LECTURES ON
 DIFFERENTIAL EQUATIONS

SOLOMON LEFSCHETZ

ANNALS OF MATHEMATICS STUDIES

LECTURES ON DIFFERENTIAL EQUATIONS

By

SOLOMON LEFSCHETZ

Princeton University Press
Princeton, New Jersey

Published by Princeton University Press

41 William Street Princeton, New Jersey 08540

Copyright 1946 by Princeton University Press; copyright © renewed 1976 by Princeton University Press

All Rights Reserved
Library of Congress Card No. 1578
ISBN 0-691-08395-9

Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book
Longevity of the Council on Library Resources

Printed in the United States of America

PREFFACE

The subject of differential equations in the large would seem to offer a most attractive field for further study and research. Many hold the opinion that the clessical contributions of Poincaré, Liapounoff and Birkhoff have exhausted the possibilities. This is certainly not the opinion of a large school of Soviet physico mathematicians as the reader will find by consulting N. Minorsky's recent Report on Non-Linear Mechanics issued by the David Taylor Model Basin. In recent lectures at Princeton and Mexico, the author endeavored to provide the necessary background and preparation. The material of these lectures is now offered in the present monograph.

The first three chapters are self-explanatory and deal with more familiar questions. In the presentiation vectors and matrices are used to the fullest extent. The fourth chapter contains a rather full treatment of the asymptotic behavior and stability of the solutions near critical points. The method here is entirely inspired by Liapounoff, whose work is less well known that it should be. In Chapter V there will be found the PoincareBendixson theory of planar characteristics in the large. The very short last chapter contains an analytical treatment of certain non-linear differential equations of the second order, dealt with notably by Liénard and van der Pol, and of great importance in certain applications.

The wuthor wishes to express his indebtedness to Messrs. Richard Bellmin and Jaime Lifshitz for many valuable suggestions ind corrections to this monograph. The responsibility, however, for whatever is still required along that line is wholly the author's.

TABLE OF CONTENTS

Page
Chapter I. SOME PRELIMINARY QUESTIONS 1
§1. Matrices 1
§2. Vector spaces 10
§3. Analytic functions of several variables. 14
Chapter II. DIFFFERENTIAL EQUATIONS 21
§1. Generalities 21
§2. The fundamental existence theorem 23
§3. Continuity properties 30
§4.- Anslyticity properties 34
85. Equations of higher order 37
86. Systems in which the time does not figure explicitly 38
Chapter III. LINEAR SYSTEMS 47
\$1. Various types of linear systems 47
§2. Homogeneous systems 49
§3. Non-homogeneous systems 62
§4. Linear systems with constant coefficients 65
Chapter IV. CRITICAL POINTS AND PERIODIC MOTIONS QUESTIONS OF STABIIITY 72
§1. Stability 72
\$2. A preliminary lemma 82
§3. Solutions in the neighborhood of a critical point (finite time) 84
§4. Solutions in the neighborhood of u critical point (infinite time) for systems in which the time does not figure explicitly 91
85. Critical points when the coefficients are periodic 109
Chapter V. TWO DIMENSIONAL SYSTEMS 117
§1. Generulities 117
§2. Linear homogeneous systems 119
83. Critical points in the general case 125
84. The index in the plane 133
§5. Differential systems on a sphere 142
§6. The limiting sets and limiting behavior of characteristics 162
Chapter VI. APPLICATION TO CERTAIN EQUATIONS OF THE SECOND ORDER 185
§1. Equations of the electric circuit 185
§2. Lienard's equation 188
83. Application of Poincare's method of small parameters 194
§4. Existence of periodic solutions for cer- tain differential equations 204
Index 210

CHAPIER I

SOME PRELTMINARY QUESTIONS

§1. MATRICES

1. The reader is assumed familiar with the elements of matrix theory. The matrices $\left\|a_{i j}\right\|,\left\|x_{i j}\right\|, \ldots$, are written A, X, \ldots. The transpose of A is written A^{\prime}. The matrix diag $\left(A_{1}, \ldots, A_{r}\right)$ is

$$
\left\|\begin{array}{lll}
A_{1}, & 0, & \cdots \\
0, & A_{2}, & \\
& & A_{r}
\end{array}\right\|
$$

where the A_{1} are square matrices and the zeros stand for zero matrices. Noteworthy special case: diag(a_{1}, \ldots, a_{n}) denotes a square matrix of order n with the scalars a_{1} down the main diagonal and the other terms zero. In particular if $a_{1}=\ldots=a_{n}=1$, the matrix is written F_{n} or E and called a unit-matrix. The terms of E_{n} are written $\sigma_{1 j}$ and called Kronecker deltas.
2. Suppose now A square and of order n. The determinant of A is denoted by $|A|$. When $|A|=0$, A is said to be singular. A non-singular matrix A possesses an inverse A^{-1} which satisfies $A A^{-1}=A^{-1} A=E$. The trace of a square matrix A written $\operatorname{tr} A$, is the expression $\sum a_{11}$. If $A^{n}=0, A$ is called nilpotent. We recall the relations

$$
(A B)^{-1}=B^{-1} A^{-1} \quad\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1},
$$

where A, B are non-singular.
If $f(\lambda)=a_{0}+a_{1} \lambda+\ldots+a_{r} \lambda^{r}$ then $a_{0} E+a_{1} A+\ldots$ $+a_{r} A^{r}$ has a unique meaning and is written $f(A)$. The polynomial $\phi(\lambda)=|A-\lambda E|$ is known as the characteristic poly-
nomial of A, and its roots as the characteristic roots of A. (See Theorem (3.5) below.)
3. (3.1) Two real [complex] square matrices A, B of same order n are called similar in the real [complex] domain if there can be found a non-singular square real [complex] matrix P of order n such that $B=P A P^{-1}$. This relation is clearly an equivalence. For if we denote it by \sim then the relation is
symmetric: $A \sim B \rightarrow B \sim A$, since

$$
B=P A P^{-1} \Longrightarrow A=P^{-1} B P
$$

reflexive: $A \sim A$, since $A=E A E^{-1}$,
transitive: $A \sim B, B \sim C \rightarrow A \sim C$. For if $A=P B P^{-1}$, $B=Q C Q^{-1}$ then $A=P Q C Q^{-1} P^{-1}=(P Q) C(P Q)^{-1}$.
(3.2) If $A \sim B$ and $f(\lambda)$ is any polynomial then $f(A)$ $\sim f(B)$. Hence $f(A)=0 \rightarrow f(B)=0$.

For if $B=P A P^{-1}$ then $B^{r}=P A^{r} P^{-1}, k B=P(k A) P^{-1}$, and $P\left(A_{1}+A_{2}\right) P^{-1}=P A_{1} P^{-1}+P A_{2} P^{-1}$.
(3.3) Similar matrices have the same characteristic. polynomial.

For $B=P A P^{-1} \rightarrow B-\lambda E=P(A-\lambda E) P^{-1}$, and therefore also $|B-\lambda E|=|A-\lambda E|$.

Since the characteristic polynomials are the same, their coefficients are also the same. Only two are of interest: the determinants, manifestly equal, and the traces. If $\lambda_{1}, \ldots, \lambda_{n}$ are the characteristic roots then a ready calculation jields

$$
\sum \lambda_{1}=\sum a_{11}=\operatorname{tr} A
$$

Therefore
(3.4) Similar matrices have equal traces.

For the proof of the following two classical theorems the reader is referred to the standard treatises on the subject:
(3.5) Theorem. If $\phi(\lambda)$ is the characteristic polynomial of A, then $\phi(A)=0$.
(3.6) Fundamental Theorem. Every complex square matrix A is similar in the complex domain to a matrix of the form diag (A_{1}, \ldots, A_{r}) where A_{1} is of the form

with λ_{j} one of the characteristic roots. There is at least one A_{i} for each λ_{j} and if λ_{j} is a simple root then there is only one $A_{1}=\mid \lambda_{j} \|$. Hence if the characteristic roots λ_{j} are all distinct, A is similar to diag $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot$

By way of illustration when $n=2$ and $\lambda_{1}=\lambda_{2}$, we have the two distinct types

$$
\left\|\begin{array}{cc}
\lambda, & 0 \\
0, & \lambda
\end{array}\right\|, \quad\left\|\begin{array}{cc}
\lambda, & 0 \\
1, & \lambda
\end{array}\right\|
$$

(3.7) Real Matrices. When A is real the λ_{1} occur in conjugate pairs $\lambda_{j}, \bar{\lambda}_{j}$ and hence the matrices A_{1} occur likewise, in conjugate pairs A_{j}, \bar{A}_{j} where \bar{A}_{j} is like A_{j} with $\bar{\lambda}_{j}$ instead of λ_{j}. Thus they may be disposed into a sequence $A_{1}, \ldots, A_{k}, \bar{A}_{1}, \ldots, \bar{A}_{k}, A_{2 k+1}, \ldots, A_{s}$ where the $A_{2 k+1}$ correspond to the real λ_{j}. We will then say that the canonical form is real.
4. Limits, Series. (4.1) Let $\left\{A_{p}\right\}, A_{p}=\| a_{i j}^{p} \mid$ be a sequence of mstrices of order n such that $\dot{a}_{i j}=11 m\left\{a_{i j}^{p}\right\}$ exists for every pair $1, j$. We then apply the customary "limit" terminology to the sequence $\left|A_{p}\right|$ and call. $A=$ $\left\|a_{1 j}\right\|$ its limit. As a consequence we will naturally say that the infinite series $\sum A_{p}$ is convergent if the n^{2} series

$$
\begin{equation*}
a_{i j}=\sum a_{i j}^{p} \tag{4.2}
\end{equation*}
$$

are convergent and the sum of the series is by definition the matrix $A=\left\|a_{1 j}\right\|$.

If the $a_{i j}^{p}$ are functions of a parameter t and the n.
series $\sum a_{1 j}^{p}$ are uniformly convergent as to t over a certain range then $\sum A_{p}$ is said to be uniformly convergent as to t over the same range.
(4.3) Let us apply to the A_{p} 's the simultaneous operation $B_{p}=P A_{p} Q$ where P, Q are fixed. If we set

$$
s_{i j}^{m r}=\sum_{p=m+1}^{r} a_{i j}^{p}
$$

then clearly the corresponding $T_{i j}^{m r}$ for the B's is related to the $s_{i j}^{m r}$ by

$$
T_{1 j}^{m r}=\sum p_{i h} s_{h k}^{m r} q_{k j} .
$$

Now a n.a.s.c. of convergency of (4.2) may be phrased thus: for every $\varepsilon>0$ there is an N such that $m>N \Rightarrow$ $\left|s_{i j}^{m r}\right|<\varepsilon$ whatever r. If $\alpha=\sup \left\{p_{i n}, q_{k j}\right\}$ then

$$
\sum_{i, j}\left|T_{i j}^{m r}\right|\left\langle n^{2} \alpha^{2} \sum_{i, j}\right| s_{i j}^{m r} \mid
$$

Hence the convergence of (4.2) implies the convergence of

$$
\sum B_{p}=\sum P A_{p} Q
$$

whose limit is clearly $B=P A Q$. In particular
(4.4) If $\left\{A_{p}\right\}$ converges to A and if $B_{p}=P A_{p} P^{-1}$
then $\left\{B_{p}\right\}$ converges to $B=P A P^{-1}$.
5. Consider a power series with complex coefficients

$$
\begin{equation*}
f(z)=a_{0}+u_{1}^{\prime} z+a_{2} z^{2}+\ldots \tag{5.1}
\end{equation*}
$$

whose radius of convergence $p>0$. If

$$
\begin{equation*}
X=\left\|x_{i j}\right\| \tag{5.2}
\end{equation*}
$$

is a square matrix of order n we may form the series

$$
\begin{equation*}
a_{0} E+a_{1} X+a_{2} X^{2}+\cdots \tag{5.3}
\end{equation*}
$$

and if it converges its limit will be written $f(X)$.
(5.4) Suppose that $X=\operatorname{diag}\left(X_{1}, X_{2}\right)$. If $g(z)$ is a scalar polynomial then $g(X)=$ diag $\left(g\left(X_{1}\right), g\left(X_{2}\right)\right)$. Hence in this case (5.3) converges when and only when the same series in the X_{1} converge and its limit is then $f(X)=$ diag ($f\left(X_{1}\right), f\left(X_{2}\right)$).
(5.5) Theorem. Sufficient conditions for the convergence of (5.3) are that X is nilpotent or else that its characteristic roots are all less than p in absolute value.

Whatever the radius of convergence, when X is nilpotent the series is finite and hence evidently convergent. In the general case, X is similar to a mstrix of the type described in (3.6). Remembering (5.4) we only need to consider the type (3.6.1). In other words, we may assume that the matrix is (3.6.1) itself. Thus λ is its sole characteristic root and so we will merely have to prove (5.6) If X is (3.6.1) and $|\lambda|<p$ then (5.3) is convergent.

Let us set

$$
Z=\left\|\begin{array}{lllll}
0 & & & & \tag{5.6.1}\\
1 & 0 & & & \\
0 & 1 & \ddots & &
\end{array}\right\|
$$

We verify by direct multiplication that Z^{r} is obtained by moving the diagonal of units so that it starts at the term in the $(r+1)^{\text {st }}$ row and first column (the term $z_{r+1,1}$). Hence
(5.6.2)

$$
z^{n}=0
$$

Now $X=\lambda E+Z$, and since E comutes with every matrix:
(5.6.3) $X^{p}=\lambda^{p} E+\frac{p}{1!} \lambda^{p-1} Z+\cdots+\left({ }_{n-1}^{p} \lambda^{p-n+1} z^{n-1}\right.$

Hence

Since $|\lambda|<\rho, f(z)$ and all its derivatives converge for $2=\lambda$. Hence $f(X)$ converges. This proves (5.6) and therefore also (5.05).
(5.8) Returning now to the arbitrary matrix X. we note that we can define in particular

$$
e^{X}=E+\frac{X}{1!}+\frac{X^{2}}{2!} \cdots
$$

for every X, and also

$$
\log (E+X)=\frac{X}{1}-\frac{X^{2}}{2}+\ldots
$$

when the characteristic roots are less than one in absolute value.
(5.9) The usual rules for adding, multiplying, differentiating and generally combining series in X hold here also. However those for multiplying series in X by series in Y hold only when X and Y are commutative. Thus we may prove $e^{X+Y}=e^{X} \cdot e^{Y}$ when X and Y commute, but not so in the contrary case.
(5.10) If $f(X)$ converges and $Y=P X P^{-1},|P| \neq 0$, then $f(Y)$ converges also (4.4) and $f(Y)=P(f(X)) P^{-1}$.
6. (6.1) If $|X| \neq 0$ there is a Y such that $e^{Y}=X$.

Since Y need not be unique we do not insist on designating it by $\log X$.

Referring to (5.4) if $X=\operatorname{diag}\left(X_{1}, X_{2}\right)$ and if we can find Y_{1}, Y_{2} such that $X_{1}=e^{Y_{1}}$ then $X=\operatorname{diag}\left(e, e^{Y_{2}}\right)$ and
so $Y=\operatorname{diag}\left(Y_{1}, Y_{2}\right)$ answers the question. Hence as in the proof of (5.5) we need only consider X of the type (3.6.1). Here $|X| \neq 0 \rightarrow \lambda \neq 0$. In the same notations as before $X=\lambda E+Z=\lambda\left(E+\frac{1}{\lambda} Z\right)$. Since Z is nilpotent so is $\frac{1}{\lambda} Z$, and therefore we may define by (5.5) the function

$$
Y_{1}=\log \left(E+\frac{1}{\lambda} Z\right)
$$

By (5.9):

$$
E+\frac{1}{\lambda} Z=e^{Y_{1}}, \quad X=\lambda E+Z=\lambda e^{Y_{1}}
$$

Since $\lambda \neq 0$ we may find a scalar μ such that $\lambda=e^{\mu}$. Then

$$
X=\left(E e^{\mu}\right) e^{Y_{1}}=\left(e^{\mu E}\right) \cdot e^{Y_{1}}=e^{\mu E+Y_{1}}
$$

Therefore $Y=\mu E+Y_{1}$ answers the question.
(6.2) If the series (5.3) for $f(X)$ converges then the determinant
(6.2.1)

$$
|f(X)|=T f^{\prime}\left(\lambda_{j}\right)
$$

Hence

$$
\begin{equation*}
\left|e^{X}\right|=e^{\sum \lambda_{j}}=e^{\operatorname{tr} X}: \tag{6.2.2}
\end{equation*}
$$

Thus $Y=e^{X}$ is never singular, and so it has an inverse Y^{-1}. Now e^{-X} exists likewise and $e^{X} \cdot e^{-X}=e^{-X} e^{X}=E$, so $Y^{-1}=e^{-X}$.

Referring to (3.6) X is similar to a matrix

$$
Y=\left\|\begin{array}{lllll}
\lambda_{1} & & & & \\
\alpha_{12} & \lambda_{2} & \ddots & & \\
& & \ddots & & \\
& & & \ddots & \\
& & \alpha_{n-1, n} & \lambda_{n}
\end{array}\right\|
$$

with terms above the diagonal all zero. The λ_{j} are the characteristic roots each repeated as of ten as its multiplicity. This follows immediately from $|Y-\lambda E|=$ $T T\left(\lambda_{j}-\lambda\right)$.

By (4.4) $f(X) \sim f(Y)$ and so we may replace everywhere X, by Y, i.e. we merely need to prove (6.2) for Y. Now $f(Y)$ is of the same form as Y with λ_{j} replaced by $f\left(\lambda_{j}\right)$. This implies that the $f\left(\lambda_{j}\right)$ are the characteristic roots of $f(Y)$. Since the determinant is the product of the characteristic roots (6.2.1) holds for Y, hence also for X, and the rest follows.
7. (7.1) Matrix functions of scalars. Let

$$
x=\left\|x_{i j}(t)\right\|
$$

be an $m \times n$ matrix whose terms are [real or complex] scalar functions of a [real or complex] variable t differentiable over a certain range R. Under the rules of operation on matrices we have, if Δ denotes increments:

$$
\frac{\Delta X}{\Delta t}=\left|\frac{\Delta x_{1 i}}{\Delta t}\right|
$$

Hence if $\lim \frac{\Delta X}{\Delta t}$ exists it is defined as the derivative of X, written $\frac{d X}{d t}$, and exists over R, its expression being

$$
\frac{d X}{d t}=\left\|\frac{d x_{1 j}}{d t}\right\|
$$

The rules for the derivatives of scalars, for addition and for multiplication by scalars follow as usual. Similar limit arguments yield the definition of the Riemann integral:

$$
Y(t)=\int_{t}^{t} 0 X d t=\left\|\int_{t}^{t} 0 x_{i j} d t\right\|
$$

If the $x_{i j}$ are continuous on the path of integration then evidently

$$
\frac{d Y}{d t}=X .
$$

(7.2) Suppose now that $X(t), Y(t)$ are any two square matrices of the same order, differentiable over the same range R. Then $X Y$ is differentiable over the same range and an elementary argument jields

$$
\begin{equation*}
\frac{d(X Y)}{d t}=X \frac{d Y}{d t}+\frac{d X}{d t} Y \tag{7.3}
\end{equation*}
$$

Care must be taken here to keep X, Y always in the same order. From (7.3) we deduce readily

$$
(7.3 .1) \frac{d\left(x_{1} \ldots x_{r}\right)}{d t}=\sum x_{1} \ldots x_{q-1} \frac{d x_{q}}{d t} x_{q_{+1}} \ldots x_{r}
$$

and therefore

$$
\begin{equation*}
\frac{d x^{r}}{d t}=\sum x^{q-1} \frac{d x}{d t} x^{r-q} \tag{7.3.2}
\end{equation*}
$$

If we differentiate both sides of $X^{-1}=E, X \neq 0$, we obtain

$$
\frac{d\left(X^{-1}\right)}{d t}=-X^{-1} \frac{d X}{d t} X^{-1}
$$

(7.4) Observe explicitly that the application to $1 \times \mathrm{mmatrices}$ yields the derivatives and integrals of vector functions of scalars.
(7.5) If all the $x_{1 j}(t)$ are continuous or analytic at a point or a given set, we will say for convenience that $X(t)$ is continuous or analytic at the same point or on the same set.
(7.6) Let A be a constant square matrix and set
(7.6.1) $X(t)=e^{t A}=e^{A t}=E+\frac{t}{1!} A+\frac{t^{2}}{2!} A^{2}+\cdots$.

By differentiation we obtain

$$
\begin{equation*}
\frac{d X}{d t}=A e^{A t} . \tag{7.6.2}
\end{equation*}
$$

Notice that owing to the form of (7.3.2) we can only prove $\frac{d}{d t} e^{X(t)}=e^{X(t)} \frac{d X}{d t}$, when X and $\frac{d X}{d t}$ commute.

Combining (7.6.2) with (7.3), and setting for convenience $\frac{d}{d t}=D$, we obtain for any matrix X the analogue of the well known elementary relation:
$(D-A) X=e^{A t} \cdot D \cdot e^{-A t} X$.
As an application consider the matrix differential equation

$$
\begin{equation*}
\frac{d x}{d t}=A X, A \text { constant. } \tag{7.8}
\end{equation*}
$$

Owing to (7.7) it reduces to

$$
e^{A t} \cdot D \cdot e^{-A t} X=0 .
$$

Multipliging both sides by $e^{- \text {At }}$ (see 6.2) we have

$$
D e^{-A t} \cdot X=0
$$

and hence $e^{-A t} . X=C$, an arbitrary constant matrix. Hence the complete solution of (7.8) is $X=e^{A t}$. C. We will return to this later.

§2. VECTOR SPACES

8. We will assume familiarity with the first concepts: dimension, base, coordinates relative to a base. When the scalars are all real [complex] the space is said to be a real [complex] vector space. The only vector spaces which we shall encounter are finite dimensional. Let U be such a space. Its vectors will be denoted by an arrow over small latin characters with possible super-
scripts as: $\vec{a}, \vec{x}, \vec{a}^{1}, \ldots$. Let in particular \vec{e}^{1}, $\ldots, \overrightarrow{e^{n}}$ \} be a base for v. If we denote by \vec{x} any element of v then we will have

$$
\begin{equation*}
\vec{x}=\overrightarrow{x_{1}} e^{1}+\ldots+\overrightarrow{x_{n}} \vec{e}^{n} . \tag{8.1}
\end{equation*}
$$

The x_{1} are the coordinates or components of \vec{x}. If we adopt \vec{x}, x_{1} for the arbitrary vectors and their coordinates we will often denote $V^{\text {by }} \mathcal{V}_{x}$. Similarly if say vectors and coordinates were \vec{u}, u_{1} we would write V_{u} for the space. In V_{x} the coordinates of $\overrightarrow{x^{h}}$ will be usually written $x_{i h}$ (exceptionelly and then explicitly stated $x_{h i}$).

The metrization of U_{x} will be done in the customary manner by means of a norm $\mathbb{\|} \vec{x} \|$. We choose here for convenience

$$
\begin{equation*}
\|\vec{x}\|=\sum\left|x_{1}\right| \tag{8.2}
\end{equation*}
$$

and accordingly define the distance in V_{x} as

$$
\begin{equation*}
d\left(x, x^{\prime}\right)=\left\|\left(\vec{x}-\vec{x}^{\prime}\right)\right\|=\sum\left|x_{i}-x_{i}\right| \tag{8.3}
\end{equation*}
$$

As is well known this distance has the usual properties:

$$
\begin{aligned}
& d\left(\vec{x}, \vec{x}^{\prime}\right)=0 \rightarrow \vec{x}=\vec{x}^{\prime} ; \\
& d\left(\vec{x}, \vec{x}^{\prime}\right)=\mathrm{d}\left(\vec{x}^{\prime}, \vec{x}\right) \geq 0 ; \\
& d\left(\vec{x}, \vec{x}^{\prime \prime}\right) \leq \mathrm{d}\left(\vec{x}, \vec{x}^{\prime}\right)+\mathrm{d}\left(\vec{x}^{\prime}, \vec{x}^{\prime \prime}\right) .
\end{aligned}
$$

With this specification of distance V_{x} is turned into a complete metric space which is topologically Euclidean space. We may show in fact that the above distancefunction induces the same topology as the Euclidean distance $\left[\sum\left(x_{1}-x_{1}\right)^{2}\right]^{1 / 2}$. The completeness property of v_{x} implies that every Cauchy sequence has a limit.
(8.4) Let $\left|\vec{e}^{1}\right|$ be a base for V_{x}. A square matrix A of order n defines a linear transformation of V_{x} into itself whereby \vec{x} goes into \vec{x}^{\prime} designated by $A \vec{x}$, and whose
coordinates are given by

$$
\begin{equation*}
x_{i}^{\prime}=\sum a_{1 j} x_{j} \tag{8.4.1}
\end{equation*}
$$

If we identify \vec{x} with the one-colum matrix of its coordinates then $\overrightarrow{A x}$ is merely matrix multiplication.

Consider now a new n-space V_{y} referred to a base $\left\{\vec{f}^{i}\right\}$ and let P be a linear transformation $V_{y} \rightarrow V_{x}$ whereby \vec{y} goes into \vec{x} whose coordinates are given by

$$
x_{i}=\sum p_{i j}{ }_{j}
$$

or in matrix notation $\vec{x}=P \vec{y}$. If \vec{x}^{\prime} goes into \vec{y} then $\vec{x}^{\prime}=P \vec{y}^{\prime}$ and so, $\vec{x}, \vec{x}^{\prime}$ being related as before we have $P_{Y^{\prime}}=A P \vec{y}$. Assuming now P non-singular we will have $\vec{y}^{\prime}=P^{-1} A P \vec{y}$. In other words the transformation of V_{x} into itself by A corresponds to a transformation of \hat{V}_{y} into itself by a matrix $\sim A$. Clearly also every matrix $\sim A$ is related to A in this manner. We may therefore interpret the properties of A invariant under similitude, as those of the transformations which are invariant under a non-singular linear transformation from space to space. (8.5) Let $A \sim \operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$ where the A_{i} are like (3.6.1), and let $\left\{\vec{f}^{i}\right\}$ be the base such that on passing to it A goes into the canonical form. Denote by p_{i} the order of A_{1} and set $\sigma_{1}=\rho_{1}+\ldots!+\rho_{1}$. Let also $A_{1}=\operatorname{diag}\left(0, \ldots, 0, A_{1}, 0, \ldots, 0\right)$. The units $\vec{f}^{\sigma_{1-1}+1}, \ldots, \vec{f}^{\sigma_{1}}$ may be characterized as follows. First they are all amulled by the $A_{j}, j \neq 1$. Then

$$
\begin{align*}
& A_{1} \overrightarrow{\mathrm{f}}^{\sigma_{i-1}+1}=\lambda_{1} \overrightarrow{\mathrm{r}}_{i-1}^{\sigma_{i-1}} \\
& A_{1} \overrightarrow{\mathrm{f}}^{\sigma_{i-1}+h}=\overrightarrow{\mathrm{r}}^{\sigma_{i-1}+h-1}+\lambda_{i} \overrightarrow{\mathrm{f}}^{\sigma_{i-1}+h}, h>1 \tag{8.5.1}
\end{align*}
$$

which provides a complete description.
Suppose in particular A real and among the λ_{j} let there be found r pairs which are complex conjugates which
for convenience we may assume to be ($\lambda_{1}, \bar{\lambda}_{1}$), ..., ($\lambda_{r}, \bar{\lambda}_{r}$) and the rest $\lambda_{2 r+1}, \ldots, \lambda_{n}$ real. If we obtain the vectors \vec{f} for $\lambda_{1}, \ldots, \lambda_{r}$ then their conjugates will do for $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{r}$. The coordinates of a real vector referred to this base will then be $x_{1}, \ldots, x_{r}, \bar{x}_{1}, \ldots$, $\bar{x}_{y}, x_{2 r+1}, \ldots, x_{n}$ where the $x_{2 r+1}$ are real. We will then say that the coordinate system is real.
(8.6) If $\vec{x}(t)$ depends upon t then the derivatives and integrals of $\vec{x}(t)$ may be defined in the usual manner and are written

$$
\frac{d \bar{x}}{d t}, \quad \int_{t_{0}}^{t} \vec{x}(t) d t .
$$

Both are vectors, their components being respectively

$$
\frac{d x_{i}}{d t}, \int_{t_{0}}^{t} x_{i}(t) d t .
$$

Clearly

$$
\frac{d}{d t} \int_{t_{0}}^{t} \vec{x}(t) d t=\vec{x}(t) .
$$

We also note the following useful inequality. Suppose t real and $\|x(t)\|<M$ for $t_{0} \leqq t \leqq t_{1}$. Then

$$
\begin{equation*}
\left\|\int_{t_{0}}^{t_{1}} x(t) d t\right\|<n M\left|t_{1}-t_{0}\right| \tag{8.6.1}
\end{equation*}
$$

(8.7) Let $\vec{y}=\left(y_{1}, \ldots, y_{r}\right)$ be a real or complex vector in some $U_{0^{\prime}}$. Suppose the x_{i} analytic in the y_{j} at $\overrightarrow{\mathrm{y}}^{0}=\left(\mathrm{y}_{1}^{0}, \ldots, \mathrm{y}_{\mathrm{r}}^{0}\right)$, i. e. representable by power series in the J_{j} valid in' a neighborhood of $\overrightarrow{\mathrm{y}}^{0}$ in $\boldsymbol{V}_{\mathrm{y}}$. We will then say: \vec{x} is analytic in \vec{y} at \vec{y}^{0}. This is the prototype of a readily understood terminology used extensively later.
(8.8) In dealing with in dimensional spaces \boldsymbol{U}_{x} it $w i l l$ be convenient to define as a sphere of center $\frac{x_{\hat{x}} 0}{}$ and radius p, written $\mathscr{\ell}\left(x^{0}, \rho\right)$ the set $\left\|\dot{x}-x^{0}\right\|<p$.
(8.9) Frequently besides the vector variables \vec{x}, \vec{y}, \ldots, there will occur a real parameter t referred to as the time, and whose range is the real line L. Instead of V_{x} for instance we shall have a product space $W=$ L $x V_{x}^{x}$ and new spheres $\sum\left(\vec{x}^{0}, t^{0}, p\right)$ defined by $\left\|\vec{x}-\vec{x}^{0}\right\|$ $+\left|t-t^{0}\right|<p$.

The relation of the spheres to open sets, limits, etc., are as in real variables and need not be discussed here.
(8.10) Whenever \mathcal{V}_{x} is two-dimensional it will be convenient to revert to the more usual "spheres", namely the circular regions of Euclidean geometry. As is well known this does not affect the standard concepts of open sets,

§3. ANALYTIC FUNCTIONS OF SEVERAL VARTABLES

9. We shail have repeated occasion to consider analytic functions of several real or complex variables as well as mixed functions analytical in some, but not in all, the variables.
(9.1) Consider first V_{x} complex. Write $\vec{x}=\vec{y}+i \vec{z}$, viz: $x_{j}=y_{j}+1 z_{j}$ for $j=1, \ldots, n$. A function $f(\vec{x})$ is said to be analytic in a region Ω of V_{x} if it has first partial derivatives relative to all y_{j} and z_{j} which are continuous in \vec{y} and \vec{z} at all points of Ω and if it satisfies the Cauchy-Riemann differential equations relative to each pair of y_{j} and z_{j} at all points of Ω. The function f is said to be holomorphic in Ω if it is anslytic and single-valued in $\Omega ; f$ is said to be analytic or holomorphic in a closed set F in ${V_{x}}$ if it is analytic or holomorphic is some neighborhood of F, (some region $工 F$).

A n.a.s.c. for anslyticity in Ω is that f may be expanded in Taylor series around each point $\vec{\xi}$ of Ω. The series will be convergent in a set

$$
J(\vec{\xi}, \alpha):\left|x_{j}-\xi_{j}\right| \cdot\langle\alpha, \quad j=1,2, \ldots, n
$$

which we call conveniently a toroid of center $\vec{\xi}$ and radius α. Moreover α may be chosen such that the toroid is in Ω.
(9.2) Suppose now \mathcal{V}_{x} real and let $\left[\mathcal{U}_{x}\right.$] be its complex extension, i. e. the complex vector space obtained by allowing the coordinates x_{j} to take complex values. A real function $f(\vec{x})$ will be said to be analytic or holomorphic in a region Ω of V_{x} under the following conditions: there exists a region $[\Omega]$ of $\left[\mathcal{V}_{x}\right.$] and a function $[f]$ on $\left[V_{x}\right]$ analytic or holomorphic in $[\Omega]$, and such that: (a) $[\Omega] \supset \Omega$; (b) the values of $[f]$ on Ω are those of f.
(9.3) The definitions just given for the real case may seem indirect. They have however the advantage to guarantee that the following important property holds:
(9.4) Theorem. If a series of real or complex functions Enalytic or holomorphic in a region Ω, is uniformly convergent in Ω, then the limit is analytic or holomorphic in Ω.

For the complex case this is a standard theorem due to Weierstrass (see Osgood II p. 15) and for the real case it is a consequence of our definition.
(9.5) An analytical vector is a vector $\vec{f}(\vec{x})$ whose components $f_{1}\left(x_{1}, \ldots, x_{n}\right)$ are anslytical.
(9.6) Given two series

$$
a=a_{1}+a_{2}+\cdots, \quad b=b_{1}+b_{2}+\cdots,
$$

the second is said to be a majorante of the first, written $a \ll b$ (Poincare's notation) whenever $l_{a_{m}}\left|\leq l_{m}\right|$ for every m. More generally, if the multiple series

$$
a=\sum a_{m_{1}}, \ldots, m_{p}, \quad b=\sum b_{m_{1}}, \ldots, m_{p}
$$

are such that $\left|a_{m_{1}}, \ldots, m_{p}\right| \leq\left|b_{m_{1}}, \ldots, m_{p}\right|$ for every comination m_{1}, \ldots, m_{p} then b is called a majorante of a, written as before $a \ll b$.
(9.6.1) If $m=\sum m_{i}$ then it is of ten convenient to denote by (m) the set $\left\{m_{1}, \ldots, m_{p}\right\}$. Thus we would write above:
(9.6.2)
$a=\sum a(m)$,
$b=\sum b_{(m)}$.
(9.7) Suppose that $F\left(x_{1}, \ldots, x_{n}\right)$ is holomorphic in the closed region $\Omega:\left|x_{1}\right| \leq A_{1}, i=1,2, \ldots, n$, where the A_{i} are positive constants. Since Ω is compact $|F|$ has an upper bound M in Ω. It is then shown in the treatises on the subject (see for instance Picard, Traité diAnalyse, vol. III, Ch. 9) that F damits in Ω the McLaurin expansion

$$
F=\sum F^{(m)} x_{x_{1}}^{m_{1}} \ldots x_{n}^{m_{n}}
$$

with the following estimate for the coefficients:

$$
\begin{equation*}
F^{(m)}<\frac{M}{A_{1} \ldots A_{n}^{m}} . \tag{9.8}
\end{equation*}
$$

If we identify F with the series we have therefore

$$
F \ll \frac{M}{\Pi\left(1-\frac{x_{1}}{A_{i}}\right)} .
$$

If $A=\inf A_{1}$ then another useful relation of the same type is

$$
\begin{equation*}
F \ll \frac{M}{1-\frac{1}{A} \sum x_{i}} \tag{9.10}
\end{equation*}
$$

It is in fact a simple matter to show that

$$
\frac{1}{\Pi\left(1-\frac{x_{1}}{A_{1}}\right)} \ll \frac{1}{1-\frac{1}{A} \sum x_{1}}
$$

from which (9.10.) follows

