected, considering the relatively small number
of particles involved. Viewing these two distributions from a
distance, the general look is the same, but comparing closely the
two distributions differ completely in detail—not one single red
particle on the left is at exactly the same position as any single
green particle on the right.

Consider now the following procedure: from the center of each
unit square, draw a series of concentric circles with increasing
radii r ; the particle number density (ρ, in units of particles per
unit area) can be computed by counting the number of particles
within each such circle, and dividing by its surface area πr 2.
Mathematically, this would be written as

ρ(r ) = 1

πr 2

N∑
n=1

{
1 if x 2

n + y 2
n ≤ r 2,

0 otherwise.
(1.1)

Clearly, as the radius r is made larger, more and more particles
are contained within the corresponding circles, making the sum
in equation (1.1) larger, but the area πr 2 also increases, so it
is not entirely clear a priori how the density will vary as the
radius r increases. The bottom panel of figure 1.1 shows the
results of this exercise, applied now to two realizations of not
300 but N = 107 particles, again randomly distributed in the unit
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Figure 1.1. Going from the microscopic to the macroscopic scale.
The top panels show two distinct random distributions of N = 300
particles in the unit square. The bottom panel shows the result of
using equation (1.1) to calculate the particle density, based on a
series of circles of increasing radii, concentric and centered on the
middle of the unit square, now for two distinct random distributions
of N = 107 particles. Note the logarithmic horizontal axis. The
resulting density curves differ completely for radii smaller than a few
times the mean interparticle distance δ = 0.0003, but converge to
the expected value of 107 particles per unit area for radii much larger
than this distance (see text).
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square. The statistically uniform packing of N = 107 particles in
the unit square implies a typical interparticle distance of order
δ � 1/

√
N ∼ 0.0003 here. For radii r of this order or smaller, in

equation (1.1) the computed density value is critically dependent
on the exact position of individual particles, and for r < δ is
it quite possible that no particle is contained within the circle,
leading to ρ = 0. This is what is happening for the red curve in
figure 1.1 up to r � 0.0001, while in the case of the distribution
associated with the green curve it just so happens that a clump
of particles is located at the center of the unit square, leading to
abnormally large values for the density even for radii smaller than
δ. Nonetheless, as r becomes much larger than δ, both curves
converge to the expected value ρ = 107 particles per unit area.

Figure 1.1 illustrates a feature that will be encountered
repeatedly in subsequent chapters of this book, namely, scale
separation. At the microscopic scale (looking at the top panels of
figure 1.1 up close) individual particles can be distinguished, and
the description of the system requires the specification of their
positions, and eventually their velocities and internal states, if any.
In contrast, at the macroscopic scale (looking at the top panels of
figure 1.1 from far back), global properties can be defined that are
independent of details at the microscopic scale. Of course, if two
systems are strictly identical at the microscopic level, their global
properties will also be the same. What is more interesting is when
two systems differ at the microscopic level, such as in the two
top panels of figure 1.1, but have the same statistical properties
(here, x and y coordinates are uniformly distributed in the unit
interval); then their physical properties at the macroscopic scale,
such as density, will also be the same.

It is worth reflecting a bit more upon this whole argument in
order to fully appreciate under which conditions global properties
such as density can be meaningfully defined. Considering the
statistical nature of the system, one may be tempted to conclude
that what matters most is that N be large; but what do we mean
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by “large”? Large with respect to what? The crux is really that a
good separation of scale should exist between the microscopic and
macroscopic. The interparticle distance δ (setting the microscopic
scale) must be much smaller than the macroscopic scale L at
which global properties are defined; in other words, N should
be large enough so that δ � L . The two vertical dashed lines
in figure 1.1 have been drawn to indicate the scale boundaries
of the microscopic and macroscopic regimes; the exact values of
r chosen are somewhat arbitrary, but a good separation of scale
implies that these two boundaries should be as far as possible from
one another. In the case of the air in our hypothetical classroom,
δ � 3 × 10−9 m, so that with a macroscopic length scale ∼ 1 m,
scale separation is very well satisfied.

What happens in the intermediate scale regime, i.e., between
the two dashed lines in figure 1.1, is an extremely interesting ques-
tion. Typically, meaningful global properties cannot be defined,
and N is too large to be computationally tractable as a direct
simulation. In closed thermodynamic systems (such as the air
in our classroom), also lurking somewhere in this twilight zone
of sorts is the directionality of time: (elastic) collisions between
any two molecules are entirely time reversible, but macroscopic
behavior, such as the spread of olfactorily unpleasant aftershave
molecules from their source, is not, even though it ultimately
arises from time-reversible collisions. Fascinating as this may be,
it is a different story, so we should return to complexity since this
is complex enough already.

If large N and scale separation are necessary conditions for
the meaningful definition of macroscopic variables, they are
not sufficient conditions. In generating the two top panels of
figure 1.1, particles are added one by one by drawing random
numbers from the unit interval to set their horizontal (x ) and
vertical coordinates (y ). The generation of the (x , y ) coordinates
for a given particle is entirely independent of the positions of the
particles already placed in the unit square; particle positions are
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entirely uncorrelated. In subsequent chapters, we will repeatedly
encounter situations where the “addition” of a particle to a
system is entirely set by the locations of the particles already in
the system. Particle positions are then strongly correlated, and
through these correlations complexity can persist at all scales up
to the macroscopic.

To sum up the argument, while systems made up of many
interacting elements may appear quite complex at their micro-
scopic scale, there are circumstances under which their behavior
at the macroscopic scale can be subsumed into a few global
quantities for which simple evolutionary rules can be constructed
or inferred experimentally. The take-home message here then is
the following: although complex natural systems often involve a
large number of (relatively) simple individual elements interacting
locally with one another, not all systems made up of many inter-
acting elements exhibit complexity in the sense to be developed
throughout this book. The 1028 air molecules in our model
classroom, despite their astronomically large number and ever-
occurring collisions with one another, collectively add up to a
simple system.

1.3 Chaos Is Not Complexity

Complex behavior can actually be generated in systems of very
few interacting elements. Chaotic dynamics is arguably the best
known and most fascinating generator of such behavior, and
there is no doubt that patterns and structures produced by
systems exhibiting chaotic dynamics are “complex,” at least in the
intuitive sense alluded to earlier.

Practically speaking, generators of chaotic dynamics can be
quite simple indeed. The logistic map, a very simple model
of population growth under limited carrying capacity of the
environment, provides an excellent case in point. Consider a
biological species with a yearly reproduction cycle, and let xn

measure the population size at year n. Under the logistic model



1.3. Chaos Is Not Complexity 11

of population growth, the population size at year n + 1 is
given by

xn+1 = A xn(1 − xn), n = 0, 1, 2, . . . , (1.2)

where A is a positive constant, and x0 is the initial population.
Depending on the chosen numerical value of A, the iterative
sequence x0, x1, x2, . . . can converge to zero, or to a fixed value,
or oscillate periodically, multiperiodically, or aperiodically as a
function of the iteration number n. These behaviors are best
visualized by constructing a bifurcation diagram, as in the bottom-
left panel of figure 1.2. The idea is to plot successive values of
xn produced with a given value of A, excluding, if needed, the
transient phase during which the initial value x0 converges to its
final value or set of values, and repeating this process for progres-
sively larger values of A. Here, for values of 1.0 < A < 3.0, the
iterative sequence converges to a fixed nonzero numerical value,
which gradually increases with increasing A; this leads to a slanted
line in the bifurcation diagram, as successive values of xn for a
given A are all plotted atop one another. Once A exceeds 3.0,
the iterates alternate between two values, leading to a split into
two branches in the bifurcation diagram. Further increases in
A lead to successive splittings of the various branches, until the
chaotic regime is reached, at which point the iterate xn varies
aperiodically. This is a classical example of transition to chaos
through a period-doubling cascade.

The bifurcation diagram for the logistic map is certainly
complex in the vernacular sense of the word; most people would
certainly have a hard time drawing it with pencil and paper.
There is in fact much more to it than that. The series of nested
close-ups in figure 1.2 zooms in on the end point of the period-
doubling cascade, on a branch of the primary transition to chaos.
No matter the zooming level, the successive bifurcations have the
same shape and topology. This self-similarity is the hallmark of
scale invariance, and marks the bifurcation diagram as a fractal
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1.0

0.8

0.6

0.4

0.2

0.0

2.5 3.0 3.5 4.0
A

x k

Figure 1.2. Bifurcation diagram for the logistic map (bottom left),
as given by equation (1.2). The first bifurcation from the trivial
solution xn = 0 occurs at A = 1.0, off to the left on the horizontal
scale. The other three frames show successive nested close-ups
(red→blue→green) on the period-doubling cascade to chaos.

structure. We will have a lot more to say on scale invariance and
fractals in subsequent chapters, as these also arise in the many
complex systems to be encountered throughout this book.

Chaotic systems such as the logistic map also exhibit structural
sensitivity, in the sense that they can exhibit qualitative changes of
behavior when control parameters—here the numerical constant
A—undergo small variations. For example, in the case of the
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logistic map, increasing A beyond the value 3.0 causes the iterate
xn to alternate between a low and a high value, whereas before, it
converged to a single numerical value. In the chaotic regime the
map is also characterized by sensitivity to initial conditions, in
that the numerical difference between the xn ’s of two sequences,
differing by an infinitesimally small amount at n = 0, is amplified
exponentially in subsequent iterations.

Many complex systems to be encountered in the following
chapters exhibit similar sensitivities, but for entirely different
reasons, usually associated with the existence of long-range cor-
relations established within the system in the course of its prior
evolution, through simple and local interactions between their
many constitutive elements. In contrast, the cleanest examples of
chaotic systems involve a few elements (or degrees of freedom),
subject to strong nonlinear coupling. Although such chaotic
systems generate patterns and behavior that are complex in the
intuitive sense of the word, in and of themselves they are not
complex in the sense to be developed in this book.

1.4 Open Dissipative Systems

One common feature of systems generating complexity is that
they are open and dissipative. Pool can serve us well once again in
providing a simple example of these notions. After a pool break,
the moving balls eventually slow down to rest (with hopefully at
least one falling into a pocket in the process). This occurs because
of kinetic energy loss due to friction on the table’s carpet, and
not-quite-elastic collisions with the table’s bumpers. The system
jointly defined by the moving balls is closed because it is subjected
to no energy input after the initial break, and is dissipative because
that energy is slowly lost to friction (and ultimately, heat) until
the system reaches its lowest energy equilibrium state: all balls
at rest.

Imagine now that the pool table in located inside a ship sailing
a rough sea, so that the table is ever slowly and more or less
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randomly tilted back and forth. Following the break, the balls
may slow down to some extent, but will not come to rest since
they intermittently pick up energy from the moving table. They
will also sometimes temporarily lose kinetic energy of course,
for example when finding themselves moving “uphill” due to
an unfavorable tilt of the table. But the point is that the balls
will not stop moving (well, until they all end up in pockets) no
matter how long we wait. A player somehow unaware of the ship’s
rock-and-roll would undoubtedly wonder at the curiously curved
trajectories and spontaneous acceleration and deceleration of the
moving pool balls, and perhaps conclude that their seventh piña
colada was one too many.

In this seafaring pool situation, the equilibrium state is
one where, on average, the table’s motion injects energy
into the system at the same rate as it gets dissipated into
heat by friction. The system is still dissipative but is now
also open, in that it benefits from an input of energy from
an external source. At equilibrium, there is as much energy
entering the system as is being dissipated, but the equilibrium
state is now more interesting: the balls are perpetually moving
and colliding, a consequence of energy moving through the
system.

A most striking property of open dissipative systems is their
ability to generate large-scale structures or patterns persisting far
longer than the dynamical timescales governing the interactions
of microscopic constituents. A waterfall provides a particularly
simple example; it persists with its global shape unchanged for
times much, much longer that the time taken by an individual
water molecule passing through it. As a physical object, the
waterfall is obviously “made up” of water molecules, but as
a spatiotemporal structure the identity of its individual water
molecules is entirely irrelevant. Yet, block off the water supply
upstream, and the waterfall disappears on the (short) timescale it
takes a water molecule to traverse it. The waterfall persists as a
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structure only because water flows through it, i.e., the waterfall is
an open system.

This line of argument carries over to systems far more intricate
than a “simple” waterfall. Consider, for example, Earth’s climate;
now that is certainly a complex system in any sense of the word.
Climate collects a very wide range of phenomena developing
on an equally wide range of spatial and temporal scales: the
seasonal cycle, large-scale atmospheric wind patterns such as the
jet stream, oceanic currents, recurrent global patterns such as El
Niño, tropical storms, and down in scale to thunderstorms and
tornadoes, to name but a few. Solar radiative energy entering
the atmosphere from above is the energy source ultimately
powering all these phenomena. Yet, globally the Earth remains
in thermal equilibrium, with as much energy absorbed on the
dayside as is radiated back into space over its complete surface
in the course of a day. Earth is an open system, with solar
energy flowing in and out. If the Sun were to suddenly stop
shining, the pole–equator temperature gradient would vanish
and all atmospheric and oceanic fluid motions would inexorably
grind to a halt, much like the pool balls eventually do after
a break on a fixed table. Everything we call climate is just a
temporary channeling of a small part of the “input” solar radiative
energy absorbed by Earth, all ultimately liberated as heat via
viscous dissipation and radiated back into space. The climate
maintains its complexity, and generates persistent large-scale
weather patterns—the equivalent of our waterfall—by tapping
into the energy flowing through Earth’s atmosphere, surface, and
oceans. Earth is an open dissipative system on a very grand scale.

Most complex systems investigated in this book, although
quite simple in comparison to Earth’s climate, are open dissipative
systems in the same sense. They benefit from an outside source of
energy, and include one or more mechanisms allowing energy to
be evacuated at their boundary or to be dissipated internally (or
both).
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1.5 Natural Complexity

Although I have wriggled away from formally defining complex-
ity, considering the title of this book I do owe it to the reader to
at least clarify what I mean by natural complexity, and how this
relates to complexity in general.

Exquisitely complex phenomena can be produced in the
laboratory under well-controlled experimental conditions. In the
field of physics alone, phase transitions and fluid instabilities
offer a number of truly spectacular examples. In contrast, the
systems investigated throughout this book are idealizations of
naturally occurring phenomena characterized by the autonomous
generation of structures and patterns at macroscopic scales that
are not directed or controlled at the macroscopic level or by
some agent external to the system, but arise instead “naturally”
from dynamical interactions at the microscopic level. This is
one mouthful of a characterization, but it does apply to natural
phenomena as diverse as avalanches, earthquakes, solar flares,
epidemics, and ant colonies, to name but a few.

Each chapter in this book presents a simple (!) computational
model of such natural complex phenomena. That natural com-
plexity can be studied using simple computer-based models may
read like a compounded contradiction in terms, but in fact it
is not, and this relates to another keyword in this book’s title:
modeling. In the sciences we make models—whether in the form
of mathematical equations, computer simulations, or laboratory
experiments—in order to isolate whatever phenomenon is of
interest from secondary “details,” so as to facilitate our under-
standing of the said phenomenon. A good model is seldom
one which includes as much detail as possible for the system
under study, but is instead one just detailed enough to answer
our specific questions regarding the phenomenon of interest.
Modeling is thus a bit of an art, and it is entirely legitimate to
construct distinct models of the same given phenomenon, each
aimed at understanding a distinct aspect.
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To many a practicing geologist or epidemiologist, the claim
that the very simple computational models developed in the
following chapters have anything to do with real earthquakes
or real epidemics may well be deemed professionally offensive,
or at best dismissed as an infantile nerdy joke. Such reactions
are quite natural, considering that, still today, in most hard
sciences explanatory frameworks tend to be strongly reductionist,
in the sense that explanations of global behaviors are sought
and formulated preferentially in terms of laws operating at the
microscopic level. My own field of enquiry, physics, has in fact
pretty much set the standard for this approach. In contrast, in
the many complex systems modeled in this book, great liberty
is often taken in replacing the physically correct laws by largely
ad hoc rules, more or less loosely inspired by the real thing. In
part because of this great simplification at the microscopic level,
what these models do manage to capture is the wide separation
of scales often inherent in the natural systems or phenomena
under consideration. Such models should thus be considered as
complementary to conventional approaches based on rigorous
ab initio formulation of microscopic laws, which often end up
severely limited in the range of scales they can capture.

This apology for simple models is also motivated, albeit indi-
rectly, by my pledge not to formally define complexity. Instead,
you will have to develop your own intuitive understanding of it,
and if along the way you come up with your own convincing
formal definition of complexity, all the better! To pick up on
the quote opening this introductory chapter, there is all the
difference in the world between theory and practice, between
knowledge and know-how. This takes us to the final keyword
of this book’s title: handbook. This is a “how-to” book; its
practical aim is to provide material and guidance to allow you to
learn about complexity through hands-on experimentation with
complex systems. This will mean coding and running computer
programs, and analyzing and plotting their output.
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1.6 About the Computer Programs Listed in This Book

My favorite book on magnetohydrodynamics opens its preface
with the statement, “Prefaces are rarely inspiring and, one sus-
pects, seldom read.” I very much suspect so as well, and conse-
quently opted to close this introductory chapter with what would
conventionally be preface material, to increase the probability that
it will actually be read, because it is really important stuff.

If this book is to be a useful learning tool, it is essential for the
reader to code up and run programs, and modify them to carry
out at least some of the additional exercises and computational
explorations proposed at the end of each chapter, including at
least a few of the Grand Challenges. Having for many years
taught introductory computational physics to the first-semester
physics cohort at my home institution, I realize full well that this
can be quite a tall order for those without prior programming
experience, and, at first, a major obstacle to learning. Accordingly,
in developing the models and computer codes listed throughout
this book, I have opted to retain the same design principle as in
the aforementioned introductory class:

1. There are no programming prerequisites; detailed
explanations accompany every computer code listed.

2. The code listings for all models introduced in every
chapter must fit on one page, sometimes including
basic graphics commands (a single exception to this rule
does occur, in chapter 10).

3. All computer programs listed use only the most basic
coding elements, common to all computing languages:
arrays, loops, conditional statements, and functions.
Appendix A provides a description of these basic coding
elements and their syntax.

4. Computing-language-specific capabilities, including
predefined high-level functions, are avoided to the
largest extent possible.
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5. Clarity and ease of understanding of the codes
themselves is given precedence over run-time
performance or “coding elegance.”

Each chapter provides a complete code listing (includ-
ing minimal plotting/graphics commands) allowing simulation
results presented therein to be reproduced. These are provided
in the programming language Python, even though most of
the simulation codes introduced throughout this book were
originally designed in the C or IDL programming languages.
The use of Python is motivated primarily by (1) its availability
as free-of-charge, public-domain software, with excellent on-line
documentation, (2) the availability of outstanding public-domain
plotting and graphics libraries, and (3) its rising “standard”
status for university-level teaching. Regarding this latter point,
by now I am an old enough monkey to have seen many such
pedagogical computing languages rise and fall (how many out
there remember BASIC? APL? PASCAL?). However, in view
of the third design principle above, the choice of a computing
language should be largely irrelevant, as the source codes4 should
be easy to “translate” into any other computing language. This
wishful expectation was subjected to a real-life reverse test in the
summer of 2015: two physics undergraduates in my department
worked their way through an early, C-version of this book,
recoding everything in Python. Both had some prior coding
experience in C, but not in Python; nonetheless few difficulties
were encountered with the translation process.

The above design principles also have significant drawbacks.
The simulation codes are usually very suboptimal from the
point of view of run-time speed. Readers with programming

4Strictly speaking, what I refer to here as “source codes” should be called
“scripts,” since Python instructions are “interpreted,” rather than compiled and
executed. While well aware of the distinction, throughout this book I have opted
to retain the more familiar descriptor “source code.”
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experience, or wishing to develop it, will find many hints for more
efficient computational implementation in some of the exercises
included at the end of each chapter. Moreover, the codes are
often not as elegant as they could be from the programming
point of view. Experienced programmers will undoubtedly find
some have a FORTRAN flavor, but so be it. Likewise, seasoned
Python programmers may be shocked by the extremely sparse
use of higher-level Python library functions, which in many cases
could have greatly shortened the coding and/or increase run-time
execution speed. Again, this simply reflects the fact that code
portability and clarity have been given precedence.

A more significant, but unfortunately unavoidable, conse-
quence of my self-imposed requirement to keep computational
(as well as mathematical and physical) prerequisites to a mini-
mum, is that some fascinating natural complex phenomena had
to be excluded from consideration in this book; most notably
among these perhaps, is anything related to fluid turbulence or
magnetohydrodynamics, but also some specific natural phenom-
ena such as solar flares, geomagnetic substorms, Earth’s climate,
or the workings of the immune system or the human brain, if
we want to think really complex. Nonetheless, a reader working
diligently through the book and at least some of the suggested
computational explorations, should come out well equipped to
engage in the study and modeling of these and other fascinating
instances of natural complexity.

1.7 Suggested Further Reading

Countless books on complexity have been published in the last
quarter century, at all levels of complexity (both mathematically
and conceptually speaking!). Among the many available non-
mathematical presentations of the topic, the following early best
seller still offers a very good and insightful broad introduction to
the topic:
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Gell-Mann, M., The Quark and the Jaguar, W.H. Freeman (1994).

For something at a similar introductory level but covering more
recent developments in the field, see, for example,

Mitchell, M., Complexity: A Guided Tour, Oxford University Press

(2009).

At a more technical level, the following remains a must-read:

Kauffman, S.A., The Origin of Order, Oxford University Press (1993).

With regard to natural complexity and the hands-on, computa-
tional approach to the topic, I found much inspiration in and
learned an awful lot from

Flake, G.W., The Computational Beauty of Nature, MIT Press (1998).

Complexity is covered in chapters 15 through 19, but the book is
well worth reading cover to cover. In the same vein, the following
is a classic not to be missed:

Resnick, M., Turtles, Termites, and Traffic Jams, MIT Press (1994).

Statistical physics and thermodynamics is a standard part of the
physics cursus. In my department the topic is currently taught
using the following textbook:

Reif, F., Fundamentals of Statistical and Thermal Physics, reprint,

Waveland Press (2009).

For a more modern view of the subject, including aspects related
to complexity, I very much like the following book:

Sethna, J. P., Entropy, Order Parameters, and Complexity, Oxford

University Press (2006)

Good nonmathematical presentations aimed at a broader audi-
ence are however far harder to find. Of the few I know, I would
recommend chapter 4 in

Gamow, G., The Great Physicists from Galileo to Einstein (1961), reprint,

Dover (1988).


