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FOREWORD

In October 1952 a three day conference
on partial differential equations was held at Arden
House, Harriman, New York. The conference was organ-
ized and sponsored by the Natlcnal Academy of Sclences -
National Research Council.

This volume contalns those papers, read at the
conference, which were submlitted by the authors for
publication. The editors regret the unavoldable de-
lay in publicatlon and hope that this volume will
prove to be useful to mathematicians working in this
field.

The edlting and preparing of this study was
carried out entirely by Anneli ILax. The editors
gratefully acknowledge her valuable assistance.

L. Bers
S. Bochner
F. John
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I. GREEN'S FORMULA AND ANALYTIC CONTINUATION
S. Bochner

For anyalytic functions in more than one comple:: variable there 1is
a theorem of Hartog's that 1f a functlon 1s given on the connected boundary
of a bounded domaln, then it can be continued analytically into all of the
domain. The class of functions to which this theorem applies was consider-
ably generalized in our paper [1]: "Analytic and meromorphic continuation
by means of Green's formula," Annals of Mathematics 44 (1943), 652-673; and
it was further expanded in our recent note [2]: "Partial differential equa-
tions and analytic continuation," Proceedings of the National Academy of
Sciences 38 (1952), 227-30. Now, in §1 of the present paper the leading
theorem of [2] will be given its final version known to us (see Theorem 5)
and, furthermore, details of the proof will be modified and added.

The real and imaginary parts of analytic functions of complex
variables are solutions of a system of Cauchy-Riemann equations 1n real
variables. In the case of more than one complex varilable, this system 1is
quite complicated and, as 1t turns out, much too restrictive for our theo-
rem. At first in [1], and then more systematically and generally in [2],
we introduced instead a system consisting of only two equations, both with
constant coefficients: an elliptic one in all variables and some other one
in fewer than all variables; the second equation was the one by which the
actual continuation was brought about. However, the second equation could
only operate if the function was first represented by a certain Green's
formula, and it was the sole task of the elliptic equation to secure Just
such a formula. Now, in further analyzing certain aspects of our theorem,
we found 1t pertinent to try to give up the elliptic equation altogether
and to hypotheslze directly a Green's formula having the requisite proper-
ties. This will be done 1n the present paper.

In §2 we will be dealing in a similar fashion with another theo-
rem in several complex variables which although closely related to the
previous one 1is different from it nevertheless. Following up a suggestion
of Severi's, this theorem was presented more systematically than had been
done before in Chapter IV of the book by Bochner-Martin: Several Complex
Variables, Princeton, 1948. It will now be glven a rather more general

version than previously.
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§1. EUCLIDEAN SPACES

In Euclidean E_: (&1, cee, gn) we take a p-form, 1 < p € n-1
4 o op
(1) D! 2: (a)Aaq...ap dg ...dt

and we assume that each component of the skew tensor is a finlte linear
partial differential expression involving an unspecified function f(¢&)
with coeffilclents which are functlons of the difference £ - x = (eB - xB),

where x = (xﬁ) 1s another variable point of the gilven space. Thus we
have

Vv 14
CRERR N
2 A = G (6-x) A r(¢)
( ) a,l..-ap Z(V) a,]...ap V,]-..Vn
where
av1+...+ v
A £(e) = D or(g)
(3) Vﬂ"'yn Wy ny
(8t )" ... (8¢ )"n
with », >0, ..., v, 20, v+ ... +y <N-1 for some N sufficient-

1y large but finite. In this sense we denote the form (1) by

() Gp(& - x5 £(8); ag)

and we stipulate that the individual functions G( )(t), t = t- x,

o
which occur in (2) shall be defined and real analytic 1n a certain open set
T of the Euclidean E : (tﬁ).

We now introduce the requirement

(5) d6 G, = 0
that 1s
p+1
(%]
(6 (-1)% —2— a =0
) qz aE Olq °"\"‘°‘q—’l°‘q+’l"'°‘p+1

and thls i1s a system of equations

I T
K (& - A £(g) -0
(7) 2oyt g T N
0< py + + oy <N
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(v)

1? yhich the coefficients H( ) are linear combinations of the coefficlents
v o
G( | and their first derivatives.
o
We now introduce fictitiously an "elliptic operator" Asfwe) and
we will say that a function f(&) which is defined and analytic in a do-

main U of En satisfies there the equation
(8) Aéf(€)=0

if the relations (7) are fulfilled for £ in U and & - x in T. For
every U the space of solutlons of (8) is a vector space having the
following closure property: Let fq(f), fz(f), ... Dbe a sequence of
solutions. If every point 65 of U has a complex nelghborhood into
which all the functions of the sequence can be continued analytically,
and 1f these functlons converge uniformly in these neighborhoods, then
the limit function 1s again a solution.

Furthermore, if we put & =t + x 1in (7), we obtain

(v)
(9) > w8 A £(t4x) = O

(v) « Pitettp

and therefore, locally, if f(¢) 1is a solution of (7) then so is also

the translated function f(é+h) for a sufficiently small constant dis-
placement h = (hﬂ). This property is crucial to our purpose, and we ex-
press 1t symbolically by saying that our (fictitious) operator A has
"constant coefficlents"; and 1f we combine all properties enumerated, we
obtain the further property that if f(¢) 1s a solution, then so are also
all first derivatives /\Bf(é), and hence, also all mixed partial de-
rivatives, and hence, alsc every flnite linear combination with constant
coefficlents

(10) Af = Z(u) B o Py T8

this operator being formed literally, and not Just only fictitiously or

symbolically.
We now take in U a p-dimenslonal chain Bp and we form the
integral
(11) g(x) = J‘ G(E-x; £(€); a&)
B

p
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for those

vary f(&)

(12)

BOCHNER

points x for which it 1s definable, that 1s, for the open set
X which 1s such that for x in X and § 1in B, & -x 1s in T.

If we hold Bp fixed, then g(x) 1s analytic in T
and then introduce the functional

then the latter 1s distributive, that 1is,

(13)

L(c,]f,I + cofpn; X) = ch(fq; X) + ch(fz; x).

Next, 1f two chains B_, B! are homologous relative to U - (x),

(5) we have

(14)

and to this extent the integral (11) is "independent of the path"

£f(é) 1is a solution of (8). But the decisive property is yet to be stated

and it is

(18)

and if we

p’

p
Bp p

as follows.

THEOREM 1. If Bp is a cycle then the function-
al (12) is commutative with translations and partial
differentiations. That 1is, (12) implies

g(x+h) = L(£f(§ + h); x)

for small h 1locally, and also

o8 . _ L( of ;
axB otP &

and more generally

Ny 8(x) = LOAgL(8)5 %)
for any operator (10).
PROOF. We have

stn) = olgmxons £(6); ag)
p

replace & by &+ h (18) 1s equal to

and if we

then by

if
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(19) va G(€-x; £(E+n); at)
P

where Bé = Bp - (h) results from Bp by a translation. If x 1s given
then for sufficiently small h, Bﬁ is homologous to B and by (14)

p)
the integral (19) is

fB GE-x; £(6+h); dg) = L(E(E+h); x)
jo

as claimed in (15).
Due to (13) the result just obtained implies that the integral
(11) carries a difference quotient

—%~[f(51:"°1 ﬁﬁ'f h,---,fn) - f(sqx--',fﬁ;"°:€n)]

into the corresponding difference quotient for g(x®). If now we let
h —> 0, then we obtain (16), as can be easily proved, and then also
(17), as claimed.

Theorem 1 will suffice for our present purposes. However, for a
certain type of conclusion that was attempted in [1] and [2] a partial
generalization of Theorem 1 is required for the case in which Bp is not
a cycle, and we will state the generalization without proof.

THEOREM 2. If we are given a symbolic
equation (8) and an operator (10), then there ex-
ists a (p-1)-form

Yp_/](f—x; £(§); ag)

in which the partial derivatives of f(§)
occurring are of order < N - 1+ M - 1, and
which has the following property: If Bp is a
p-chain and Bp_1 is its boundary and if f(§)
satisfies (8) in a domain containing B_ + B

p p-71
then we have

LA L(8)s x) - Aelx) = Jf Y, q6-x5 £(§); dg)

B,

and thus we again have (17) provided that the
function £(£) and its derivatives of order
{N -1+ M-1 are zero on the boundary Bo_q-
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From now on we will consider only the dimension p =n - and
(V)
we willl assume that the domain T on which the coefflcients (t) are
<a)
defined 1s the entire E_ except for the origin, so that L(f(&); x) 1s

defined for x iIn E_ - B .
n n-1

THEOREM 3. If B _, bounds a small subdomain

Do of U then we have
(20) $ o alem 6 00 = Y e AL L £
B 1 (r) "1 1""*"n
n_
ry 20, «o., 7 20
where ¢ p are constants independent of £(¢).
1°"*"n

PROOF. It follows from (14) that for the proof of (20) we may
assume that D° 1s a coordinate sphere |&| < 2p, and that even the
double sphere |E| < 4p 1s still contained in U, and that the points x
are restricted to the small sphere |x| < p. Now, on replacing & Dby
£ + x we obtain

)05 £+ x); ag)

-4 ate; e ap)
Bh-1

and for sufflciently small p we may now insert the Taylor expanslion

1,51 Sn
P = 2 gy LB R £ (x)

S,‘. cen Sn- S,]...Sn

and integrate term by term. Hence the conclusion.

The theorem 1s of no practical importance to us, but it puts Iinto
a proper perspectlve the assumption we are now golng to make that the right
side in (20) shall be identically f(x), that is,
(21) fB G(é‘xi f(é), dﬁ) = f(x)

n-1 .

and we express thils assumption by saying that our integral (11) 1is a Green's
formula. The first consequence of thls assumption 1is:

THEOREM 4. If B 1s a simplex (which may be



GREEN'S FORMULA, ANALYTIC CONTINUATION

part of any chain over which we integrate) then
the function

(22) g(x) = (/; G(g-x; £(&); ag)

can be continued across B from elther side and
the difference of the two values in the vicinity
of B 1is f(x),

(23) g,(x) - g_(x) = + £(x)

the algebraic sign belng determined by the ori-
entation of B.

PROOF, (Cf. [1], p. 656-57.) Denoting one side of B as
positive,we deform B into a simplex B' on 1ts negative side but keep
the edges fixed. By (14) we have for x on the positive side

g (x) = j; = ‘/;'

and thus g+(x) can be continued a certaln distance into the negative
side, Denoting the continuatlion still by g+(x), we now have for points
X 1n the domain bounded by B' - B

g, (x) - g_(x) = u/;, - u/; - u/’l-B

and by (21) this is + f(x) as claimed.

THEOREM 5. 1If we are g%ven a Green's formula
v
and if the coefficients G (t) 1in (2) are of
o

slow growth at infinity in the sense that for some

rq > O we have

v,l...yn -n-1

(24) A G (t) = o(]¢| ), It —
l",l...I’n aq...an_,l ’
for

2

(25) T4 >0, .., r, > 0, Ty + +r, > r,
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then,1f D i1s a bounded domaln having a connected
boundary Bn—1 and if U is a neighborhood of

B
n--1
satisfies the associated "elliptic equation"

and if an analytic function f(x) in U

in all its n variables and an additional equation

AT = f(x) =0 (m<n)

a A
§:<q) qq...qm qq...qm
with consgtant coefficients not all zero in fewer
than all variables, then the function f(x) has

an analytic continuation into all of D + U.

PROOF. By Theorem 4, if we restrict U sufficiently, we can

put

£(x) =g, (x) - g_(x)
where g+(x) exists and is analytic in D + U, g _(x) 1is analytic in
(En - D) + U, and the assertion of the theorem will follow if we show
that g_(x) has an analytic continuation into all of E°.

Let us denote g_{(x) by ¢(x). We know the following about
this function: It is defined and analytic in the exterior of a sphere

(27) Ix1 > R

and there exists an ' > O such that

A L) = o™, k) w
Lq***"n

for rgy+ oo + h > r' and we have

ANé(x) =0

If we now take fixed values PasesesTs and fixed coordinates

m+1 .
Xo+ s eeny xg for which

L T O L

o Q

(28) (x

and introduce the function
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o
9 n

then the l?tter hags the following properties: It is defined and analytic
in E_: (X 2% e, Xm)

- , WwWe have

(29) A w(x) = o(ix1 ™

Qqesedy R

for any 44 >0, .., Ay > 0, and we have
(30) AY(x) =0
We claim that under these cilrcumstances we have

w(x) =0
In fact, because of (29) we may introduce the Fouriler transform
™)

. 1
X (o) =f il ooy x
J o

w(x)dvx

and it follows easily that the Fourier transform of Ay(x) 1s then

i 1 e
(31) X 2y Pagenay (o) U]

Now, (30) implies the vanishing of (31), and hence the vanishing of Xx(a),
and by uniqueness of Fourier transforms the vanishing of W (x). There-
fore we have

1 1
(52) /\1"1--.1‘ ¢(X 3 see, Xm: Xm+ 3 eee Xn) =0
n

for (xq, cee, XM in (28), but since the
left side of (32) is analytic in (27), the relation (32) also holds identi-
cally in (27). And since this is true for all combinations r,, «.., ©

in E  and (xm+1, cee, X

n
with ry + ... +r =7r' 1t follows that ¢(x) 1s a polynomial of total

degree < r' - 1, and thus is certainly continuable into all En'
§2. COORDINATE SPACES

We now take an arbitrary analytic coordinate space X i (51,...,§n)

and in it, immediately for p =n - 1, a form
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1 o ¥n-1
; x5 £(8); = A d ee. d
G(&; x; £(§); d¢g) mz(a) ctqe e 0ty 3 ¢
where
V1...Vn
A = G (&; x)A £(&)
aq...an_,] Z(v) aqs 0y _1 ’ y,l...yn
for & # x. The point x 1itself also ranges over X and any two points
£, X (go # xo) have non-overlapping coordinate neighborhoods for which
O (o] v)
the tensoroid components G (€; x) are defined and analytic in (&; x).
(e)

We agalin introduce the requirement dEG

E; " (_q)q _9 A =

- aﬁaq a,l...aq_,]aq+,,...an

and it amounts to a tensoroid system of equations

2 a0 (8)

H T =0
(v) (o) § X)/\Vq...un §
which we again abbreviate to
(33) Aff(e) =0

and we again consider analytic functions in open sets

= 0,

that is

U which satisfy

this "elliptic equation" there.
are not retaining in any manner whatsoever the previous assumption that the
& - x and thus the
"constancy of coefficlents" in the operator A4 1is being entirely dispensed
with.

We wish to point out, however, that we

variables ¢, x shall occur as the difference only,

We again introduce the integral
/.

It 1s again analytic and distributive, and we again
then for

(34) G(é&; x; £(€); ag)

n-"1

g(x) =

for a chain in U.
have (14); and if B
points of DO

-1 is the boundary of a small domain DO,

we have

g(x) =Z c

(r)

I’,I...l"n

(x) A

£(x)
TS
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I",]...I‘

where the coefficilents ¢ R

x) are now functions of x.
We again call the integral a Green's formula if we have, in par-

ticular,

(35) fB , G(E; x; £(§); d€) = g(x)

n-

and theorem 4 is valld again.
We now take a second analytic coordlnate space Ym: (yq,..., ym),
(m 2 n) which will be a space of "parameters" and we form the product
<
ce

in the usual manner. Also,for any point set 0 in Z , We will employ

n+m
the representation by 1ts layers in the Xn—space, thus

(37) 8 =_{y €Y x € D(y)}

where for each y, D(y) 1is a point set in X,, perhaps empty.
We now take a domain (37) in (36) and another such domain

(38) 8 - {y €Y ; x € 5(y)}

and we introduce the following
DEFINITION. We call the domain 6 an enlarge-
ment of the domain 6 1if

(1) 5‘3 6 that is D(y) > D(y) for every v,
(11) for each (x,y) 1in @ there is in D(y)
a cycle Bn-1 = Bn_q(x,y) which bounds an n-complex
K (x,y) in B(y), B _4 = bd(Kn), such that
X € Kn(x,y). .

(i11) for any (x',y') in 6 there 1s a
neighborhood N = N(x',y') in 6 such that for
(x,y) € N the cycle Bn_q(x',y‘) - Bn_q(x,y)
bounds a chain Hn(x,y) in D(y), with
x ¢ Hn(x,y), that 1s Bn_q(x',y') ~ Bn_q(x,y)
in D(y) - x; and finally

(iv) there exists a point (xo,yo) in 6
and a neilghborhood NO(XO,yO) in @ such that
for any (x,y) in No(xo,yo) the complex
K (x,y) of (i1i) lies in D(y) itself, and not
only in the larger D(y).
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We note that condition (iv) is implied by the simpler though less
general condition
n
(iv)' for (x,y) in No(xo,yo) we have D(y) = D(y).
Now, the leading statement 1s as follows:

THEOREM 6. If f(x,y) 1is defined in a domain
6 of Zn+m and is analytic as a function of (x,y)
there, and if for each y it i1s a solution of our

elliptic equation

then f(x, y) has an analytic continuation into
~Jy
any glilven enlargement @ of 6.

REMARK. There are enlargements which in a certain sense are not
enlargeable themselves, If, however,we take anyafwo enla;gements 3}, Z;
of the kind introduced and if the point sets 6, - 9, 92 - @ have a non-
vacuous 1intersection which has parts not connected with 6 1tself, then
we do not claim that the two continuations will necessarily coincilde
there; 1t 1s not known to us what the actual situation is.

~
PROOF. For every (x,y) in @,we introduce the quantity

(40) ete, ) = [ 6(8; x5 £, ¥); ad).

Now, in a nelghborhood N(x', y') [defined on p. 15, property (ii1i)] we
can replace the variable cycle Bn_q(x, y) Dby the fixed cycle Bn_q(x',y')
and 1t now follows that g(x, y) 1is analytic in N(x!', y') and hence
everywhere in @ . But by property (iv) it colncides with £f(x, y) 1itself
in a certain neighborhood No of 6, and by analytic continuation it
coincides with f(x, y) everywhere in 6, as claimed.

We now take 1n Zm_m a closed polnt set which is the locus of
a (finite or infinite) simplicial chain R 1em
of the latter and we also introduce the open set

and a neighborhood Vn+m

(41) O n+m = Zn+m - Pn-dtm

We are also introducing the representatives

Rn—’l+m =-{y-e Yn; x € Bn—1(Y)}
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il

yev,; x €U (y) }
yeY; xeD (y) }

Vn+m

0n+m

i

and we are making the followlng assumptions.

(v) each Bn_q(Y) is the locus of a ("regular" or) "singular"
cycle which we denote by the same symbol, and

(vi) for each (x', y') 1in 0,.y Uthere exists a neighborhood
N(x', y') and a cycle Bn_q(x', y') in Un(y') such that for (x,y)
in N{(x', y') the cycle Bn_q(y) - Bn_q(x', y') bounds an n-dimensional
complex in Un(y) which does not contain the point x.

THEOREM 7. Under the assumptions Just made,
if f(x, y) 1s defined and analytic in Vo4m 2and
satisfies (39) there, then the integral

(42) g(x, y) = f G(&; x; £(&; v); db) (u2)

defines an analytlic function in 0n+ having the

following properties: "
If we denote the (connected) components of
9n+m by 91, 02, .+«+, and denote the value of
(42) in 6% by g%(x, y), and if a "regular"
simplex Rg_1+m Zf tge chain R _,4. .
two components @, € ; then the function

a
g (
o b b
across R- into 6, and g '(x, y) can be so
continued into 6%, and in the vicinity of R°

separates

X, y) can be continued a certain distance

we have the saltus relation

For the moment we call a component oa non-bounded 1f there is
in Y some (small) neighborhood N, such that for y in N_  the cross

a a
section Dn(y) of 9n+m(y) is the entire X . For these values y, the

cycle Bn_q(Y) can be taken as null and thus g°>(x, y) = O. Hence the

following consequences.

THECREM 8. If in Theorem 7 all components

6% are non-bounded then f(x, y) = 0. If Vesm

is connected then the conclusion also holds if

there are two non-bounded components Ga, Gb
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having on their boundaries a joint simplex

Ron—1+m
If there are altogether only two com-

ponents 6, 02, and 62 1s non-bounded, then

f(x, y) can be continued from the intersection

of Vn+m with 01 into all of 04, and this 1is

the most frequently occurring situation underlying

Theorem 6.

separating them.



II. STRONGLY ELLIPTIC SYSTEMS OF
DIFFERENTIAL EQUATIONS

F. E. Browder
§1. INTRODUCTION

In a number of recent papers, we have presented a general theory
of boundary-value problems for linear elliptic equations of arbitrary order
and, more generally, for linear ellliptic systems of differential equatlons
(3], (4], (5], (6], (7], [8]). It is the object of this paper to present a
simple self-contailned proof of the most basic results which we have obtailned
for the case of linear "strongly" elliptic systems of differential equations.
These form a general subclass of the elliptlc systems whlch contains single
elliptic equations as well as such important special cases as the Laplace
equation for exterior differential forms on Riemannian manifolds ([101]).

For the single elliptic equation, results similar to those of
[3] have been announced by L. G&rding in [18]. The definition of strongly
elliptic systems was given by M. I. Visik in [28]. Visik's theory of strong-
ly elliptic systems presented in [29] has many points of contact with our
results. Some major differences must be noted, however. The most ilmportant
of these 1is that Visik obtains only weak solutlons for his boundary-value
problem (i.e., distributions in the sense of [24] or [26]) and establishes
no analogue of the regularity theorem which is proved below. In particular,
he obtains no results on fundamental solutions, Green's functions, or
compactness and convergence theorems. In addition, Visik's abstract method
rests upon results of Sobolev ([25], [26]) and Kondrashov ([21]) which are
more compllcated iIn character than the technigues which we employ. Morrey
in [22] has also discussed strongly elliptic systems of second-order equa-
tions 1n two 1ndependent variables.

Our baslc regularity theorem asserting that a weak solution of cur
equatlions 1s essentially a strict solution in the classical sense was es-
tablished for a single elliptic equation in [5] and for a general elliptic
system in [8] using an extension of the method of F. John ([19]) for the
construction of a sufficlently differentlable fundamental solution in the
small. In this paper, however, for the sake of directness and simplicity,
we prove this theorem for strongly elliptic systems using the 1deas and
techniques of the Friedrichs mollifier method ([12], [13], [14]). Though

15
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1t yields weaker estimates and 1s definltely restricted to the strongly
elliptic case, this method 1s more closely related to our abstract approach
than 1s the fundamental solution method. Friedrichs has recently presented
such a proof in [15]. 1In [20], John has announced the construction, for a
single linear elliptic equation, of a proof of similar type based on the
method of gspherical means discussed 1in Chapter IV of [19].

§2 presents the detailed formulation of the theorems which are
proved in this paper. §3 contains the proof of auxiliary lemmas to be used
in the later sections. In §4 the semi-boundedness of the general strongly
elliptic linear system of differential equations 1s established. §5 is
devoted to the proof of our basic regularity theorem for weak solutions of
a strongly elliptic system of equations. 1In §6, the basic theorems concern-
ing the Dirichlet problem are established including the Fredholm alfterna-
tive, the discreteness of eigenvalues and finite dimensionality of eigen-
spaces, as well as the completeness of the eigenfunctions of self-adjoint
systems. (For the proof of the completeness of the eigenfunctions of
elliptic equations and strongly elliptic systems whilch are not necessarily
self-adjoint, cf. [7] and [8]). §7 concludes the discussion with the proof
of the existence and regularity of the Green's function for domains on
which the Dirichlet problem has a unique solution.

§2. FORMULATION OF THEOREMS

n (Some

Let D Dbe a bounded domain in Euclidean n-space E
partial extensions of our results to unbounded domains are given in [4]
and [8]). We shall consider several families of complex-valued functions
on D. If J 1s a non-negative integer, CJ(D) = {flf and all its par-
tial derivatives of order < J are defined and continuous on D} s
CJ(B) = {f|f and all its derivatives of order < J are uniformly con-
tinuous on D}; L2(D) is tgf Hilbert space of complex-valued square-
summable functions on D. C_(D) = {#|¢ and all its partial derivatives
are defined and continuous on D, ¢ vanishes outside a compact subset
of D}. If ¢e Cg?D), S($) 1is the closure of the set {x|¢(x) # 0}.

We shall consider r-vector functions, i.e., vector functions with
r components u = (uq, ey ur); the 1—§h component u of u is a
cgﬁplex—valued function defined on D. cY’T(D), Cj’r(ﬁ), L2’P(D),
CC’P(D) ‘are defined as the families of r-vector fungfions u such that
for each 1, uy belongs to CJ(D), Cj(ﬁ), Lp(D), C,(D) respectively.

A system X of differential equations on D of order 2m and

rank r has the form
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r n a5u
- J
Ky (u) = 2 2 ak,l...ks;i,J(X) &%, 0%,
Jj= kq"":ks=1 1°°° s
s< 2m
(2.1)
= vy (1 =1, ..., r)
where the indices kq, ey ks range lIndependently from 1 to n while
for each set of indices a . € CS(D). The system of differential
kq...ks,i,j

operators K transforms u € Cem’P(D) into v € CO’P(D). For the sake
of simplicity we assume the coefficients real. For each system K, we
may define a r by r characteristic matrix A(x, &), defined for x
in D and every real n-vector £ = (&1, ...,En) and depending only upon
the highest order terms of the system K:

A(‘X, 5) = (aij(x’ E))
(2.2)
= a 4 1(x)E 3
. 221{ Kyoeokpo 31, d Ky Skoo
1°° " 2m
DEFINITIONS:
€) K 1s said to be elliptic at x if
A(x, &) 1s non-singular for every
£ # 0.
sz,,) K 1is said to be strongly elliptic at
x in D if A(x, t) + A%(x, &) 1is
positive definite for every § # O,
where -At is the transpose of A.
An equivalent formulation is the
following: ,
S&) Given x € D, there exists P > O
such that for every real n-vector
§ and r-vector 7,
r n
a . 1(x)E &, mym
Z Z Kqe e kp 51, lqe e Sk MY
i,J=1 kﬂ"'k2m=1
(2.3) .
. n
2m 2
>o( 285 2
i=1 Jj=1
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K will be said to be uniformly strongly ellliptic on D 1if there exists
p > 0O for which SZé 1s satisfled for all x in D.

For a single equation (r = 1), Sié reduces to the classical
criterion of ellipticity. As a consequence the theory of strongly
elliptic systems includes the theory of the llnear elliptic differential
equation of arbiltrary order. From the definitions, 1t follows by a formal
argument that the strongly elliptic systems are a proper sub-class of the
elliptic systems. It has been shown by an example in [30] that such
results of the theory of strongly elliptic systems as the discreteness of
eigenvalues 1n the Dirichlet problem are not true for all elliptic systems.

For ¢ € Ccco’r(D), we define

2.3y 3 f
3=1 k,...k,=1YD

(Integration is taken with respect to lLebesgue n-measure.)

2

6m¢1
5% Py dx
kq... km

For u, v € Lg,r(D),
r
(wev) =3 fujvg ax
J=1 %D

(z* = complex conjugate of z).

The baslc property of strongly elliptlic systems which 1s not
shared by the general class of elliptic systems 1is the seml-boundedness
property expressed in the following theorem:

THEOREM 1. Suppose D 1s a bounded domaln in
En, K a system of differential operators which 1is
uniformly strongly elliptic on D. Suppose that each

of the coefflclents a, X ;1,3 € CV(S)(ﬁ), where
4o kgsl,

7(s) = max {0, s - m} . Then there exist Py >0,
[+ #]
k, > O such that for all ¢ e CC’P(D),

Re {(-1)"K(8) - #) > o, 1412 - k(9 - $)

If K 1s strongly elliptic on D, the condltions of Theorem 1
will be satisfied on all subdomalns which are contained 1n compact subsets
of D.

Theorem 1 enables us to translate boundary value problems into
abstract problems concerning the exlstence of solutions of linear functional



