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PREFACE

With every second-order elliptic differential operator L , one can 

associate a family of probability measures in the space of continuous 

functions on the half-line. This family of measures forms the Markov 

process corresponding to the operator L  . If one knows some properties 

of the operator L , it is possible to draw conclusions about properties of 

the Markov process. And conversely, studying the Markov process one 

can obtain new information concerning the differential operator.

This book considers problems arising in the theory of differential 

equations. Markov processes (or the corresponding families of measures 

in the space of continuous functions) are here only a tool for examining 

differential equations. As a rule, the necessary results from the theory of 

Markov processes are given without proof in this book. We restrict our

selves to commentaries clarifying the meaning of these results. There are 

already excellent books where these results are set forth in detail, and we 

give references to these works.

The probabilistic approach makes many problems in the theory of differ

ential equations very transparent; it enables one to carry out exact proofs 

and discover new effects. It is the latter—the possibility of seeing new 

effects—which seems to us the most significant merit of the probabilistic 

approach.

This book is intended not only for mathematicians specializing in the 

theory of differential equations or in probability theory but also for 

specialists in asymptotic methods and functional analysis. The book may 

also be of interest to physicists using functional integration in their 

research.
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The two years I have spent writing this book were very hard, I would 

even say desperate, for me and my family. And I am glad to be able to 

thank my colleagues for their support. I have been happy to see convincing 

evidence of the high moral standards of many colleagues. I especially 

wish to express my gratitude to E. B. Dynkin for his constant attention 

and concern about all our problems.

Finally, I must say that this book would never be brought into the 

world without the enormous labor of my wife, Valeria Freidlin, in her 

editing, translating and retyping the manuscript. I feel even awkward 

about thanking her for this labor; in essence, she was my co-author.
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INTRO D U CTIO N

It was known long ago that there is a close relation between the theory 

of second-order differential equations and Markov processes with continu

ous trajectories. As far back as 1931, the parabolic equations for transi

tion probabilities were written down in the article of Kolmogorov [1]. Still 

earlier, these equations on the theory of Brownian motion appeared in 

physics literature (Einstein [1 ]). It was also established that the mean 

values of some functionals of the trajectories of diffusion processes (as 

functions of an initial point) are the solutions of boundary value problems 

for the corresponding elliptic differential equations.

For a long time the connection between Markov processes and differen

tial equations was used mainly in one direction: from the properties of the 

solutions of differential equations, some or other conclusions on Markov 

processes were made. Meanwhile, probabilistic arguments in problems of 

the theory of differential equations played at best the role of leading 

reasoning. This may be explained by lack of direct probabilistic methods 

for studying diffusion processes. Even the construction of such a process 

with given characteristics was carried out with the help of the existence 

theorems for the corresponding parabolic equations.

For the last quarter of a century the situation has changed in an 

essential way. The rapid development of direct probabilistic methods for 

examining Markov processes allowed one to construct and study them with

out turning to partial differential equations. Conversely, the construction 

and analysis of the trajectories of the corresponding diffusion process via 

direct probabilistic methods, enabled the solutions of differential equations 

to be constructed and the properties of these solutions to be examined.

3



4 INTRODUCTION

It is not for the first time that such a situation arises in the theory of 

differential equations. For example, recall the mutual relations between 

differential equations and the calculus of variations. Originally, the differ

ential equations served as the means of seeking solutions of extremal 

problems. With the development of the direct methods in the calculus of 

variations, the possibility appeared of constructing and studying the 

solutions of differential equations as the extremals of the corresponding 

functionals. Similar mutual relations have now been established between 

the theory of differential equations and that of diffusion processes.

Speaking somewhat inaccurately, one can say that, in the theory of 

second-order parabolic and elliptic differential equations, the trajectories 

of diffusion processes play the same part as characteristics do for first- 

order equations. Just as the theory of characteristics makes first-order 

equations geometrically descriptive, the probabilistic considerations make 

transparent many problems arising in the theory of second-order elliptic 

and parabolic equations.

Sometimes the probabilistic methods play the role of a tool for deriving 

delicate analytical results. Sometimes they are a basis for the extension 

of some analytical theory. However, in my view, the greatest value of 

such an approach consists in its visualization which turns this approach 

into an especially helpful instrument for discovering new effects, for a 

deeper qualitative understanding of the classical objects of mathematical 

ana lysis.

Among the tools of the direct probabilistic research of diffusion pro

cesses, one should, first of all, mention stochastic differential equations. 

The theory of such equations, originating in the works of Berstein, was 

basically founded by Ito and (independently) by Gihman, and then has 

been developed by a number of mathematicians. The stochastic integral 

introduced by Ito, Ito’s formula, and the generalizations of these notions 

play the central part in the whole theory. The present state of the theory 

of stochastic differential equations is described in the monograph of 

Ikeda and Watanabe [2]; references to the original works can be found 

there too.
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As another important factor permitting the direct study of diffusion 

processes, one should mention the convenient general concept of Markov 

process and Markov family introduced by Dynkin [1], [3] as well as the 

detailed analysis of the strong Markov property. The wide use of the 

theory of one-parameter semi-groups due to Feller is also worthwhile 

noting.

The theory of martingales serves as a highly suitable instrument for 

examining Markov processes (see Doob [1], Delacherie and Meyer [1 ]).

The transformations of Markov processes, in particular, those involving 

an absolutely continuous change of measure in the space of trajectories, 

are also very useful tools which enable one, in a transparent and explicit 

fashion, to understand the effects of potential terms and first order terms. 

This leads to an understanding of the affects of these terms on the 

behavior of the solution of the differential equation.

The last ten to fifteen years have seen a development of limit theorems 

for random processes—central limit theorem type results as well as 

theorems on the asymptotics of probabilities of large deviations. In 

particular, the counterpart of the asymptotic Laplace method for functional 

integrals pertains to the results of that kind. These results proved to be 

highly useful in a great number of problems in differential equations which 

have waited long to be solved.

The application of the probabilistic methods for examining differential 

equations is usually based on the representation of the solution of these 

equations as the mean value of some functional of the trajectories of a 

proper diffusion process. The mean value of a functional of the trajectories 

of a random process may be written down as the integral of the correspond

ing functional on the space of functions with respect to the measure in 

this space induced by the random process. This is why such representa

tions of solutions are sometimes called the representations in the form of 

functional integrals.

The construction of the diffusion process corresponding to the 

differential operator
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(1 )

with the non-negative definite matrix (a ^ (x )) , is carried out with the 

help of stochastic differential equations. The Wiener process Wt , the 

simplest of the non-trivia 1 Markov processes serves as a starting point.

By a Wiener process (one-dimensional), we mean a random process 

Wt = Wt(u)), t > 0, having independent increments and continuous trajec

tories (with probability 1 ), and for which EŴ . = 0, EWj? = t ( E being 

the mathematical expectation sign).

It is established that such a process does exist and its finite

dimensional distributions are Gaussian. In particular, for every t > 0, 

the random variable Wt(cu) has the density function (2 n t)~ 1//2 exp  j - j j :  j >

-  oo < x < °o. This process is connected, in the closest way, with the 
1 d2operator —— and with the simplest heat conduction equation. For
1 dx2

instance, the solution of the Cauchy problem

This assertion is checked by direct substitution into equation (2). Just 

as any random process, the Wiener process induces a measure in the 

space of functions. In the present case, it is a measure in the space of

measure is referred to as the Wiener measure. It plays the principal role 

in all the questions to be considered in this book. The first construction 

of this measure was published by Wiener in 1923 [1]. Later on the Wiener 

process and the Wiener measure have been studied in detail.

<3u & x )  =  1 a £ u & x ) ; u ( 0 > x )  =  g ( x )  (
ot Z dx

(2 )

may be represented in the form

continuous functions on the half-line t > 0 with the values in R 1 . This
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An ordered collection of r independent Wiener processes 

(W^, W£) = Wj. is termed an r-dimensional Wiener process. Such a

process is connected with the Laplace operator in Rr . What process 

corresponds to the operator L  in (1)? Let us assume for a moment that 

the coefficients of the operator are constant: a ^ (x ) = a 1̂ , b1(x ) = b 1. 

Denote by a = (o\) a matrix such that era* = (a 1̂ ) and consider the 

family of random processes

X* = aW|. + bt + x, x eR v, b = (b 1, *••, br), t > 0 . (3)

It is not difficult to find the distribution function of the Gaussian process

X* and then to check that u(t,x) = E g (X *) is the solution of the Cauchy

problem
| = L u ( t , x ) ,  u(0,x) = g(x) , (4)

for any continuous bounded function g (x ) . Therefore, the random process 

(3) is associated with the operator L  with constant coefficients.

It is natural to expect that, in the vicinity of every point x e Rr , the 

process corresponding to the operator L  with variable (sufficiently 

smooth) coefficients, must behave just as the process corresponding to the 

operator with the constant coefficients frozen at this point x . On the 

basis of this reasoning, for the family of the processes X * corresponding 

to the operator L  with variable coefficients, we obtain the differential 

equation
d X tx = a (X * )d W t + b(Xx)dt, X x = x  , (5)

where the matrix cr(x) is such that o (x )a * (x )  = (a ^ (x )) , 

b(x) = (b 1 (x), ■ ■ •, br(x )) .

If the trajectories of the Wiener process were differentiable functions 

or at least had bounded variation, then equation (5) could be treated within 

the framework of the usual theory of ordinary differential equations. But, 

with probability 1, the trajectories of the Wiener process have infinite 

variation on every non-zero time interval. Therefore, equation (5) should
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be given a meaning. Ito’s construction is most convenient for this. This 

construction is given in the beginning of Chapter I.

One can demonstrate that, under mild assumptions on the coefficients, 

equation (5) has a unique solution X* . The random functions X* , x eRv , 

together with the corresponding probability measure, form a Markov family 

connected with the operator L .  A solution of Cauchy’s problem (4) may 

be written in the form u(t,x) = E g (X ^ ).

A solution of Dirichlet’s problem for the operator L  may also be 

represented in the form of the mathematical expectation of some functional 

of the process X * . For example, if D is a bounded domain in Rr with 

a smooth boundary dD and the operator L  does not degenerate for 

x e D U dD , then the solution of the Dirichlet problem

where ifs(x) is a continuous function on dD , may be written as follows

Here rx = inf { t : X * / D| is the first exit time of the process X* from 

the domain D .

If the term with a potential v is added to the operator L  , then the 

solutions of various problems for the operator L  + v may also be repre

sented in terms of the trajectories of the process X . For example, the 

solution of the Cauchy problem

Notice that equation (5) may be looked upon as the mapping of the 

space C Q ^  (R r) of continuous functions on the half-line with values in

L u (x ) = 0,x £ D ; u(x)|^D = ^ (x ) , (6 )

u(x) = E«A(X^x) . (7 )

duCEx) -- L  u(t,x) + v (x )u (t,x ), u(0,x) = g(x) (8 )

is given by the Feynman-Kac formula



INTRODUCTION 9

R r , into itself: I : W. -» X * . This mapping is defined a.e. with respect 

to the Wiener measure in C„ (R r). The value of X? at time t is0, OO 7 t
defined as a functional of the Wiener trajectory in the interval [0,t] 

which depends on x as a parameter: X * = Ix (Wg , 0 < s < t ) ( t ) . This 

mapping allows formulae (7) and (9) to be rewritten in the form of integrals 

with respect to the Wiener measure.

Chapter I describes the construction and properties of the Wiener 

process. The necessary information on stochastic integrals, stochastic 

differential equations, and Markov processes and their transformations is 

given here. Some limit theorems for random processes are included as 

well. In particular, we provide the definition and properties of the action 

functional related to the Laplace type asymptotics for functional integrals. 

In short, Chapter I introduces those notions and methods which are 

necessary for the direct probabilistic ana lysis of processes (measures in 

the space of functions) connected with differential operators.

Today there are a number of monographs presenting these results in 

detail. Also, in this book, random processes are a tool rather than an 

object of research themselves. For this reason the results of Chapter I 

are, as a rule, cited without proof. We restrict ourselves to short com

ments and references.

In Chapter II, the formulas representing the solutions of differential 

equations in the form of functional integrals (in the form of the mean 

values of the functionals of the trajectories of the corresponding pro

cesses) are studied. Besides formulas (7) and (9), this chapter gives 

representations for the solutions of the second boundary value problem 

as well as some other problems. The behavior of random processes as 

t po is a traditional subject of probability theory. This is closely 

related to problems concerning the stabilization, as t -» oo, of the solu

tions of Cauchy’s problem as well as of mixed problems. It is also  

related to the statement of boundary valued problems in unbounded 

domains. These questions are also considered in Cha pter II. Speaking 

somewhat inaccurately, one can say that a solution of the first boundary
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value problem is unique if and only if the trajectories of the corresponding 

diffusion process leave the domain D with probability 1. Hence the 

question of the correct statement of the problem in an unbounded domain 

is closely related to the behavior of the trajectories as t -> oo. If, with 

positive probability, the trajectories go to infinity without hitting the 

boundary of the domain, then supplementary conditions at infinity are 

required to single out the unique solution. For example, the Wiener 

process in R 2 does not run to infinity, and so the solution of the exterior 

Dirichlet problem for the Laplace operator in R 2 is unique in the class 

of bounded functions. Meanwhile, the Weiner process in Rr , for r > 3 , 

goes to infinity with positive probability, and hence, when considering the 

exterior Dirichlet problem for the Laplace equation in these spaces, one 

must in addition define the value of the limit of the solution at infinity.

In the case of equations of a more general form, “ the boundary at infinity”  

may have a more complicated structure. Everything depends on the final 

(i.e. as t -* do ) behavior of the trajectories of the corresponding diffusion 

process.

Probabilistic methods have proved to be greatly effective in examining 

degenerate elliptic and parabolic equations. Chapter III is devoted to 

these questions. If the coefficients are Lipschitz continuous, then 

existence and uniqueness theorems are valid for equation (5) regardless 

of any degeneration of the diffusion matrix (a 1^(x)) . This enables one to 

examine the peculiarities of the statement of boundary value problems for 

degenerate equations. In particular, the behavior of the corresponding 

process near the boundary points is in exact agreement with where and 

how the boundary conditions w ill be taken. After the process corre

sponding to the operator has been constructed, it is not difficult to 

prove the existence theorem and to clarify uniqueness conditions. The 

generalized solution is described in the form of functional integral (7).

This allows one to examine its local properties. Under broad assumptions, 

the generalized solution turns out to be Holder continuous. In order to 

ensure Lipschitz continuity or smoothness, one should make some special
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assumptions. Chapter III clarifies the conditions under which the general

ized solution is smooth and gives an example illustrating the importance 

of these conditions. Roughly speaking, the smoothness of the generalized 

solution is due to the relation between the rate of scattering of the trajec

tories of system (5) starting from close points and the first eigenvalue 

(generalized) of the boundary value problem. The rate of scattering of 

the trajectories is defined by a number which is expressed in terms of the 

Lipschitz constant of the coefficients of equation (5).

The results of Chapter III, besides being interesting on their own, 

serve as a basis for Chapter IV where elliptic equations with small parameter 

in higher derivatives are dealt with. The analysis of how the solutions of 

boundary value problems depend on these parameters reduces to the follow

ing two questions: first, to analyzing the dependence of the trajectories 

of “ ordinary”  equation (5) on these parameters, and then to examining the 

dependence of the functional integral on the parameters contained in the 

integrand. Here the dependence on the parameters may be understood in a 

rather broad sense. This may be the dependence on the initial point—in 

this way Chapter III studies the modulus of continuity and the smoothness 

of the generalized solutions. This may also be the dependence on various 

parameters involved in the operator L  + v (x ) . Here, for example, belongs 

the problem on the behavior of the solutions of the equations with fast 

oscillating coefficients and various versions of the averaging principle.

The fact that equations (5) are not sensitive to degenerations makes the 

probabilistic approach especially suitable in problems with small parameter 

in higher derivatives. Consider the Dirichlet problem in a bounded domain D:

L 6ue(x) = (L jj+ eL ^u ^x ) 4  J  A ij(x) -^ 1  + £  b1(x) +
i <9x dx) i=1 ck

(10)

i , j = l

+ i2 2  a ij(x ) - T ^ = 0 ' X eD ; u6(x)1<?d = ^ x )



12 INTRODUCTION

where i/r(x) is a continuous function on dD . We admit that the small 

parameter may precede not all the second-order derivatives and thus the 

operator L Q also may, generally speaking, involve terms with second- 

order derivatives.

The random process corresponding to the operator L s may be con

structed with the help of the stochastic differential equations

d X £’x = ff(Xt£’x)d W t + B (X te'x)dt +

(11)
+ V ? ~ (X te’x )dW t,X e0’x = x e Rr, e > 0 ,

where cr(x) c t * ( x )  = (A *j(x )) , ~ (x ) <7*(x) = (a ^ (x )) , and and Ŵ. are 

independent Wiener processes. For € = 0 , equation (11) defines the 

random functions Xt° ,x , x r R r , t > 0, corresponding to the operator L Q.

From equation (11), one can easily deduce that

lim Pi sup |X£’x -  Xt° ’x | > 8 \ = 0 (12)
EiO 0 < t< T

for any T > 0 , 8 > 0 .

Denote by r e,x = inf St: Xj;,x / D S, e > 0, the first exit time of the

process X ^ x from the domain. The behavior of re,x as e^O is an

important characteristic of problem (10). If one supposes that, with 

probability 1, the trajectories of the degenerate process X^,x , x (D  , 

leave the domain D in a finite time and, moreover, behave in a rather 

regular way near the boundary, then it is not difficult to conclude from 

( 1 2 ) that re,x has a finite limit as s^O, lim ue (x) = uQ(x) exists, does
£ 4 0

not depend on the perturbating operator L l and is a unique solution of 

the equation L Qu Q(x) ^ 0, x D , with the corresponding boundary condi

tions. This is the simplest case. If there are no second-order derivatives 

in the operator L Q, then we have the known result due to Levinson [1].

If r e,x grows like e_1 or faster (as ), then the limit behavior 

of ue(x ) already depends, generally speaking, on perturbations. For
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example, §4.3 considers the case when the operator L Q, in a sense,

does not help, but does not hinder the trajectories Xj;,x from hitting dD

either. Here, under some extra conditions, hitting the boundary, and

thereby lim ue(x ) are controlled by a certain operator which is obtained 
e 10

from L 1 by means of averaging with respect to a measure specified by

the operator L Q. If this averaged operator vanishes, then lim ue(x) is
e i 0

defined by the subsequent approximation which is of the central limit 

theorem nature.

Next, Chapter IV discusses the case when the operator L Q, in a sense 

hinders the process Xj;,x from leaving D . In these problems, r £’x 

grows very fast as e i  0, approximately like exp {const, \. The case 

is typical when there are no second-order derivatives in L Q and the field 

B(x) = (B 1 (x), •••, B r( x)) is such that its integral curves everywhere cross 

the boundary dD of the domain D from the outside toward the interior. 

Here the exit from the domain is defined by the large deviations of the 

process X^'x from X^°'x , and the result is formulated and established 

via the action functional.

In the last section of Chapter IV, a problem is treated where the small 

parameter precedes the terms of first order, but due to the presence of 

degenerations, these terms become the main ones. This section sets forth 

results of the averaging principle type and of large deviations type.

The last three chapters are devoted to the analysis of quasi-linear 

equations. Chapter V goes into the question of the existence “ in the 

large” (that is for all t > 0 ) of a continuous solution of Cauchy’s problem 

and of some mixed problems. The results of this chapter are based on 

transformations of Markov processes leading to an absolutely continuous 

change of measure. The last section of Chapter V is devoted to the 

analysis, as t -> oo, of the solutions of one class of quasi-linear systems 

admitting a simple probabilistic interpretation.

Chapters VI and VII consider various generalizations of the Kolmogorov 

Petrovskii-Piskunov equation [1]
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D ^ + f(u );U (0 x ) = { M < 0  (13)

dt 2 ^x2 [ 0 , x > 0 .

As the function f (u ) , one can, for example, take u (l-u ) or u(u-/x) (1 -u ) .

It is known that, for large t, the solution of problem (13) behaves as a 

wave with some profile V(<f), -  oo < f  < oo , travelling with some velocity 

c* from left to right: u(t,x) «  V (x -c * t ), t -> oo. A small parameter may 

be introduced in the problem so that the wave (considered in a rough pre

liminary approximation) may become a step travelling with the velocity c* . 

Such a consideration enables one to generalize the problem widely and 

examine a number of new effects, such as the appearance of “ new sources’ 

in space non-homogeneous media, the wave propagation at the expense of 

boundary conditions, and some others. This chapter also discusses the 

question of going over from the description of the wave propagation via 

equations of type (13) to the axiomatic theory of excitable media. The 

last section considers the problem of wave propagation in some systems 

of differential equations. As the basic apparatus in this and in the next 

chapters, we use asymptotic bounds of the Laplace type for functional 

integra Is.

Chapter VII, the last one, examines the behavior, as t -> <x>, of the 

solution of equation (13) type in which the non-linear term has the form 

f = f (x ,u ). As f (x ,u ), we take either a function periodic in x , or a 

random field homogeneous in x . In either case the notion of wave propa

gation velocity is introduced (strictly speaking, the wave itself does not 

exist, though). This velocity is expressed in terms of some spectral 

characteristics of the operators.

Today a number of reviews and monographs are available where there 

are some applications of function integration and probabilistic methods in 

analysis, differential equations, and physics (e.g. Kac [1], [2], Feynman 

and Hibbs [1], Freidlin [7], Dynkin and Yushkevich [1], McKean [1], 

Friedman [2], Wentzell and Freidlin [2], Simon [1 ]). The overlap of this 

book with the above monographs is not large. However, to make this book
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self-contained we had to include some results which are contained in the 

foregoing works.

We note that in this book there are no results on potential theory. 

Special monographs are already available on this subject (Blumenthal and 

Getoor [1], Meyer [1 ]). The problems connected with analyzing the 

spectra for second-order operators are also barely mentioned in this book. 

The materials on these questions may be found in the works of Kac [2, 3], 

Simon [1], Wentzell and Freidlin [2].

In conclusion we will explain how formulas and theorems are numbered. 

For example, Theorem 3.2.1 is the first theorem in the second section in 

Chapter III. Inside Chapter III, it is written as Theorem 2.1 only. Formulas 

are numbered in a similar fashion. Figures are numbered consecutively 

within each chapter.



Chapter I

STOCHASTIC D IFFER ENTIAL  EQUATIONS 
AND RELATED TOPICS

§1.1 Prelim inaries

As is customary in mathematical probability theory, we start with a 

probability  space ( 0 ,3~, P ) . Here fi is an arbitrary set which is inter

preted as the space of elementary events. The second component ?  is 

a o -f ie ld  of subsets of the space 0 , i.e. the system of subsets of the 

space 0  containing 0  itself and being closed with respect to unions 

and intersections in finite or countable numbers, as well as with respect 

to the operation of taking the complement. The elements of the a-fie  Id 3“ 

are called events. The third component of the probability space, P , is a 

probability measure on the a-field ff , i.e. it is a non-negative, countably 

additive function defined on ?  and such that P (0 ) = 1 .

A function f(cu) on Q with real values, for which \co (a>) < x 1 e 

for any x e (-oo, oo), is called a random variab le .

Given a set X with some a-field ® of its subsets (a measurable 

space (X ,® ) ) ,  one can define a random variable <f(co) with values in X . 

Indeed, it is required that the function f  (co) be (3: ,®)-measurable:

\co : £ (co) e B ! e 3: for any B e ® .

A probability measure /x(D) ^ P (co) 6 D I , D 6 ® is termed the d is 

tribution  of the random variable (co) .

If a space X is equipped with a topology, then the minimal a-field 

containing all open sets, is called a Bore I o -f ie ld  of the topological space 

X . The Borel a-field in the Euclidean space R r is denoted by ®r ;

(? , ® r) -measurable (or briefly, 5"-measurable) functions on 0  with values 

in Rr , are termed r-dimensional random variables. The mathematical

16



expectation of a random variable £(&>) w ill be denoted by :
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Ef = J  f(<u)P(dfi>) •
n

To every r-dimensional random variable £ , there is a corresponding 

characteris tic  function  f^ (A ): f^(A ) = E exp {i(A, )S , A f Rr .

If a characteristic function f^(A ) has the form

f^r(A) = e x p j - ~  (Q(A-m), A -m )}, A f Rr ,

for some m e R r and Q = ( q ^ ) , k, £ = 1,2, •••, r , then the random variable 

is called Gaussian. Here m = (m1, mr) is the mathematical expecta

tion of £ = ( f 1, •• •, ^ r) , and (q ^ )  = Q is the matrix of covariances:

= E (^  k-mk) («£ ̂ -m^) , Here and henceforth we denote by
k o

( . , . ) the Euclidean scalar product. We remind that q = 0  if and only 

if the components f  ̂  and  ̂ of a Gaussian random variable are inde

pendent. The class of Gaussian random variables is closed with respect 

to linear transformations and with respect to limit passage.

Suppose that in the space 0 ,  there is a a-subfield V  of the under

lying a-field 3" : C 3'. By a cond itiona l expecta tion  E(<f 133) of a one

dimensional random variable £ , we mean a ^-measurable function on Q 

for which the equality

JE(f|tyP(d<u) = J  &o>) P(dc)

A A

holds for any A e H . These conditions define the conditional expectation 

in a unique way up to a set of zero measure. The equalities between con

ditional expectations are all fulfilled almost surely (P -a .s. or P -a.e.).

We shall list some basic properties of conditional expectations:



18 I. STOCHASTIC DIFFERENTIAL EQUATIONS

1 . E (f  |K) > 0 , if £ > 0 .

2. E i t  + r j^ )  =E (£ | ty  + E(rj\cU)

if the summands on the right-hand side exist.

3. rj\y) = ^E(rj\cH) if E^rj and E 77 are defined and f  is 

^-measurable.

4. Let and ^  be two a-fields such that ‘ifj C ^  C f l . Then

E(g\yt) = E (E (f 1 ^ )1 ^ ) .

5. Suppose that a random variable f  does not depend on a a-field V , 

that is PS(<̂  eD) H 2 } = P{<f c D } P (fl) for any Borel set D £ R 1 and 3  eV .

Then E ( f  ]% ) = E f  provided E f  exists.

Let ke the indicator of a set 3  e 3  , i.e. = 1 f ° r

CO e 3  and X g (^ ) = ^ f ° r o) c f l \ 3  . Then the random variable 

E (X g (^ )fy ) is said to be the conditional probability of the event fl with 

respect to the a-field H and is denoted by P (S  1^).

A family of r-dimensional random variables depending on a real

parameter t c T C ( -  oo, 00) is called a random process. Thus, for every 

fixed t = tQ, we obtain a random variable ^  (co) . For a fixed co = a>0

we obtain a function of t which is called a trajectory or a sample func

tion of the process ^ (co ) .

The totality of distributions p. . of random variables
1 ' " ‘ ' n

Oft ) for various n = 1,2,3, ••• and L  , •••, tn <r T , is termed the
i n 1 n

fam ily  of fin ite -d im ensiona l d istributions  of the process <^(co) . In this

book, we shall, as a rule, consider random processes having parameter t

which varies over the half-line [0 , 00) or over the interval [0, T^J and

having trajectories which are continuous with probability 1 . Such processes

are, in fact, defined in a unique way by their finite-dimensional distributions.

If the finite-dimensional distributions of a process ^ (c o ) , t e [0, 00) ,

are all Gaussian ones, then the process is called a Gaussian random

process. The finite-dimensional distributions of such a process are all

defined in a unique way by two functions—by the mathematical expectation

m(t) = E ^  and by the correlation function R (s,t) = E(<fg -  m ( s ) ) - m(t)) .



If = ( f t*, •••, is an r-dimensional random process, then

m(t) = (E ^ 1, •••, E<^r) ; R (s ,t ) -  (R 1J(s , t ) ) ,  R ^ (s ,t ) = E C ^ - m H s ) ) ^ - m j ( t ) ) .

With every random process ^ ( c S ) , t f T ,  one can associate an 

increasing system of a-fields 3 ^  = 3^. = a (^ g , s < t ) where f f ( f s ,s  < t) 

is the minimal a-field with respect to which the random variables are 

a ll measurable for s < t , s f T .  Sometimes we shall a lso  consider the 

cr-fields 3>t = 3 ^  = <j(^s , s > t ) . We shall use the notation E(7?|<fs , s eS) 
for the conditional expectation of the random variable rj with respect to 

the <7-field generated by the random variables for s eS (i.e . the 

minimal a-field with respect to which the random variables are a ll 

measurable for s e S ).

A ll the objects introduced here and their properties, as w e ll as other 

elementary information from probability theory, which is assumed to be 

known to the reader, are considered in deta il in many courses in the theory 

of stochastic processes (see , e.g. Doob [1], Gihman and Skorohod [1], 

W entzell [1 ]).

§1.2 T h e  W iener  m e a s u re
In this section , the Wiener measure in the space of continuous func

tions w ill be constructed. Th is measure is connected with the Lap lace 

operator and with the sim plest heat operator. Solutions of some problems 

for such operators admit a representation in the form of integrals of 

appropriate functionals with respect to this measure. In many respects, 

the measures connected with general second-order e llip tic  operators are 

sim ilar to the Wiener measure, and it is convenient to construct such 

measures proceeding from the Wiener measure.

Because the Wiener measure is so important, we w ill describe a few 

constructions for it and list its basic properties. As a rule, we shall drop 

proofs restricting ourselves to brief comments on what needs to be proved. 

The detailed proofs of these properties are availab le in many manuals and 

monographs, so the reader is referred to the corresponding literature.

1.1 PRELIMINARIES 19
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Let C Q T = C Q ^ R 1) be the space of continuous functions on 

[0,T ] , T < po t with values on the real line R* ; Cq ^  = Cq ^ (R *) being 

the space of continuous functions on [0,°o) . We put C °  =\<f> eC Q T : 

cf> 0 = OS, 0 < T < oo. The spaces C Q̂ , and CqT w ill be thought of as 

equipped with the uniform convergence topology (uniform convergence on 

every finite interval whenever T = oo ).

As the a-field in the spaces C q T , 0 < T < oo, one can take the 

Borel a-field S Q T , that is the minimal a-field containing all open sets 

of the space C q T .

Suppose we are given a measurable space (X , 8 ) ,  i.e. there is a set 

X , with a a-field of subsets 8  being defined in it. How can one put a 

measure on this space? There are several ways of assigning a measure. 

Presumably, it is the easiest way to define a measure with the aid of a 

density function with respect to some standard measure defined on the 

same a-field 8 . For example, let X = R 1 be the real line equipped 

with the a-field of Borel sets. Then, as the standard measure, it is some

times natural to take the Lebesgue measure; that is, a measure on the 

line, unique up to scale factor and invariant with respect to translations. 

For instance, Gaussian measure on the line is specified by the density 

function

p(x) . 1 exp (-
0-V2 rr I 2 a 2

with respect to the Lebesgue measure, where a and a are real 

parameters.

So far we have had no measure in the space C q t  . It should be noted 

that it is not easy to define some non-trivial measure in this space, and 

there is no measure which is invariant with respect to translations on 

C q t . Therefore, this way does not fit as a starting point, but we shall 

bear it in mind for later constructions.

Another way of defining a measure consists of prescribing it with the 

help of some mapping. Let a measurable space (Y , 8  ) and a probability 

measure P ' (A ) , A e 8  be already available. Suppose we are given a
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measurable mapping f : (Y , 8  ) (X, 8 ) ; that is, a mapping for which

measure P (B ) = P ' ( f ‘ X(B )) on the a-field 8  in X . And this way is

provide this construction later on in this section.

The third way of defining a measure is with the help of passage to the 

limit. Namely, it is possible to construct a sequence of measures (in in

sider the limit of (in as n ^ oo. For example, limit in the sense of weak 

convergence of measures is convenient. Recall that a sequence of

Finally, we recall another approach widely used in probability theory— 

Kolmogorov’s extension of measure. According to this method, a measure 

for some collection of relatively simple sets must be defined, and then it 

must be continued, by the countable additivity property, onto the smallest 

a-field containing the original collection of sets. Of course, in doing so 

one must demonstrate that such an extension will not face obstacles and 

will give a measure, countably additive on this minimal cr-field. If one 

wants to get a measure on the cr-field which has been set beforehand, then, 

in addition, one should make certain that this a-field is contained in the 

minimal a-field generated by the simple sets.

We begin by outlining the construction of the Wiener measure via the 

last procedure.

So, first of all, a collection of “ simple” sets in the space of continu

ous functions must be indicated. Let 0 < t 1 < t2 < ••• < tn , where n is

f 1 (B ) c S  for B e ® .  Then this mapping induces the probability

already suitable for constructing the Wiener measure in C q t  . We shall

C q T being described in a comparatively simple manner, and then to con-

measures nn in Cq ^  converges weakly to a measure fi if

for any continuous bounded functional f(x ) on the space C q T .

In this way, the Wiener measure may be constructed in C q t  as well.
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any positive integer. Moreover, let r i , r 2 , - * - , r n be intervals of the real
t * . .,t

line (not necessarily different). We w ill denote by lip  p  the follow-
1 P* ** ’ n

ing set in the space C q ^  (F ig. 1):

n r  r  = ^  6 c o , o o : ^t e ^n® •1 i >• n 1 n

These sets belong to the class of so-called cylinder sets. By cylinder 

sets  in the space Cq oo, we mean the sets of the form {<£> e Cq ^ :

(</St ) f B| ,  where B belongs to the Borel a-field $ n in Rn .

t v  — >t nIn the case of the sets 11T, we choose B = T1 xF 9 x ••• x F  .
1 p - . . 4 n 

tp ...,t
Now let us introduce a measure on the sets lip  p  . We designate

I p . . . , l n
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( x ~ y )2

P(t,x,y) = - A =  e 2t , x,y f R 1, t > 0 , (2 .1 )
\/2 77 t

and put

J dyj ••• J *  dynp(tl fO,

(2 .2)

yp p(t2“t i -y i 'y 2) - "  p ^ - V i ' V i ’P  •

r. r1 n

Notice that if, for some i , V j coincides with the whole space R 1 , 

then

r1,...#ri_1,R1,ri+1,...,rn = r1,...,ri_1,ri+1,...,rn •
In other words, the superscript t* and the corresponding interval = R 

may be omitted. Hence, one and the same set in the space of functions

may be written in the form l i p ’ p  with different number of indices.

Formula (2.2) for the measure of this set can also be written in various

ways. Thus, for our definition of the measure of “ simple” sets to be
t t t/l  i V  * H ti 1 ty\

correct, it is necessary that, if l ip  p  = p/ then the corre-
1 n 1 v ,,,,A m

sponding values of the measure defined by formula (2.2) coincide. This 

property is referred to as the compatibility of a family of distributions. It 

is possible to check that formula ( 2 .2 ) does define a compatible family of 

distributions. This compatibility comes from the Kolmogorov-Chapman 

equation

p(s+t,x,y) = I p(s,x,z) p(t,z,y)dz (2.3)
/

which is fulfilled for function (2 .1 ).
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It is easily seen that the function p(t,x,y) defined by (2.1) also has 

the following properties:
oo

p(t,x,y) = p(t,0,y- x ) , J *  xap(h,0,x)dx = const x ha ^2 , (2.4)

where a is an arbitrary positive number.

By using the compatibility of the distributions given by formula (2.2) 

and properties (2.4), it is now possible to prove that the function defined 

for simple sets by formula (2 .2) may be extended to a measure on the 

minimal a-field of subsets of the space Cq ^  which contains all possible

lip  ’ ’ p  (see e.g. Ito and McKean [1], Wentzell [1 ]). This minimal

a-field w ill be denoted by Jl™ , 71 q will designate the a-subfield of the

a-field 5l£° generated by the sets lip  * p  for arbitrary natural numbers 

n and 0 < t 1 < t 2 < - - - < t n < t .

What kind of sets belong to the a-fields ?Iq and ? Generally 

speaking, the a-fields JIq and are rather extensive. For example,

let us consider the set:

3  = ^ ^ ° oo:fs < ^ s < gS for S f [ ° ’t]S ’

where fg , gs , s e [0,t] are arbitrary continuous functions on the segment 

[0 ,t], f s < gs , f Q < 0 < g Q. Since we deal with continuous functions,

CO

« - U  n  { f S l 4 < ^ < s S l -„L } ■
n 1 s ^ A q t

where A Q  ̂ denotes the set of rational numbers in the segment [0,t]. 

Therefore, the set 2  may be represented in the form of a union of the 

intersections of a countable number of simple sets, and thus 2  e JTq .

Hence it appears clear that the a-field contains the Borel 

a- field S Q)Co. It is possible to make sure that the opposite inclusion is

also valid, and therefore, ^  . For 0 < t-̂  < • • • < tfl < T , the

sets U p  p  may be projected into the space Cq The a-field 
1 1  , . . . , ln ’

generated by these sets in Cq t  w ill also be called . It is readily 

checked that this a-field in Cq ^  coincides with the Borel a-field ^ . 

We proceed to present some other examples of sets from JlJ and Jl™.
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1 1,  ,t
for the “ simple” sets IL^ ^  , is called the Wiener measure.

Let x > 0 , rx(^ )  = min St: = x S, i.e. rx (<f>) is the first moment

when cf> e Cq ^  hits the level x ; if the set { t : <f>̂  -  x! is empty (the

function 0  never attains the level x ), then we set rx (<f>) = + p° • Con

sider the set $  = \cf) e C q ^  : rx ((f>) < t \. It is clear that

$  = PI U | yS  ̂Cq t : > x ~~ Ffl w ^ic^ implies that $  e Jll . It
n=i s .eA 0)t ’ i

is not difficult to verify that the set & = \<f> t Cq ^ : rx (4>)  < rx (~ ^ >)5 of

the trajectories reaching the point x before the point -x  , belongs to the

a-field . Throughout this book, we w ill often consider the first hitting

times of closed sets.

So, in the space C q ^  there is a a-field 3Tq which coincides with

the Borel a-field ® Q T of this space (if T  = °o, then TLq = ^  ).

The measure on the a- field JIq', 0 < T < oo f defined by equality (2 .2 ) 
t ,  ,t

“ simple” sets lip  p  ,

The first mathematically correct construction of such a measure and 

the analysis of its basic properties was brought about by N. Wiener [1] in 

1923.

R E M A R K . The statement that the function given by (2.2) for simple sets 

may be extended to a measure on the a-field in the space Cq t , is 

based on two different results. The first of them is Kolmogorov’s general 

theorem on the extension of a measure in the space H Q T of a ll functions 

on [0 ,T ] with values in R 1 . The second result is concerned with the 

conditions under which this measure is concentrated on the space of con

tinuous functions. In order to clarify the meaning of these results, let us 

consider the “ simple” sets in H Q T :

n r " " ' r  = f r r - ^ t n •

Here n is any natural number, Tp  • * • > Tn are intervals on the line,

0 < tx < ••• < t < T . For the simple sets U p  p  C H Q T we will

define the function
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i ..... t
~ (n .  I ’ " )  =

I ’ " ’ ’ n
(2.5)

= f dy r -  f  dynp(t i ’ ° ’y i )p ( t 2~t i ’y v y 2) -  p V V i - y n - i - ^ '  

r. r1 n

where p(t,x,y) is specified by equality (2 .1 ).

Just as in the case of the simple sets in C q T , one and the same

simple set in H Q T may be described in different ways, for example, with

a different number of indices. However, the function JT depends only on 

~ t 1,...,t
the set Ftp p  C H q T and not on how it is written down. This 

1 '**•' n
follows from the Kolmogorov-Chapman equation (2.3). By the theorem on 

the extension of measure, the function JT, originally defined only on 

simple sets in H q T , may be extended to a measure on the minimal

a-field j l Q in H Q T which contains all simple sets lip  p  ,

0 < tl < t 2 < -  < t n < T .

The explicit form of the function p(t,x,y) is not essential for the

extension of j? to a measure on to exist. For example, the function

p.,(t,x,y) = -------------------   also satisfies the Kolmogorov-Chapman equa-
n [t2 + (y - x ) 2]

tion. If in equalities (2.5), p(t,x,y) is replaced by p 1 (t,x,y) , then we 

have some new function on the simple sets in H Q T . This function 

may be extended to a measure on the a-field JlJ in H Q T as well. 

Suppose now that in equalities (2.2), p1 is substituted for p. If

these modified equalities are used to define the function (lip  p  )
1 p . .. ,1 n

for simple sets in C q ^ , then this function may no longer be extended to 

a measure on ) I q In order that one could perform the extension to a 

measure on the a-field in the space C q t , it is sufficient to check

that the outer measure of the set Cq t  in H Q T is equal to 1 ( Cq t  

does not belong to Tl J , thus the measure jT(C q t ) is not defined):
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inf ijrcfl): C °  T C (2 f 31J | = 1 .

It turns out that, for the last equality to be fulfilled, simple sufficient 

conditions may be given. Namely, for the outer measure of the set Cq t  

to be 1 , and therefore, in order that one could extend p. from simple 

sets in Cq t  to a measure on it suffices that, for some a,/8 , c > 0

oo oo

J  J  lxl-x2l% 1,t/dxl xdx2^ Cltl-t2
1+/3 (2 .6)

11 ,t 2
where /q f (P. x P 9) = ^(11^ ) .  The above assertion is the Kolmogorov

1 ' 2  1 ' 2 
theorem on the existence of a continuous modification. In the case of the

function p(t,x,y) such constants a, /3, c exist. This follows, for example,

from (2.4) with a ~ 4 . Therefore, one can make the extension of the

measure defined by (2 .2 ) for simple sets in Cq ^  to a measure on the

o- field . For (i^ , introduced previously, such an extension in Cq ^

is impossible.

If the compatibility condition and bound (2.6) holds, then one can 

arrange the proof of the existence of an extended measure immediately in 

the space C q t  (see Ito and McKean [1 ]), without dividing it into these 

two stages.

The notion of the Wiener measure is closely related to that of Wiener 

random process. A random process Ŵ .(co) , t > 0, on a probability space 

(Q, S', P ) is called a Wiener process if its trajectories are continuous with 

probability 1 , P}Wq = 0S = 1 , and the finite-dimensional distributions are 

given by

pjwt e r  . - , w  € r \  =
I 1 1 n

(2.7)

J'dyj ••• J*dyn p(t1,0,y1)p(t2-t1,y1,

r i r -

where p(t,x,y) is defined by equality (2 .1 ).
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Formula (2.7) implies that Wj. is a Gaussian process. By using (2.7) 

it is not difficult to calculate that EŴ . = 0 , and the correlation function 

R(s ,t) of the process has the form R (s,t) = EWgWt = s A t .  Note that 

the correlation function and the expectation of a Gaussian process deter

mine, in a unique way, its finite-dimensional distribution functions. Thus, 

the Wiener process could be defined as a mean zero Gaussian process 

with continuous trajectories having the correlation function R (s,t) = s a  t .

Every one-dimensional random process X^(a>) , t > 0, co fO  whose 

trajectories are continuous with probability 1 , induces a mapping 

0 -> C q ^ : (i) -> X (cu) . This mapping induces a probability measure on the 

a- fie ld 1 Tl^  in C Q oo. Comparing (2.7) with (2.2) we draw the conclu

sion that the process Ŵ (co) induces the Wiener measure in the space

C n •0 ,  OO

On the other hand, given the space Cq ^  with the Wiener measure 

jLtw on the a-field Tl™, one can take (C Q oo, f i^ ) as a probability

space, and define the random process W^tu) = <f>^, t 6 [0 , oo), for co = cf) .

By virtue of (2.2) this process is a Wiener process. Therefore, the trajec

tories of the Wiener process W (̂ca) are simply elements of the space 

c l  . The elements of the a-field Til are events defined by the motionU, oo U J

of the Wiener process Wg for s e [0 ,t ].

The construction of Wiener measure and the examination of its proper

ties is in essence equivalent to the construction and examination of the 

properties of Wiener process.

Let us consider other constructions of the Wiener measure. We w ill 

construct the Wiener measure in C q j . Afterwards, it is not hard to

define the Wiener measure in C q t  for any T > 0.

preserve the notation TIq, 0 < t < oo t for the a - fie ld  of a ll cy lin der sets 

of C q   ̂ (not only of C q  t ), i.e . JIq is the a -fie ld  generated by the sets 

{(f> € C q  t : ( 0 t ) € b| for any natural n , any 0 < t^ < t2 < • < tn < t , and

B f S ” .' 1" " ’ "
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Suppose we are given a probability space (0,5", P ) and a sequence 

of independent mean zero Gaussian random variables on it having variance 

1 : f 0, ' Such a probability space may be constructed, for

example, by taking an infinite product of lines equipped with Borel 

a-fields and the standard Gaussian measure. We will define the mapping 

(fl, 3") -> (Cq p  l l 1̂ ) in such a fashion that in Cq 1 the Wiener measure 

will be induced.

Let us consider the series

0n 1__ oo 2 —1

s + 2  f k ^ i ^ , 0 < s < l .  (2 .8)

n=l k=2n~l

This series converges uniformly on [0,1] with probability 1 (see, e.g.

Ito and McKean [1 ]).

Thus, formula (2.8) gives the mapping f : fl -> Cq  ̂ . This mapping is 

readily checked to be measurable, i.e. f - 1 (B ) <r CS  for B Since the

sum of independent Gaussian random variables is also a Gaussian random 

variable, and since the limit of Gaussian random variables is also a 

Gaussian random variable, we conclude that the process <f>s (co) is 

Gaussian. Now let us verify that it is a Wiener process. As was said 

above, for this it suffices to check that E 0 g = 0 ,  E</>s0t = s a t . The 

first of these equalities comes from the fact that series (2 .8) may be 

integrated with respect to the measure P(dco) on 0  termwise. Noting 

that E = § -  we conclude from (2.8) that

oo

E <f>^  = st + V  - 2 - SipA7g..s i n k y . t >St t£[0)1] -
b 1 j72 k2

k = l  77 K

We leave to the reader to make certain that the expression on the 

right-hand side is equal to s A t .  Hence, (f>s (co) is a Wiener process.

The mapping f : 0  -> Cq 1 induces the Wiener measure in Cq 1 .
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Finally we mention another way of constructing the Wiener measure 

ensuring a transparent image of the nature of the set of functions this 

measure is  concentrated on.

We shall consider a symmetric random walk over a lattice on the line. 

Let a particle (being at time t at a point kh ) jump to one of the neigh

boring points (k - 1 ) h or (k+l)h  with equal probabilities at time t + A .

Here h > 0 is the lattice spacing, A > 0 is a time interval between
A h  A hsequential jumps, k = 0 ,1 ,2 ,*  . Let us denote by

k = 0,1 ,2  ,  • , the trajectory of this particle starting from zero at time

t = 0. C learly, X^ 1 is a random sequence. Let (0 , 3~, P ) be the

probability space this sequence is defined on. We w ill introduce the 
A hrandom broken lines X g ' s e [0 ,1 ], consisting of the segments which 

connect sequential points (kA, X ^ ^ c u )) and ( ( k + l )A , X ^ j ^ ^ ) , 

k = 0 , 1 , ,  + 1 . The random broken lines X ^ ’ induce in

1 certain measure concentrated on the broken lines with

vertices at the points (kA, £h), k = 0,1,2, • • *; I  = 0, ± 1, ±2 , ••• . For any 

integers k1 < k2 < •• • < kfl and any intervals Tn C R 1 , the

value of the measure /x ^  of the simple set

lxA ’h ' c S , , , „  . t v - , , ]

may be written down explicitly via binomial probabilities.

Now let A , h 4 0 in such a way that h2A ~ 1 = 1 . Then the family 
A hof measures fi ’ proves to converge weakly to the Wiener measure in

the space C q 1 . The proof of this statement may be decomposed into
f A htwo stages. First, one must prove that the measures fi ' of simple

sets in Cq  ̂ converge to the Wiener measure of these sets. This con

vergence is an implication of a version of the central limit theorem. 

Secondly, one must verify that the family of measures , h2 = A ,

A 4, 0 is weakly compact. This implies that the measures converge

weakly to the Wiener measure. For a detailed proof, see Donsker [1],

Ito and McKean [1 ].
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A more strong statement is also true (see Knight [1], Ito and Me Kean 

[1 ]): one can find a probability space (Q ,? , P ) and a family of random 

walks , co 6 0 , such that the broken lines X ^^(co ) drawn by

these walks, with probability 1 , converge uniformly on [0 ,1 ] to the con

tinuous functions Xg = X g(co). The random process Xg(co) is a Wiener 

process.

So, the functions the Wiener measure is concentrated on, may be

imagined as the limits of random broken lines X ^ ’^ for A = h2 as A 4- 0 .

Whence, via the properties of symmetric random walk over a lattice on the

line, we can obtain the properties of the Wiener process. For example,

the fact that, with probability 1 , random walk returns to zero an infinite

number of times, implies that, for almost all trajectories of the Wiener

process Wg(co), the set {s c [0,1], Wg(co) = OS is a perfect one (i.e. a

closed set every point of which is a limit point for this set).

So, suppose we are given a Wiener process W^(co), t > 0 , on the

probability space (Q, 3r, P ) . We w ill list some important properties of the

Wiener process (and, thereby, of the Wiener measure as well) in addition

to those mentioned previously.

We w ill show that the Wiener process has independent increments, i.e.

for any 0 < t 1 < 1 0 < • * * < t_ , the random variables Wf ,Wf -W f ,---,Wf -W t
l 2 n l i l 2 r l l n n- 1

are independent. As Wj. is a Gaussian process, all the n differences are

jointly Gaussian distributed. Hence, to prove the independence of these

random variables, it is sufficient to check that they are uncorrelated, i.e.

that E(Wf -W f )(Wf -W f ) = 0 for i 4- k. The last equality may be 
k+1 k i+1 i

easily checked by remembering that EWg Wt = s a  t . It is possible to 

demonstrate that the Wiener process is the only random process having 

continuous, with probability 1 , trajectories and independent increments 

for which EWt = 0 , EWt2 = t .

From the independence of increments, we can readily deduce the 

so-called Markov property of the Wiener process which may be stated as 

follows: for any T > 0, the random process = WT+t(co) -  WT(a>) does
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not depend on the a-field = a(W g , s e [0 ,T ] ) 2 and is a Wiener process

The proof of this statement is immediate from the independence of

increments and from the following observation: for any 0 < t1 < t2 < ••• < t

the a-fields a(Wf , - - ,Wf ) and a(W, , %  -W f ,-*-,Wf - %  ) coincide.
l l n l l 2 l l n n- 1

May we substitute a random variable for T ? Will the process 

Wj. = Wj. -Wr be a Wiener process if the time r = r(aj) itself depends on 

the trajectory? One can show that one cannot take an arbitrary random 

variable. For example, let 6 -  sup St e [0,1]: Ŵ = 0|. By the definition 

of 6, the process Wt = does not change the sign in the interval

(0 ,1 -0 ) with probability 1 . For a Wiener process, such a behavior (no 

zeroes in some interval (0 ,1 -0 ) ) has probability 0. For instance, this 

follows from the foregoing Knight’s result asserting that the Wiener trajec

tories may be represented in the form of the limit of symmetric walks over 

a lattice, if one takes into account that symmetric random walk returns to 

zero infinitely many times. Therefore, Wj. = Wj.+^-W ^ is not a Wiener 

process. However, an important class of random variables t{co) does 

exist for which the process W ^ -W ^  is a Wiener process. These are the 

so-called Markov times.

A random variable t{cS) which is allowed to take non-negative values 

and the value .+oo is said to be a Markov tim e , 3 whenever for every t > 0 

the event 1K&0 < belongs to 5 ^  = ^ ~ s -  •

In other words, a Markov time is one whose occurrence may be known 

without any information about what w ill happen after this time. This 

property is emphasized by another term for the Markov time—a random 

variable independent of future. In particular, the random variable 0 

introduced above (the last time, before 1 , when the Wiener trajectory

2We w ill  remind that if (2 is a c o lle c tio n  of random variab les  on a space 
(12, J~, P ) then a  (2 )  is the minimal a -fie ld  with resp ect to which the variab les  
of the c la s s  2  are a l l  measurable.

3
T o  be more exact, a Markov time with respect to the expanding system  of the

crw
a-fie ld s  . L a ter on we sha ll introduce a more general notion o f Markov time.
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visits zero) is not a Markov time. On the other hand, r(co) = inf I t : = al

—(the first hitting time to the point a )—is a Markov time.

It is easy to ascertain the elementary properties of the Markov times.

For instance, if and r^ are Markov times, then r1 a  t^ and v t^ 

are also Markov times. The variables -h 1 and 2 ,  for example, are

r lMarkov times as well; but the variables - j -  and r2 -1  are not, in general, 

Markov times.

A CT-field 5 ^  C J  is associated with every Markov time r(co) . Namely, 

an event (2 e 3  belongs to 3 ^  if and only if, for every t > 0, the inclu

sion (2 fl \t < t! e 3 ^ t holds. It is not difficult to check that the collec

tion of such events actually forms a a-field. Intuitively, this a-field is 

the collection of events which are defined by the behavior of the Wiener 

process Wg up to the time t(cS) .

It is possible to prove that if r(cS) is a Markov time and P 3(co) < oo\ = 1 , 

then the random process Ŵ. = Ŵ +7. - Wf does not depend on the a-field 

3 ^  and is a Wiener process (see Dynkin [1 ], Hunt [1], Ito and McKean [1 ]). 

This property is called the strong Markov property of a Wiener process.

Up to now we have been dealing with the Wiener trajectories starting

solely from zero. In what follows it w ill be suitable for us to consider a

family of Wiener processes starting from various points a <r R 1 : Ŵa = a + Ŵ ..

Then the Markov property may be interpreted like this: the process 

~ W T
Wt 1 = WT+£ is a new Wiener process starting from the point W ^ , at time 

t = 0 and conditionally independent of the behavior of the process Wt for 

t < T , given WT .

The strong Markov property may be applied for deducing the helpful 

relation (see, e.g. Ito and McKean [1 ]):

P\ max WQ >aS = 2P{Wf > a} .
0< s < t

In fact, by denoting = min{t : Ŵ = a\ we arrive at

P\ max W > al = P \r < tl = P {r < t,Wt < a| +
0< s < t

+ P\r < t,Wt > a \ .
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The terms on the right-hand side of this equality are equal. This is 

immediate from the strong Markov property and from the symmetry of the 

distribution of Wg with respect to zero. Noting this we derive

From (2.9) we conclude that PStl < oo\ = lim P \r < t} = 1 , but E t = oo.cl j d dt->oo

The joint distribution of and max Wg = ^  may also be computed
0<s<t

(see Ito and McKean [1 ]). The density function pw ^ (x ,y ) of this two- 

dimensional random variable is the following

Now we dwell briefly on the local properties of Wiener trajectories. 

By remembering that the increments of Wiener process are independent, it 

is not difficult to prove that, for every fixed t, almost all Wiener trajec

tories Wj. are not differentiable. Paley, Wiener, and Zygmund [1] estab

lished a stronger result: Wiener trajectories are nowhere differentiable 

with probability 1 .

With probability one, the trajectories of Wiener process are Holder

continuous with exponent -- -  e for every s > 0 , and do not satisfy the
1Holder condition with the exponent  ̂ • Wiener trajectories have infinite 

variation in every non-empty interval. For the proof of all these asser

tions, the reader is referred to Ito and McKean [1], Chapter 1.

The properties of symmetry and self similarity of the Wiener process 

play a highly significant role.

P| max W_ > ai = P lr  < ti = 2P{ r  < t, > a| =o d — d — L —

(2.9)

a a

(2y -x )2

(2y -x ) e , t > 0, y > 0, x < y .
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It is obvious that if Ŵ (co) is a Wiener process, WQ(co) = 0 , then the
/ V

process = -Wt(co) is also a Wiener process. No matter what the posi

tive number a , the process Ŵ = a ^t/ 2 *s a Wiener process as well.

Indeed, the process has continuous trajectories and is a Gaussian 

process; EWf = a EWf = 0 .  The correlation function of the process

Wj. has the form: E WgŴ. = a 2EWgy = a2/ —  a  — \  = s a  t . As was
a 2 a 2 \a2 a 2/

remarked above, these properties characterize the Wiener process.

There is another interesting transformation which preserves Wiener 

processes. Let Ŵ  be a Wiener process. The process

(2 .10)

is a Wiener process too. In order to prove this, we again make use of the

fact that a mean zero Gaussian process with continuous trajectories and

the correlation function R (s,t) = s a  t , is a Wiener process. The continuity

of the function Wj. may be broken at zero only, but one can see that for

any e > 0 ~
WJ

lim = 0 P -a.s.
t 4 0 t(/2)~£

This can be checked, for example, with the law of iterated logarithm for 

t -> oo (see below). Thus, the functions Ŵ. are continuous at zero.

Taking into consideration that EW^ = 0, E WgŴ  = st^g- a = s a t , we 

deduce that is a Wiener process. This transformation enables us to 

determine the properties of a Wiener process as t -» 0, by studying its 

properties as t -> ©o, and vice versa.

There is an interesting property, the so-called law of iterated logarithm 

which holds for almost all the Wiener trajectories: namely, with 

probability 1 .
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lim ■ -4 —-  = 1 , Inn     ---- = - 1  .
t->oo y/2t In In t t-̂ oo \/2t In In t

The proof of this statement may be found in Ito and McKean [1]. Using 

transformation (2 .1 0 ), the law of the iterated logarithm becomes the local 

law of the iterated logarithm:

  Wf %
lim - — - U   = 1 , lim — =  = - 1
u 0  \/2t In In t_1 ‘ 4 0 In In f 1

almost surely. The local law of the iterated logarithm, in particular, im

plies that a Wiener process starting from zero, returns to the point 0 with 

probability 1 in an arbitrarily small interval (0 ,h ), h > 0. We have used

this property when stating that the variable 0 = sup {t e [0 ,1 ], = 0 j is

not a Markov time. Furthermore the law of the iterated logarithm implies 

that the set of zeroes of a Wiener trajectory is unbounded with probability 1 

as t -» oo.

Notice that the Lebesgue measure of the set i t : Ŵ. = 0| is zero with 

probability 1 . Really, the time A p (t) , a trajectory spends in the set 

r  C R 1 up to time t , may be written in the form A p (t) = f *  Xp(Ws )ds  

where X p (x) the indicator of the set P .  From this we conclude that 

E Ap (t) = E Xp(Wg)ds = f  p (s,0,y)dy ds . In particular, if P  has

zero measure, then E A p (t ) = 0 and therefore A p (t ) = 0 with probability 1 .

Many interesting properties of the Wiener process are available in the 

books of Levy [1] and Ito and McKean [l j.
1 I*A collection of r independent Wiener processes (Ŵ. , Ŵ. ) = Ŵ. ,

t > 0, defined on a probability space (0, ff, P ) , is said to be an 

r-d im ensional Wiener process. The measure in the space Cq ^ (R 1) of 

continuous functions on [0, oo) with values in Rr , induced by the process 

Wt(cu) in Cq ^ (R 1) , is called a Wiener measure in C Q ^ (R 1) .

A family of a-fields 5 ^  -  a(WsX, --^Wg ; s e [0 ,t ]) is associated with 

the process Ŵ .. Corresponding to this family of a-fields (as to any
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increasing family of a-fields) there is a collection of Markov times:

namely, non-negative random variables t( oj)  for which \r(o)) < tl e A^j-,

t > 0. This concept of a Markov time, if considered in connection with

the one-dimensional process wA is broader than that introduced before,
1

because the a- fields Act are broader than A^t . For these new Markov 

times the strong Markov property is fulfilled as well: W  ̂- Wf = Ŵ. is an 

r-dimensional Wiener process independent of events belonging to the 

a-field A^f = 1 2  A : 2  H {r < t! c A^t ôr anY t > 0|.

We will note some differences in the behavior of r-dimensional Wiener 

processes as we vary the dimension r (these distinctions follow from the 

properties of the one-dimensional Wiener process and from the indepen

dence of the components (Ŵ 1, • • •, Ŵ.r) ). As we observed, after any time t, 

a Wiener process in R 1 will hit zero and, hence, w ill hit any other point 

of the line as well. For r > 2 , however, with probability 1 , the Wiener 

trajectory w ill never hit any fixed point of Rr . But for r = 2 , with 

probability 1 , the Wiener trajectory does hit any open set after any fixed 

time. For r > 2 , this is not the case. What is more, one can prove that, 

for r > 3 ,  lim |Wj = 00 a .s . .
t-»oo

Finally, we remark that the Wiener process in Rr is invariant with 

respect to rotations: if is an r-dimensional Wiener process, then 

Wj. = QW^ is also a Wiener process for any orthogonal matrix Q . This 

assertion follows from the definition of and from the properties of the 

Gaussian distribution. The family of Wiener processes Ŵx = x + Ŵ. in 

Rr is invariant with respect to the group of all rigid motions of the space.

Concluding this section it is worthwhile to draw the reader’ s attention 

to the close connection between the Wiener measure (or process) and the 

Laplace operator4 A .

4More p rec is e ly , this is  the operator —■ A rather than A . T h is  is seen in

considering Cauchy’ s problem. In the case of D ir ic h le t ’ s problem for the hom oge
neous equation A u = 0 , this d ifferen ce  is of course im perceptib le .
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The simplest example of this connection is the following: the mean 

value Eg(W^x) = u (t,x) (here g(x) is a continuous bounded function in 

R ) is a solution of Cauchy’s problem for the simplest heat conduction 

equation:

Now we shall show how the Wiener process is linked with Dirichlet’s 

problem for the Laplace operator.

Suppose we are given a bounded domain D C Rr with a boundary (9D , 

the domain D , for simplicity, being assumed convex. Consider the 

Dirichlet problem in the domain D :

where yHx) is a continuous function defined on (9D . We will show how 

the function u(x) which is a solution of problem (2 .1 1 ) can be represented 

in the form of the average value of a proper functional of the Wiener trajec

tory, or (what is the same) in the form of an integral with respect to the 

Wiener measure.

Let Wj. be a Wiener process in R r . We will introduce the Markov 

time rx = rx(co) = inf {t : x t Ŵ  e <9D \ —the first hitting time to the boundary 

of the domain D starting from x e D U <3D . Let us show that

< 00} = 1 for arbitrary x e D . In fact, let W^'x be the first com

ponent of Wj.x = Wj. + x and let a number a be such that D C |x fR r; x 1 < a !. 

We shall denote by the first hitting time of the one-dimensional

process Ŵ1,x to the point = inf { t : Ŵ1,x = a }. It is clear that

rD< tq.’X so finiteness ° f  rD comes from the fact that P = 1 •

t - =  L u. l im  u (*> x )  =  g ( x )  •
n o

This is straightforward since according to the definition of Ŵx

dy .

Au(x) = 0, x 6 D , lim u(x) = vHx q) j
X~>X q£ <?D

(2 .11)
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The last equality results from (2.9). At the time rx , the point W*u  T

belongs to dD , thus one can consider ^ (W x ) and the function

V (x ) = E 0-(W ) . (2 .12)

Let us show that the function V (x) is a solution of Dirichlet’s 

problem (2 .1 1 ).

First we w ill make sure that the function V (x) defined by (2.12)

sa tis fies  the boundary conditions, i.e . lim V (x ) = T o that
x -»x q€ <9d

end, let us draw the line of support T  (for the sake of visualization, we

shall speak of the two- 

dimensional case) through 

the point x Q e dD (see 

Fig. 2). Since the Wiener 

process is invariant with 

respect to the group of 

movements of the plane, 

the point x Q may be 

considered as coinciding 

with the origin and the 

line r  —with the x2- 

axis. Let r^,x be the 

first hitting time of the 

first component Ŵ1,x 

of the Wiener process 

Wx to the point 0. Then 

noting equality (2.9) we 

F ig . 2 obtain
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PSri, > t i < P M x > t }  = 4 =
D °  \f2rr

0

as x 1 -> 0. Formula (2.9) also readily implies that, for any fixed h > 0, 

the probability of leaving the rectangle 11̂  shown in Fig. 2 before time t 

across the horizontal sides or across the side lying on the line x 1 = -h  , 

tends to zero as t  ̂0 uniformly in the set of the initial points

x e D H U g (0 ), where Ug(0) = \x : |x | < 8 S. This remark along with (2.13)

implies that P|WXX e y^j -> 1 as x -> 0, where y^ = dD H 11̂  . Now it is
r D

easy to verify that V (x ) takes on the prescribed boundary values: 

|V(x)-<A(0)| = |E(i//(Wx ) -i/>(0))| < E|i//(WX ) -^ (0 )| v  +
Tl  rl  h

+ E|<A(wxx)-<A (0) | ( i - x yi )  -  sup |iA(x)-iA(0)| +
r D X6 dD , | x —0|<2h

+ 2 max |yKy)l x P {W XX / y^\ . (2.14)
yedT) td

Here v  (^ ) =  ̂ f ° r 60 € iWx e yi \ and y  (&>) = 0 on the rest of 0 .  
mi rx Mi

The first summand on the right-hand side of (2.14) can be made arbitrarily

small by making h small. The second summand, as it has been shown

above, tends to zero for a fixed h as x -» 0 e dD . Hence,

lim V (x ) = *A(xq) . 
x -»x q£ dD

Now we w ill show that the function V (x ) is continuous for x e D .

First let 7 X be a Markov time with respect to the family of a-fields 

5 ^  , which satisfies P f7x < rx S = 1 . Let 77 = 7/(cd) = W^x . Using the

strong Markov property one can write down the following chain of equalities:

J  e 2 dy ^ 0 (2.13)
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V (x ) = Ei/f(Wx ) = E (E (^ (W ^ ' j \ r i »  =

’ I  (2.15)

= E V (rj) = EV(W * ) ,
T

where is a Wiener process independent of Ŵ .. L e t us introduce the 

Markov time [ = r x ,^ ^ A ^ ,  x, y <r D . Using (2.15) leads to

V (x ) - V (y ) = E (V (W p) -  V (W *)) . (2 .16)

One of the points W j or w j  belongs to dD , and the distance of the
T T

other point from D is bounded by ]x-y | , because the trajectory w j is 

a translation of W* by the vector (y -x ) . Hence, on account of the fore

going bounds near the boundary we have:

|V(W^)-V(W^)| ->0 as |x-y| -> 0 a.s.

Noting that the function V (x ) is bounded, we deduce from (2.16) that 

|V (x )-V (y )|  -> 0 as |x-y|-»0 .

L e t us show that the function V (x ) g iven by (2.12) has the mean- 

value property: for any c irc le  K having its center at a point x eD and 

lying entirely in D U dD , the function V (x ) sa tis fies

/V (x ) = V (y ) m(dy) (2.17)

where m(dy) is a uniform distribution on the c irc le  with the condition 

m(K) = 1 . Indeed, let us put = minSt : W* e K | ; that is, the first hitting 

time of the c irc le  K starting from x e D . The random variable is a 

Markov time satis fy ing P < r * i = 1 , and by (2.15)

V (x ) = EV(W XX) .

TK
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Further, remembering that the Wiener process is invariant with respect to 

rotations one can conclude that when starting from the center of the circle 

K, the distribution at the first exit time from K is uniform: that is, 

P {W XX 6 yS = m(y) for every arc y C K . Therefore,

So, we have shown that V (x ) is a continuous function which takes on 

the prescribed boundary values and has the mean-value property. As is 

known in the theory of differential equations, a solution u(x) of 

DirichletJs problem (2.11) possesses these properties too. Consequently, 

to prove that u(x) = V (x ) , it remains to note that there is but one con

tinuous function taking the value i/Kx) on dD and satisfying the mean- 

value property. Indeed, suppose on the contrary, that there are two such 

functions and that a(x) is their difference. For x e dD , the function 

a(x) vanishes identically and satisfies the mean-value property as well. 

Assume that a(x) attains its maximum for x = x Q eD . Let us draw a 

circle with center at x and with radius equal to the distance from x to

r
K

V (x) = EV(W^X ) = V(y)m (dy) .
K

K

dD (F ig. 3).

M

dD

F ig . 3
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Using the continuity of a(x) and the mean-value theorem yields that 

a(xq) = a(M) = 0 ( M is shown in Fig. 3). Thus, a(x) ee 0 for x e D and 

hence u(x) ee V ( x )  .

So we have established that the solution of Dirichlet’s problem can be 

represented in the form

Intuitively this means that, for the value of u(x) at any point x e D 

to be determined, we are to let out Wiener trajectories from the point x , 

then to watch where they first hit dD and what the boundary values are 

at the points of the first hitting dD , and then to average these values 

over all the trajectories Wx(&>).

§1.3 Stochastic d iffe ren tia l equations

Our next goal now is to construct a family of measures in C Q ^ (R 1̂) 

(or, equivalently, a family of random processes with continuous trajec

tories) which corresponds to an elliptic, possibly degenerate, second- 

order differential operator of general form. As we have seen in the 

previous section, a family of Wiener processes Wx is associated with the 

operator A . Now suppose that we are given a second-order operator

u(x) = E l/r(W*x ) . (2.18)

r r

with constant coefficients and non-negative characteristic form:

S a^A-Aj  > 0 ,  a 1̂ = a^1. Consider the family of random processes

Xx = x + aWt + bt (3.1)

where x e Rr is an initial point, and a is a real matrix5 such that

5The ex is ten ce  of such a matrix fo llo w s  from the fa c t that the matrix (a 1**) is 
non-negative.
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O' a* = (a 1̂ *), b = (b 1, • • •, br) . Knowing the density function of the random 

variable Wj. it is easy to evaluate the distribution of X* and to make 

sure that the function u(t,x) = E g(X^) is a solution of Cauchy’s problem

~  = Lu , lim u(t,x) = g(x) ,
d t  1 1 0

where g(x) , x e R r , is a bounded continuous function. Therefore, the 

Gaussian process X * and the corresponding measure in C Q ^ (K 1) are 

related in a natural way to the operator L  .

Now consider the operator of general form

L =  \  V a 1^(x) — 4 - - - : +  V b 1(x) , V a^(x)A.iAj >  0 ,
2 r * .  dx'dx* r i .  dx1 r - 1.

i , j = l  1 = 1  i , J  =  l

with variable coefficients. The question suggests itself: what stochastic 

process X * is related to this operator L  ? If the coefficients of the 

operator possess some continuity properties, then it is natural to expect 

that, near the point x , such a process X* is close to the process X* 

defined in (3.1) with a and b held fixed to their values at point x . In 

other words, the desired process must satisfy the differential equation

dX* = o<X^)dWt + b (X * )d t , X* = x , (3.2)

where b(x) = (b*(x ), • ••, br(x )) , cr(x) a *(x ) = (a ^ (x )) .

Later on we w ill see that actually such is the case, but first we must 

make sense of equation (3.2). To make the meaning of equation (3.2) more 

precise, we will follow the ideas of K. Ito. Namely, we integrate it from 

0 to t , taking into account the initial condition:

t t

X f ~ x = J  a (X pdW s + J lb(Xg)ds . (3.3)
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If the matrix a does not depend on x , then the existence and uniqueness 

of a solution of such an equation for a fixed trajectory , follow from 

the corresponding results for ordinary differential equations (non-stochastic), 

whenever one assumes, for example, that the function b(x) satisfies a 

Lipschitz condition. In the general case, the situation is more compli

cated: here the first integral in (3.3) must be given a meaning. But this 

is not easy to do, because the Wiener trajectories Wg have with probability 

one infinite variation on every interval.

We proceed now to construct Ito’s stochastic integral and describe its 

properties (see, e.g. Gihman and Skorohod [1], [2], McKean [1], Wentzell 

[1 ]). The general outline is as follows (now Wg is supposed to be a one

dimensional Wiener process). To begin with, we define f  b f(s, co) dWg
a

for the “ simple”  real-valued functions f (s , co) , s c  [a ,b ]. Here it turns

out that / b f(s, co) dWg = y(co) is a random variable such that E177( 00)|2 = 
k a

f  E|f(s, o))|2 ds . Therefore, to every simple function f (s , co) , the 
a

stochastic integral is a random variable rj{oo) . We introduce the Hilbert

space H 2([a ,b ] x 0 ) of functions with the norm ||f|| 2 = / E|f(s, <u) |2 ds
H a

and the Hilbert space L 2(Q ) of the random variables t j( c o ) ,  ||r/|| 2 =

E|Yj(co) | 2 . Then integration becomes a linear isometric*mapping of the set 

H 2 k of simple functions from H 2([a ,b ] x 0 ) into L 2(Q) . This mapping 

can be extended in a continuous way to the closure of the set 

Hl  h C H *(fe .b ] x fi) with the isometry being preserved. Such a continua

tion defines an integral on the closure of the set of simple functions 

which turns out to be a sufficiently extensive set. Now, we proceed with 

the details.

Suppose we are given a one-dimensional Wiener process , t > 0 , 

and an increasing family of a-fields , t > 0. We assume that 

3 ^  C /Vt and that the increments Wg -  Ŵ  do not depend on the a-field 

Nt for s > t . Such a family of a-fields w ill be called a fam ily  

adapted to the Wiener process Ŵ ..


