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PREFACE

The subject of differential equations in the large 
would seem to offer a most attractive field for further 
study and research. Many hold the opinion that the class­
ical contributions of Poincare, Liapounoff and Birkhoff 
have exhausted the possibilities. This is certainly not 
the opinion of a large school of Soviet physico mathe­
maticians as the reader will find by consulting N. 
Minorsky's recent Report on Non-Linear Mechanics issued 
by the David Taylor Model Basin. In recent lectures at 
Princeton and Mexico, the author endeavored to provide 
the necessary background and preparation. The material of 
these lectures is now offered in the present monograph.

The first three chapters are self-explanatory and 
deal with more familiar questions. In the presentation 
vectors and matrices are used to the fullest extent. The 
fourth chapter contains a rather full treatment of the 
asymptotic' behavior and stability of the solutions near 
critical points. The method here is entirely inspired by 
Liapounoff, whose work is less well known that it should 
be. In Chapter V there will be found the Poincare- 
Bendixson theory of planar characteristics in the large. 
The very short last chapter contains an analytical treat­
ment of certain non-linear differential equations of the 
second order, dealt with notably by Lienard and van der 
Pol, and of great importance in certain applications.

The ûthor wishes to express his indebtedness to 
Messrs. Richard Bellman and Jaime Lifshitz for many valu­
able suggestions and corrections to this monograph. The 
responsibility, however, for whatever is still required 
along that line is wholly the authors.
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CHAPTER I
SOME PRELIMINARY QUESTIONS 

§1. MATRICES
1. The reader Is assumed familiar with the elements0of matrix theory. The matrices I I, I I,

are written A, X, ... . The transpose of A is written A1.
The matrix diag (A^ ..., Ap) is

where the Â  are square matrices and the zeros stand for 
zero matrices. Noteworthy special case: diag(a1,...,0^)
• denotes a square matrix of order n with the scalars 
down the main diagonal and the other terms zero. In par­
ticular if a1 ■ ... « - 1, the matrix is written or
E and called a unit-matrix. The terms of En are written 
6 .̂ and called Kronecker deltas.

2. Suppose now A square and of order n. The deter­
minant of A is denoted by |A|. When |AI « 0, A is said to 
be Singular. A non-singular matrix A possesses an inverse 
A*1 which satisfies AA~1 « A 1A « E. The trace of a 
square matrix A written tr A, is the expression 2 
If An - 0, A is called nlipotent. We recall the relations

(AB)'1 - B"1A-1 (A-1)' - (A*)-1,
where A, B are non-singular.

If f (A) ■ aQ + â A + ... + flpA then &0E + a,A + ...
+ a^Ar has a unique meaning and is written f (A). The poly­
nomial 6(A) - |A-AE| is known as the characteristic poly-
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nomial of A, and its roots as the characteristic roots of 
A. (See Theorem (3-5) below.)

3 . (3*1) Two real [complex] square matrices A, B 
of same order n are called similar in the real [ complex ] 
domain if there can be found a non-singular square real 
[complex] matrix P of order n such that B = PAP"1. This 
relation Is clearly an equivalence. For if we denote it 
by ** then the relation is

symmetric; A~B — *B ~ A, since
B - PAP’ 1 =* A - P‘ 1 BP

reflexive: A A, since A * EAE’1,
transitive: A ~ B, B ̂  C —4 A ~ C. For if A * PBP’1,

B * QCQ" 1 then A « PQQQ'V 1 = (PQ)C(PQ) ’ 1 .
(3 .2 ) If A ̂  B and f (A) is any polynomial then f (A)

~ f (B). Hence f (A) ■» 0 —* f (B) = 0.
For if B - PAP"1 then Br «.PArP~1, kB = P(kA)p’\ 

and P(At + A^P"1 - PA^’1 + PAgP’1.
(3-3) Similar matrices have the same characteristic. 

polynomial.
For B « PAP"1 — » B - A E “ P(A-AE)P 1, and therefore 

also IB-AEI - IA-AEI.
Since the characteristic polynomials are the same, 

their coefficients are also the same. Only two are of in­
terest: the determinants, manifestly equal, and the traces. 
If A^, ..., An are the characteristic roots then a ready 
calculation yields

** 2aii * tr A-
Therefore
(3.4) Sim-n«-p mat rices have equal traces.
For the proof of the following two classical theorems 

the reader Is referred to the standard treatises on the 
subject:

(3.5) Theorem. If d>(A) is the characteristic poly­
nomial of A, then <fc(A) * 0.
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(3 .6) FumJamental Theorem. Every complex square 

matrix A is ai mi 1 «.r» in the complex Anmain to a matrix of 
the fonn dlag (A,, ..., Aj,) where A^ is of the form

(3.6.1)

At, 0,
1, Aj,
0, 1, A

0,

0
. 0
. 0

1, A,

with Aj one of the characteristic roots. There is at 
least one Â  for each A. and if Aj la a simple root then 
there is only one Ai =• I Aj |. Hence if the characteris­
tic roots A. are all distinct. A is similar to

An).diag (A >̂ •
By way of illustration when n 

have the two distinct types
2 and A we

", V/
1, A

(3 .7 ) Real Matrices. When A is real the A^ occur 
in conjugate pairs Aj, Aj and hence the matrices occur 
likewisê  in conjugate pairs Aj, Aj where Aj is like Aj 
with Aj instead, of Aj. Thus they may be disposed into a
sequence A^, • • •, 9 * * * 9 ^2k+l9 * * * 9 ^s ̂ *©re
the A2jc+i correspond to the real A .. We will then say 
that the canonical form is real.

k. Limits. Series. Ĉ .1) Let JApI, Ap - K ajj I be 
a sequence of matrices of order n such that aij « lim Jâ ji 
exists for every pair i, j. We then apply the customary 
"limit" tenninology to the sequence |Apl and call A «
|| â j II its limit. As a consequence we will naturally say 
that the infinite series ̂  Ap is convergent if the n2 
series
(*.2) aij 2 aPlj
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are convergent and the sum of the series is by definition 
the matrix A - I |.

If the â j are functions of a parameter t and the n 
series ]> ©jj ar© uniformly convergent as to t over a 
certain range then 2 Ap is said to be uniformly convergent 
as to t over the same range.

(̂ •3) Let us apply to the Ap's the simultaneous 
operation Bp - PApQ where P, Q are fixed. If we set

«mr _ § p •

then clearly the corresponding for the B's la related 
to the by

*= 1  pih^^cj-
Now a n.a.a.c. of convergency of (4.2) may be phrased 
thus: for every t > o there la an N such that m > N =♦
IS-I < t whatever r. If a *» sup j I then

2 IT"jl < na«2 2  ls” :| . 
i,J 3 i.4 J

Hence the convergence of (4.2) Implies the convergence of

2 Bp - I p/yi

whose limit Is clearly B = PAQ. In particular
(4.4) If |ApI converges to A and If Bp = PApP” 1 

then |BpI converges to B = PAP 1.
5. Consider a power series with complex coefficients

(5 .1 ) f(z) “ a0 + û z + a2z2 + ... 
whose radius of convergence f > 0. If

(5.2) X = I xti 1
is a square matrix of order n we may form the series
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(5-3) aQE + + agX2 + ...
and If It converges its limit will be written f(X). .

(5.*0 Suppose that X - diag (X,,^). If g(z) is a 
- scalar polynomial then g(X) - diag (g(X1), g(X2)). Hence 
in this case (5*3) converges when and . only when the same 
series in the X̂  ̂converge and its limit is then f (X) « 
diag (f(X1 ), -f<X2)).

(5 .5 ) Theorem. Sufficient conditions for the con­
vergence of (5*3) are that X is nilnotent or else that its 
characteristic roots are all less than p in absolute value.

Whatever the radius of convergence, when X is nil- 
potent the series Is finite and hence evidently convergent. 
In the general case, X is similar to a matrix of the type 
described in (5.6). Remembering (5*1*) we only need to 
consider the type (3 .6.1 ). In other words, we may assume 
that the matrix is (3-6*1 ) itself. Thus A is its sole 
characteristic root and so we will merely have to prove

(5 .6) If X is (3 -6 . 1 ) and Ja| < p then (5-3) ia 
* convergent.

Let 'us set

0
1 0
0 1 .

# • 1 0

We verify by direct multiplication that Zr is obtained by 
moving the diagonal of units so that it starts at the term 
in the (r+1 )3t row and first column (the term zr+1 1). 
Hence
(5.6.2) zn « o .

How X = AE + Z, and since E commutes with every matrix:

(5.6.1)

(5.6.3 ) Xp - aPe + Pj- Ap-1Z + ... + (jP, )Ap"n+1Zn_1
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Hence

f(A),
f'<A)

0, . ..
f(A), 0-

0
0(5.7)
o

f(A)

Since IAI < j>, f (z) and all its derivatives converge for 
z = A. Hence f(X) converges. This proves (5*6) and 
therefore also (5.5).

(5.8) Returning now to the arbitrary matrix X.we 
note that we can define in particular

for every X, and also

when the characteristic roots are less than one in abso­
lute value.

(5.9) The usual rules for adding, multiplying, dif­
ferentiating and generally combining series in X hold here 
also. However those for multiplying series in X by series 
in Y hold only when X and Y are commutative. Thus we may 
prove e*+̂  « e* . e^ when X and Y commute, but not so in 
the contrary case.

(5.10) If f (X) converges and Y = PXP”1, |P| ^ 0, 
then f (Y) converges also (̂ .*0 and f (Y) * P(f (X) )P~1.

6. (6 . 1 ) If |X| ^ 0 there is a Y such that e^ =* X.
Since Y need not be unique we do not insist on des­

ignating it by log X.
Referring to (5*M if X « diag (X.,,X2) and̂ if we can

find Y,, Y2 such that Xt = e 1 then X = diag (e 1,e 2) and

log (E + X) - ? -
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go Y - diag (Y1 ,Y2) answers the question. Hence as in the 
proof of (5*5) we need only consider X of the type (3 .6.1). 
Here |X| ^ 0 — » A ̂  0. In the same notations as before 
X ~ AE + Z » A(E + ̂ -Z). Since Z is nilpotent so is ̂  Z, 
and therefore we may define by (5 *5 ) the function

SinceA^ 0 we may find a scalar ji such that A » ê . Then

Therefore Y « /nE + Ŷ  answers the question.
(6.2 ) If the series (5-3) for f(X) converges then 

the determinant

Y1 - log (E + j Z).

By (5.9):
1 Y 1 E + 7 Z *  e ,A X * AE + Z ® A© •

(6.2.1) lf(X)l - IT  f (Aj).

Hence
X

le I -
2 A . tr X

(6.2 .2 )
j rThus Y * e is never singular, and so it, has an inverse 

Y 1 • Now e~Y exists likewise and e* . e~Y » e"YeY - E,

Referring to (3 *6) X is similar to a matrix
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with terms above the diagonal all zero. The A j are the 
characteristic roots each repeated as often as its multi­
plicity. This follows inmediately from IY - A El *=
TT (Aj - A ).

By (̂ .*0 f(X) f(Y) and so we may replace every­
where X, by Y, i.e. we merely need to prove (6.2) for Y. 
Now f(Y) is of the same form as Y with A - replaced by 
f (Aj). This implies that the Y (A j) are the characteristic 
roots of f(Y). Since the determinant is the product of 
the characteristic roots (6.2.1) holds for Y, hence also 
for X, and the rest follows.

7- (7-1) Matrix functions of scalars. Let

X ~ # xij(t) I!
be an m « n matrix whose terms are [real or complex] 
scalar functions of a [real or complex] variable t differ­
entiable over a certain range R. Under the rules of oper­
ation on matrices we have, if A denotes increments:

AX 
At

Hence if lim exists it is defined as the derivative of 
X, written ̂ r, and exists over R, its expression being

The rules for the derivatives of scalars, for addition and 
for multiplication by scalars follow as usual. Similar 
limit arguments yield the definition of the Riemann inte­
gral :

Y(t) = ftQ X dt - | x±3 dt [ .
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If the Xjj are continuous on the path of integration then 
evidently

tdt *•
(7.2 ) Suppose now that X(t), Y(t) are any two square 

matrices of the same order, differentiable over the same 
range R. Then XY is differentiable over the same range 
and an elementary argument yields

( 7 5 ) d£SQ = X —  + —  Yl7° ; dt x dt + dt

Care must be taken here to keep X, Y always in the same 
order. Prom (7• 3) we deduce readily

d(X. ...Xp) dX
17'5'”  —  at l x ' ••
and therefore 

(T.5..)

If we differentiate both sides of XX 1 = E, X ̂  0, 
we obtain

d(X’1 ) Y-1 dX Y-idt " A dt A *

(7.1*-) Observe explicitly that the application to 
1 x m matrices yields the derivatives and integrals of 
vector functions of scalars.

(7.5 ) if all the Xjj(t) are continuous or analytic 
at a point or a given set, we will say for convenience 
that X(t j is continuous or analytic at the same point or 
on the same set.

(7.6) Let A be a constant square matrix and set
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(7.6.1 ) X(t) - etA - eAt - E + yr A + |y A2 + ... .

By differentiation we obtain

(7.6.2) ||-AeAt.

Notice that owing to the form of (7.3*2) we can only prove
= eX^  r̂, when X and ̂  commute.

Combining (7 .6.2 ) with (7*3)> and setting for conven­
ience ■» D, we obtain for any matrix X the analogue of 
the well known elementary relation:

(7-7) (D - A)X « eAt . D . e"At X.

As an application consider the matrix differential equa­
tion

(7-8) |jy « AX, A constant.

Owing to (7*7) it reduces to

eAt . D . e‘AtX - 0.
Multiplying both sides by e~At (see 6.2) we have

De-At . X - o
-Atand hence e . X = C, an arbitrary constant matrix.AtHence the complete solution of (7*6) is X «* e . C. We 

will return to this later.

§2. VECTOR SPACES
8. We will assume familiarity with the first con­

cepts: dimension, base, coordinates relative to a base.
When the scalars are all real [complex] the space is said 
to be a real [complex] vector space. The only vector 
spaces which we shall encounter are finite dimensional.
Let V  be such a space. Its vectors will be denoted by an 
arrow over small latin characters with possible super-
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scripts as: &, x, a1, ... . Let in particular fe1,
..., e11! be a base forV. If we denote by x any element 
of V  then we will have

(8 . 1 )  x - 5E^e1 + . . .  + x^e11.

The x^ are the coordinates or components of x. If we 
adopt x, x^ for the arbitrary vectors and their coordin­
ates we will often denote Vby V . Similarly If say 
vectors and coordinates were u, ul, we would write forlbthe space. In the coordinates of x will be usually 
written x1h (exceptionally and then explicitly stated
xhi ̂"

The metrization of V will be done in the customary 
manner by means of a norm I x II. We choose here for con­
venience

(8.2) I?  II — 2 I I
and accordingly define the distance in V  as

(8.3) d(x,xf) - I (x-x» )|| - 2 |x± - x|| .
r.

As is well known this distance has the usual properties:
d(x,x *) - 0 — 4x « x1;
&(x,x') - d(x*,x) ^ 
d(x,x") <£ d(x,xf) + d(xf,x").

With this specification of distance 7fx is turned into a 
complete metric space which is topologically Euclidean 
space. We may show in fact that the above distance- 
function induces the same topology as the Euclidean dis­
tance &  (x^-xp2]1/2. The completeness property of Tfx 
implies that every Cauchy sequence has a limit.

(8.*t) Let fS1! be a base for If . A square matrix 
A of order n defines a linear transformation of If into 
itself whereby x goes into x1 designated by Ax, and whose
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coordinates are given by
(8.4.1) x i - I a  ljXj.

If we identify x with the one-column matrix of its coord­
inates then Ax is merely matrix multiplication.

Consider now a new n-space V  referred to a base 
I?1! and let P be a linear transformation V^ — > Vx 
whereby y goes into x whose coordinates are given by

*i - ̂  Pi ft
or in matrix notation x » Py. If x' goes into y then 
x' ■» Py' and so, x, x' being related as before we have 
Py1 = APy. Assuming now P non-singular we will have 
y1 « P_1 APy. In other words the transformation of *1/̂ 
into itself by A corresponds to a transformation of V ̂ 
into itself by a matrix ~ A. Clearly also every matrix 
~ A is related to A in this manner. We may therefore in­
terpret the properties of A invariant under similitude, 
as those of the transformations which are invariant under 
a non-singular linear transfonnatlon from space to space.

(8.5) Let A ~ diag (A1,...,Ap) where the A^ are 
like (3.6.1), and let |?̂"J be the base such that on pass­
ing to it A goes into the canonical form. Denote by 
the order of Â  and set Let also
AJ ** diag (0, ..., 0, Aj_, 0, ..., 0). The units

f , ..., f may be characterized as follows.
First they are all annulled by the A*, j ^ i. Then

ce'5''’ aj / i - 4- - r’'1-'**"’ . *1rCi-*h, h >,,

which provides a complete description.
Suppose in particular A real and among the let 

there be found r pairs which are complex conjugates which



for convenience we may assume to be (A,, A1), ...,
(Ar> Ar) a™1 the rest A2r+1> •••» An real* If we obtain 
the vectors ~t for A1, ..., Ap then their conjugates will 
do for A^ ..., ar. The coordinates of a real vector 
referred to this base will then be ..., jip, Xj, • ••, 
Xy, x2r+1, ^  where the x2p+1 are real. We will then
say that the coordinate system is real.

(8.6) If x(t) depends upon t then the derivatives 
and Integrals of x(t) may be defined in the usual manner 
and are written

dt* o x(t)dt.u
Both are vectors, their components being respectively 

d*i t  > S x,(t)dt.dt t0 1

___________ I. SOME PRELIMINARY QUESTIONS__________\j_

Clearly

5. *(t)dt - x(t).
*0

We also note the following useful inequality. Sup­
pose t real and II x(t) 8 < M for tQ £ t £ t1. Thai

(8.6.1) I J*1 x(t)dt | < n M It, - tQ| .

(8.7) Let y = (y1, ..., yp) be a real or complex
vector in some V . Suppose the x̂  analytic in the j- at 
y° *» (y°, ..., yp), i. e. representable by power series 
in the y • valid in' a neighborhood of y° in Vy. We will 
then say: x is analytic in y at y°. This is the proto­
type of a readily understood terminology used extensively 
later.

(8.8) In dealing with n dimensional spaces V x it
will be convenient to define as a sphere of center x and 
radius p, written , p) the set II x - x° I < p .
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(8.9) Frequently besides the vector variables 5c, 

y, ..., there will occur a real parameter t referred to 
as the time, and whose range is the real line L. Instead 
of Vx for instance we shall have a product space fyf «
L x and new spheres 2 (x°,t0,̂ ) defined by II x - 3c°H 
♦ It - t°| < p.

The relation of the spheres to open sets, limits, 
etc., are as in real variables and need not be discussed 
here.

(8.1 0 ) Whenever V is two-dimensional it will be 
convenient to revert to the more usual "spheres", namely 
the circular regions of Euclidean geometry. As is well 
known this does not affect the standard concepts of 
open sets, .•• •

S3. ANALYTIC FUNCTIONS OF SEVERAL VARTABf.JBS
9. We shall have repeated occasion to consider an­

alytic functions of several real or complex variables as 
well as mixed functions analytical in some, but not In 
all, the variables.

(9*1) Consider first V complex. Write x = y + i?, 
viz. x. *= j- + iZj for j « 1 , ..., n. A function f(x) is 
said to be analytic in a region XI of If if it has first 
partial derivatives relative to all ŷ  and z • which are 
continuous in y and 'z at all points of XI and if it satis­
fies the Cauchy-Riemann differential equations relative 
to each pair of ŷ  and Zj at all points of XI . The func­
tion f is said to be holomorbhlc in XI if It Is analytic 
and single-valued in XI; f Is said to be analytic or 
holomorphic in a closed set F in Vx if it is analytic or 
holomorphic is some neighborhood of F, (some region => F).

A n.a.s.c. for analyticity in XI is that f may be 
expanded in Taylor series around each point T of XI •
The series will be convergent in a set

jT(lj^a) : lx.  - 5jI* ^ j  1 , 2 , .  • • ,n,
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which we call conveniently a toroid of center § and radius
a . Moreover a may be chosen such that the toroid is in
A.

(9*2 ) Suppose now 1/x real and let [Vxl be its 
complex extension, i. e. the complex vector space obtained 
by allowing the coordinates x  ̂to take complex values* A 
real function f(x) will be said to be analytic or holomor­
phic in a region A  of l/x under the following conditions: 
there exists a region [A] of [ l/x] and a function [f] on 

analytic or holomorphic in [A.], and such that:
(a) [A.] 3 A; (b) the values of [f] on A  are those of
f.

(9*3) The definitions just given for the real case 
may seem indirect. They have however the advantage to 
guarantee that the following important property holds:

(9.4) Theorem* If a series of real or complex func­
tions analytic or holomorphic in a region A, is. uniformly 
convergent in A, then the limit is analytic or holomor- 
phic in A.

For the complex case this is a standard theorem due 
to Weierstrass (see Osgood II p. 1 5) and for the real case
it is a consequence of our definition.

(9.5 ) An analytical vector is a vector 3f(x) whose 
components fi(x1, ..., xn) are analytical*

(9.6) Given two series

a * a«j + &Lg + • • • , b * b1 + bg + * • • 1
the second is said to be a ma.iorante of the first, written
a «  b (Poincares notation) whenever laj ̂  lbml for every m. 
More generally, if the multiple series

a » J £L b » y  b,_ _> • • • 9 • • *
are such that |a_ _ I < lb_ _ I for every comtin-*Q-j , • • • *“*n 1 9 • • •
ation , *.. ,1̂  then b is called a majorante of a, written 
as before a ''< b.
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(9*6.1) If m « ]> then it is often convenient to 
denote by (m) the set ,mpi• Thus we would write
above:

(9*6.2) a - 2 a(m)> * “ 2k(m)*
(9*7) Suppose that F^,...,^) is holomorphic in 

the closed region II : Ix̂ l ^ Â , i * i,2,.;.,n, where 
the A  ̂are positive constants. Since H  is contact |F| 
has an upper bound M in II. It is then shown in the 
treatises on the subject (see for instance Picard,
Tralte d1 Analyse, vol. Ill, Ch. 9) that F admits in Q 
the McLaurin expansion

(m) m1 m
F = 5 F x, ••• V 1

with the following estimate for the coefficients:

(9.8) < M

0  -  £
If we identify F with the series we have therefore

M
(9.9) F «    .

X,
TTd -jLy 

A1

If A = inf Ai then another useful relation of the 
same type is

M
(9.10) F «

1 '

It Is in fact a simple matter to show that
1 1 

«
T T o - ^ )  i - i l Xl

Ai
from which (9.10) follows


