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FOREWORD

In October 1952 a three day conference 
on partial differential equations was held, at Arden 
House, Harriman, New York. The conference was organ
ized and sponsored by the National Academy of Sciences - 
National Research Council.

This volume contains those papers, read at the 
conference, which were submitted by the authors for 
publication. The editors regret the unavoidable de
lay in publication and hope that this volume will 
prove to be useful to mathematicians working in this 
field.

The editing and preparing of this study was 
carried out entirely by Anneli Lax. The editors 
gratefully acknowledge her valuable assistance.

L. Bers 
S. Bochner 
F. John
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I. GREEN'S FORMULA AND ANALYTIC CONTINUATION

S. Bochner

For anyalytic functions in more than one complex variable there is 
a theorem of Hartog’s that if a function is given on the connected boundary 
of a bounded domain, then it can be continued, analytically into all of the 
domain. The class of functions to which this theorem applies was consider
ably generalized in our paper [1]: "Analytic and meromorphic continuation 
by means of Green’s formula," Annals of Mathematics (19^3), 652-673; and 
it was further expanded in our recent note [2]: "Partial differential equa
tions and analytic continuation," Proceedings of the National Academy of 
Sciences 3>8 (1952), 227-30. Now, in §1 of the present paper the leading 
theorem of [2] will be given its final version known to us (see Theorem 5 )  

and, furthermore, details of the proof will be modified and. added.
The real and imaginary parts of analytic functions of complex 

variables are solutions of a system of Cauchy-Riemann equations In real 
variables. In the case of more than one complex variable, this system is 
quite complicated and, as it turns out, much too restrictive for our theo
rem. At first in [1], and then more systematically and generally in [2], 
we introduced, instead a system consisting of only two equations, both with 
constant coefficients: an elliptic one in all variables and some other one 
in fewer than all variables; the second equation was the one by which the
actual continuation was brought about. However, the second equation could,
only operate if the function was first represented, by a certain Green’s 
formula, and. It was the sole task of the elliptic equation to secure just 
such a formula. Now, in further analyzing certain aspects of our theorem, 
we found it pertinent to try to give up the elliptic equation altogether 
and to hypothesize directly a Green’s formula having the requisite proper
ties. This will be done in the present paper.

In §2 we will be dealing in a similar fashion with another theo
rem in several complex variables which although closely related, to the 
previous one Is different from it nevertheless. Following up a suggestion 
of Severi’s, this theorem was presented more systematically than had been 
done before in Chapter IV of the book by Bochner-Martin: Several Complex 
Variables, Princeton, 19^8. It will now be given a rather more general 
version than previously.
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2 BOCHNER

§1. EUCLIDEAN SPACES 

1 nIn Euclidean E : (£ , £ ) we take a p-form, 1 < p < n-1

(D ~ k  I  ( ° ) V - - “P

and we assume that each component of the skew tensor is a finite linear 
partial differential expression involving an unspecified function f(£) 
with coefficients which are functions of the difference § - x = 
where x = (x̂ ) is another variable point of the given space. Thus we 
have

(2) V - - « p = 2 (I/)

where

, x A f(|) = ------*----- —(3) v « . . . v „ K%>
1‘" n (a$Vi ... (ctfVn

with i/̂ > i>n > 0, + ... + < N - 1 for some N sufficient
ly large but finite. In this sense we denote the form (1) by

(4 ) Gp (f - x ;  f ( $ ) ;  df;)

(P)and we stipulate that the individual functions G (t), t = £ - x,
(«)

which occur in (2) shall be defined and real analytic in a certain open set
T of the Euclidean En: (t^).

We now introduce the requirement

(5)

that is

(6 )

and this is a system of equations

(7 ) y  h Vn (i - x)a f(D = o
^ (V )  « V « p +1 • V « ' n

0 < + . . • + vn < N

V p ^ °

P+1
X  (-i)c
q=1

d
t

dK
ar •oe,q-1aq+1 • a .p+1



(V)
in which the coefficients H are linear combinations of the coefficients 
(v) ( a )

G and. their first derivatives.
(«) We now introduce fictitiously an ’’elliptic operator” A ^f ( ^) and

we will say that a function f(§) which is defined and analytic in a do
main U of En satisfies there the equation

(8) A  ̂fU) = 0

if the relations (7) are fulfilled for § in U and £ - x in T. For
every U the space of solutions of (8) is a vector space having the
following closure property: Let f^(£)> *** ^e a sequence of
solutions. If every point of U has a complex neighborhood into
which all the functions of the sequence can be continued, analytically, 
and if these functions converge uniformly in these neighborhoods, then 
the limit function is again a solution.

Furthermore, if we put £ = t- + x in (7), we obtain
v -  ( v )  t

(9) X  x H (t) A „ f(t+x) = 0
( v )  O f V /\ • • •

and. therefore, locally, if f(£) is a solution of (7) then so is also 
the translated function f(£+h) for a sufficiently small constant dis
placement h = (h^). This property is crucial to our purpose, and we ex
press it symbolically by saying that our (fictitious) operator A has 
’’constant coefficients"; and if we combine all properties enumerated, we 
obtain the further property that if f(£) is a solution, then so are also 
all first derivatives A^f(£), and hence, also all mixed, partial de
rivatives, and hence, also every finite linear combination with constant 
coefficients

(10) Af = Y  a A f(|)
^{(l) v'\’" pn

0 < + ... + nn < M

this operator being formed literally, and not just only fictitiously or 
symbolically.

GREEN'S FORMULA, ANALYTIC CONTINUATION 3

integral
We now take in U a p-dimensional chain Bp and we form the

(-I-I) g(x) = f G(?-x; f(f); d?)



4 BOCHNER
for those points x for which it is definable, that is, for the open set 
X which is such that for x in X and f in B , f - x is in T.

If we hold Bp fixed, then g(x) is analytic in T; and if we 
vary f(£) and then introduce the functional

( 1 2 ) g ( x )  = L ( f ( £ ) ;  x)

then the latter is distributive, that is,

( 1?)  L ( c ^ f ^  + Cgfgj  x )  = c ^ L ( f ^ j  x )  + C g L ( f g ; x ) .

Next, If two chains B^, B^
(5 ) we have

(14)

are homologous relative to U - (x), then by

i - id  B °\B!

and to this extent the integral (11) is "independent of the path" if 
f(|) is a solution of (8). But the decisive property is yet to be stated 
and it is as follows.

THEOREM 1. If Bp is a cycle then the function
al (12) is commutative with translations and partial 
differentiations. That is, (12) implies

( 1 5 ) g (x + h ) = L ( f ( |  + h ) ;  x)  

for small h locally, and also

(16) x)

and more generally

(1 7 ) A x g(x) = L ( A | f U ) ;  x)

for any operator (10).

PROOF. We have

(18) g(x+h) = f  G(|-x-h; f(|)j d$)
BP

and if we replace £ by £ + h (18) is equal to
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(19) f  GU-x; fft+h); d£)
J bp

where - (h) results from
then for sufficiently small h, B^ 
the integral (1 9) is

Bp by a translation. If x is give 
is homologous to Bp, and by (14)

df) = L(f(*+h)j x)

as claimed in (1 5).
Due to (13) the result just obtained implies that the integral 

(11) carries a difference quotient

into the corresponding difference quotient for g(xa). If now we let
h ---> 0, then we obtain (16), as can be easily proved, and then also
(1 7), as claimed.

Theorem 1 will suffice for our present purposes. However, for 
certain type of conclusion that was attempted in [1] and [2] a partial 
generalization of Theorem 1 is required for the case in which Bp Is not 
a cycle, and we will state the generalization without proof.

THEOREM 2. If we are given a symbolic 
equation (8) and an operator (10), then there ex
ists a (p-l)-form

yp_1(l-xJ f(0; df)

in which the partial derivatives of f(£) 
occurring are of order < N - 1 + M -  1, and
which has the following property: If Bp Is a
p-chain and is its boundary and if f(f)
satisfies (8) in a domain containing Bp + Bp_^ 
then we have

P-1

and thus we again have (1 7) provided that the 
function f(£) and its derivative's of order 
< N - 1 + M - 1  are zero on the boundary p̂_̂ ] •
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From now on we will consider only the dimension p = n - 1, and
( v )we will assume that the domain T on which the coefficients G (t) are
(Of)

defined is the entire En except for the origin, so that L(f(§); x) is
defined for x in Er - Bn_^.

THEOREM 3* If bounds a small subdomain
D° of U then we have

(20) <f g(£_x, f($). d$) = y  c A f(x)
(r) 1' ' n 1 ’ ' n

r1 > 0, . . ., rR > 0

where cp are constants independent of f(£)«1 • • • n
PROOF. It follows from (14) that for the proof of (20) we may 

assume that D° is a coordinate sphere \%\ < 2 p, and that even the
double sphere \%\ < 4p is still contained in U, and that the points x
are restricted to the small sphere |x| < p. Now, on replacing § by
§ + x we obtain

g(x) - f  -(x)G<Si + >0;

- fV T
n-1

G($; f(*+x); df)
Bn-1

and for sufficiently small p we may now insert the Taylor expansion

- S (3) lf i 3l- - f " )SnA3 , f Wu; s1. ••• n * 1 ■ ‘ n

and integrate term by term. Hence the conclusion.
The theorem is of no practical importance to us, but it puts into 

a proper perspective the assumption we are now going to make that the right 
side in (20) shall be identically f(x), that is,

(2 1 ) f B = f ( x )

and we express this assumption by saying that our Integral (11) is a Green1s 
formula. The first consequence of this assumption is:

THEOREM 4. If B is a simplex (which may be
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part of any chain over which we integrate) then 
the function

(22) g(x) = /  G(|-x; f(|); d*)

can be continued across B from either side and
the difference of the two values in the vicinity
of B is f(x),

(2 3) g+ (x) - g_(x) = + f(x)

the algebraic sign being determined by the ori
entation of B.

PROOF. (Cf. [1], p. 656-57.) Denoting one side of B as
positive, we deform B into a simplex B' on its negative side but keep
the edges fixed. By (14) we have for x on the positive side

- (x )  = I  = f** R «/ R'

and thus g+ (x) can be continued a certain distance into the negative 
side. Denoting the continuation still by g+ (x), we now have for points 
x in the domain bounded by B ’ - B

g+(x) - g_(x) = f  - f  = f
d B ' B ^ B 1 -B

and by (2 1) this is + f(x) as claimed.

THEOREM 5* If we are given a Green’s formula
(v)

and if the coefficients G (t) in (2) are of
(« )slow growth at infinity in the sense that for some 

rQ > 0 we have

(24) A r . ^ " ?  (t) = 0 ( |t| ■n_1), |t| --->oo
1 ‘' n “ 1 •- n-1

(25)
for

r .  > 0,  . r  > 0,  r y. + . . .  + r  > r
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then,if D is a bounded domain having a connected 
boundary an  ̂if U is a neighborhood of
Bn_̂  and if an analytic function f(x) in U 
satisfies the associated "elliptic equation"

(2 6) f(x) = o

in all its n variables and an additional equation

A t  ~ Y , ,  , a a q A a q f(x) = 0 (m<n)(q) q1 ” ‘qra

with constant coefficients not all zero in fewer 
than all variables, then the function f(x) has 
an analytic continuation into all of D + U.

PROOF. By Theorem 4, if we restrict U sufficiently, we can
put

f(x) = g+ (x) - g_(x)

where g+ (x) exists and is analytic in D + U, g_(x) is analytic in 
(En - D) + U, and the assertion of the theorem will follow if we show 
that g_(x) has an analytic continuation into all of En.

Let us denote g_(x) by 0(x). We know the following about 
this function: It is defined and analytic in the exterior of a sphere

(2 7) lx-| > R

and there exists an r ’ > 0 such that

A „ <£(x) = 0(|x|"n_1), |x| ---> 00
rV rn

for r̂j + . .. + r > r ! and we have

A <j> (x) = 0

If we now take fixed values r^,...,rn, and fixed coordinates
n -P • -uxQ , ..., xQ for which

(28) (x0 ) + ... + (x0) > R

and introduce the function
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,p <x1, *“). - •••• *;>

then the latter has the following properties: It is defined and analytic
in Em: (x , xm), we have

(29) A rlr(x) = 0 (Ixl-m~1), |x|--->00

for any q^ > 0, ..., qm > 0, and we have

(3 0) A tfr(x) = 0

We claim that under these circumstances we have

tfr(x) = 0

In fact, because of (29) we may introduce the Fourier transform

X(a.) - f  ei(0!1x1+-*-+«mxm) ^(x)dvYJ J  X

and it follows easily that the Fourier transform of Atf/(x) is then

(51) * (al } £«,) (l“m)9"

Now, (3 0) implies the vanishing of (31), and hence the vanishing of x(oe), 
and by uniqueness of Fourier transforms the vanishing of #(x). There
fore we have

(3 2) A 0 (x1, ..., xm, xm+1, ..., xn) = 0
1 * * n

for (x\ ..., xm) in Em and (xm+\  xn) in (2 8), but since the
left side of (3 2) is analytic in (2 7), the relation (3 2) also holds identi 
cally in (27). And since this is true for all combinations r̂ , ..., rn 
with r^ + ... + rn = r! it follows that 0(x) Is a polynomial of total 
degree < r! - 1, and thus is certainly continuable into all E .

§2. COORDINATE SPACES

1We now take an arbitrary analytic coordinate space Xn: (§ ,...,£ 
and in it, immediately for p = n - 1, a form
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G($; xj f(f); d*) = 7 ^ r r r Z / , ka  „  ^  ••• d ^ " n_1\n ')• (a) 0f1*,#0fn-1

where

A = y  G (I; x)A f(f)
1' ’ n-1 (v) « 1 " ’«n-1 v V " v n

for J / x. The point x itself also ranges over XR, and any two points
t x (£ 5̂ x ) have non-overlapping coordinate neighborhoods for which*>0* o x s 0 ' o'  ̂̂
the tensoroid. components G (§; x) are defined and analytic in (§; x) .

(« )We again introduce the requirement d.̂ G = 0, that is

'NT' ('_1')(3 — —-- a = o
d £ a q *r--«q-1 «q + V « n  "

and it amounts to a tensoroid. system of equations 

^  (")
X ,  x H , X X ^A V V = 0(v) («) 1 * ’ n

which, we again abbreviate to 

(33) = 0

and we again consider analytic functions in open sets U which satisfy 
this "elliptic equation” there. We wish to point out, however, that we 
are not retaining in any manner whatsoever the previous assumption that the 
variables £ , x shall occur as the difference £ - x only, and thus the 
"constancy of coefficients" in the operator A is being entirely dispensed 
with.

We again introduce the integral 

(3̂ ) g(x) = C G(£; x; f(£); d|)
J V 1

for a chain in U. It is again analytic and distributive, and we again 
have (14); and if is the boundary of a small domain D°, then for
points of D° we have

g(x) = X / X c 1  n (x)A f(x)(r) 1 * * n
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TV  ’ -rnwhere the coefficients c (x) are now functions of x.

We again call the integral a Green's formula if we have, in par
ticular,

(35) §  g($; xj f(Oi df) = g(x)
n-1

and theorem 4 is valid again.
We now take a second analytic coordinate space Y : (y y11y III

(m = n) which will be a space of "parameters” and we form the product 
space

( 3 6 > z „ «  -

in the usual manner. Also, for any point set 0 in zn+m *we will employ
the representation by its layers in the Xn-space, thus

(37) 0 = jy € Y m j X € D(y)J

where for each y, D(y) is a point set in Xn, perhaps empty.
We now take a domain (37) in (3 6) and another such domain

(38) $ = jy € YmJ X € B(y)j

and we introduce the following

DEFINITION. We call the domain 0 an enlarge
ment of the domain 0 if

(i) 0 D 0 that is D(y) J D(y) for every y,
(ii) for each (x,y) in 0 there is in D(y)

a cycle B  ̂ which bounds an n-complex
Kn(x,y) in £>(y), Bn _ 1 = bd(Kn), such that 
x e K ^ y ) .

(iii) for any (x',y') In 0 there is a
neighborhood N = N(x',y') in 0 such that for 
(x,y) £ N the cycle Bn_1 (x',y') - Bn_1 (x,y) 
bounds a chain Hn(x,y) in D(y), with 
x 4 H^Xjy), that is Bn_1 (x',y') ssBn_1 (x,y) 
in D(y) - x; and finally

(iv) there exists a point (x 0 >y0 ) in ^
and a neighborhood N0 (x0^ 0  ̂ ln  ̂ such that
for any (x,y) in N0 (x0,y0) the complex
Kn(x,y) of (ii) lies in D(y) itself, and not 
only in the larger D(y).
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We note that condition (iv) is implied by the simpler though less 
general condition

(iv)' for (x,y) in N0 (xQ,y0) we have D(y) = D(y). 
Now, the leading statement is as follows:

THEOREM 6 . If f(x,y) is defined in a domain
0  of ^n+m and is analytic as a function of (x,y) 
there, and if for each y it is a solution of our 
elliptic equation

any given enlargement 0 of 0 .

REMARK, There are enlargements which in a certain sense are not
enlargeable themselves. If, however, we take any two enlargements 0 A, 0 o 
of the kind introduced and if the point sets 0  ̂ - 6 , 6  ̂ ~ 0 have a non- 
vacuous intersection which has parts not connected with 0 Itself, then 
we do not claim that the two continuations will necessarily coincide 
there; it is not known to us what the actual situation is.

Now, in a neighborhood N(x', y») [defined on p. 1 5, property (iii)] we 
can replace the variable cycle Bn_1 (x, y) by the fixed cycle Bn-1 (x',yt) 
and it now follows that g(x, y) is analytic in N(x’, y') and hence 
everywhere in 0 . But by property (iv) it coincides with f(x, y) itself 
in a certain neighborhood NQ of 0 , and by analytic continuation it 
coincides with f(x, y) everywhere in 0 , as claimed.

We now take in zn+m a closed point set which is the locus of 
a (finite or infinite) simplicial chain Rn_̂|+m an  ̂a neighborhood vn+m 
of the latter and we also introduce the open set

(3 9) 4 x f (x, y) = 0

then f(x, y) has an analytic continuation into

PROOF. For every (x,y) in 0 7 we introduce the quantity

(40)

(41) Z.n+m R.n-1+m

We are also introducing the representatives

Rn-1+m = { y £ V  x 6 Bn-1 <y)}



V = 1 y € Y ;  x € U  (y)rn+m I J m* n ' J
0 = 1 y € Y ; x € D (y) 1n+m \ m n r

and we are making the following assumptions.
(v) each Bn_^(y) is the locus of a ("regular" or) "singular"

cycle which we denote by the same symbol, and
(vi) for each (x1, y ’) in 0n+m there exists a neighborhood

N(x1, y') and a cycle Bn_^(x', y ’) in un(y!) such that for (x,y)
in N(x' , y 1 ) the cycle Bn_^(y) - B ^ ^ x ' , y') bounds an n-dimensional
complex in Un(y) which does not contain the point x.

GREEN1S FORMULA, ANALYTIC CONTINUATION 13

THEOREM 7* Under the assumptions just made, 
if f(x, y) is defined and analytic in ^n+m and 
satisfies (3 9) there, then the integral

(42) g(x, y) = f G(|; x; f(£j y)j d£)
Vi<y>

(42)

defines an analytic function in 0 n+m having the 
following properties:

If we denote the (connected) components of 
1 2^n+m 0 , 0 , . . . ,  and denote the value of

(42) in 0a by ga(x, y), and if a "regular" 
simplex R°_'|+m of the chain Rn_i+m separates 
two components 0 a , 0 b ; then the function 
ga(x, y) can be continued a certain distance 
across R° into 0 b, and g^(x, y) can be so 
continued into 0a, and in the vicinity of R° 
we have the saltus relation

ga(x, y) - gb(x, y) = + f(x, y)

For the moment we call a component 0a non-bounded if there is 
in Ym some (small) neighborhood Nm such that for y in Nm the cross 
section ^ n + m ^  is the entire xn* For these values y, the
cycle can 1°e taken as null and thus ga(x, y) = 0. Hence the
following consequences.

THEOREM 8 . If in Theorem 7 all components
0a are non-bounded then f(x, y) =0. If
is connected then the conclusion also holds if

a bthere are two non-bounded components 0  , 0
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having on their boundaries a joint simplex 
R°n_^+m separating them.

If there are altogether only two com-
1 2  2 ponents 0 , 0 , and 0 is non-bounded, then

y) can be continued from the intersection 
of Vn+m with 0  ̂ into all of 0 ,̂ and this is 
the most frequently occurring situation underlying 
Theorem 6 .



II. STRONGLY ELLIPTIC SYSTEMS OF 
DIFFERENTIAL EQUATIONS

F. E. Browder 

§1. INTRODUCTION

In a number of recent papers, we have presented, a general theory 
of boundary-value problems for linear elliptic equations of arbitrary order 
and, more generally, for linear elliptic systems of differential equations 
([3]> [5]> [6 ], [7], [8 ]). It is the object of this paper to present a
simple self-contained, proof of the most basic results which we have obtained 
for the case of linear "strongly” elliptic systems of differential equations. 
These form a general subclass of the elliptic systems which contains single 
elliptic equations as well as such important special cases as the Laplace 
equation for exterior differential forms on Riemannian manifolds ([10]).

For the single elliptic equation, results similar to those of 
[3] have been announced by L. Garding in [18]. The definition of strongly 
elliptic systems was given by M. I. Visik in [28]. Visik's theory of strong
ly elliptic systems presented, in [2 9] has many points of contact with our 
results. Some major differences must be noted, however. The most important 
of these is that Visik obtains only weak solutions for his boundary-value 
problem (i.e., distributions in the sense of [24] or [2 6]) and establishes 
no analogue of the regularity theorem which is proved, below. In particular, 
he obtains no results on fundamental solutions, Green's functions, or 
compactness and convergence theorems. In addition, Visik's abstract method 
rests upon results of Sobolev ([2 5], [26]) and. Kondrashov ([21]) which are 
more complicated, in character than the techniques which we employ. Morrey 
in [2 2] has also discussed strongly elliptic systems of second-order equa
tions in two independent variables.

Our basic regularity theorem asserting that a weak solution of our 
equations is essentially a strict solution in the classical sense was es
tablished for a single elliptic equation in [5 ] and for a general elliptic 
system in [8 ] using an extension of the method of F. John ([19]) for the 
construction of a sufficiently differentiable fundamental solution in the 
small. In this paper, however, for the sake of directness and. simplicity, 
we prove this theorem for strongly elliptic systems using the ideas and 
techniques of the Friedrichs mollifier method ([12], [1 3 ], [14]). Though

15
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it yields weaker estimates and is definitely restricted to the strongly 
elliptic case, this method is more closely related to our abstract approach 
than is the fundamental solution method. Friedrichs has recently presented 
such a proof in [15] • In [20], John has announced the construction, for a 
single linear elliptic equation, of a proof of similar type based, on the 
method of spherical means discussed, in Chapter IV of [19]-

§2 presents the detailed, formulation of the theorems which are 
proved in this paper. §3 contains the proof of auxiliary lemmas to be used, 
in the later sections. In §4 the semi-boundedness of the general strongly 
elliptic linear system of differential equations is established. §5 is 
devoted to the proof of our basic regularity theorem for weak solutions of 
a strongly elliptic system of equations. In §6, the basic theorems concern
ing the Dirichlet problem are established including the Fredholm alterna
tive, the discreteness of eigenvalues and. finite dimensionality of eigen- 
spaces, as well as the completeness of the eigenfunctions of self-adjoint 
systems. (For the proof of the completeness of the eigenfunctions of 
elliptic equations and strongly elliptic systems which are not necessarily 
self-adjoint, cf. [7 ] and. [8 ]). §7 concludes the discussion with the proof
of the existence and regularity of the Green's function for domains on 
which the Dirichlet problem has a unique solution.

§2. FORMULATION OF THEOREMS

Let D be a bounded domain in Euclidean n-space En. (Some 
partial extensions of our results to unbounded domains are given in [4] 
and [8 ]). We shall consider several families of complex-valued functions 
on D. If j is a non-negative integer, C^(D) = {f|f and all its par
tial derivatives of order < j are defined and continuous on D } i 
CJ*(D) = {f|f and all Its derivatives of order < j are uniformly con
tinuous on D}; L2 (D) is the Hilbert space of complex-valued, square-
summable functions on D. Cc(D) = and. all its partial derivatives 
are defined, and. continuous on D, <f> vanishes outside a compact subset 
of D}. If <P £ Ĉ f(D), S(0) is the closure of the set (xJ0(x) ^ o}.

We shall consider r-vector functions, i.e., vector functions with
r components u = (û j, ..., ur); the i-th component u^ of u is a
complex-valued function defined on D. CJ*,r(D), C^,r(D), Lp (D),

00 rC 9 (D) "are defined as the families of r-vector functions u such thatc j j _ oo
for each I, u^ belongs to CJ(D), Cj(d), L2 (D), Cq(D) respectively.

A system K of differential equations on D of order 2m and. 
rank r has the form
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V* V' 0SuiK±(u) = Zv Z-, ak....kk.. . .k ;I,jv ' dx, 0 x. 
j=1 k,,...,k=1 1 3 1 ‘ ‘ ‘ s

's< 2m s
(2 .1 )

= v±
where the indices k^, . .., k range independently from 1 to n while
for each set of indices a, , . . € CS(D). The system of differential

\' ' s ^
operators K transforms u € C2m'r(D) info v € C^,r(D). For the sake 
of simplicity we assume the coefficients real. For each system K, we 
may define a r by r characteristic matrix A(x, £), defined for x 
in D and every real n-vector £ = (5̂ , ...,£n) and depending only upon
the highest order terms of the system K:

k 1 • • ,k2m

DEFINITIONS:
*£) K is said to be elliptic at x if

A(x, £) is non-singular for every 
$ ^ 0 .

S&i) K is said to be strongly elliptic at
x in D if A(x, £ ) + A^(x, £ ) is
positive definite for every § ^ 0, 
where A is the transpose of A.
An equivalent formulation is the 
following:

SSp) Given x € D, there exists P > 0
such that for every real n-vector 
£ and r-vector V,
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K will be said, to be uniformly strongly elliptic on D if there exists 
p > 0 for which is satisfied for all x in D.

For a single equation (r = 1), reduces to the classical
criterion of ellipticity. As a consequence the theory of strongly 
elliptic systems includes the theory of the linear elliptic differential 
equation of arbitrary order. From the definitions, it follows by a formal 
argument that the strongly elliptic systems are a proper sub-class of the 
elliptic systems. It has been shown by an example in [30] that such
results of the theory of strongly elliptic systems as the discreteness of
eigenvalues in the Dirichlet problem are not true for all elliptic systems.

For 0 € C ^ r(D), we define

2 . £ £ f| . .. 2dx 
J  dx. <Jx,

J=1 k^ • • 'km=  ̂ k v  m

(integration is taken with respect to Lebesgue n-measure. 
For u, v € L2>r(D),

(u • v) = Y , U j
A — A

v* dx

/ * \(z = complex conjugate of z).

The basic property of strongly elliptic systems which is not 
shared by the general class of elliptic systems is the semi-boundedness 
property expressed in the following theorem:

THEOREM 1. Suppose D is a bounded domain in
En, K a system of differential operators which is
uniformly strongly elliptic on D. Suppose that each
of the coefficients a^ k *i j 6 C ^ 3 (̂D), where

1 s * 9
V(s) = max {0, s - m} . Then there exist p̂  > 0,
k > 0 such that for all <f> € C*,r(D),

Re{(-1 )mK(<p) ■ <P} > P1 W ®  - k0(<* • 0

If K is strongly elliptic on D, the conditions of Theorem 1 
will be satisfied, on all subdomains which are contained in compact subsets 
of D.

Theorem 1 enables us to translate boundary value problems into 
abstract problems concerning the existence of solutions of linear functional

K will be said, to be uniformly strongly elliptic on D if there exists 
p > 0 for which is satisfied for all x in D.

For a single equation (r = 1), reduces to the classical
criterion of ellipticity. As a consequence the theory of strongly 
elliptic systems includes the theory of the linear elliptic differential 
equation of arbitrary order. From the definitions, it follows by a formal 
argument that the strongly elliptic systems are a proper sub-class of the 
elliptic systems. It has been shown by an example in [30] that such
results of the theory of strongly elliptic systems as the discreteness of
eigenvalues in the Dirichlet problem are not true for all elliptic systems.

For 0 € C ^ r(D), we define


