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CHAPTER 1

Introduction

Slow down there, hotshot. I know you’re smart—you might have always been good with
numbers, you might have aced calculus—but I want you to slow down. Real analysis is
an entirely different animal from calculus or even linear algebra. Besides the fact that
it’s just plain harder, the way you learn real analysis is not by memorizing formulas or
algorithms and plugging things in. Rather, you need to read and reread definitions and
proofs until you understand the larger concepts at work, so you can apply those concepts
in your own proofs. The best way to get good at this is to take your time; read slowly,
write slowly, and think carefully.

What follows is a short introduction about why I wrote this book and how you should
go about reading it.

Why I Wrote This Book
Real analysis is hard. This topic is probably your introduction to proof-based mathemat-
ics, which makes it even harder. But I very much believe that anyone can learn anything,
as long as it is explained clearly enough.

I struggled with my first real analysis course. I constantly felt like I was my own
teacher and wished there was someone who could explain things to me in a clear,
linear fashion. The fact that I struggled—and eventually pulled through—makes me
an excellent candidate to be your guide. I easily recall what it was like to see this stuff
for the first time. I remember what confused me, what was never really clear, and what
stumped me. In this book, I hope I can preempt most of your questions by giving you
the explanations I would have most liked to have seen.

My course used the textbook Principles of Mathematical Analysis, 3rd edition, by
Walter Rudin (also known as Baby Rudin, or That Grueling Little Blue Book). It is
usually considered the classic, standard real analysis text. I appreciate Rudin now—his
book is well organized and concise. But I can tell you that when I used it to learn the
material for the first time, it was a slog. It never explains anything! Rudin lists definitions
without giving examples and writes polished proofs without telling you how he came
up with them.

Don’t get me wrong: having to figure things out for yourself can be of tremendous
value. Being challenged to understand why things work—without linear steps handed
to you on a silver platter—makes you a better thinker and a better learner. But I believe
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that as a pedagogical technique, “throwing you in the deep end” without teaching you
how to swim is only good in moderation. After all, your teachers want you to learn, not
drown. I think Rudin can provide all the throwing, and this book can be a lifesaver when
you need it.

I wrote this book because if you are an intelligent-but-not-a-genius student (like I
was), who genuinely wants to learn real analysis... you need it.

What Is Real Analysis?
Real analysis is what mathematicians would call the rigorous version of calculus. Being
“rigorous” means that every step we take and every formula we use must be proved. If
we start from a set of basic assumptions, called axioms or postulates, we can always
get to where we are now by taking one justified step after another.

In calculus, you might have proved some important results, but you also took many
things for granted. What exactly are limits, and how do you really know when an
infinite sum “converges” to one number? In an introductory real analysis course, you
are reintroduced to concepts you’ve seen before—continuity, differentiability, and so
on—but this time, their foundations will be clearly laid. And when you are done, you
will have basically proven that calculus works.

Real analysis is typically the first course in a pure math curriculum, because it
introduces you to the important ideas and methodologies of pure math in the context
of material you are already familiar with.

Once you are able to be rigorous with familiar ideas, you can apply that way of
thinking to unfamiliar territory. At the core of real analysis is the question: “how do we
expand our intuition for certain concepts—such as sums—to work in the infinite cases?”
Puzzles such as infinite sums cannot be properly understood without being rigorous.
Thus, you must build your hard-core proving skills to apply them to these new (not-
from-high-school-calculus), more interesting problems.

How to Read This Book
This book is not intended to be concise. Take a look at Chapter 7 as an example;
I spend several pages covering what Rudin does in just two. The definitions are followed
by examples in an attempt to make them less abstract. The proofs here are intended to
show you not just why the theorem is true but also how you could go about proving it
yourself. I try to state every fact being used in an argument, instead of omitting the more
basic ones (as advanced mathematical literature would do).

If you are using Rudin, you’ll find that I’ve purposely tried to cover all the definitions
and theorems that he covers, mostly in the same order. There isn’t a one-to-one mapping
between this book and Rudin’s (Chapter 7 math joke!); for example, the next chapter
explains the basic theory of sets, whereas Rudin holds off on that until after covering
real numbers. I also include a few extra pieces of information for your enrichment. But
by following his structure and notations as closely as possible, you should be able to go
back and forth between this book and his with ease.

Unlike some other math books—which are meant to be glanced at, skimmed, or just
referenced—you should read this one linearly. The chapters here are deliberately short
and should contain the equivalent of an easily digestible one-hour lecture. Start at the
beginning of a chapter and don’t jump around until you make it to the end.
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Now for some advice: read actively. Fill in the blanks where I tell you to. (I purposely
didn’t include the answers to these; the temptation to peek would just be too great.) Make
notes even where I don’t tell you to. Copy definitions into your notebook if you learn by
repetition; draw lots of figures if you learn visually. Write any questions you may have
in the margins. If, after reading a chapter twice, you still have unanswered questions,
ask your study group, ask your TA, ask your professor (or ask all three; the more times
you hear something, the better you’ll learn it). Within each chapter, try to summarize its
main ideas or methods; you’ll find that almost every topic has one or two tricks that are
used to do most of the proofs.

If your time is limited or you are reviewing material you’ve already learned, you can
use the following icons to guide your skimming:

• Here begins an example or a proof that is figured out step by step.

• This is an important clarification or thing to keep in mind.

• Try this fill-in-the-blank exercise!

• This is a more complicated topic that is only mentioned briefly.

Extra resources never hurt. In fact, the more textbooks you read, the better your
chances of success in learning advanced mathematics. The best strategy is to have one
or two primary textbooks (for example, this one with Rudin) whose material you are
committed to learning. Complement those with a library of other books from which to
get extra practice and to look up an explanation if your primaries are not satisfactory.
If you choose to disregard this and try to learn all the material in all the real analysis
books out there. . . good luck to you!

This book covers most of a typical first-semester real analysis course, though it’s
possible your school covers more material. If this book ends before your course does,
don’t panic! Everything builds on what comes before it, so the most important factor
for success is an understanding of the fundamentals. We will cover those fundamentals
in detail, to make sure you have a solid foundation with which to swim onward (while
avoiding mixed metaphors, such as this one).

For a list of some recommended books, along with my comments and criticisms, see
the Bibliography.

Once you turn the page, we’ll begin learning by going over some basic mathematical
and logical concepts; they are critical background material for a rigorous study of
real analysis. (How many times have I used the word rigorous so far? This many:
limn→∞ nα

(1+p)n + 7.)



CHAPTER 2

Basic Math and Logic

If you’ve seen some of this stuff before, great! If not, don’t worry—we’ll take it nice
and slow.

Some Notation

What follows are some notational conventions which you should become comfortable
with.

The symbol ∀ stands for “for all” or “for every” and can also be read “as long as.”
For example, the definition of even numbers tells us: n is divisible by 2 ∀ n even. Read:
“n is divisible by 2 for all even numbers n,” or “n is divisible by 2 as long as n is even.”

The symbol ∃ stands for “there exists” or “there is some.” For example, one
definition of the number e tells us: ∃a such that d

dx ax = ax . That statement is true,
since such a number a does exist; it is e = 2.71828 . . .

Note that the following two statements have completely different meanings:

∀x , ∃y such that y > x

∃y such that y > x , ∀x

The first means that given any x , there is some y greater than it. The second means that
there exists some y which is greater than every possible x . If x and y are real numbers,
then the first statement is true, since for any x we can set y = x + 1. The second is false,
since no matter how big a y we choose, there will always be another number bigger
than it.

A sequence is a list of numbers, indexed in order by integers. For example,
2, 4, 6, . . . is a sequence, and the. . . symbol “. . .” indicates that it extends infinitely
in a similar pattern. In the 2, 4, 6, . . . example, the 10th element of the sequence is
20. By definition, a sequence continues on forever (so just the numbers 2, 4, 6 is not a
sequence).

Sequences can also be made up of variables, such as x1, x2, x3, . . .. We say that xi is
the ith element of the sequence, as long as i is a positive integer (so using the notation
from above, xi is the ith element of the sequence, ∀i ≥ 1). The integer subscript of a
particular x is the index of that element of the sequence.
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The sum of elements in a pattern can be concisely expressed in summation notation
using the Greek letter

∑
(capital sigma). For example, the sum of the first n integers

can be written as
∑n

i=1 i , which is read: “the sum from i = 1 until i = n of i .” As you
might have noticed, by convention, the index of the sum always takes on integer values,
starting at the subscript of the sigma and ending at the superscript of the sigma. Another
example is

∑n
i=1 1, which is read: “The sum from i = 1 until i = n of 1,” which is just

the sum of 1 + 1 + 1 + . . . , n times, which equals n.
Summations can also be written over a sequence (which, remember, is always

infinite), and these are called infinite series, or just series. For example, the sum of
all the elements in the aforementioned sequence 2, 4, 6, . . . , can be written as the series∑∞

i=1 2i = 2 + 4 + 6 + . . . . Another example is
∑∞

i=0
1
i! , which actually equals the

number e.
There are certain groups of numbers that have their own symbols:

• N is the set of all natural numbers. These are the positive integers, not including 0.
• Z is the set of all integers, including 0 and negative integers.
• Q is the set of all rational numbers These are defined as numbers of the form m

n ,
where m ∈ Z and n ∈ Z.

• R is the set of all real numbers. We will define what real numbers actually are
later.

You can remember these symbols by the following mnemonics: N is for Natural
numbers, R is for Real numbers, Q is for Quotients, and Z is for integerZ.

Through Chapter 4, we assume all the usual facts that let us perform algebra on
numbers in N, Z, and Q. In Chapter 5, we’ll take a closer look at these properties.

Formal Logic

What follows are some concepts from the study of logic, which we will use over and
over again in proofs.

A logical statement is equivalent to another statement whenever it is only possible
for them to be either both true or both false. For example, “I have been alive for 5 years”
is equivalent to “I am 5 years old”—since if one is true, then so is the other; if one is
false, then so is the other.

The symbol =⇒ stands for “implies.” For example, the following four statements
are equivalent to each other:

Statement 1. If n = 5, then n is in N.
Statement 2. n is in N if n = 5.
Statement 3. n = 5 only if n is in N.
Statement 4. n = 5 =⇒ n is in N.

Note that these are not equivalent to “n = 5 if n is in N.” (Also, that statement is clearly
not true, since there exist natural numbers that are not equal to 5—my personal favorite
being 246,734.)

The symbol ⇐⇒ stands for “if and only if” (abbreviated iff ), and it is used to
state that both directions of an implication are true. For example, “n is even ⇐⇒ n
is divisible by 2.” The left statement implies the right statement, and vice versa. This
particular iff statement is true, since it is the definition of even numbers.
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A B

Figure 2.1. The fact A is completely contained in B. If x is in A, then x is also in B.

There is a slightly confusing mathematical convention for writing definitions. Theoreti-
cally, all definitions should be written with “if and only if.” For example, “a number is
called even if and only if it is divisible by 2.” The “if ” goes both ways, since “even”
is just a name we assign to certain numbers. However, mathematicians are lazy; to save
time, they usually write definitions with just “if ” instead of “if and only if.” Don’t be
confused! If you see the following:

Definition (Even)
A number is called even if it is divisible by 2.

You should read:

Definition (Even)
A number is called even if and only if it is divisible by 2.

An arbitrary statement we might want to prove can be expressed as A =⇒ B, where A
and B are any facts.

The statement’s converse is B =⇒ A. Just because a statement A =⇒ B is true,
does not mean its converse B =⇒ A is true. For example, we saw that n = 5 =⇒ n
is in N, but n is in N does not imply n = 5.

The statement’s inverse is ¬A =⇒ ¬B (here, the symbol ¬ means “not”). Again,
just because a statement A =⇒ B is true, does not mean its inverse ¬A =⇒ ¬B is
true. For example, we saw that n = 5 =⇒ n is in N, but n 	= 5 does not imply n is not
in N (because n could, for instance, be the number 246,734).

If A =⇒ B is a statement, then ¬B =⇒ ¬A is its contrapositive. The statement
A =⇒ B is actually always equivalent to the statement ¬B =⇒ ¬A. If one of those
statements is true, so is the other; if one of them is false, so is the other.

Why is every statement equivalent to its contrapositive? It helps to think of
A =⇒ B as saying “if x is in A, then x is in B.” In that reading, we can represent
A as a set that is completely contained in B.

Figure 2.1 helps us visualize: if x is not in B, then it certainly cannot be in A.
Last, note that if A is some property the number x can have, then the following two

statements are equivalent:

Statement 1. ¬ (∀x , x has property A).
Statement 2. ∃x such that ¬ (x has property A).

The first statement says “it is not true that every x has property A,” and the second
statement says “there is some x such that x does not have property A.” Read these two
out loud, and it should be obvious why they are the same.
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Similarly, the following two statements are also equivalent to each other:

Statement 3. ¬ (∃x such that x has property A).
Statement 4. ∀x , ¬ (x has property A).

Try to read the statements out loud, translating all the symbols into English.

Proof Techniques

There are many different ways to prove a theorem; sometimes, more than one method
will work. There are five main techniques used throughout this book:

1. Proof by counterexample.
2. Proof by contrapositive.
3. Proof by contradiction.
4. Proof by induction.
5. Direct proof, in two steps.

Proof by Counterexample. In some cases, a proof may just be one counterexample.
How would you prove the fact that not every integer is even? If I say “every integer is
even,” you just need to find one example of an integer that is not even, for instance, the
number 3, to prove me wrong. Proofs by counterexample work for any statement of the
form “∃x such that x has property A,” or “¬(∀x , x has property A).” For the first, we
just need to find one x that has property A; for the second, we just need to find one x
that does not have property A.

Example 2.1. (Proof by Counterexample)
Let’s try to prove the following statement: “Not every continuous function is differen-
tiable.” To do so, we just need one counterexample—any function that is continuous but
not differentiable will do—for instance, f (x) = |x |.

Now we need to prove rigorously that |x | is continuous and that it is not differen-
tiable. You’ll learn how to do so later on in your study of real analysis.

This example shows us that thinking up a counterexample is only half the work; the hard
part is to prove rigorously that it indeed meets all the necessary conditions.

Proof by Contrapositive. As we understood earlier, ¬B =⇒ ¬A is equivalent to
A =⇒ B. So in order to prove A =⇒ B, we could alternatively assume B is false
and show that A is also false.

Example 2.2. (Proof by Contrapositive)
Let’s try to prove the following statement: For any two numbers x and y, x = y if
and only if ∀ε > 0, |x − y| < ε. This asserts that two numbers are equal if they are
arbitrarily close (meaning we can choose an arbitrary distance ε, and they will be
closer to each other than that distance). Since the statement has iff, the implication is
bidirectional, and we must prove both directions.

1. x = y =⇒ ∀ε > 0, |x − y| < ε.
Proving this direction is simple. Assume x = y. Then x − y = 0, so
|x − y| = 0. Since any ε we choose must be greater than 0, we have
|x − y| = 0 < ε. Thus ∀ε > 0, |x − y| < ε.
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2. ∀ε > 0, |x − y| < ε =⇒ x = y.
This statement should make intuitive sense. It’s saying that if the distance
between x and y is less than every positive number, the distance between
them must equal 0.
To prove this direction, we’ll use the contrapositive. In this case, the statement
¬B =⇒ ¬A is

x 	= y =⇒ ¬(∀ε > 0, |x − y| < ε).

Remember from our discussion of logic that we can simplify the right-hand
side to

x 	= y =⇒ ∃ε > 0 such that ¬(|x − y| < ε).

Well, if x 	= y, then x must equal y plus some number z, where z 	= 0. So
|x − y| = |z|. The absolute value of any non-zero number is always positive,
so if we let ε = |z|, then ε > 0 and |x − y| = ε. We have shown that ∃ε > 0
such that ¬(|x − y| < ε), so we’re done!

Proof by Contradiction. Not to be confused with a proof by contrapositive, a proof
by contradiction is something entirely different. Let’s say we are trying to show that
A =⇒ B. If we assume that A is true but B is false, then something should go horribly
wrong; we should end up with a contradiction, something that violates a fundamental
mathematical axiom or definition, such as “0 = 1” or “5.3 is an integer.” When this
happens, we have shown that if A is true, it is impossible for B not to be true—otherwise
the definitions of math would break down.

Example 2.3. (Proof by Contradiction)
Let’s try to prove the theorem “

√
2 is not a rational number.” In this case, if we put

the theorem into the form A =⇒ B, the statement B is “
√

2 is not a rational number.”
Notice that there really isn’t any statement A—since the theorem is claiming that it
is not necessary for anything besides the usual mathematical axioms to be true, in
order for B to be true. Thus proof by contrapositive won’t work. How about a proof by
contradiction? Assume that

√
2 is in Q, and show that something goes horribly wrong.

Before getting started on the proof, here are some general facts about numbers that
will come in handy.

Fact 1. Any rational number m
n can be simplified so that m or n (or both) are not

even. (If m and n are both even, we can just divide the top and bottom by
2 and obtain a more simplified version of the same rational number.)

Fact 2. If a = 2b for some integers a and b, then a must be even, since it is
divisible by 2.

Fact 3. If a number a is odd, then a2 is also odd, since a2 is an odd number
added to itself an odd number of times.

Now we can start. If
√

2 is rational, then by Fact 1 it can be expressed as a simplified
fraction, so there exist integers m and n (not both even) such that

(
m
n

)2 = 2. Then
m2 = 2n2, so by Fact 2, m2 must be even. By Fact 3, if m were odd, m2 would also
be odd, so m must be even.

We can express m as 2b for some number b, so m2 = (2b)2 = 4b2, which implies
that m2 is divisible by 4. Then 2n2 is also divisible by 4, so n2 is even. By Fact 3 again,
n must also be even.
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Wait! Fact 1 told us that if
√

2 is rational, we can express it as m
n , where m and n

are not both even. But we just showed that they both are even! We have contradicted
a basic axiom about fractions, so the only possible logical conclusion is that our main
assumption—that

√
2 is rational—must be false.

By the way, the same methodology of this argument also works for proving that the
square root of any prime number is not rational.

A proof by contradiction is generally considered to be a last-resort method. In many
cases, if you prove something by contradiction, you can apply the same key steps to
easily prove the theorem directly. In the

√
2 example, that is not the case, but just be

aware: proof by contradiction is a good way to start thinking about a problem, but always
check to see if you can go further and prove it directly (for bonus mathematical etiquette
points).

Proof by Induction. Mathematical induction works the same way as dominoes: if we
set them all up, and then knock over just the first one, they will all fall down. Induction
works for any proof in which we need to prove an infinite number of cases (actually,
it must be a countably infinite number of cases—you’ll understand what this means in
Chapter 8).

Let’s say we’re able to set up the dominoes by proving the following: if we assume
the theorem is true for case 1, then it is also true for case 2; if we assume the theorem
is true for case 2, then it is also true for case 3; and so on. This can by summarized by
proving that if the theorem is true for n − 1, then it is also true for n. Now all we need
to do is knock down the first domino by proving that the theorem is true for case 1. They
all fall down, since our setup tells us that once case 1 is true, so is case 2; and now that
case 2 is true, so is case 3; and so on.

Knocking the first domino down is easier, so we usually do it first (this step is called
the base case). Then we assume the theorem is true for the n − 1 case (this assumption
is called the inductive hypothesis) and show that it is also true for the n case (this step is
called the inductive step).

Example 2.4. (Proof by Induction)
Let’s try to find a formula for the sum of the first n natural numbers, 1 + 2 + 3 +
. . . + n. Using our notation from the previous section, this sum is equivalent to

∑n
i=1 i .

If you play with this long enough, you might stumble on the answer:

n∑

i=1

i = n(n + 1)

2
.

Try plugging in a few values to convince yourself that the formula works. To prove it,
we’ll need to be more rigorous (a few examples isn’t a proof, since they don’t exclude
the possibility that a counterexample exists). We need to show that this formula works
for every possible choice of n, which can be any positive integer. Therefore, induction
is probably the best technique.

1. Base Case. We just need to show that the formula holds for the case n = 1.
Well,

∑1
i=1 i = 1 = 1(1+1)

2 , so the first step is done. Yay! (Base cases are
usually a breeze.)
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2. Inductive Step. The inductive hypothesis lets us assume that the formula is
true for n − 1, so we can assume that

∑n−1
i=1 i = (n−1)(n)

2 . Using this
assumption, we want to show that the formula holds for n, meaning∑n

i=1 i = n(n+1)
2 . By making a substitution and simplifying, we can write

n∑

i=1

i =
(

n−1∑

i=1

i

)

+n = (n − 1)(n)

2
+n = n2 −n

2
+ 2n

2
= n2 + n

2
= n(n + 1)

2
,

and that’s it!

Although it seems almost too simple, remember, there’s no magic involved. We didn’t
“bootstrap” the proof or use circular logic. We just used the inductive step to say, “if it
works for 1, then it works for 2; if it works for 2, then it works for 3; and so on,” and
because the base case says, “it works for 1,” we have thus proved it for every possible
positive integer choice of n (in other words, for every n in N).

Direct Proof in Two Steps. None of the tricks we have covered show how we can prove
A =⇒ B directly, by assuming A is true then taking logical steps to end up with B.

Coming up with a direct proof requires you to play around for a while, until you
figure out what the crux of the problem is and how to solve it. In many cases, the crux
will involve finding some magic function or variable that makes everything fall into
place. Unless you are writing a textbook, the reader of your proof does not care how you
solved the crux, he or she just wants to see why the theorem is true. Once you have a
good idea of what key steps you’ll use to prove the theorem, the next step is to write it
cleanly in a linear fashion.

Example 2.5. (Direct Proof in Two Steps)
Remember from calculus that we define the limit of a function as lim

x→p f (x) = q if and
only if for every ε > 0, there is some δ > 0 such that

|x − p| < δ =⇒ | f (x) − q| < ε.

You’ll understand what this means in more detail when you study the topic of continuity.
For now, though, let’s just look at the following statement: “For f (x) = 3x + 1,
lim
x→2 f (x) = 7.” You know this should be true, since all polynomials are continuous—
and there are probably multiple ways to prove this particular statement—but let’s try to
do a direct proof, using only the definition we just saw.

First we do the scratchwork to figure out the key steps. For every possible choice of
ε > 0, we need to find the right δ > 0 so that

|x − 2| < δ =⇒ | f (x) − 7| < ε,

or equivalently

−δ + 2 < x < δ + 2 =⇒ −ε < 3x − 6 < ε.
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Thus our δ needs to make

−ε + 6

3
< x <

ε + 6

3
,

so we just need

δ + 2 = ε + 6

3
=⇒ δ = ε

3
.

Now that we have found our magic δ, we can write up the proof concisely: For any
ε > 0, let δ = ε

3 . Then δ > 0, and

|x − p| < δ =⇒ |x − 2| <
ε

3

=⇒ 2 − ε

3
< x < 2 + ε

3
=⇒ −ε < 3x − 6 < ε

=⇒ |(3x + 1) − 7| < ε

=⇒ | f (x) − q| < ε.

Thus we have lim
x→2 (3x + 1) = 7.

One more hint about writing proofs: if you get stuck, look at the facts you haven’t used
yet. In the previous example, the only real “fact” available was the definition of a limit
I gave you; but in later topics, you’ll have a host of definitions and theorems to call on.
Chances are, applying one you have forgotten will pull you out of the morass.

In the future, we will place the symbol �, which signifies Q.E.D., at the end of
every proof. It stands for the Latin quod erat demonstrandum, which basically means
(and here I paraphrase liberally), “we have proved what we said we would prove.”

And we’re off! Now you know everything you’ll need to start learning real analysis. As
promised, we’ll spend the next chapter learning about sets before we look at the real
numbers.



CHAPTER 3

Set Theory

Before we dive into real analysis, a basic knowledge of sets (and how to manipulate
them) will be useful. What are sets? Well, not all numbers are real numbers. In fact,
not all “things” we wish to consider are numbers at all. Sets are a useful abstraction.
They contain elements, which can be real numbers, imaginary numbers, dollars, people,
beluga whales, and so on.

In this chapter, we’ll go over the basic notation and theorems used to describe
abstract sets. When you think of operations on numbers, addition, subtraction, multi-
plication, and division usually come to mind. For sets, however, the basic operations we
will learn about are union, intersection, and complement.

Definition 3.1. (Set)
A set is a collection of elements. A set with an infinite number of elements is called an
infinite set.

Example 3.2. (Sets)
Here are some examples of sets and their notation:

• {1, 2, 3}
The set containing the numbers 1, 2, and 3. We write 1 ∈ {1, 2, 3} to mean that 1
is an element of the set.

• A
The set named A.

• A = {1, 2, 3}
The set named A which contains the numbers 1, 2, and 3.

• {a, b, c}
The set containing the elements named a, b, and c. (These elements are not
necessarily numbers.)

• {A, B, C}
The set containing the elements named A, B, and C . In general, uppercase letters
are used to denote sets, so this set might contain three other sets.

• R
The set containing all the real numbers. For example, π ∈ R. This is an
infinite set.


