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FOREWORD

In this paper a "cyclic model" will mean a compact 

Lorentz manifold with the property that all its null-geodesics 

are periodic. Such a model is cyclic in the sense that every 

space-time event gets replicated infinitely often; it has an 

infinite number of antecedents with identical "pasts" and 

"futures". We should warn the non-expert that this is not what 

relativists usually mean by cyclicity. This term is almost 

always used to describe periodic solutions of Einstein’s

equations. In (2+1)-dimensions this implies that the metric

involved is conformally flat; and, as we will see in §1 1, this

is practically incompatible with cyclicity in our sense.

We will call a Lorentz metric all of whose null-geodesics 

are periodic a Zollfrei metric. (For the etymology of this 

term, see §1 .) Notice that the property of being Zollfrei is 

conformally invariant. This is because two Lorentz metrics 

have the same null-geodesics if they differ by a conformality 

factor. (Another way of stating this fact is that the trajec

tories of light rays are independent of the metric structure of 

space-time but only depend on its causal structure: i.e., the 

specification of the future of every space-time event.)
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4 FOREWORD

The Zollfrei problem is interesting even in dimension 2 ; 

in fact, as a warm-up for the problem in dimension 3 we will 

briefly describe what happens in dimension 2 :

Theorem. Let 0 be the standard Zollfrei metric on 
can

S^xS^; i.e., the metric, d0  ̂ d0 2 > where 0  ̂ and 02 are the

standard angle variables on the first and second factors. Let

(X,#) be any oriented Zollfrei two-fold. Then there exists a

covering map 1 : X -> S^xS^ such that and g are
can

conformally equivalent

Proof: First of all notice that every oriented compact

1 1
Lorentzian two-fold has to be diffeomorphic to S xS since 

its Euler characteristic is zero. Now suppose that X is a 

compact Lorentzian two-fold all of whose null-geodesics are 

periodic. The null-cone at p e X consists of two lines in 

Tp (See figure.)

?2

so the conformal geometry of X is completely described by a 

pair of tranverse line element fields. Let and v^ be 

vector fields defining these line element fields. By assump

tion the integral curves of v^ and ^  are aH  closed.
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Choose an oriented curve, 7p  which intersects each integral 

curve of v^ transversally. (This is always possible. See 

[41], page 9.) Let p be the intersection number of 7  ̂ with 

the trajectory of v^ through x. It is clear that this 

number is independent of x. Thus 7  ̂ has to intersect each 

trajectoryVLn exactly p points since the orientation numbers 

at the points of intersect have to be all of the same sign.

(See figure.)

Suppose in particular that x is on 7 .̂ Let f(x) be the

next point at which the trajectory through x intersects 7 .̂

The map f: 7  ̂ -> 7  ̂which sends x to f(x) is a diffeo-

2 T) 1
morphism of 7 ,̂ and the points, x, f(x), f (x),...,f^ (x),

are the distinct points where the trajectory through x inter

sects 7 .̂ Thus f defines a free action of the finite cyclic

group, Z , on 7 .̂ In particular there exists a covering map

7l —  S1

whose fibers are the Z orbits. Now extend 6, to all of X
p Y1

by associating to the point x e X the orbit in which the
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trajectory through x intersects 7 .̂ Notice that the level 

curves of ^  are identical with the integral curves of

Next choose a cycle, ?2 ’ *n ^ which intersects each 

integral curves of v^ transversally and repeat this argument. 

Let <j)2 : X S* be the analogue of the mapping, for the

^2 trajectories, and let

<j>: X S t s 1

be the product of ^  and leave it for the reader to

convince himself that <j> is a covering map and that
can

is conformally equivalent to g. Q.E.D.

An easy corollary of this theorem is that every oriented

9
Zollfrei two-fold is of the form 1R /L, L being a rational 

lattice subgroup of 1R and the null-geodesics being the 

projections of the lines parallel to the x and y axes.

Lets next turn to the Zollfrei problem in dimension 

three. We pointed out above that for a compact oriented

two-manifold to be a Lorentz manifold it has to be diffeo-

morphic to T . Unfortunately the fact that a compact 

3-manifold, M, is a Lorentz manifold is no constraint at all

on the topology of M. (The only topological obstruction to

the existence of a Lorentz structure on M is the vanishing of 

its Euler characteristic, which is automatic in dimension
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three.) We suspect, however, that for M to be Zollfrei it 

must have a very simple topological structure. To be more 

specific, Thurston's classification of three-dimensional 

geometries suggests four obvious possibilities for the diffeo- 

type of M and we suspect these are the only possibilities.

We recall that a geometry for Thurston is a simply connected 

homogeneous space of the form G/H where G is a connected 

Lie group and H a compact subgroup. Thurston calls a compact 

manifold geometrizable if it is universal cover is such a 

space. He has conjectured that all three-manifolds can be 

obtained from the geometrizable ones by simple topological 

operations like "connected sum." The three-dimensional 

geometries are easy to classify and turn out to be eight in 

number; so every geometrizable three-manifold belongs to one of 

eight distinct categories. Our conjecture is tha the Zollfrei 

examples are all geometrizable and belong to the simplest of

p
these eight categories, namely S xIR, with structure group,

2
G = S0(3)x[R. The compact manifolds with S xIR as universal

2 i
cover are just four in number: S xS and the three spaces

2 1
with S xS as double cover corresponding to the three

2 i
involutions of S xS :

0

a)

m )

(x,y,z,t) — > (-x,-y,-z,t) 

(x,y,z,t) — • (-x,-y,-z,t+?r) 

(x,y,z,t) — • (-x,-y,z,t+jr).
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(See [34], page 458). All of these spaces have Zollfrei 

metrics which are covered by the standard Einstein metric,

(dx) 2 + (dy) 2 + (dz) 2 - (dt)2 , on S2 xlR. We will henceforth 

call metrics of this type standard Zollfrei metrics; so our 

conjecture can be reformulated in the form:

Conjecture. Every Zollfrei manifold in dimension three has the 

same diffeotype as one of the standard examples.

A somewhat safer conjecture is that this conclusion is 

true with the additional hypothesis that the universal cover of 

M satisfies the causality condition (i.e., has no closed 

space-like or time-like curves. See [29], page 407. Incident

ally, for the Floquet theory, which we will describe below, 

this property is highly desirable.)

If the above conjecture were true, the natural place to 

look for Zollfrei metrics in dimension three would be in the 

vicinity of the standard models. In fact an obvious question 

to ask is: Do the standard models admit non-trivial "Zollfrei

deformations"?

This question will occupy us for the next 150 pages. Ve 

will, for the most part, concentrate on the simplest and most 

symmetric standard model, the conformal compactification of 

Minkowski three space, which has the toplogy of the second 

space on the list above. Ve will henceforth denote this model
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It would be interesting to develop a deformation theory 

along the lines of this monograph for some of the other 

standard models; and, in fact, we hope to do so sometime in the 

future. Particularly intriguing is the third space on the 

list, above. This space is diffeomorphic to the connected sum
Q

of (RP with itself and is the only geometrizable three-

manifold which is a connected sum ([34], page 457. It is quite

a challenge, by the way, to describe the Zollfrei metric of 

3 3
(RP #IRP as a "connected sum" of metrics on the individual 

IRP3,s .)

There are interesting cyclicity phenomena in dimension 

three which we unfortunately won't have time to pursue in this 

article. We will, however, briefly describe the most bizarre 

of these: One of the eight geometries of Thurston is the

universal cover of SL(2,R). (This geometry plays an important 

role in the study of Seifert fiber spaces. See [24].) From 

the Killing form on the Lie algebra of SL(2,R) one gets a 

bi-invariant Lorentz metric on SL(2,R) with the property that 

all time-like geodesics are periodic. The null-geodesics on 

the other hand are not periodic. Compact examples of this 

phenomenon can be obtained by quotienting SL(2,(R) by a 

discrete co-compact subgroup. (See [24] for details.)

by M2 h . (See §2.) We will show in §12 that it has lots of

non-trivial Zollfrei deformations.non-trivial Zollfrei deformations.

by M9 1. (See §2.) We will show in §12 that it has lots of
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In this article we won’t, for the most part, discuss 

Zollfrei metrics in dimension greater than three. This is not 

because this problem is uninteresting but because it seems to 

be much harder to find examples. (Some examples do exist: 

compactified Minkowski n-space, SnxS\ CPn xS^ etc. More 

generally if M is any of the n-dimensional SO(n)-invariant 

Zoll manifolds constructed by Weinstein in [2], MxS is an 

example.) It is not unlikely that other methods than ours (for 

instance twistorial methods) will yield a larger supply of 

examples.

Having given some indication of the contents of this 

monograph we will say a few words about our motives for writing 

it. One of our main motives is the flickering (and probably 

unwarranted) hope that there are interesting solutions of 

Einstein's equations in (3+1) dimensions associated with the 

cyclic models described above. More explicitly the standard 

M2  ̂ is what is left of the anti-deSitler universe after it 

undergoes gravitational collapse. We suspect that there may be 

interesting solutions of Einstein’s equations in (3+1) dimen

sions which are related in the same way to cyclic deformations 

of M2 The evidence for this is unfortunately still rather 

skimpy: First of all, as we will see in §1 2, the solutions of

the linearized Einstein equations on M^  ̂ (aka "free gravi

tons") are in one-one correspondence with the infinitesmal 

cyclic deformations of M9 1. Secondly, there are methods,
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developed independently by Lebrun and by Fefferman and Graham, 

for putting (3+1)-dimensional Einstein "collars11 on (2+1)- 

dimensional conformal spaces, which are particularly well 

adapted to (2+1)-dimensional cyclic models in our sense. (See 

the comments at the end of §15.)

Our second motive for writing this monograph is more 

defensible, at least on mathematical ground. Namely, as we 

will see below, Zollfrei manifolds turn out to have lots of 

interesting non-local conformal invariants. To construct these 

invariants we make use of some ideas of Paneitz and Segal of 

which we will give a short description here. (More details 

will be provided in §18.) Let M be a compact manifold, □ a 

differential operator on M and M the universal cover of M. 

Corresponding to □ is a differential operator on M which we 

will denote by □. It is clear that the action of the funda

mental group of M on M leaves □ fixed; hence there is a 

canonical representation of the fundamental group of M on the 

space of solutions of the equation 6 = 0 . A classical example 

of this situation is Hill's equation

— <r + q(i) - □ - o
dt

on the circle (i.e. q(t) = q(t + 2tt).) The deck transforma

tion, a: t -» t+2x, acts on the two dimensional space of solu

tions of 6 = 0 and the two-by-two matrix, A(<r), representing
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a is the classical Floquet matrix. Paneitz and Segal point 

out that if M is a compact space— time and □ is a confor

mally invariant differential operator, the space of solutions 

of □ will very often be a fairly manageable space, (e.g. 

Hilbertizable). They also show that the Floquet representation 

on this space describes what is traditionally referred to as 

the "scattering phenomena" associated with □. (See [30],

[31], [21] and [37].)

We will review the theory of these Floquet operators in 

part five and will show that if M is Zollfrei they have the 

form

eiaI + K.

Here a is an integral multiple of x/4 and K is a compact 

operator. (Incidentally we will also show that the converse of 

this assertion is true. If the Floquet operators are of this 

simple form M has to be Zollfrei.) In particular for 

Zollfrei manifolds these operators have discrete spectrum; so 

these manifolds have a large number of discrete conformal 

invariants.

It would be nice to relate these invariants to other con

formal invariants of M, for instance the Chern-Simon invariant 

[5], or the invariants studied by Fefferman-Graham [8] and 

Branson and Oersted [3]. At first glance, however, they seem
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to be a good deal more complicated. (We will describe some of 

our efforts to compute these invariants in §19.)

We will conclude this introduction by warning the reader 

about some of the technical complications involved in dealing 

with closed geodesics on Lorentzian manifolds. As was pointed 

out to us by John Beem a closed null-geodesic does not need to 

be complete. The problem is that the following situation can

occur. (In fact it can occur generically. See [1].) Let H be

the Hamiltonian function on T*M defining geodesic flow and 

(P><0 a point on the null-energy surface H = 0. A trajectory 

of geodesic flow whose initial point is (p,£) can return 

after a finite period of time, T, not to the point (p,£) 

itself but to the point (p,A£) with X > 1 . The projection 

of this trajectory onto M will look like a perfectly 

respectable closed null-geodesic. Notice, however, that the 

next circuit which this trajectory makes will go from (p,A£)

to (p,A () in time T/A and the next circuit after that from

2 3 2
(p,A <f) to (p,A ) in time T/A . The ultimate destiny of

this trajectory is clear: It will cease to exist after a

finite period of time.

To avoid this kind of behavior we will categorically 

decree from now on that Zollfrei 4 the trajectories of geodesic 

flow are periodic on the null-energy surface H = 0.

There is another type of pathology which is not quite as

serious as this but which we will rule out to make life simpler
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for ourselves. Namely, it is possible for all trajectories of 

geodesic flow on H = 0 to be periodic, but with some trajec

tories much shorter than the rest. This situation is illus

trated in the figure below:

(7 is the short geodesic and all the others spiral around it 

giving rise to a Seifert fibration of the solid torus).

To avoid this type of behavior we will decree that

Zollfrei => geodesic flow is a fibration (in the usual sense) of

the energy surface, H = 0, by S^'s.

Before we get down to business we would like to express

our appreciation to the many persons who have helped us with 

the preparation of this manuscript. The material on the 

infinitesmal deformations of compactified Minkowski space could 

not have been written without the help of David Vogan. (Our

original version of this material, using spherical harmonics, 

was three times as long as the Harish-Chandra module approach 

described in §9-12.) Similarly the sections on the microlocal 

properties of the x-ray transform,, §14—17, are much better in 

the final manuscript than they were in their original version
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thanks to Richard Melrose's unstinting aid. Other persons with 

whom we discussed the contents of this manuscript and who pro

vided us with valuable suggestions for improving it are John 

Beem, Luis Casian, Michael Eastwood, John Morgan, Bent Oersted, 

Michele Vergne,, Gunther Uhlmann and Alejandro Uribe. Last but 

not least, the stimulus for writing this paper was Irving 

Segal's monograph, [35] (which convinced us that the Einstein 

static universe still has to be taken seriously as a 

cosmological model.)



PART I

A RELATIVISTIC APPROACH TO ZOLL PHENOMENA

§1 . A Riemannian metric on a compact manifold is called a

Zoll metric if all of its geodesics are simply periodic of

2 2
period 2i. For instance the standard metric, (dx) , on S

has this property. Seventy— five years ago, Funk wrote a

seminal paper on Zoll two— folds [9] in which he posed the

2 2
following problem: find all Zoll metrics on S which are C

close to the standard one. In particular he proposed an 

algorithm for constructing such metrics: Given a function f 

on S define the Funk transform, f of f to be the 

function

f(p) = fds

7p

p
where 7^ is the hemispherical circle on S obtained by

situating p at the north pole. It is easy to see that f = 0

if and only if f is odd, i.e. f(-p) = —f(p) for all

p e S . Starting with an odd function, fq , Funk shows how to

construct a sequence of functions, f1 ,f2 ’* * * ? by solving 

recursively integral equations of the form

16
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and conjectures, first of all, that the series

(*) ft = I fi W tl

converges for all t in a sufficiently small interval about

2
t = 0, and, secondly, that (l+f^)(dx) is a Zoll metric for 

all t on this interval.

Given the convergence of (*) the second assertion is 

quite plausible; but it is not known to this day whether (*) 

converges except for very special choices of fg. (In fact it 

seems unlikely that it does.) There is, however, an updated 

version of the Funk algorithm involving Nash—Moser techniques, 

for which (*) does converge, and that gives essentially the 

same result as that which Funk had hoped to get from the scheme 

above. (For a survey of what is known about Zoll metrics and 

the Funk problem, see [2].)

2
Now suppose we are given a Riemann metric, (d?) , on

2 \
S . Let t be the standard angle variable on S and con

sider the pseudometric of signature (2+1):

(i.i) (d7) 2 - (dt) 2 ,


