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Preface

Graduate students in the earth sciences, particularly those
in geophysics and atmospheric, oceanographic, planetary, and
space physics, as well as astronomy, require a substantial degree
of mathematical preparation—for the sake of brevity, we will
simply refer to these application areas as being in geophysics.
While there is significant overlap between their needs and those
of graduate students in physics or in applied mathematics,
there are important differences in the preparation needed and,
notably, the sequence of presentation required as well as the
overall quantity of material that is necessary. Most textbooks
that address mathematical methods for physics and engineering
begin from the standpoint that the student already knows the
underlying equations, generally partial differential equations,
but needs to learn how to solve them. Since the background of
most entering or second-year graduate students in geophysics
is highly variable, I felt it necessary to provide derivations in a
number of circumstances for those equations to help students
appreciate better where they arise and how their solution must
be addressed. Moreover, most mathematical methods textbooks
were published before the renaissance in thinking, especially
about geophysical problems, that introduced the concepts of
chaos and complexity, as well as the significance of probability
and statistics and of numerical methods. Significant attention is
given to the ordinary and partial differential equations that have
played a pivotal role in the evolution of geophysics. In addition,
in order to round out our treatment of mathematical methods, a
succinct survey of statistical and computational issues is intro-
duced. A brief but comprehensive summary of solution methods
is presented, including many exercises. In so doing, it is my hope
that this book will address that need during the course of one
academic semester or quarter. In essence, we treat some central
problem areas in depth, while providing a measure of literacy in
others.

Students also can find helpful materials in the following works.
The text that is closest to our presentation is that due to
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Mathews and Walker (1970) which is out of print. A relatively
contemporary text on the topic is that of Arfken and Weber
(2005), but its newest edition (Arfken et al., 2013) has become a
“comprehensive guide”; a helpful lead-in to the latter, designed
more for advanced undergraduates, is Weber and Arfken (2004).
The graduate textbook by Stone and Goldbart (2009) is also help-
ful, although the examples selected are drawn from physics and
have a more formal flavor. Finally, the classic two-volume defini-
tive texts on the subject are those by Morse and Feshbach (1999)
and by Courant and Hilbert (1962). While the former is now
back in print, the latter remains out of print. Regarding specific
applications to geophysics and planetary, atmospheric, oceano-
graphic, and space physics, chapters in existing graduate-level
textbooks in those specialties contain appropriate derivations.
As we encounter each new topic, additional citations to refer-
ence materials will be provided. We shall attempt to integrate
some of the most important of these into this book.

Given the time available in a single academic quarter or
semester, we are fundamentally limited in the quantity of mate-
rial that can be presented. Basically, we provide an overarching
survey of the relevant issues, a brief treatment of how to treat
these problems, and an indication for each of these topics where
the student can find a more thorough and rigorous treatment.
Our objective is to give each student sufficient instruction to
solve elementary problems and then advance to more exhaus-
tive treatments of the individual topics, whether they originated
in geophysics and its associated disciplines, physics, astronomy,
or engineering.

The first chapter reviews many mathematical preliminaries
that students should have studied previously, but also serves
as a review. Vectors, indicial or “Einstein” notation, vector oper-
ators, cylindrical and spherical geometry, and the theorems of
Gauss, Green, and Stokes are presented here. Since the focus of
this chapter is on geometry, we introduce matrices in the context
of the rotation of vectors. Then, we present tensors, which are
matrices whose physical properties remain unchanged under a
rotation and preserve other physical (e.g., variational) principles,
including a very brief description of the eigenvalue problem.
Here we introduce the concept of generalized functions through
the Dirac δ function, and some of its relatives, inasmuch as they
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will form the basis later for our treatment of Green’s functions.
We present a number of assignment problems.

In the second chapter, we review features of ordinary differ-
ential equations. The Laplacian operator in partial differential
equations permits the use of the method of separation of vari-
ables, which yields a set of second-order ordinary differential
equations in the different geometric variables. We introduce the
concept of Green’s functions. Accordingly, we treat the separa-
tion of variables issue from the standpoint of ordinary differen-
tial equations and we introduce the derivation underlying Bessel
functions and spherical harmonics, including the Legendre poly-
nomials. (We complete the discussion of Poisson’s, Laplace’s,
and Helmholtz’s equation in chapter 4 because of their util-
ity in solving partial differential equations of elliptic type.) We
introduce problems describable by coupled ordinary differential
equations, which, ultimately, provide the basis for chaos theory
and are largely overlooked in classical mathematical methods
of physics textbooks. Geophysical examples provide a wonder-
ful testbed for ordinary differential equation approaches. For
example, efforts to model the geodynamo using the interaction
of mechanical and electrical components yielded strictly cyclical
behavior with no field reversals. Efforts to resolve this problem
demonstrated an epiphanic paradigm shift in moving to systems
with three equations, such as the Lorenz model for convection
and turbulence. This chapter also provides hands-on experience
in performing perturbation theory analysis. Since chaotic behav-
ior often yields fractal geometry, as in the Lorenz model trajec-
tory, we provide a brief survey of fractal concepts and applica-
tions, as well as mappings as an adjunct to understanding tran-
sition to chaos.

In the third chapter, we introduce the evaluation of integrals,
including a brief overview of complex analysis and elementary
contour integration, saddle point methods, and some special
problems in geophysics that yield elliptic integrals. We continue
to address integral transforms following a brief introduction to
Fourier series and transforms. We prove the sampling theorem
and describe the phenomenon of aliasing. While these latter top-
ics are overlooked in most textbooks, they play an important
role in geophysics, particularly in the context of data collec-
tion and analysis. We introduce the fast Fourier transform and
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some approximation methods for spectral analysis. We conclude
this chapter by briefly touching upon Laplace transforms and
the Bromwich integral, and we introduce some integral equa-
tions, including the Abel and Radon transforms, as well as the
Herglotz–Wiechert problem of seismology.

In chapter 4, we introduce the fundamental partial differential
equations of mathematical physics, in general, and geophysics,
in particular. We whet the student’s appetite by introducing the
three fundamental types of partial differential equations that are
pervasive in geophysics: the wave equation, the potential equa-
tion, and the diffusion equation. This chapter embeds practical
examples of real-world problems with the theory. Classic mathe-
matical methods of physics books rarely provide examples, espe-
cially those that are appropriate to the earth sciences. Remark-
ably, some of the most beautiful yet practical examples of these
types of equations appear in geophysics. We introduce, for lin-
ear problems, integral transform methods, and introduce eigen-
functions, eigenvalues, and Green’s functions in those time-
dependent contexts. We exploit these methods to solve both
the diffusion equation and the wave equation in three dimen-
sions. We employ spherical harmonics, introduced in the second
chapter, to solve the gravitational potential equation relating a
planet’s mass distribution to its potential in three dimensions.
Further, we exploit Fourier methods in order to identify disper-
sion relations for linear problems, including the role of diffusion
and dispersion. At this stage, we associate with dispersion rela-
tions for partial differential equations the role of instability. Per-
turbation theory in this context is presented via a simple exam-
ple, the propagation of sound in a fluid. However, since partial
differential equations incorporate an infinite number of modes—
associated with spherical harmonics, for example—the chaotic
nature of a fundamentally infinite degree of freedom system
underscores what is called complexity. We consider collective,
nonlinear modes of behavior as exemplified by solitary waves
and, especially, solitons. As illustrations, we derive the solu-
tion for solitary waves exemplified by Burgers’s equation and
for solitons via the Korteweg–de Vries equation. Scaling argu-
ments underlying the emergence of turbulence are presented,
as well as a simple derivation for the Kolmogorov spectrum.
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The remaining chapter surveys two topics that are central to
modern geophysics yet have been orphaned from essentially
all elementary treatments. We briefly survey topics in proba-
bility and statistics, including the binomial, Poisson, and Gaus-
sian (normal) distributions as well as the central limit theorem.
A sketch is provided for methods of random number genera-
tion, central to Monte Carlo simulation. We also identify some
of the themes associated with regression and the fitting of exper-
imental data. Finally, we survey some questions emergent from
numerical methods. Here, we briefly address the nature of com-
putational and round-off errors. As an example, we survey the
determination of the roots of polynomials, which play a funda-
mental role in the dispersion relations of modern geophysics.
We provide a brief overview of numerical methods of solving
ordinary and partial differential equations, with a focus on finite
difference methods, but mention spectral approaches.

As is evident, this textbook provides a whirlwind survey of
many topics and helps bring together many different concepts
yet provide a brief practical introduction to problem solving in
geophysics. This book was developed in consultation with my
colleagues and is the outcome of several offerings at UCLA of this
survey course to entering and second-year graduate students
in geophysics and planetary and space physics, but was also
designed to be helpful to students in allied disciplines, including
atmospheric and ocean sciences, and in physics and astronomy.
We very much hope that this volume will help stimulate thinking
about these problem areas and further investigation and study
of the different topics reviewed.

While completing this volume, my editor asked me to provide
a cover image for this book and recommended that a photo-
graph be adopted instead of a geometrical design or blank cover
as is so often employed in technical books. This presented a
special challenge inasmuch as how could a photograph convey
what underscores the mathematics implicit to the earth, plane-
tary, and space sciences? What kind of image would capture the
outcome of a combination of many different geologic events?
Yellowstone National Park is a truly special place, and the Grand
Canyon of the Yellowstone is a focal point for much of its var-
ied geologic history. This area was shaped by a caldera eruption
600,000 years ago and a series of lava flows. The area was also
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faulted by the caldera dome before the eruption. The site of this
canyon was possibly established by this faulting, which mag-
nified the rate of erosion. Glaciation also took place, although
glacial deposits are largely absent. This photograph features the
Lower Falls, 308 feet in height, as viewed from Lookout Point.
The rich colors of the rock in this photograph are likely an out-
come of the hydrothermal alteration of the rhyolite containing
different iron compounds and their subsequent “cooking.” Expo-
sure to the elements and oxidation added to this effect, and are
not due to sulfur. The falling water provides a quick reminder
of the power of the flow. Thinking about all of the various physi-
cal and chemical effects present in creating this scene, it is clear
how this image captures so many different influences and that
challenge of providing a quantitative description of them. I took
this photograph on August 24, 2009, with a Sony A350 DSLR at
F8 with a 1/320-second exposure time using a 160-mm zoom
lens.
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CHAPTER ONE

Mathematical Preliminaries

The underlying theory for geophysics, planetary physics, and
space physics requires a solid understanding of many of the
methods of mathematical physics as well as a set of special-
ized topics that are integral to the diverse array of real-world
problems that we seek to understand. This chapter will review
some essential mathematical concepts and notations that are
commonly employed and will be exploited throughout this book.
We will begin with a review of vector analysis focusing on indi-
cial notation, including the Kronecker δ and Levi-Civita ε per-
mutation symbol, and vector operators. Cylindrical and spheri-
cal geometry are ubiquitous in geophysics and space physics, as
are the theorems of Gauss, Green, and Stokes. Accordingly, we
will derive some of the essential vector analysis results in Carte-
sian geometry in these curvilinear coordinate systems. We will
proceed to explore how vectors transform in space and the role
of rotation and matrix representations, and then go on to intro-
duce tensors, eigenvalues, and eigenvectors. The solution of the
(linear) partial differential equations of mathematical physics is
commonly used in geophysics, and we will present some materi-
als here that we will exploit later in the development of Green’s
functions. In particular, we will close this chapter by introduc-
ing the ramp, Heaviside, and Dirac δ functions. As in all of our
remaining chapters, we will provide a set of problems and cite
references that present more detailed investigations of these
topics.

1.1 Vectors, Indicial Notation, and Vector Operators

This book primarily will pursue the kinds of geophysical prob-
lems that emerge from scalar and vector quantities. While men-
tion will be made of tensor operations, our primary focus will be
upon vector problems in three dimensions that form the basis
of geophysics. Scalars and vectors may be regarded as tensors
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of a specific rank. Scalar quantities, such as density and tem-
peratures, are zero-rank or zero-order tensors. Vector quanti-
ties such as velocities have an associated direction as well as a
magnitude. Vectors are first-rank tensors and are usually des-
ignated by boldface lower-case letters. Second-rank tensors, or
simply tensors, such as the stress tensor are a special case of
square matrices. Matrices are generally denoted by boldface,
uppercase letters, while tensors are generally denoted by bold-
face, uppercase, sans-serif letters (Goldstein et al., 2002). For
example, M would designate a matrix while T would designate
a tensor. [There are other notations, e.g., Kusse and Westwig
(2006), that employ overbars for vectors and double overbars for
tensors.] Substantial simplification of notational issues emerges
upon adopting indicial notation.

In lieu of x, y , and z in describing the Cartesian components
for position, we will employ x1, x2, and x3. Similarly, we will
denote by ê1, ê2, and ê3 the mutually orthogonal unit vectors that
are in the direction of the x1, x2, and x3 axes. (Historically, the
use of e emerged in Germany where the letter “e” stood for the
word Einheit , which translates as “unit.”) The indicial notation
implies that any repeated index is summed, generally from 1
through 3. This is the Einstein summation convention.

It is sufficient to denote a vector v, such as the velocity, by its
three components (v1, v2, v3). We note thatv can be represented
vectorially by its component terms, namely,

v =
3∑
i=1

viêi = viêi. (1.1)

Suppose T is a tensor with components Tij . Then,

T =
3∑

i=1,j=1

Tij êiêj = Tij êiêj. (1.2)

We now introduce the inner product , also known as a scalar prod-
uct or dot product, according to the convention

u · v ≡ uivi. (1.3)

Moreover, we defineu and v to be the lengths ofu and v, respec-
tively, according to

u ≡ √uiui = |u|; v ≡ √vivi = |v|; (1.4)
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we can identify an angle θ between u and v that we define
according to

u · v ≡ uv cosθ, (1.5)

which corresponds directly to our geometric intuition.
We now introduce the Kronecker δ according to

δij =
⎧⎨
⎩1 if i = j,

0 if i �= j. (1.6)

The Kronecker δ is the indicial realization of the identity matrix.
It follows, then, that

êi · êj = δij, (1.7)

and that
δii = 3. (1.8)

This is equivalent to saying that the trace, that is, the sum of
the diagonal elements, of the identity matrix is 3. An important
consequence of Eq. (1.7) is that

δij êj = êi. (1.9)

A special example of these results is that we can now derive the
general scalar product relation (1.3), namely,

u · v = uiêi · vj êj = uivj êi · êj = uivjδij = uivi, (1.10)

by applying Eq. (1.7).
We introduce the Levi-Civita or permutation symbol εijk in

order to address the vector product or cross product . In partic-
ular, we define it according to

εijk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i j k are an even permutation of 1 2 3,
−1 if i j k are an odd permutation of 1 2 3,
0 if any two of i, j, k are the same.

(1.11)

We note that εijk changes sign if any two of its indices are inter-
changed. For example, if the 1 and 3 are interchanged, then the
sequence 1 2 3 becomes 3 2 1. Accordingly, we define the cross
product u× v according to its ith component, namely,

(u× v)i ≡ εijkujvk, (1.12)

or, equivalently,

u× v = (u× v)iêi = εijkêiujvk = −(v × u). (1.13)
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It is observed that this structure is closely connected to the defi-
nition of the determinant of a 3×3 matrix, which emerges from
expressing the scalar triple product

u · (v ×w) = εijkuivjwk, (1.14)

and, by virtue of the cyclic permutivity of the Levi-Civita symbol,
demonstrates that

u · (v ×w) = v · (w × u) = w · (u× v). (1.15)

The right-hand side of Eq. (1.14) is the determinant of a matrix
whose rows correspond to u, v, and w.

Indicial notation facilitates the calculation of quantities such
as the vector triple cross product

u× (v ×w) = u× εijkêivjwk = εlmiêlumεijkvjwk

= (εilmεijk)êlumvjwk. (1.16)

It is necessary to deal first with the εilmεijk term. Observe, as
we sum over the i index, that contributions can emerge only if
l �= m and j �= k. If these conditions both hold, then we get a
contribution of 1 if l = j and m = k, and a contribution of −1 if
l = k and m = j. Hence, it follows that

εilmεijk = δ�jδmk − δlkδmj. (1.17)

Returning to (1.16), we obtain

u× (v ×w) = (δljδmk − δlkδmj)êlumvjwk

= êlvlumwm − êlwlumvm
= v(u ·w)−w(u · v), (1.18)

thereby reproducing a familiar, albeit otherwise cumbersome to
derive, algebraic identity. Finally, if we replace the role of u in
the triple scalar product (1.18) by v ×w, it immediately follows
that

(v ×w) · (v ×w) = |v ×w|2 = εijkvjwkεilmvlwm

= (δjlδkm − δjmδkl)vjwkvlwm

= v2w2 − (v ·w)2 = v2w2 sin2 θ, (1.19)

where we have made use of the definition for the angle θ given
in (1.5).
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The Kronecker δ and Levi-Civita ε permutation symbols sim-
plify the calculation of many other vector identities, including
those with respect to derivative operators. We define ∂i accord-
ing to

∂i ≡ ∂
∂xi

, (1.20)

and employ it to define the gradient operator ∇, which is itself
a vector:

∇ = ∂iêi. (1.21)

Another notational shortcut is to employ a subscript of “, i” to
denote a derivative with respect to xi; importantly, a comma “,”
is employed together with the subscript to designate differenti-
ation. Hence, if f is a scalar function of x, we write

∂f
∂xi

= ∂if = f,i; (1.22)

but if g is a vector function of x, then we write

∂gi
∂xj

= ∂jgi = gi,j. (1.23)

Higher derivatives may be expressed using this shorthand as
well, for example,

∂2gi
∂xj∂xk

= gi,jk. (1.24)

Then, the usual divergence and curl operators become

∇ · u = ∂iui = ui,i (1.25)

and

∇× u = εijkêi∂juk = εijkêiuk,j. (1.26)

Our derivations will employ Cartesian coordinates, primarily,
since curvilinear coordinates, such as cylindrical and spherical
coordinates, introduce a complication insofar as the unit vec-
tors defining the associated directions change. However, once we
have obtained the fundamental equations, curvilinear coordin-
ates can be especially helpful in solving problems since they help
capture the essential geometry of the Earth.
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1.2 Cylindrical and Spherical Geometry

Two other coordinate systems are widely employed in geo-
physics, namely, cylindrical coordinates and spherical coordin-
ates. As we indicated earlier, our starting point will always be the
fundamental equations that we derived using Cartesian coordin-
ates and then we will convert to coordinates that are more “nat-
ural” for solving the problem at hand. Let us begin in two dimen-
sions with polar coordinates (r , θ) and review some fundamen-
tal results.

As usual, we relate our polar and Cartesian coordinates ac-
cording to

x = r cosθ
y = r sinθ, (1.27)

which can be inverted according to

r =
√
x2 +y2

θ = arctan (y/x). (1.28)

Unit vectors in the new coordinates can be expressed

r̂ = cosθx̂ + sinθŷ

θ̂ = − sinθx̂ + cosθŷ. (1.29)

We recall how to obtain the various differential operations, such
as the gradient, divergence, and curl, by using the chain rule of
multivariable calculus. Suppose that f is a scalar function of x
and y , and we wish to transform its Cartesian derivatives into
derivatives with respect to polar coordinates. From the chain
rule, it follows that

∂f
∂x

= ∂r
∂x

∣∣∣∣
y

∂f
∂r

∣∣∣∣
θ
+ ∂θ
∂x

∣∣∣∣
y

∂f
∂θ

∣∣∣∣
r
= cosθ

∂f
∂r

− sinθ
r

∂f
∂θ
, (1.30)

where the vertical bar followed by a subscript designates the
variable or variables that are held fixed. In like fashion, we can
derive

∂f
∂y

= sinθ
∂f
∂r

+ cosθ
r

∂f
∂θ
. (1.31)

Finally, we can obtain the Laplacian of a scalar quantity in two
dimensions, ∇2, defined according to

∇2f ≡∇ ·∇f = ∂2f
∂x2

+ ∂
2f
∂y2

= 1
r
∂
∂r

(
r
∂f
∂r

)
+ 1
r 2

∂2f
∂θ2

. (1.32)
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Integrals in two dimensions require the transformation of dif-
ferential area elements from dx dy to r dθ dr . Therefore, the
integral of f over some area A can be expressed equivalently as

∫
A
f(x,y)dx dy =

∫
A
f(x1, x2)dx1 dx2 =

∫
A
f(x)dA

=
∫
A
f(x)d2x =

∫
A
f(r , θ)r dr dθ, (1.33)

where the areas of integration are kept the same and integration
over two variables is implicit.

We now move on to review three-dimensional geometry where-
in polar coordinates become either cylindrical or spherical polar
coordinates. We begin with cylindrical coordinates, which now
introduce the third or z dimension. Accordingly, we observe that
the Laplacian becomes

∇2f = 1
r
∂
∂r

(
r
∂f
∂r

)
+ 1
r 2

∂2f
∂θ2

+ ∂
2f
∂z2

, (1.34)

where we assume that r is measured in the x-y plane, that
is, it is not the radial distance from the origin to the point in
question. Suppose, as before, that g is a vector function and
we wish to obtain its divergence and curl. We will designate
its components in the cylindrical coordinate system (r , θ, z) by
(gr , gθ, gz). These can be calculated directly by taking projec-
tions of (f1, f2, f3) ≡ (fx, fy, fz) onto the (r , θ, z) directions.
The z direction requires no elaboration. However, we note that

gr = cosθgx + sinθgy
gθ = − sinθgx + cosθgy (1.35)

and

gx = cosθgr − sinθgθ
gy = sinθgr + cosθgθ. (1.36)

With these results in hand, we can show that the divergence of
g becomes

∇ · g = 1
r
∂
∂r
(rgr )+ 1

r
∂gθ
∂θ

+ ∂gz
∂z

, (1.37)
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where r̂, θ̂, and ẑ are unit vectors in the associated directions.
Similarly, we write the curl of g as

∇× g = 1
r

{[
∂gz
∂θ

− ∂(rgθ)
∂z

]
r̂ +

[
∂gr
∂z

− ∂gz
∂r

]
r θ̂

+
[
∂(rgθ)
∂r

− ∂gr
∂θ

]
ẑ
}
. (1.38)

Finally, the integral over some volume V of a scalar function f
can be written equivalently as∫

V
f (x,y, z)dx dy dz =

∫
V
f (x1, x2, x3)dx1 dx2 dx3

=
∫
V
f (x)dV =

∫
V
f (x)d3x

=
∫
V
f (r , θ, z)r dr dθ dz. (1.39)

This concludes our summary of cylindrical coordinates.
We now adopt spherical coordinates (Figure 1.1) according to

x = r sinθ cosϕ
y = r sinθ sinϕ
z = r cosθ, (1.40)

which can be inverted according to

r =
√
x2 +y2 + z2

θ = arccos(z/r) = arccos
(
z/
√
x2 +y2 + z2

)
ϕ = arctan (y/x). (1.41)

Without elaboration, we list here some essential results.

1. Unit vector relationships, from which gr , gθ, and gϕ can
also be extracted:

r̂ = sinθ cosϕx̂ + sinθ sinϕŷ + cosθẑ

θ̂ = cosθ cosϕx̂ + cosθ sinϕŷ − sinθẑ
ϕ̂ = − sinϕx̂ + cosϕŷ. (1.42)

We note, as a check, that all three of these unit vectors are
of unit length and are mutually orthogonal.

2. Gradient of a scalar f :

∇f = ∂f
∂r
r̂ + 1

r
∂f
∂θ
θ̂+ 1

r sinθ
∂f
∂ϕ

ϕ̂. (1.43)
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(x,y,0)

(x,y,z)

x

y

θ

θ

θ

ϕ

ϕ

ϕ

r

r

Figure 1.1. Spherical coordinates.

3. Laplacian of a scalar f :

∇2f = 1
r 2 sinθ

{
sinθ

∂
∂r

(
r 2 ∂f
∂r

)

+ ∂
∂θ

(
sinθ

∂f
∂θ

)
+ 1

sinθ
∂2f
∂ϕ2

}
. (1.44)

Note that the Laplacian of vector quantities will differ from
the above due to the dependence of the projected compo-
nents on the coordinates.

4. Divergence of a vector g:

∇ · g = 1
r 2 sinθ

[
sinθ

∂(r 2gr)
∂r

+ r ∂(sinθgθ)
∂θ

+ r ∂gϕ
∂ϕ

]
.

(1.45)

5. Curl of a vector g:

∇× g = 1
r 2 sinθ

{[∂(r sinθgϕ)
∂θ

− ∂(rgθ)
∂ϕ

]
r̂

+
[
∂gr
∂ϕ

− ∂(r sinθgϕ)
∂r

]
r θ̂

+
[
∂(rgθ)
∂r

− ∂gr
∂θ

]
r sinθϕ̂

}
. (1.46)

6. Volume integral of a scalar f :∫
V
f (x)d3x =

∫
V
f (r , θ,ϕ)r 2 sinθ dr dθ dϕ. (1.47)
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We will now review some of the integral relations involving vec-
tor quantities.

1.3 Theorems of Gauss, Green, and Stokes

We wish to present some familiar results from integral calculus.
We will not provide proofs but will present a brief sketch as to
how they can be obtained. In Figure 1.2, we depict the relevant
geometry.

V

S

S

P

C

x3

x1

x2

n̂

'

Figure 1.2. Geometry of volume and surface.

We denote by V the volume under consideration, and S denotes
the surface of that volume. We identify a point P on the surface
of that volume, and show by an arrow the unit vector n̂ emerging
out from that surface. Finally, we draw a closed curve C on that
surface that contains a surface area S′. We denote by g a vec-
tor function and by f and h two different scalar functions. We
assume that f , g, and h all go to zero as our distance from the
origin goes to infinity. As before, we denote surface and volume
elements by d2x and d3x, respectively.

Gauss’s theorem can be expressed by∫
V
∇ · g d3x =

∫
S
g · n̂d2x. (1.48)

This result can be proved by subdividing the volume V into a set
of cubes, going to the limit that the sides of the cubes become


