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Preface

This book grew from an article I wrote in 2008 for the centenary of
Felix Klein’s ElementaryMathematics from an Advanced Standpoint.

The article reflected on Klein’s view of elementary mathematics, which
I found to be surprisingly modern, and made some comments on how
his view might change in the light of today’s mathematics. With further
reflection I realized that a discussion of elementary mathematics today
should include not only some topics that are elementary from the
twenty-first-century viewpoint, but also a more precise explanation of
the term “elementary” than was possible in Klein’s day.

So, the first goal of the book is to give a bird’s eye view of elementary
mathematics and its treasures. This view will sometimes be “from
an advanced standpoint,” but nevertheless as elementary as possible.
Readers with a good high school training in mathematics should be
able to understand most of the book, though no doubt everyone will
experience some difficulties, due to the wide range of topics. Bear in
mind what G. H. Hardy (1942) said in a review of the excellent book
What is Mathematics? by Courant and Robbins (1941): “a book on
mathematics without difficulties would be worthless.”

The second goal of the book is to explain what “elementary” means,
or at least to explain why certain pieces of mathematics seem to be
“more elementary” than others. It might be thought that the concept
of “elementary” changes continually as mathematics advances. Indeed,
some topics now considered part of elementary mathematics are there
because some great advancemade them elementary. One such advance
was the use of algebra in geometry, due to Fermat andDescartes. On the
other hand, some concepts have remained persistently difficult. One is
the concept of real number, which has caused headaches since the time
of Euclid. Advances in logic in the twentieth century help to explain
why the real numbers remain an “advanced” concept, and this idea will
be gradually elaborated in the second half of the book. We will see how
elementary mathematics collides with the real number concept from
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various directions, and how logic identifies the advanced nature of the
real numbers—and, more generally, the nature of infinity—in various
ways.

Those are the goals of the book. Here is how they are implemented.
Chapter 1 briefly introduces eight topics that are important at the
elementary level—arithmetic, computation, algebra, geometry,
calculus, combinatorics, probability, and logic—with some illustrative
examples. The next eight chapters develop these topics in more
detail, laying down their basic principles, solving some interesting
problems, and making connections between them. Algebra is used
in geometry, geometry in arithmetic, combinatorics in probability,
logic in computation, and so on. Ideas are densely interlocked, even
at the elementary level! The mathematical details are supplemented
by historical and philosophical remarks at the end of each chapter,
intended to give an overview of where the ideas came from and how
they shape the concept of elementary mathematics.

Since we are exploring the scope and limits of elementary math-
ematics we cannot help crossing the boundary into advanced mathe-
matics on occasion. We warn the reader of these incursions with a star
(∗) in the titles of sections and subsections that touch upon advanced
concepts. In chapter 10 we finally cross the line in earnest, with
examples of non-elementary mathematics in each of the eight topics
above. The purpose of these examples is to answer some questions that
arose in the elementary chapters, showing that, with just small steps
into the infinite, it is possible to solve interesting problems beyond the
reach of elementary methods.

What is new in this book—apart from a hopefully fresh look
at elementary mathematics—is a serious study of what it means for
one theorem to be “more advanced” or “deeper” than others. In the
last 40 years the subject of reverse mathematics has sought to classify
theorems by the strength of axioms needed to prove them, measuring
“strength” by how much the axioms assume about infinity. With this
methodology, reverse mathematics has classified many theorems in
basic analysis, such as the completeness of the real numbers, Bolzano-
Weierstrass theorem, and Brouwer fixed point theorem. We can now
say that these theorems are definitely “more advanced” than, say,
elementary number theory, because they depend on stronger axioms.
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So, if we wish to see what lies just beyond elementary mathematics,
the first place to look is analysis. Analysis clarifies not only the scope
of elementary calculus, but also of other fields where infinite processes
occur. These include algebra (in its fundamental theorem) and com-
binatorics (in the Kőnig infinity lemma, which is also important in
topology and logic). Infinity may not be the only characteristic that
defines advanced mathematics, but it is probably the most important,
and the one we understand the best.

Lest it seem that logic and infinity are formidable topics for a book
about elementary mathematics, I hasten to add that we approach them
very gently and gradually. Deeper ideas will appear only when they are
needed, and the logical foundations of mathematics will be presented
only in chapter 9—at which stage I hope that the reader will understand
their value. In this respect (and many others) I agree with Klein, who
said:

In fact, mathematics has grown like a tree, which does not start at its
tiniest rootlets and growmerely upward, but rather sends its roots deeper
and deeper and at the same time and rate that its branches and leaves are
spreading upward.

Klein (1932), p.15

In chapter 9 we pursue the roots of mathematics deep enough to see,
I hope, those that nourish elementary mathematics, and some that
nourish the higher branches.

I expect that this book will be of interest to prospectivemathematics
students, their teachers, and to professional mathematicians interested
in the foundations of our discipline. To students about to enter uni-
versity, this book gives an overview of things that are useful to know
before proceeding further, together with a glimpse of what lies ahead.
To those mathematicians who teach at university level, the book can be
a refresher course in the topics we want our students to know, but about
which we may be (ahem) a little vague ourselves.

Acknowledgments. For the germ of the idea that led to this book,
credit should go to Vagn Lundsgaard Hansen and Jeremy Gray, who
commissioned my article on Klein, and later suggested that I write
a book of a similar kind. I thank my wife, Elaine, as ever, for her
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tireless proofreading and general encouragement. Thanks also go to
Derek Holton, Rossella Lupacchini, Marc Ryser, and two anonymous
referees for corrections and helpful comments. I am indebted to the
University of San Francisco for their continuing support, and to
Cambridge University DPMMS for the use of their facilities while
several chapters of the book were being written. Finally, special thanks
go to Vickie Kearn and her team at Princeton University Press for
masterly coordination of all aspects of the production of this book.

John Stillwell
Cambridge, July 2, 2015



Elements of Mathematics





1

Elementary Topics

PREVIEW

The present chapter introduces the fields of mathematics that will be
considered “elementary” in this book. They have all been considered

“elementary” at some stage in the history of mathematics education,
and they are all still taught at school level in some places today. But even
“elementary” topics have their mysteries and difficulties, which call for
explanation from a “higher standpoint.” As we will show, this applies
to the topics considered by Klein (1908)—arithmetic, algebra, analysis,
and geometry—plus a few other topics that existed only in embryonic
form in 1908 but are quite mature today.

Thus we have sections on arithmetic, algebra, and geometry, as
Klein did, plus his “analysis” interpreted as “calculus,” and the new
topics of computation, combinatorics, probability, and logic, which
matured only in the last century.

It is clear that computation looms over mathematics today, at all
levels, and that this should include the elementary level. Combinatorics
is a close relative of computation, and it has some very elementary
aspects, so it should be included for that reason alone. A second,
more classical reason, is that combinatorics is a gateway to probability
theory—another topic with elementary roots.

Finally, there is the topic of logic. Logic is the heart of mathematics,
yet logic is not viewed as a mathematical topic by many mathemati-
cians. This was excusable in 1908—when few if any theorems about
logic were known—but not today. Logic contains some of the most
interesting theorems of mathematics, and it is inextricably connected
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with computation and combinatorics. The new trio computation-
combinatorics-logic now deserves to be taken as seriously in elementary
mathematics as the old trio arithmetic-algebra-geometry.

1.1 Arithmetic

Elementary mathematics begins with counting, probably first with the
help of our fingers, then by words “one,” “two,” “three,” . . . , and in
elementary school by symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . . This
symbolism, of base 10 numerals, is already a deep idea, which leads to
many fascinating and difficult problems about numbers. Really? Yes,
really. Just consider the meaning of a typical numeral, say 3671. This
symbol stands for three thousands, plus six hundreds, plus seven tens,
plus one unit; in other words:

3671= 3 · 1000+ 6 · 100+ 7 · 10+ 1

= 3 · 103+ 6 · 102+ 7 · 10+ 1.

Thus to know the meaning of decimal numerals, one already has to
understand addition, multiplication, and exponentiation!

Indeed, the relationship between numerals and the numbers they
represent is our first encounter with a phenomenon that is common
in mathematics and life: exponential growth. Nine positive numbers
(namely, 1, 2, 3, 4, 5, 6, 7, 8, 9) are given by numerals of one digit, 90
(namely 10, 11, 12, . . . , 99) by numerals of two digits, 900 by numerals
of three digits, and so on. Adding one digit to the numeral multiplies by
10 the number of positive numbers we can represent, so a small number
of digits can represent any number of physical objects that we are likely
to encounter. Five or six digits can represent the capacity of any football
stadium, eight digits the population of any city, ten digits the population
of the world, and perhaps 100 digits suffices to represent the number of
elementary particles in the known universe. Indeed, it is surely because
the world teems with large numbers that humans developed a system of
notation that can express them.

It is a minor miracle that large numbers can be encoded by small
numerals, but one that comes at a price. Large numbers can be added
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and multiplied only by operating on their numerals, and this is not
trivial, though you learned how to do it in elementary school. Indeed,
it is not uncommon for young students to feel such a sense of mastery
after learning how to add and multiply decimal numerals, that they feel
there is not much else to learn in math. Maybe just bigger numbers.
It is lucky that we gloss over exponentiation, because exponentiation of
large numbers is practically impossible! Thus it takes only a few seconds
to work out 231+ 392+ 537 by hand, and a few minutes to work out
231× 392× 537. But the numeral for

231392537

is too long to be written down in the known universe, with digits the
size of atoms.

Even with numerals of more modest length—say, those that can be
written on a single page—there are problems about multiplication that
we do not know how to solve. One such is the problem of factorization:
finding numbers whose product is a given number. If the given number
has, say, 1000 digits, then it may be the product of two 500-digit
numbers. There are about 10500 such numbers, and we do not know
how to find the right ones substantially faster than trying them all.

Here is another problem in the same vein: the problem of recogniz-
ing prime numbers. A number is prime if it is greater than 1 and not the
product of smaller numbers. Thus the first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . .

There are infinitely many prime numbers (as we will see in chapter 2)
and it seems relatively easy to find large ones. For example, by consult-
ing the Wolfram Alpha website one finds that

next prime after 1010 = 1010+ 19,

next prime after 1020 = 1020+ 39,

next prime after 1040 = 1040+ 121,

next prime after 1050 = 1050+ 151,
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next prime after 10100 = 10100+ 267,

next prime after 10500 = 10500+ 961,

next prime after 101000 = 101000+ 453.

Thus we can readily find primes with at least 1000 digits. Even more
surprising, we can test any number with 1000 digits and decide whether
it is prime. The surprise is not only that it is feasible to recognize
large primes (a problem not solved until recent decades) but that it is
feasible to recognize non-prime numbers without finding their factors.
Apparently, it is harder to find factors—as we said above, we do not
know how to do this for 1000-digit numbers—than to prove that they
exist.

These recent discoveries about primes and factorization underline
the mysterious nature of elementary arithmetic. If multiplication can
be this difficult, what other surprises may be in store? Evidently, a
complete understanding of elementary arithmetic is not as easy as it
seemed in elementary school. Some “higher standpoint” is needed to
make arithmetic clearer, and we will search for one in the next chapter.

1.2 Computation

As we saw in the previous section, working with decimal numerals
requires some nontrivial computational skills, even to add andmultiply
whole numbers. The rules, or algorithms, for adding, subtracting, and
multiplying decimal numerals are (I hope) sufficiently well known
that I need not describe them here. But it is well to recall that they
involve scores of facts: the sums and products of possible pairs of digits,
plus rules for properly aligning digits and “carrying.” Learning and
understanding these algorithms is a significant accomplishment!

Nevertheless, we will usually assume that algorithms for addition,
subtraction, and multiplication are given. One reason is that the deci-
mal algorithms are fast, or “efficient,” in a sense we will explain later, so
any algorithm that is “efficient” in its use of addition, subtraction, and
multiplication is “efficient” in some absolute sense. Such algorithms
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have been known since ancient times, before decimal numerals were
invented. The original and greatest example is the Euclidean algorithm
for finding the greatest common divisor of two numbers.

The Euclidean algorithm takes two positive whole numbers and,
as Euclid put it, “repeatedly subtracts the smaller from the larger.” For
example, if one begins with the pair 13, 8 then repeated subtraction
gives the following series of pairs

13, 8→ 8, 13− 8 = 8, 5
→ 5, 8− 5 = 5, 3
→ 3, 5− 3 = 3, 2
→ 2, 3− 2 = 2, 1
→ 1, 2− 1 = 1, 1

—at which point the two numbers are equal and the algorithm halts.
The terminal number, 1, is indeed the greatest common divisor (gcd)
of 13 and 8, but why should the gcd be produced in this way? The first
point is: if a number d divides two numbers a and b, then d also divides
a− b. In particular, the greatest common divisor of a and b is also a
divisor of a− b, and hence of all numbers produced by the sequence of
subtractions. The second point is: subtraction continually decreases the
maximummember of the pair, and hence the algorithm eventually halts,
necessarily with a pair of equal numbers. From this it follows that the
terminal number equals the gcd of the initial pair.

The Euclidean algorithm is an admirable algorithm because we can
easily prove that it does what it is supposed to, and with a little more
work we can prove that it is fast. To be more precise, if the initial
numbers are given as decimal numerals, and if we replace repeated
subtractions of b from a by division of a by bwith remainder, then the
number of divisions needed to obtain gcd(a, b) is roughly proportional
to the total number of digits in the initial pair.

Our second example of an algorithm is more modern—apparently
dating from the 1930s—and again involving elementary arithmetic
operations. The so-called Collatz algorithm takes an arbitrary positive
whole number n, replacing it by n/2 if n is even and by 3n+ 1 if n is odd,
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then repeats the process until the number 1 is obtained. Amazingly,
we do not know whether the algorithm always halts, despite the fact
that it has halted for every number n ever tried. The question whether
the Collatz algorithm always halts is known as the Collatz or 3n+ 1
problem.

Here is what the Collatz algorithm produces for the inputs 6
and 11:

6→ 3→ 10→ 5→ 16→ 8→ 4→ 2→ 1.
11→ 34→ 17→ 52→ 26→ 13→ 40→ 20→ 10→ 5→ 16→

8→ 4→ 2→ 1.

A century ago there was no theory of algorithms, because it was not
known that the concept of “algorithm” could be made mathematically
precise. Quite coincidentally, the Collatz problem arrived at about the
same time as a formal concept of algorithm, or computing machine,
and the discovery that the general halting problem for algorithms is
unsolvable. That is, there is no algorithm which, given an algorithm
A and input i , will decide whether A halts for input i . This result
has no known implications for the Collatz problem, but it has huge
implications for both computation and logic, as we will see in later
chapters.

In the 1970s the theory of computation underwent a second up-
heaval, with the realization that computational complexity is important.
As pointed out in the previous section, some computations (such as ex-
ponentiation of large numbers) cannot be carried out in practice, even
though they exist in principle. This realization led to a reassessment of
the whole field of computation, and indeed to a reassessment of all fields
of mathematics that involve computation, starting with arithmetic. In
the process, many puzzling new phenomena were discovered, which
as yet lack a clear explanation. We have already mentioned one in the
previous section: it is feasible to decide whether 1000-digit numbers
have factors, but apparently not feasible to find the factors. This is
a troubling development for those who believe that existence of a
mathematical object should imply the ability to find the object.

It remains to be seen exactly how computational complexity will
affect our view of elementary mathematics, because the main problems
of computational complexity are not yet solved. In chapter 3 we will
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explain what these problems are, and what they mean for the rest of
mathematics.

1.3 Algebra

Elementary algebra has changed considerably since the time of Klein.
In his day, the term meant mainly the manipulation of polynomials—
solving equations up to the fourth degree, solving systems of linear
equations in several unknowns and related calculations with deter-
minants, simplifying complicated rational expressions, and studying
the curves defined by polynomials in two variables—skills which were
developed to a high level. Formidable examples can be found in the
“pre-calculus” books of 100 years ago, such as the Algebra of Chrystal
(1904) and the Pure Mathematics of Hardy (1908).

For example, Chrystal’s very first exercise set asks the student to
simplify

(
x+ 1

x

) (
y+ 1

y

) (
z+ 1

z

)
−
(
x− 1

x

) (
y− 1

y

) (
z− 1

z

)
,

and by the third exercise set (immediately after addition and multipli-
cation of fractions have been defined) the student is expected to show
that the following expression is independent of x:

x4

a2b2
+ (x2− a2)2
a2(a2− b2) −

(x2− b2)2
b2(a2− b2) .

Today, just entering these expressions into a computer algebra
system would probably be considered a challenging exercise. But if
hand computation has suffered, abstraction has gained, and there
is now a “higher standpoint” from which elementary algebra looks
entirely different.

This is the standpoint of structure and axiomatization, which
identifies certain algebraic laws and classifies algebraic systems by the
laws they satisfy. From this standpoint, the above exercises in Chrystal
are simply consequences of the following algebraic laws, now known as



8 • Chapter 1

the field axioms:

a+ b= b+ a, ab= ba
a+ (b+ c)= (a+ b)+ c, a(bc)= (ab)c

a+ 0= a, a · 1= a
a+ (−a)= 0, a · a−1 = 1 for a �= 0

a(b+ c)= ab+ ac.

The object of algebra now is not to do a million exercises, but to
understand the axiom system that encapsulates them all. The nine field
axioms encapsulate the arithmetic of numbers, high school algebra,
and many other algebraic systems. Because these systems occur so
commonly inmathematics, they have a name—fields—and an extensive
theory. As soon as we recognize that a system satisfies the nine field
axioms, we know that it satisfies all the known theory of fields (includ-
ing, if necessary, the results in Chrystal’s exercises). We also say that a
system satisfying the field axioms has the structure of a field. The first
field that we all meet is the system Q of rational numbers, or fractions,
but there are many more.

With the explosion of mathematical knowledge over the last cen-
tury, identifying structure, or “encapsulation by axiomatization,” has
become one of the best ways of keeping the explosion under control. In
this book we will see that there are not only axiom systems for parts of
algebra, but also for geometry, number theory, and for mathematics as
a whole. It is true that the latter two axiom systems are not complete—
there are some mathematical facts that do not follow from them—
but it is remarkable that an axiom system can even come close to
encapsulating all of mathematics. Who would have thought that almost
everything, in the vast world of mathematics, follows from a few basic
facts?

To return to algebraic structures, if we drop the axiom about
a−1 from the field axioms (which effectively allows the existence of
fractions) we get axioms for a more general structure called a ring.
The first ring that we all meet is the system Z of integers. (The letter
Z comes from the German word “Zahlen” for “numbers.”) Notice that
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the number system we started with, the positive integers

N= {1, 2, 3, 4, 5, . . .},

is neither a ring nor a field. We get the ring Z by throwing in the
difference m− n for any m and n in N, and then we get the field Q
by throwing in the quotient m/n of any m and n �= 0 in Z. (This is
presumably where the letterQ comes from.)

ThusN, Z, andQ can be distinguished from each other not only by
their axiomatic properties, but also by closure properties:

• N is closed under+ and×; that is, ifm and n are in N then so
arem+ n andm× n.

• Z is closed under+,−, and×. In particular, 0= a− a exists
and 0− a, or−a, is meaningful for each a in Z.

• Q is closed under+,−,×, and÷ (by a nonzero number). In
particular, a−1 = 1÷ a is meaningful for each nonzero a inQ.

It is not immediately clear whyZ andQ aremore useful thanN, since all
properties of integers or rational numbers are inherited from properties
of positive integers. The reason must be that they have “better algebraic
structure” in some sense. Ring structure seems to be a good setting for
discussing topics such as divisibility and primes, while field structure is
good for many things—not only in algebra, but also in geometry, as we
will see in the next section.

1.4 Geometry

Over the last century there has been much debate about the place of
geometry in elementary mathematics, and indeed about the meaning
of “geometry” itself. But let’s start with something that has been an
indisputable part of geometry for over 2000 years: the Pythagorean
theorem. As everyone knows, the theorem states that the square on the
hypotenuse of a right-angled triangle is equal (in area) to the sum of the
squares on the other two sides. Figure 1.1 shows the squares in question,
with the square on the hypotenuse in gray and the squares on the other
two sides in black.
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Figure 1.1: The Pythagorean theorem.

Figure 1.2: Proof of the Pythagorean theorem.

The theorem is hardly obvious, yet there is a surprisingly simple
proof, shown in figure 1.2. The left half of the figure shows that the
square on the hypotenuse equals a certain big square minus four copies
of the triangle.

The right half shows that the sum of the squares on the other two
sides is the same: the big square minus four copies of the triangle. QED!

Given that the Pythagorean theorem belongs in any treatment of
geometry, the question remains: how best to “encapsulate” geometry
so that the centrality of the Pythagorean theorem is clear? The tra-
ditional answer was by the axioms in Euclid’s Elements, which yield
the Pythagorean theorem as the climax of Book I. This approach was
universal until the nineteenth century, and still has advocates today,
but 100 years ago it was known to be lacking in rigor and universality.
It was known that Euclid’s axiom system has gaps, that filling the gaps
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O

(x, y)

x

y√ x
2 + y

2

Figure 1.3: Distance from the origin.

requires quite a large number of extra axioms, and that there are other
geometries which require further modifications of the axiom system.

It seemed to Klein, for example, that the axiomatic approach
should be abandoned and that geometry should be based on the
algebraic approach pioneered by Descartes in the seventeenth century.
In algebraic geometry, points in the plane are given by ordered pairs
(x, y) of numbers, and lines and curves are given by polynomial
equations in x and y. Since the point (x, y) lies at horizontal distance
x and vertical distance y from the origin O, we define its distance
from O to be

√
x2+ y2, motivated by the Pythagorean theorem (see

figure 1.3).
It follows that the unit circle, consisting of the points at distance

1 from O, has equation x2+ y2 = 1. More generally, the circle with
center (a, b) and radius r has equation (x− a)2+ (y− b)2 = r 2.

The problem with this algebraic approach is that it goes too far:
there is no natural restriction on the equations that yields precisely the
geometric concepts in Euclid. If we stop at linear equations we get only
lines; if we stop at quadratic equations we get all the conic sections—
ellipses, parabolas, and hyperbolas—whereas Euclid has only circles.
However, there is a different algebraic concept that stops at precisely
the right place: the concept of a vector space with an inner product.
We will not give the general definition of a vector space here (see
chapter 4), but instead describe the particular vector space R2 that is
suitable for Euclidean plane geometry.

This space consists of all the ordered pairs (x, y), where x and y
belong to R, the set of real numbers (we say more about R in the next
section; geometrically it is the set of points on the line). We are allowed
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O

(x1, y1)

(x2, y2)

|(x1, y1)|
|(x2,

y2)|

θ

Figure 1.4: The angle between two vectors.

to add pairs by the rule

(x, y)+ (a, b)= (x+ a, y+ b)

and to multiply a pair by any real number c using the rule

c(x, y)= (cx, cy).

These operations have natural geometric interpretations: Adding (a, b)
to each (x, y) means translating the plane; namely, shifting all its points
through distance a horizontally and distance b vertically. Multiplying
each (x, y) by c means magnifying the whole plane by the factor c.
As we will see in chapter 5, even in this simple setting we can prove
some geometrically interesting theorems. But to capture all of Euclid’s
geometry we need an extra ingredient: the inner product (also called the
dot product) defined by

(x1, y1) · (x2, y2)= x1x2+ y1y2.

Notice that

(x, y) · (x, y)= x2+ y2 = |(x, y)|2,

where |(x, y)| denotes the distance of (x, y) from the origin O. Thus
the inner product gives a definition of distance agreeing with the
Pythagorean theorem. Once we have the concept of distance, we can
also obtain the concept of angle, because it turns out that

(x1, y1) · (x2, y2)= |(x1, y1)||(x2, y2)| cos θ,

where θ is the angle “between” (x1, y1) and (x2, y2) as shown in
figure 1.4.
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The main advantages of using the concept of a vector space with an
inner product, rather than Euclid-style axioms, are familiarity and uni-
versality. The rules for calculating with vectors are similar to traditional
algebra; also, vector spaces and inner products occur in many parts of
mathematics, so they are worth learning as general-purpose tools.

1.5 Calculus

Calculus differs from elementary arithmetic, algebra, and geometry
in a crucial way: the presence of infinite processes. Maybe the gulf
between finite and infinite is so deep that we should use it to sep-
arate “elementary” from “non-elementary,” and to exclude calculus
from elementary mathematics. However, this is not what happens in
high schools today. A century ago, calculus was excluded, but infinite
processes certainly were not: students became familiar with infinite
series in high school before proceeding to calculus at university. And
way back in 1748, Euler wrote a whole book on infinite processes,
Introductio in analysin infinitorum (Introduction to the analysis of the
infinite), without mentioning differentiation and integration. This is
what “pre-calculus” used to mean!

So, it is probably not wise to exclude infinity from elementary
mathematics. The question is whether infinity should be explored
before calculus, in a study of infinite series (and perhaps other infinite
processes), or after.

In my opinion there is much to be said for looking at infinity first.
Infinite series arise naturally in elementary arithmetic and geometry,
and indeed they were used by Euclid and Archimedes long before
calculus was invented. Also coming before calculus, albeit by a narrower
historical margin, was the concept of infinite decimals, introduced by
Stevin (1585a). Infinite decimals are a particular kind of infinite series,
extending the concept of decimal fraction, so they are probably the
infinite process most accessible to students today.

Indeed, an infinite decimal arises from almost any ordinary fraction
when we attempt to convert it to a decimal fraction. For example

1/3= 0.333333 . . . .
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So, in some ways, infinite decimals are familiar. In other ways they are
puzzling. Many students dislike the idea that

1= 0.999999 . . . ,

because 0.999999 . . . seems somehow (infinitesimally?) less than 1.
Examples like this show that the limit concept can, and probably
should, be discussed long before it comes up in calculus. But before
getting to the precise meaning of infinite decimals, there is plenty of fun
to be had with them. In particular, it is easy to show that any periodic
infinite decimal represents a rational number. For example, given

x= 0.137137137137 . . .

we can shift the decimal point three places to the right by multiplying
by 1000, so

1000x= 137.137137137 . . .= 137+ x.

We can then solve for x, obtaining x= 137/999. A similar argument
works with any decimal that is ultimately periodic, such as

y= 0.31555555 . . . .

In this case 1000y= 315.555555 . . . and 100y= 31.555555 . . ., so that

1000y− 100y= 315− 31,

which means 900y= 284 and hence y= 284/900.
Conversely, any rational number has an ultimately periodic deci-

mal (perhaps ultimately all zeros). This is because only finitely many
remainders are possible in the division process that produces the
successive decimal digits, so eventually a repetition will occur.

The infinite decimals above are examples of the geometric series

a+ ar + ar 2+ ar 3+ · · · with |r |< 1.

For example,

1
3
= 3

10
+ 3

102
+ 3

103
+ · · · ,
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Figure 1.5: Filling the parabolic segment with triangles.

which has a = 3/10 and r = 1/10. There is no compelling reason to
call these series “geometric,” but they do arise in geometry. One of the
first examples was given by Archimedes: finding the area of a parabolic
segment. This problem, which today would be solved by calculus, can
be reduced to summation of a geometric series as follows.

The idea is to fill the parabolic segment by infinitely many triangles,
and to sum their areas. It turns out, with the very simple choice of
triangles shown in figure 1.5, that the areas form a geometric series.
The first triangle has two vertices at the ends of the parabolic segment,
and its third vertex at the bottom of the parabola. The next two triangles
lie under the lower sides of the first triangle, with their third vertices on
the parabola at horizontal distance half-way between their first two, and
so on.

Figure 1.5 shows the first three stages of the filling process for the
segment of the parabola y= x2 between x=−1 and x= 1. The first
triangle (black) obviously has area 1. It can be checked that the next
two (dark gray) each have area 1/8, so together they have area 1/4. The
next four (light gray) have total area 1/42, and so on. Hence the area of
the parabolic segment is

A= 1+
(
1
4

)
+
(
1
4

)2
+ · · · .
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We can find Abymultiplying both sides of this equation by 4, obtaining

4A= 4+ 1+
(
1
4

)
+
(
1
4

)2
+ · · · ,

whence it follows by subtraction that

3A= 4 and therefore A= 4/3.

This example shows that, with a little ingenuity, a problem nor-
mally solved by integration reduces to summation of a geometric
series. In chapter 6 we will see how far we can go with an elementary
minimum of calculus (integration and differentiation of powers of x)
when infinite series are given a greater role. In particular, we will see
that the geometric series is the main ingredient in such celebrated
results as

ln 2= 1− 1
2
+ 1

3
− 1

4
+ · · ·

and
π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · .

1.6 Combinatorics

A fine example of a combinatorial concept is the so-called Pascal’s
triangle, which has historical roots in several mathematical cultures.
Figure 1.6 shows an example from China in 1303.

Figure 1.7 shows the same numbers as ordinary Arabic numerals.
The Chinese knew that the numbers in the (n+ 1)st row are the

coefficients in the expansion of (a+ b)n. Thus
(a+ b)1 = a+ b
(a+ b)2 = a2+ 2ab+ b2
(a+ b)3 = a3+ 3a2b+ 3ab2+ b3
(a+ b)4 = a4+ 4a3b+ 6a2b2+ 4ab3+ b4
(a+ b)5 = a5+ 5a4b+ 10a3b2+ 10a2b3+ 5ab4+ b5
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Figure 1.6: “Pascal triangle” of Zhu Shijie (1303).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

. . .

Figure 1.7: Arabic numeral Pascal triangle.

(a+ b)6 = a6+ 6a5b+ 15a4b2+ 20a3b3+ 15a2b4+ 6ab5+ b6

(a+ b)7 = a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7

Because they arise from the “binomial” a+ b, the numbers in the
(n+ 1)st row of the triangle are called binomial coefficients. They are
denoted by

(n
0
)
,
(n
1
)
, . . . ,

(n
n

)
. Looking back at figure 1.7, we notice that
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each binomial coefficient
(n
k

)
in row n+ 1 is the sum of the two above

it,
(n−1
k−1
)
and

(n−1
k

)
, in row n. This famous property of the binomial

coefficients is easily explained by algebra. Take
(6
3
)
for example. On the

one hand, by definition(
6
3

)
= coefficient of a3b3 in (a+ b)6.

On the other hand, (a+ b)6 = a(a+ b)5+ b(a+ b)5, so there are two
ways that a3b3 arises in (a+ b)6: from the first term, as a · a2b3, and
from the second term, as b · a3b2. Because of this(
6
3

)
= coefficient of a2b3 in (a+ b)5+ coefficient of a3b2 in (a+ b)5

=
(
5
2

)
+
(
5
3

)
.

This argument is already a little bit “combinatorial,” because we con-
sider how a3b3 terms arise as combinations of terms from a(a+ b)5 and
b(a+ b)5. Now let’s get really combinatorial, and consider how akbn−k

terms can arise from the n factors a+ b in (a+ b)n.
To get akbn−k we must choose a from k of the factors and b from

the remaining n− k factors. Thus the number of such terms,(
n
k

)
= number of ways of choosing k items from a set of n items.

As a reminder of this fact, we pronounce the symbol
(n
k

)
as

“n choose k.” The combinatorial interpretation gives us an explicit
formula for

(n
k

)
, namely
(
n
k

)
= n(n− 1)(n− 2) · · · (n− k+ 1)

k!
.

To see why, imagine making a sequence of k choices from a set of n
items.



Elementary Topics • 19

The first item can be chosen in n ways, then n− 1 items remain,
Next, the second item can be chosen in n− 1 ways, and n− 2 items

remain.
Next, the third item can be chosen in n− 2 ways, and n− 3 items

remain.
...

Finally, the kth item can be chosen in n− k+ 1 ways.

Thus there are n(n− 1)(n− 2) · · · (n− k+ 1) sequences of choices.
However, we do not care about the order in which items are chosen—
only the set of k items finally obtained—so we need to divide by the
number of ways of arranging k items in a sequence. This number, by
the argument just used, is

k!= k(k− 1)(k− 2) · · · 3 · 2 · 1.
This is how we arrive at the formula for the binomial coefficient

(n
k

)
above.

Combining this evaluation of the binomial coefficients with their
definition as the coefficients in the expansion of (a+ b)n, we obtain the
so-called binomial theorem:

(a+ b)n = an+ nan−1b+ n(n− 1)
2

an−2b2

+ n(n− 1)(n− 2)
3 · 2 an−3b3+ · · ·+ nabn−1+ bn.

This name is also used for the special case with a = 1 and b= x, namely

(1+ x)n=1+nx+ n(n− 1)
2

x2+ n(n− 1)(n− 2)
3 · 2 x3+· · ·+ nxn−1+xn.

We now have two ways to compute the binomial coefficients
(n
k

)
:

by explicit formulas and by the process of forming successive rows
in Pascal’s triangle. We also have a very concise encapsulation of the
sequence

(n
0
)
,
(n
1
)
, . . . ,

(n
n

)
: as the coefficients in the expansion of

(1+ x)n. A function such as (1+ x)n, which encapsulates a sequence
of numbers as the coefficients of powers of x, is called a generating
function for the sequence. Thus (1+ x)n is a generating function for
the sequence of binomial coefficients

(n
0
)
,
(n
1
)
, . . . ,

(n
n

)
.
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In chapter 7 we will find generating functions for other sequences
of numbers that arise in combinatorics. In many cases these are infinite
sequences. So combinatorics, like calculus, draws on the theory of
infinite series.

Combinatorics is sometimes called “finite mathematics” because, at
least at the elementary level, it deals with finite objects. However, there
are infinitely many finite objects, so to prove anything about all finite
objects is to prove something about infinity. This is the ultimate reason
why elementary mathematics cannot exclude infinity, and we say more
about it in section 1.8.

1.7 Probability

Given two players each of whom lacks a certain
number of games to complete the set, to find by the
arithmetic triangle what the division should be (if

they wish to separate without playing) in the light of
the games each lacks.

Pascal (1654), p. 464

The concept of probability has been in the air for as long as human
beings have gambled, yet until a few hundred years ago it was thought
too lawless formathematics to handle. This belief began to change in the
sixteenth century, when Cardano wrote an elementary book on games
of chance, the Liber de ludo aleae. However, Cardano’s book was not
published until 1663, by which time mathematical probability theory
had begun in earnest, with the Pascal (1654) solution of the problem of
division of stakes, and the first published book on probability theory by
Huygens (1657).

We can illustrate Pascal’s solution with a simple example. Suppose
players I and II agree to flip a fair coin a certain number of times, with
the winner agreed to be the first to call the outcome correctly a certain
number of times. For some reason (police knocking at the door?) the
game has to be called off with n plays remaining, at which stage player
I needs kmore correct calls to win. How should the players divide the
money they have staked on the game?
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Figure 1.8: Graph of the binomial coefficients
(11
m

)
.

Pascal argued that the stakes should be divided in the ratio

probability of a win for I : probability of a win for II.

Further, since each play of the game is equally likely to be a win for I or
II, these probabilities are in the ratio

how often I has ≥ kwins in n plays : how often I has < kwins in n
plays.

The problem is now reduced to a problem in combinatorics: in how
many ways can ≥ k things be chosen from a set of n things? And the
binomial coefficients give the answer:(

n
n

)
+
(

n
n− 1

)
+ · · ·+

(
n
k

)
.

Thus the ratio of probabilities, which is the ratio in which the stakes
should be divided, is:(
n
n

)
+
(

n
n− 1

)
+ · · ·+

(
n
k

)
:

(
n

k− 1

)
+
(

n
k− 2

)
+ · · ·+

(
n
0

)
.

For even moderate values of n and k, this ratio would be difficult to
compute, or even express, without the binomial coefficients. Suppose,
for example, that n= 11 and k= 7. Figure 1.8 shows a bar graph of the
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values of
(11
m

)
for m= 0 to 11. They range in value from 1 to 462, with

those form≥ 7 shown in gray. Thus the ratio in this case is the ratio of
the gray area to the black area.

And in fact(
11
7

)
+
(
11
8

)
+
(
11
9

)
+
(
11
10

)
+
(
11
11

)
= 330+ 165+ 55+ 11+ 1

= 562.

The sum of all the binomial coefficients
(11
k

)
is (1+ 1)11 = 211 = 2048,

so the other side of the ratio is 2048− 562= 1486. Thus, in this case,
562/2048 of the stake should go to player I and 1486/2048 to player II.

With larger values of n and k the binomial coefficients rapidly
become larger; indeed their total 2n grows exponentially. However,
an interesting thing happens as n increases. The shape of the graph
of binomial coefficients, when suitably scaled in the vertical direction,
approaches that of the continuous curve

y= e−x2 .

This is advanced probability theory, which involves calculus, but we will
say a little more about it in chapter 8 and give a proof in section 10.7.

1.8 Logic

The most distinctive feature of mathematics is that it proves things,
by logic; however, we postpone the details until chapter 9. Here we
discuss only the most mathematical part of logic: mathematical in-
duction, which is the simplest principle for reasoning about infinity.
Mathematical induction is also known as complete induction to distin-
guish it from the “incomplete induction” in daily use, which guesses a
general conclusion (often incorrectly) from a few special cases. Proof
by induction owes its existence to the inductive property of the natural
numbers 0, 1, 2, 3, 4, 5, . . . ; namely, that any natural number can be
reached by starting at 0 and repeatedly adding 1.
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Figure 1.9: The towers of Hanoi.

It follows from the inductive property that any property P true of
all natural numbers can be proved in two steps:

1. Prove that P holds for 0 (the base step).
2. Prove that P “propagates” from each number to the next; that

is, if P holds for n then P holds for n+ 1 (the induction step).

Obviously, it is not essential to start at 0. If we wish to prove that some
property P holds for all natural numbers from, say, 17 onwards then
the base step will be to prove that P holds for 17.

Induction is not only a natural (and indeed inevitable) method of
proof, it is often remarkably efficient, because it “hides” the details of
why P holds for each n. We only have to understand why P holds for
the starting value, and why it propagates from each number to the next.
Here is an example: the classic combinatorial problem known as the
towers of Hanoi (figure 1.9).

We are given a board with three pegs, on one of which is a stack of
n disks whose radii decrease with height. (The disks are pierced in the
center so that they can slip onto a peg.) The problem is to move all the
disks onto another peg, one at a time, in such a way that a larger disk
never rests on top of a smaller one.

First suppose that n= 1. With only one disk we can obviously solve
the problem by moving the disk to any other peg. Thus the problem
is solved for n= 1. Now suppose that it is solved for n= k disks and
consider what to do with k+ 1 disks. First, use the solution for k disks
to shift the top k disks of the stack onto another peg; say, the middle
peg. This leaves just the bottom disk of the stack on the left peg, and we
can move it onto the empty right peg. Then use the solution for k disks
again to shift the stack of k disks on the middle peg onto the right peg.
Done!
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It is a great virtue of this proof that we do not have to know how
to shift a stack of n disks—only that it can be done—because it is
quite complicated to shift stacks of only three or four. In fact, it takes
2n− 1 moves to shift a stack of n disks, and the proof is by a similar
induction:

Base step. It clearly takes 1= 21− 1 move to shift a stack of 1 disk.

Induction step. If it takes 2k− 1 moves to shift a stack of k disks,
consider what it takes to shift a stack of k+ 1. However this is done,
wemust first shift the top kdisks, which takes 2k− 1moves. Then we
must move the bottom disk to a different peg (one move), because it
cannot rest on top of any other disk. Finally we must shift the stack
of k disks back on top of the bottom disk, which takes 2k− 1 moves.
Therefore, the minimum number of moves to shift a stack of k+ 1
disks is

(2k− 1)+ 1+ (2k− 1)= 2k+1− 1,

as required.

To bolster my claim that induction is “inevitable,” let me point out
its role in arithmetic. As we have already seen, the natural numbers 0,
1, 2, 3, 4, 5, . . . arise from 0 by repeated applications of the successor
function S(n)= n+ 1. What is more remarkable is that all computable
functions can be built from S(n) by inductive definitions (also called
recursive definitions). Here is how to obtain addition, multiplication,
and exponentiation.

The base step in the definition of addition is

m+ 0=m,

which definesm+ n for allm and for n= 0. The induction step is

m+ S(k)= S(m+ k),

which defines m+ n for all m and for n= S(k), given that m+ k is
already defined. So it follows by induction that m+ n is defined for all
natural numbersmand n. Essentially, induction formalizes the idea that
addition is repeated application of the successor function.
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Now that addition is defined, we can use it to define multiplication
by the following equations (base step and induction step, respectively):

m · 0= 0, m · S(k)=m · k+m.

This definition formalizes the idea that multiplication is repeated addi-
tion. And then, with multiplication defined, we can define exponentia-
tion by

m0 = 1, mS(k) =mk ·m,

which formalizes the idea that exponentiation is repeated multiplica-
tion.

Induction has been present in mathematics, in some form, since
the time of Euclid (see the Historical Remarks below). However, the
idea of using induction as the foundation of arithmetic is comparatively
recent. The inductive definitions of addition and multiplication were
introduced by Grassmann in 1861, and were used by him to inductively
prove all the ring properties of the integers given in section 1.3. These
imply the field structure of the rational numbers, and with it the
field structure of the real (see chapter 6) and complex numbers. Thus
induction is not only the basis for counting but also for algebraic
structure.

1.9 Historical Remarks

Once upon a time in America, Euclid was a revered figure who gave his
name to many a Euclid Avenue across the country. (This was part of
the nineteenth-century classical renaissance, during which many place
names were chosen from the Greek and Roman classics.) For example,
there is Euclid Avenue in Cleveland which became “millionaire’s row,”
and Euclid Avenue in Brooklyn which became a stop on the route of the
A train. Figure 1.10 gives a glimpse of Euclid Avenue in San Francisco,
with some appropriate geometric figures.

In nineteenth-century America, as in most of the Western world,
Euclid’s Elementswas regarded as a model presentation of mathematics
and logic: essential knowledge for any educated person. One such
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Figure 1.10: Euclid Avenue, San Francisco.

person was Abraham Lincoln. Here is what he, and one of his biog-
raphers, said about Lincoln’s study of Euclid.

He studied and nearly mastered the six books of Euclid since he was a
member of Congress. He regrets his want of education, and does what
he can to supply the want.

Abraham Lincoln (writing of himself), Short Autobiography

He studied Euclid until he could demonstrate with ease all the
propositions in the six books.

Herndon’s Life of Lincoln

So what is the Elements, this book that cast such a long shadow
over mathematics and education? The Elements is a compilation of the
mathematics known in the Greek civilization of Euclid’s time, around
300 BCE. It contains elementary geometry and number theory, much
as they are understood today, except that numbers are not applied to
geometry, and there is very little algebra. There are actually thirteen
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books in the Elements, not six, but the first six contain the elementary
geometry for which the Elements is best known. They also contain the
very subtle Book Vwhich tackles (what we would now call) the problem
of describing real numbers in terms of rational numbers. If Lincoln
really mastered Book V he was a mathematician!

The Greeks did not have a written notation for numbers such
as decimals, so the Elements contains nothing about algorithms for
addition and multiplication. Instead, there is quite a sophisticated
introduction to the abstract theory of numbers in Books VII to IX, with
numbers denoted by letters as if they were line segments. These books
contain the basic theory of divisibility, the Euclidean algorithm, and
prime numbers that remains the starting point of most number theory
courses today. In particular, Book IX contains a famous proof that there
are infinitely many primes.

We say more about the Elements in later chapters, because it has in-
fluenced elementary mathematics more than any other book in history.
Indeed, as the name suggests, the Elements have a lot to do with the
very meaning of the word “elementary.” Since we will often be referring
to particular propositions in the Elements, it will be useful to have a
copy handy. For English-speaking readers, the best edition (because of
its extensive commentary) is still Heath (1925). Another useful version
is The Bones by Densmore (2010), which lists all the definitions and
propositions of the Elements in durable and compact form.

Decimal numerals developed in India and the Muslim world.
They were introduced to Europe in medieval times, most famously
(though not first) by the Italian mathematician Leonardo Pisano in
his book Liber abaci of 1202. Leonardo is better known today by his
nickname Fibonacci, and the title of his book refers to the abacus, which
until then was synonymous with calculation in Europe. His highly
influential book had the paradoxical effect of associating the word
“abaci” with calculation not by the abacus. (Though in fact the abacus
remained competitive with pencil and paper calculation until both
were superseded by electronic calculators in the 1970s.) The famous
Fibonacci numbers
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . ,

each of which is the sum of the previous two, were introduced in
the Liber abaci as an exercise in addition. Fibonacci could not have


