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Preface to the English Language Edition 

The English language edition of the Nemickii-Stepanov treatise 
has gone through many vicissitudes. Several years ago when only 
the first edition was available in this country a complete transla-
tion was made by Dr. Thomas Doyle, at the time a member of the 
faculty of Dartmouth College. This translation was edited by Donald 
Bushaw and John McCarthy, at the time graduate students at 
Princeton University. Hardly was this done when there appeared 
a much enlarged second edition of the book. Dr. Arnold Ross of 
the University of Notre Dame undertook to prepare an English 
translation of the first four chapters which he actually had to 
rewrite for the most part. Undoubtedly American mathematicians 
are greatly in debt to Dr. Ross for the enormous amount of work 
which he has done in this connection. The last two chapters, which 
did not differ too much in the two editions, were finally put in 
proper shape by Dr. Robert Bass, who utilized in the process 
translations of the few new sections by Dr. McCarthy and by Dr. 
Lawrence Markus. It seems fair to say that this edition contains 
all the material of the second Russian edition of the book. 

A couple of years ago there appeared a brief summary written 
by N emickii giving a resume of the recent work done under his 
guidance by the very active Moscow school. The English language 
version of this resume, prepared by Dr. McCarthy, is included at 
the end of Part One. 

The book falls naturally into two parts: Part One on classical 
differential equations, and Part Two on topological dynamics and 
ergodic theory. The first part has its own bibliography and index, and 
the last two chapters, making up the second part, as well as the 
Appendix, have individual bibliographies. 

Readers may be interested in the supplement to Chapter 5, 
written by Nemickii, which was published by the American Mathe-
matical Society as Translation No. 103 (1954). 

v 



In conclusion we wish to say that the work was done under the 
auspices of the Air Research and Development Command under 
Contract AF 18(600)-332. 

January 1, 1956 

Princeton, N. J. S. LEFSCHETZ 
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PART ONE 





CHAPTER I 

Existence and Continuity Theorems 

1. Existence Theorems 

In the qualitative theory of differential equations one considers 
systems of differential equations of the form 

dx. 
(1.01) dt' = f;(Xv x2 , •• • , xn), i = 1, 2, ... , n, 

or 

(1.02) i = 1, 2, ... , n, 

where the f, are assumed to be continuous functions of their arguments 
in a certain domain G of the Euclidean space Rn = { (xv ... , xn)} 
the phase space, and in an interval a < t < b. 

1.11. THEOREM. (Existence of solutions [45], [52], [54] 1). 

Consider a system of differential equations (1.01) where the functions 
f;(x1, ••• , xn) are assumed to be continuous in a certain closed and 
bounded domain G. Let A 0 (x10, x20 , ••• , xn0 ) be an arbitrary interior 
point of G. Then there exists a solution of the system (1.01), which 
passes through A 0 at the time t0 and which is defined in the interval 

D D 
to - M .y;t < t < to + M y;t' 

where D is the distance of A 0 from the boundary of the domain G and 
M is an upper bound of jf;(x1, ••. , xn)i in the domain G. 

The proof of this theorem follows. 
1.12. e-solutions. We call a system of n functions x1 (t), ... , 

xn(t) defined on a < t < b a solution of the system (1.01) up to the 
errors or simply an s-solution of (1.01) if each of these functions is 

1The numbers in square brackets refer to the bibliography at the end of each part 
of the book. 

[3] 
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continuous, sectionally smooth2, and satisfies the following system 
of integral equations 

(1.121) x,(t) = i,o + ft /,(il, i2, 0 0 ., in) dt + ft e,(t)dt, 
to . to 

where 8;(t) are piecewise continuous functions on [a, b], less than sin 
absolute value. 

1.13. Euler polygons. Consider a point A0 (x10 , ..• , xn0 ) of G 
at distance D > 0 from the boundary. Let M be an upper bound 
of 1/, (x1 , ... , xn) / in the domain G. In view of the uniform con-
tinuity of the functions /;(x1, ... , xn) in the domain G, for every 
e > 0 there exists a o > 0 such that the inequality jx~- x; 1

1 < o 
implies that for all i 

I ( I I I ) II II fl I i xl, Xz, 0 0 ., xn -f,(xl' Xz' 0 •• , xn)l < c (i = 1, 2, ... , n). 

We subdivide our domain G into cubes with sides of length a. 
Proceeding in the direction of increasing t we draw a segment 

along the straight line 

x, = x,0 + /,(x10, x20 , • •• , Xno) (t- t0 ) 

from A 0 to the intersection A1 (x11 , x 2v ... , xn1 ) =F A 0 , say at time 
t1 , of this line with one of the faces, say l, of a cube containing A 00 
We write 

xil = x,0 + /,(x10 , x20 , ••. , xn0 )(t1 - t0 ), t0 < t1• 

Through the point A1 we draw the line 

X; = X,1 + j, (x11 , x21 , •.. , X 111 ) (t- t1 ), 

and proceed in the direction of increasing t until we reach the 
point A2 (x12, x22 , ••• , X 112 ) =F A 1 of intersection of our line and a 
face different from l of a cube containing A1 • 

This construction yields a polygon (an Euler polygon) 

x, = i;(t), 

where, if x; is the right derivative of i;, 

(1.131) 

A similar construction carried out in the direction of decreasing 
2A function defined in an interval [a, b] is sectionally smooth if it is continuous in 

this interval and is differentiable at every point of the mterval except for at most 
a finite number of points where it has nght and left derivatives. Moreover, we assume 
that the nght and the left derivatives are bounded in the whole interval [a, b]. 
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t yields a polygon 

x, = x,(t), 

with successive vertices A 1 (t~), A 2 (t~), .. . , t0 > t~ > t~ .... In a 
manner similar to the above 

(1.132) 'x;(t) = f,(x1J, x2J, ••• , xm) for t; > t > t;+l. 

Let us determine how far we may continue the above construc-
tion in either direction without leaving the domain G. Our polygon 
remains in G as long as 

j J:o Y~,(x;(t) )2 dt j <D. 

But by (1.131) and (1.132), we have 

IJ:ov~(x;(t)) 2 dtj < it-t0 i MY;;. 
Thus our construction may be continued as long as 

it -t0[Mv;; < D, 

that is as long as 

(1.133) 
D D 

t0 ---- <t :::;;t0 +---· 
Mvn Mvn 

1.14. Let us show that our polygon is an "e-solution". By 
construction each of the functions x, (t) is continuous and sectionally 
smooth. It remains to verify that these functions satisfy equations 
(1.121). 

The system of integral equations which the functions xi(t) must 
satisfy is equivalent to the system 

x;(t) = /,(xl(t), x2(t), ... , xn(tl) + e,(t), 

where x;(t) designates, say, the right-hand derivative of x,(t). 
Consider a fixed value of t and the corresponding point 

B(t) = (x1 (t), ... , xn(t)) of our polygon. Then 

x,(t) = x, + /,(x1 , x2, ... , xn) (t -l), 
where x1, ••. , xn are the coordinates of the vertex immediatdy 
preceding B. Let us denote this vertex by C(t). Thus, for the given 
value of t, x;(t) = fi(xv x2, .. . , xn)· 
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If we define step functions x, (t) by the equalities X; (t) = .X;(l) =X;, 
then 

If we let 

e,(t) = f,(xl(t), .. . , xn(t))- f,(xl(t), x2(t), .. . , xn(t)), 
then 

x;(t) = f,(xl(t), x2(t), .. . , xn(t)) + e,(t). 
Since the points C (t) and B (t) lie in the same cube of our par-
tition, we have 

)8; (t) I = jt, ( xl (t) 1 ••• , X n (t)) - t, (xl (t) 1 x2 (t) 1 ••• , Xn (t)) I < s. 

Moreover, since 

are continuous and 
/;(xl(t), x2(t), .. . , xn(t)) 

assume only a finite number of values, the functions e;(t) are 
piecewise continuous. This completes the proof of our assertion. 

The following observation will be useful in the sequel. 
1.15. In constructing s-solutions we may replace Euler polygons 

by what we shall call "universal polygons". Let the domain G be 
partitioned into cubes with sides of length oj2. We take a point 
in each one of these cubes, say the center, and determine the value 
of the functions /;(x11 x2 , ••• , X 11 ), i = 1, 2, ... , n, at each of these 
points. Beginning at a point A0 we construct a polygon by a method 
similar to that used in the construction of Euler polygons. Here, 
however, the direction of each of the sides of our polygon is deter-
mined by the value of /;(x1 , x2 , .•• , X 11 ) at the previously selected 
point of the corresponding cube. 

1.16. Let us now take a sequence of positive numbers 
s11 s2, ••. , sn, ... tending to zero and proceeding as in 1.13, let us 
construct consecutively an s1-solution, through a point A interior 
toG, an s2-solution through A, and so on. Since the interval (1.131) 
for which our approximate solutions are defined does not depend 
on s, all of these solutions can be constructed for one and the same 
interval, say, 
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We denote an c:k-solution by {x;•(t)}. We shall prove that the family 
of solutions 

k = 1, 2, ... , 

forms an equicontinuous and uniformly bounded family of func-
tions. 

Since 

we have 
D D 

lxfk(t)l < L + M--- + c:k M· 1-• Mvn vn 

where L is an upper bound of the absolute values of the coor-
dinates of points in G. Furthermore, 

Jt+h Jt+h Xfk(f +h)- xfk(f) = t /;(Xfk, X~k, .. . , X~k)dt + t 8fk(f) dt, 

and therefore 

lx;k(t +h)- xfk(t)l < hM + hc:k. 

The last two inequalities establish our assertion. 
1.17. In view of Arzela's theorem 3 there exists a sequence of 

indices n1 , n2, ... , nk, . . . such that the n sequences <nk(t), 
i = 1, 2, ... , n, converge in the interval 

to continuous functions 

Passing to the limit in the equalities 

xcnk(t) =X + Jt j.(xcnk xcnk xcnk) dt + Jt esnk(t) dt 
t tO to t 1 ' 2 ' · · ·' n to t ' 

and observing that the f,(xv x2, ••• , xn) are uniformly continuous 
in G and that 

3This theorem states that every infinite family of functions uniformly bounded 
and equicontinuous on a closed interval [a, bJ contains a umformly convergent 
sequence of functions. Cf. Memorie Acad. Bologna (5) vs. 5 (1895) and 8 (1899). 
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we obtain 

or 

This completes the proof of Theorem 1.11. 
1.2. We shall extend our existence theorem to systems of 

type (1.02). 
Let f, be defined and continuous for points A (x1 , x 2 , ••• , xrJ of 

a closed and bounded domain G and for values of t in an interval 
[t0 - b, t0 + b]. We introduce a new independent variable T such 
that dt/dr = 1. Then the given system (1.02) may be written in 
the form 

(1.201) J 
dx, 
dr = f,(xv x2, ... , xn, t), 

l :: = 1. 

Applying our existence theorem to the closed and bounded domain 
of the (n + 1 )-dimensional space (x1, ... , xn, t) determined by G 
and the interval t0 - b < t :S:: t0 + b, we assure the existence of a 
solution of system (1.02) in the interval (t0 - h, t0 +h), where 

min (D, b) 
h= . 

1+Myn 
We shall speak of ( 1. 201) as the parametric system corresponding 

to the system (1.02). 
1.21 As a simple corollary of our existence theorem, we obtain 

the following result which is very important for the theory of 
dynamical systems. 

1.21. THEOREM. If as time increases, a given trajectory (an 
integral curve) remains in a closed bounded region r imbedded in an 
open domain G for which the conditions of our existence theorem are 
fulfilled, then the motion (the solution) may be continued for the whole 
infinite interval [t0 , + w J. 

Let 2D be the distance of the boundary of G from the boundary 
of r. Then successive applications of our existence theorem always 
lead to points whose distance from the boundary of G is not less 
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than D. Consequently, at each step we can continue our solution 
for another interval of at least the length DjM yn. 

1.3. Theorem 1.21 does not allow us to decide from the form 
of a given system of equations whether or not its solutions can be 
continued for the infinite interval- oo < t < + oo. We indicate 
several sufficient conditions for such continuation. [58], [59]. 

1.31. THEOREM. If the functions 

are continuous for - oo < x, < + oo, and, moreover, if 

f,(xl, X2, · · ., xn) = O(lxll + lx2l + · · · + lxnl) 
for lx1 1 + ... + lxnl-+ + oo, then the solutions of the system 

dx, dt = f;(X1, x2, ••• , xn) 

are defined on the whole axis - oo < t < + oo. 
1.32. It follows from the hypotheses of our theorem that 

(1.321) 

where A is some positive constant. For, if lx1 1 + ... + lxnl > D > 0, 
where D is some sufficiently large number, then the ratios 

1/, (xv X2, · • ., xn) I 
~lx1l 

remain bounded, whereas the functions /,(x1, ... , xn) themselves 
are bounded in the region lx1 1 + ... + lxnl <D. 

1.33. Let us consider first the cube /x, -x,0 / < b (i = 1, 2, ... , n), 
and let M be an upper bound of If, (x11 x2 , ••• , xn) I in this cube. 
According to the existence theorem, the solution passing through 
A 0 is defined in the whole interval [t0 , t0 + ( b / M yn)]. 

Set x,0 , t0 , and b equal to C;, 0, and 1 respectively. Then it follows 
from the inequality (1.321) and the condition lx,(t) -c,l < 1 
that we may take M = A(c + l) =A max [c + l, 1] with 
c =max lc,l (i = 1, 2, ... , n). Write 

b l l 
!1=---=---= . 

Myn Myn A(c + l)yn 
Then our solution is defined for 0 < t < t1, and in this interval 

lx;(t)l < c + 1. 
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Next, let us take xi0 , tn, b equal to x1 (t1), t11 I respectively. Then 
we may take M =A max (c + 2, I) =A (c + 2). We write 

b I I 
t2 = --_- = ---- = ' 

Myn Myn A(c+2)yn 
and observe ~hat the solution is defined in t1 < t < t1 + t2 = r 2• 

Combining both of the above results we see that our solution 
is defined in the interval [0, r 2]. The inequality jx, (t) - X;(t1 ) I < I 
for t1 < t < r 2 = t1 + t2 , implies that jxi(r2)! < c + 2. Continuing 
this process for m steps we obtain a number tm = I/ (c + m )Ayn 
such that our solution is defined in the interval [0, im] where 
im = t1 + t2 + ... + tm and lx;(im)l < c + m. The series 

I "" I 

AynL c+ m +I 
m=O 

diverges. Therefore by means of a sufficiently large number of 
steps we can continue our solution for an interval of arbitrarily 
large length. 4 

1.34. CoROLLARY. If 
f,(xv x2, •• • , Xn, t) = O(jx1 j + jx2 j + ... + Jxnl) 

uniformly in t, then solutions of the system dx;/dt = /; may be con-
tinued to the whole t-axis. 

Indeed, let us consider the corresponding parametric system 
dx. 
-' = f,(x1, X 2, •• • , Xn, t), 
di 
dt 
dr =I. 

4From the estimates given in the proof it follows that 
[x,(t)[ = O(ect) 

where the constant c may be chosen independently of the initial conditions. In 
fact, after the mth step in the process of continuation we have 

[x,(t)[ ~ c + m, 
for 

1 m-1 1 
f = f1 + f2 + . . . + fm = A . 1 _ L . l ' 

'Y n 1=0 c + 7 + 
Thus t is asymptotically equal to A_, n-Y. log m or m is asymptotically equal to 
eAnit . This proves our assertion since A is chosen independently of the initial 
conditions. 
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Since 
1/;(Xv x2 , •• • , xn, t)l <A max (lx11, ... , lxnl, 1) 

where A is independent of t, then obviously 

lfi(x1, x2, •• • , xn, t)l <A max ([x1 [, ... , fxnf, /tl, 1). 

11 

Consequently the conditions of Theorem 1.31 are fulfilled by the 
parametric system. 

1.35. The last result may be somewhat generalized. 
If functions /1, f2 , ••• ,fn are continuous in an (n+ I)-dimen-

sional domain 0 < t < + oo and - oo <xi< + oo, if there 
exists a function L (r) continuous for 0 < r < + oo and such 
that J;(l/L(r))dr= oo, and if lfi(x1, ... , xn,t)j <L(r), where 
r 2 =xi+ ... + x;, then all the solutions of the system dx;/dt = fi 
may be continued over the entire t-axis. 

We omit the proof of this theorem even though it is quite simple 
and refer the reader to the original work of Wintner [58]. 

2. Certain Uniqueness and Continuity Theorems 

In what follows we shall consider systems of equations (1.01) 
in which the functions fi(x11 •• • , xn) satisfy Lipschitz conditions 
in a bounded closed domain G called the Lipschitz domain. That is 

The number L is called a Lipschitz constant. To indicate explicitly 
the connection between the domain G and the constant L we shall 
write GL instead of G. 

We establish first the following simple lemma [5] which is quite 
essential for what follows. 

2.11 LEMMA. If a function y(t) satisfies the inequality 

(2.111) ly(t) I < M (1 + k I~ jy(t) I 1/(t) I dt) 

where f(t) is continuous, then we have the inequality 

(2.112) ly(t)l < M/Mf:olt(t)ldt (t >to)· 

Multiplying (2.111) by lf(t)l, we get 

(2.113) jy(t)Jif(t)l < M lf(t)l (1 + k It:/y(t)l/f(t)[dt). 
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Let v(t) = J:
0
[y(t)f(t)[dt. Then the inequality (2.113) may be 

written in the form 

or 

Thus 

and hence 

By hypothesis 

whence 

v' (t) < M lf(t) I (I + kv), 

v' (t) 
-~ < M lf(t)l. 
I+ kv 

log (I + kv (t)) < kM Jt: lf(t) I dt, 

fy(t)l <I+ kft lf(t)y(t)ldt, 
M to 

( ) M 
kM s; lt(t)\<lt 

IY t I< e 0 
• 

2.12. We shall use our lemma to establish a fundamental 
inequality. 

Consider two s-solutions 

In view of (l.I2l), 

x~1 l (t) - x;2l (t) 

= (x(ll_x(2)l+jt[f.(x(l) x(l) x(ll)-f.(x(2) x(2) x(2l)Jdt 
tO tO to t 1 ' 2 ' · · · ' n t 1 ' 2 ' • • •' n 

+ Jt [e;ll(t) -e;2l(t)Jdt. 
to 

Making use of Lipschitz inequalities, we get 

[x~ll(t) -x;2l(t)l < 1x;~l -x~~ll 

+ f L . _i lxjll ~ xj2ll dt + J: fe?l(t) ~ e;2l (t) I dt 
0 ~1 0 

for i = I, 2, ... , n, and t > t0 • Adding these inequalities and 
writing 

(i = l, 2, ... , n), 
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and remembering that 

IO?l(t)l < s and 10~2l(t)l < s, 

we obtain the inequality 

n ft n I lx~l) (t) - X~2) (t) I < no + n t L I lx~l) (t) - x~2 ) (t) I dt 
z=l o i=l 

13 

+ 2ns(t- t0 ) < (2ns(T- t0 ) +no) [1 + (T n ) 0 2ns - t0 + n 

. st: L ;~ lx~1 l(t) -x(7i(t)l dtl t0 < t < T. 

Applying Lemma 2.11, we obtain 
n nJt Ldt I lx~l) (t) - x~2 ) (t) I < [2ns (T- to) + no] e to 

i=l 

for t0 < t < T. If t0 > t we assume that t0 > t > T and invert the 
order of integration throughout. Setting t = T and simplifying, 
we obtain, in either case, 

n 

(2.124) I lxl1) (t) - x;2 ) (t) I < 2nlt- to I cenLJt-tol + noenLit-tol. 
i=l 

In what follows we shall refer to this estimate as the fundamental 
inequality. 

2.2. We shall discuss next a number of immediate consequences 
of the fundamental inequality, all of which are of basic importance 
in the theory of differential equations. 

2.21. THEOREM (Uniqueness). If the right-hand members of 
system ( l. 01) satisfy Lipschitz conditions, then there exists a unique 
solution satisfying given initial conditions. 

Let {x?l (t) }, {x~2l (t)} be two solutions defined on a segment 
[t0 , t1] and satisfying the same initial conditions at t0 (or at t1). 

We may consider these solutions as s-solutions for an arbitrarily 
small s. Applying the fundamental inequality and observing that 
o = 0, we obtain 

n I [x~1 ) (t) - x;2 ) (t) [ < 2n (t1 - t0 ) senLJtl -tal. 
i=l 

Since e is arbitrarily small, we have 
n 
I [xj1J (t) - xj2l (t) I = 0 for t0 < t < t1 , 
i=l 

which proves our assertion. 
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2.22. THEOREM (continuity in the initial conditions). Let the right-
hand members of (1.01) satisfy Lipschitz conditions in a domain GL" 
If a solution {x,} = {xi(t, t0 , x,0 , •• • , xn0 )} = x(t) is defined for 
t0 < t < T, then for every 'YJ > 0 there is a o > 0 such that for 
\i,o-Xzol < 0 (i = 1, 2, ... , n) the sohttion x, = xi(t, to, xiO> ... , Xnol 
= x, (t) is also defined for t0 < t < T and for all values of t in this 
interval \i, (t) - x, (t) I < 'YJ· 

The fundamental inequality (2.124) with s = 0 yields 
n 

(2.221) I li, (t) - x, (t) I < noenL(t-to) 
t=l 

for every value of t in t0 < t < T for which x, (t) is defined. For 
some d > 0, the d-neighborhood of the segment C : x, (t), t0 < t < T, 
lies in the interior of GL" If 'YJ < d, we let 

(2.222) 

If we take the (closed) d-neighborhood of C as the domain G of 
Theorem l.ll, then D > d- 'YJ > 0, we see at once that the 
solution x(t) through (x,0 , •.. , xn0 ) can be extended at least as far 
as T in view of the inequality (2.221) and the choice of o. Also, 
throughout the interval t0 s t s T, we have 

lxi(t)- xi(t)l < 'YJ· 

2.3. One should note that the choice of o depends not only 
upon the degree of the desired approximation, that is upon 'YJ, but 
also upon the length (T- t0 ) of our time interval. In many problems 
of mechanics, it is essential to seek solutions in which o can be 
chosen independently of the length of the time interval. Such 
motions possess a certain degree of stability with respect to the 
change in the initial conditions. Detailed study of such motions 
and of the methods of their characterization was carried out by 
the inspired Russian scientist Liapounoff. We shall meet these 
ideas and methods in the subsequent chapters. 

2.4. Stability of solutions with respect to changes in the 
right-hand members of our system. Let a system (1.01) be 
replaced by a system 

(2.411) 
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and let !(;l;! < 8 for all values of X; in a closed domain GL. Then 
every solution x, (t) of systems (2.411) is obviously an 8-solution 
of system (1.01). If x,(t) is a solution of system (1.01) satisfying 
the same initial condition as a solution x, (t) of system (2.411), 
then, in view of the fundamental inequality, we obtain 

(2.412) !x,(t)- X;(t)l < 2n It- t0 !8enLJt-tol. 

It follows from this estimate that for a fixed interval of time we 
may make the difference of the above solutions arbitrarily small 
by choosing 8 sufficiently small. 

2.42. Frequent use is made of the process of linearization, i.e., 
of a replacement of a given nonlinear system by a linear system. 
In particular, such a method is considered permissible if the non-
linear terms have small parameters. The above inequality (2.412) 
makes it possible to obtain a numerical estimate of the error resulting 
from linearization. 

2.5. A method of approximate integration [35]. In deriving 
the fundamental inequality we required that the functions e, (t) 
should be piecewise continuous. 

Observing this, one may develop the following method of ap-
proximate integration of (1.01). 

2.51. For a given 8 > 0 we partition the domain GL into 
cubes of side o, where o is so small that the inequalities 
lx;- x;'l ::::: o(i = 1, ... , n) imply 

8 
1/;(x~, x~, .. . , <J -f,(x~', x~', · · ., <JI < 2' 

We construct new functions f;(Xv x2, ••• , xn) which assume 
throughout each cube the values of the corresponding functions 
/,(x1, ... , xn) at the center of the cube. Obviously, 

1/;(Xl, X2, · · ., Xn) -f;(Xl, X2, · · ., Xn)l <:: 8. 
On the boundaries of the cubes we allow each li to be manyvalued. 

Let us consider next the system of equations 
dxi _ _ _ _ 

(2.511) dt = /;(Xv x2, ••• , xn)· 

Within each cube the solutions of (2.511) form a family of 
parallel straight line segments whose direction is determined by 
the values of /;(x1 , ••. , xn) at the center of this cube. 
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By a solution x,(t) of the system (2.511) we shall mean a polygon 
constructed as follows: Given a point A 0 we choose one (there may 
be more than one) of the above segments A 0A 11 say, A~1A 0A 1 
passing through A 0 • If A1 is the initial point of a segment solution 
A1A2 of (2.511), we choose A1A2 as the second link, and so on 
until we exhaust that interval of time for which we seek an ap-
proximation to a solution of (1.01). 

2.52. A solution of (2.511) is an e-solution of the system 
(1.01). For, if x, = x1(t) (f = 1, ... , n) is a solution of (2.511), 
this system may be written 

dx. 
dt' = /,(xv .x2,. ,• ., xn) 

+ [f,(xl(t), x2(t), ... , xn(t))- /;(xl(t), x2(t), ... , xn(t))J 

where the difference in the brackets is numerically smaller than e 
in the domain GL and is piecewise continuous in t. For x, (t), as 
well as /,(x11 x2 , ••• , xn) are continuous, and f;(x1, x2 , ••• , xn) as-
sumes only a finite number of values. 

2.53. We observe that in constructing an approximate solution 
we need not start our polygon at the given initial point of the 
desired solution. 

Let us construct polygon solutions of (2.511) starting at the 
center of each cube of our partition. Let A 11 ••• , As be the family 
of all such solutions. Then, for every solution {x, (t)} of (1.01) 
defined for a time interval T, there exists a polygon A 1 = {x)1l (t)} 
such that 

(2.531) 

Since we may assume that o < e, the inequality (2.531) yields 

jx;(t)- x~i)(t)l < 2ne(T + i)enLT. 

Thus, for a fixed T, the error may be made arbitrarily small by 
choosing e sufficiently small. 

2.6. Toroidal and cylindrical phase spaces. We shall 
conclude this section with a few remarks regarding the generality 
of the theorems considered above. 

In all of our proofs we considered an n-tuple (x11 x2 , ••• , xn) as 
a point in an n-dimensional Euclidean space. This assumption was 
not necessary. We may assume that our solution space is a manifold 
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every point of which has a neighborhond homeomorphic to an n-
dimensional sphere of an n-dimensional Euclidean space Rn. In 
particular it can be an arbitrary domain in an n-dimensional 
Euclidean space. In case the space is only locally Euclidean, then 
the estimates of the interval of existence of solutions must ob-
viously be changed. 

A special role is played by systems of differential equations (1.01) 
in which the right-hand members are defined for all values of the 
variables Xv x2, ••• , xn but in which certain of these variables are 
cyclic, i.e., they take values only in a finite interval of length y,. 
The domains of definition of these variables may be extended to 
the whole infinite line. Here we shall identify points whose ith 
coordinates differ by Y;· 

Consider for example a system of two equations 

dx 
dt = P(x, y), 

dy 
~ = Q(x, y). 
dt 

If (x, y) are plane coordinates then the solution space is a plane. 
If x varies from ~ oo to + oo but y is a cyclic coordinate, then 
the solution space is a cylinder. If both coordinates are cyclic, 
then the space is a torus. The theorem on unlimited continuation 
of solutions applies to the cylindrical as well as to the toroidal 
solution space. 

3. Dynamical systems defined by a system of differential 
equations. 

We shall give here only a few basic definitions and elementary 
results pertaining to dynamical systems. 

3.1. First, we study an important property of systems of 
differential equations satisfying the uniqueness conditions of 
(2.21). 

3.11. To indicate the dependence of solutions upon the initial 
conditions explicitly, we write 

(3.111) - (t t (0) (0)) x, - x, ' 0> xl ' .•. , xn 

for that solution of (1.01) which passes through the point x~0l 
when t = t0 • If t0 = 0, then we abbreviate (3.111) by writing 

(3.112) - (t (0) (0)) X; - X, , X1 , ••. , Xn . 



18 EXISTENCE AND CONTINUITY THEOREMS 

Next, we consider 

(3.113) - (t t (0) (0)) X; - X; - 0, X 1 , ••• , Xn • 

Since the right-hand members of (1.01) do not contain t explicitly, 
(3.113) is a solution of (1.01). Moreover, we observe that it is the 
solution which passes through x~0l for t = t0 • 

In particular, we have the important relation 

(3.114) X;(t2, x1 (t1 , xi0l, ... , x~0l), .. . , xn(t1, xi0l, ... , x~0l)) 

= x,(t1 + t2 , xi0l, ... , x~0l). 

For both the right-hand member and the left-hand member 
of (3.114), considered as functions of t2, represent solutions 
passing through the same point x, (t1 , xi0l, ... , x~o)) for t2 = 0. 

3.12. Let us denote the solution (3.112) passing through the 
point p(xi0 l, ... , x~0 l) by the symbol f(p, t). Thus for every t, 
f(p, t) = q is a definite point on the trajectory through p and in 
particular f(p, 0) = p. Moreover, if for every p in GL the function 
f(p, t) is defined fortE T = (- CXJ, + CXJ) then 

(3.121 ) {IJP. t) is continuous in both of its arguments in 
GL X T, 

and in view of (3.114), 

(3.122) f(p, tl + t) = t(t(p, tl), t). 

Thus f(p, t) defines a one-parameter group of transformations of 
the solution space GL into itself. It is customary to speak of the 
set of all the transformations of this group as a dynamical system 
and of the totality of all the points f(p, t) for a fixed p and 
- CXJ < t < + CXJ as a trafectory of this dynamical system. 

3.2. In general, even if the /;(x1 , ... , xn) satisfy Lipschitz con-
ditions or other conditions assuring uniqueness of solutions in a 
domain G of an n-dimensional Euclidean space or of a locally 
Euclidean manifold, the corresponding system (1.01) does not 
necessarily define a dynamical system, since it may have solutions 
which cannot be continued for all values of t. Some sufficient 
conditions for unlimited continuation were given in Sections 
1.2 and 1.3. 

We shall show, however, that by merely changing the independent 
variable, i.e., by changing the parametrization of the integral curves 
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of the given system, we can arrive at a system whose solutions do 
determine a dynamical system. 

In other words, if we are interested only in the geometrical or, 
more precisely, topological properties of individual integral curves 
or of the whole family of integral curves, then we may limit our-
selves to the study of differential equations which define dynamical 
systems. 

3.21. DEFINITION. Two systems (1.01) are called equivalent if 
their solutions (including the singular points) coincide geometrically. 
A system (1.01) will be called a D-system if its solutions define a 
dynamical system. 

A point p (x10, ••• , xn0 ) is called a singular point of (1.01) if 
/;(x10, .•• , Xnol = 0 simultaneously for all the right-hand members 
of /; of a system (1.01). 

3.22. THEOREM (R. E. Vinograd) [55]. Consider a system (1.01) 
satisfying Lipschitz conditions in an open domain GL C Rn. There 
exists a D-system defined over the whole Rn and equivalent to (1.01) 
in GL. 

3.23. Let us prove first that every system (1.01) may be 
replaced by an equivalent system with bounded right-hand members. 

We define rp,(x) so that 5 

tp;(x) = 1 if 1/;(x)l < 1, 
1 

IP;(x) =/;(X) if /;(x) > 1, 

-1 
T;(x) = /;(x) if /;(x) < -1, 

and we write rp(x) = II~=l rp;(x). Obviously 0 < rp,(x) < 1, 
1/,(x)rp,(x)l < 1, and rp,(x) are continuous. Therefore 0 < rp(x) < 1, 
1/;(x)rp(x)l < l and rp(x) is continuous. 

The system 
dx. 
d; = f,(x)rp(x) 

is equivalent to the given system in GLand its right-hand members 
are bounded. 

3.24. We may assume therefore that system (1.01) has bounded 
right-hand members. 

5Here x is an abbreviation for (xv x 2, ••• , xn)· 
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We observe that in this case we have 

J>(x)dt < !t'lc, 
where 

v(x) = V±f7(x), 
i~l 

c = Mvn. 
Thus, 

3.241. For a finite t' the length of the trajectory 
x(t, x<0)), 0 < t:::;: t', 

is finite. 
3.242. Now let x(t, x(O)) be a solution of (1.01) which cannot 

be continued beyond t = t1 . The trajectory defined by this solution 
must have a limit point x< 1) on the boundary B of GL for otherwise, 
in view of Theorem 1.21, the solution could have been continued 
indefinitely. 

By 3.241, the above limit point x<1 ) on the boundary is unique 
and it is approached along the trajectory as t--+ t1 . 

3.243. Write F = Rn- GL and let 

1fJ(x) = e (x, F) 
e(x, F) + e(x, x0 ) + 1 

where e(x, y) is the distance between X andy, e(x, F)=miny€Fe(x, y), 
and x<O) is a fixed point of GL. 

The function 1p(x) is continuous everywhere in Rn, 0 < 1p(x) < l, 
and 1p(x) = 0 in F and nowhere else. 

Let us consider the system 

(3.243) 

It is equivalent to the given system and has bounded right-hand 
members in GL. To prove that (3.243) determines a dynamical 
system, it suffices, in view of (3.242), to show that we can extend 
indefinitely solutions corresponding to half-trajectories of finite 
length s0 terminating at a point xn) E B C F. 

We observe that 
rs ds 

t = Jo v(x)1p(x)' 
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where we may for definiteness assume s > 0. Next, for every 
point x = x(s) on our trajectory 

e(x, F) . 
1J!(X) = ( F) + ( (OJ) + l < e(x, F) = mm e(x, y) 

(} X, (}X, X y£F 

< g(X, x<ll) <So- S. 

Since 0 < v(x) < c, then 

t > 2_ rs ~ = - 2__ log So - S. 
c Jo s0 - s c S0 

Thus t --+ oo as s --+ s0 . 

3.244. We extend the domain of definition of the right-hand 
members of (3.243) by setting them equal to zero in F. Since f;(x) 
are bounded in GL and 1p(x) is continuous and vanishes on the 
boundary B, the extended system has continuous right-hand 
members. The new system is a D-system for which all points of 
F are singular points. This completes the proof of Theorem 3.22. 
The above reasoning also yields the following: 

3.245. THEOREM. Given a system (l.Ol) and a closed set ifJ C G, 
there exists a D-system which is equivalent to the given system on 
G- ifJ and has all the points of ifJ as equilibrium points. 

3.25. We shall return now to the study of the properties of 
dynamical systems. 

3.251. DEFINITION. A point q is called an OJ-limit point of a 
trajectory f(p, t) if there exists a sequence t1 , t2 , ••• , tn--+ + oo 
such that lim e(f(p, tn), q) = 0. A point q is called an IX-limit point 
of a trajectory f(p, t) if there exists a sequence t1, t2, ••• , tn, ... , --+- oo 
such that lime (t(p, tn), q) = 0. The set of all OJ-limit points of 
a given trajectory we shall call its OJ-limit set, and we shall denote 
this set by Q'P. Similarly, the IX-limit set A'P of a given trajectory is 
the set of all its IX-limit points. Both QP and A P are closed sets. 

3.252. THEOREM. If q is either an OJ- or an IX-limit point of a 
trajectory f(p, t), then all other points of the trafectory f(q, t) are also 
OJ- or IX-limit points respectively of the given trajectory f(p, t). 

Let r = f(q, l) be a point on the trajectory f(q, t). Since q is an 
OJ-limit point, there exists a sequence {tn} with tn --+ + oo and 
such that f(p, tn) --+ q. Then by Theorem 2.22, f(p, tn + i) --+ f(q, i) 
and since tn + i--+ + oo, the point r is an OJ-limit point. 

This theorem may also be stated as follows: 
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3.253. Both w- and rx-limit sets of a trafectory consist of whole 
trafectories. 

3.254. We now classify trajectories according to the properties 
of their rx- and w-sets. 

3.2541. We say that a solution (or a trajectory) recedes in 
the positive direction if it has no w-limit points. 

3.2542. A solution (or a trajectory) f(p, t) is called asymptotic 
in the positive direction if there exist w-limit points, but they do 
not belong to this solution. 

3.2543. A solution (or a trajectory) f(p, t) is called stable in 
the positive direction in the sense of Poisson if it has w-limit points 
which belong to this solution. 

We introduce similar definitions describing behavior of solutions 
as t-+- oo. 

3.255. We now consider two important classes of solutions of 
(1.01) stable in the sense of Poisson. These are the singular points 
and the periodic solutions. 

It is clear that if a point p (x10, ••• , X no) is a singular point, then 
the set of functions x;(t) = X;o (i = 1, . .. , n) is a solution of (1.01). 
Thus a singular point p(x10, ••. , xn0 ) is a trajectory and f(p, t) = P 
for all t. Therefore every singular point is its own rx- as well as w-
limit point, and hence is a trajectory stable in the sense of Poisson. 

The set of all singular points is a closed set, and by 3.245, it 
can be an arbitrary closed set. 

If a trajectory f(p, t) has a unique limit point either fort-+ + oo 
or for t -+ -oo then, in view of 3.253, this limit point is a singular 
point. 

3.256. THEOREM. If every neighborhood, however small, of a point 
P contains a trafectory traversed over an arbitrarily long time span, 
then p is a singular point. 

If pis not a singular point, there exists a t1 such thatp1 = f(p, t1) =J:;p. 
Then p_1 = f(p, -t1) #pas well. Let d =min [e(P, P1), e(P, P-1lJ. 
By the continuity in the initial conditions we can find a b > 0 
such that e(P,x)<b implies that e(f(p,t), f(x,t))<d/3 for 
-t1 < t < t1 • We may assume that b < dj3. Then the trajectory 
f(x, t) through any point x in the b-neighborhood of p does not 
remain in this neighborhood for ltl = lt1 1. 

3.257. Consider next the periodic solutions of (1.01), i.e., the 
solutions X; (t) in which all the functions x, (t) are periodic with a 
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common period T. The trajectory of a periodic solution f(p, t) is 
a closed curve in the phase space and f(p, t + T) = f(p, t). 

Thus every point of a periodic solution is an a- as well as an 
w-limit point and therefore such a solution is stable in the sense 
of Poisson. 

3.258. It is easy to find examples of systems of differential 
equations whose solutions are receding, periodic, or are singular 
points. The problem of constructing asymptotic solutions and 
solutions which are non-periodic and stable in the sense of Poisson 
is somewhat more difficult. 

We note that a solution which is not a singular point and which 
has a single a- or w-limit point is asymptotic. For, as was shown 
in 3.255, this limit point is a singular point and the solution cannot 
reach a singular point (which itself is a solution) in finite time in 
view of the uniqueness condition. It is clear therefore that any 
system whose singularities include a saddle point or a nodal point 
will have asymptotic solutions. Consider for example the system 

dx 
-=X 
dt ' 

The point x = 0, y = 0 is a singular point. All other solutions are 
asymptotic for t--+- oo and recede for t ->- + oo. 

We shall consider next the more complicated examples of asymp-
totic solutions whose w-limit sets contain more than one point. 

3.26. Limit cycles. Consider a system 

dx dy 
(3.2601) dt = P(x, y), dt = Q(x, y). 

A periodic solution of (3.2601) is called a limit cycle if it is either 
the a- or the w-limit set of another solution of this system. Let C 
be the closed trajectory of a limit cycle. If C is the w-limit set for 
solutions contained in its interior, as well as for solutions lying in 
its exterior, then the limit cycle is called stable. If C is the a-limit 
set for trajectories in the interior and for those in the exterior of 
C, then the limit cycle is called unstable. If, however, C is the a-
limit set for the trajectories in the interior (exterior), but is the 
w-limit set of the trajectories in the exterior (interior) of C, then 
the limit cycle is called semi-stable. 

3.261. Example. Given the system 
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dx x 
-=-y+ (1-(x2+y2)), 
dt vx2 + y2 

dy y - = x + (1 _ (x2 + y2) ). 
dt Vx2 + y2 

Passing to polar coordinates, we let X= r cos e and y = r sin e. 
Then 

dx x 
dt = - y + ---; ( 1 - y2) ; 

dy y ( 2) -=x+- 1-r. 
dt r 

Multiplying the first of these equations by x and the second by y 
and adding, we obtain 

dr - = 1-r2 

dt 
(r > 0). 

Next, multiplying the first equation by y, the second one by x, 
subtracting, and making use of the identity 

dy dx de 
x--y-= r 2 -, 

dt dt dt 
we get 

de 
-=1. 
dt 

Integrating the equation 

we get 

dr 
--=dt 
1 - y2 

1

1+r( II+r0
1 log -- = 2t + log A, where A = -- . 1-r 1-~ 

Thus 

Ae2t- 1 
Y=---

Ae2t + I 
Ae2t + 1 

for 0 < r < 1, and r = ---Ae2t-1 for r > 1. 

We observe that in both cases r--+ 1 as t--+ + oo. Consequently 
all the solutions outside the circle r = 1, as well as all those inside, 
are spirals approaching this circle. Therefore the periodic solution 
x = cos (e0 + t), y = sin (e0 + t) is a stable limit cycle. 
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3.262. Example. Given the system 
dx dy 
dt = -y + x(x2 + y2-1), dt = x + y(x2 + y2-1), 

which in polar coordinates has the form 

dr de 
dt = r (r2 

- 1), dt = 1 (r > 0). 

Integrating these equations we get e = e0 + t and 
1 

r = 0, r = for 0 < r0 < 1, A = (1- r~)/r~; 
V1 + Ae2 t 

1 
r=1, r= for r0 >1, A=(r~-1)/r~. 

V1-Ae2 t 

25 

The parameter A is always positive and we see at once that for the 
solutions outside the circle r = 1, as well as for the solutions inside 
this circle, we have r __,.. 1 as t __,..- oo. Thus the circle r = 1 is 
the IX-limit set of the solutions originating outside the circle as well 
as for those originating inside. We note that these latter spiral 
toward the origin r = 0 as t __,.. + oo. Thus the solution x =cos (e0 +t), 
y =sin (e0 + t) is an unstable limit cycle and the solution x = y =0 
is a position of stable equilibrium. 

3.263. Example. Consider the system 

dx 
dt = x(x2 + y2-1)2-y, 

dy - = y(x2 + y2- 1)2 + x. 
dt 

In polar coordinates this becomes 

(3.2631) 
dr 
- = r(r2 -1) 2 
dt ' 

de 
-=l. 
dt 

If we let r2 = u, we get 

du 

or 

- = 2u(u-1) 2 
dt ' 

du 
---=2dt. 
u(u- 1)2 
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In view of the identity 

1 1 1 1 
u(u-1) 2 =-;;- u-1 + (u-1)2 ' 

we get 

logl-u-1--
1

- = logC + 2t, 
u-1 u-1 

or 

I 

u 1 __ 1 __ e u-1 = Ce2t. 
u-1 

Finally, setting u- 1 = v, we get 

(3.2632) C + 1)e-1i" = Ce2t for v > 0 (r > 1), 

and 

(3.2633) (-1- ~) e-1/v = Ce2t for v < 0 (r < 1). 

Let us consider the behavior of solutions v = v(C, t) of (3.2632) 
and (3.2633) in the neighborhood of v = 0. For t positive and 
sufficiently large (3.2633) has a unique solution v(C, t) < 0. 
Moreover, as t -7- oo, v(C, t) -7-0 and hence r = Vv + 1 -7- l. For 
t negative and sufficiently large numerically (3.2632) has a unique 
solution v(C, t) > 0. This solution v(C, t) -7- 0 as t -7-- oo, whence 
r -7- 1 in this case as well. Thus in this example the solution 
x = cos (()0 + t), y = sin (()0 + t) is a semi-stable limit cycle. 

3.264. Example. Let us consider the system 

dx 1 
_ = -y + (x2 + y2 - 1 )x sin · 
~ ~+~-1 

dy 1 
(3.2641) dt = x + (x2 + y2- 1)y sin x2 + y2- 1 

for x 2 + y2 -=!= 1, and 
dx dy - = -y - = x for x2 + y2 = 1. 
dt ' dt 

In polar coordinates this system takes the form 



(3.2642) 
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dr 1 
- = r(r2- 1) sin-- for r =1= 1, 
dt r 2 - 1 

dr 
-=0 
dt 

for r = l, 

and in both cases d()jdt = l. 
Thus in every neighborhood of the periodic solution 

(3.2643) x = cos (()0 + t), y = sin (()0 + t) 
of (3.2641) there are infinitely many periodic solutions 

(3.2644) x = rk cos (()0 + t), y = rk sin (()0 + t) 
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where rk = V1 + (1/kn) satisfies the condition sin(r~-1)-1 = 0. 
In each ring-shaped region between two consecutive circles (3.2644), 
the trajectories are spirals approaching these two circles. Thus 
every solution (3.2644) is a limit cycle. 

3.265. We should now give some examples of nonperiodic 
solutions stable in the sense of Poisson. 

In the next chapter we shall see that there exist no such solutions 
either in the plane or on the surface of a two-dimensional cylinder. 
However, there do exist such solutions on a torus. 

Let us introduce real Cartesian coordinates (rp, {}) in the plane 
and let us identify any two points (rp, {}) and (rp + n, {} + m) 
whose coordinates differ by integers n and m respectively. 

On the resulting torus consider the system 

(3.265) 
drp 
-=1 
dt ' 

d{} 
-=IX. 
dt 

Whenever we are interested only in the geometrical arrangement 
of integral curves, we may consider the one equation d{}jdrp = IX. 

There are two essentially different cases: one in which IX = pjq is 
a rational number and the other in which IX is irrational. 

3.266. Example. Consider the integral curves of the equation 

(3.2661) 
d{} 

drp 
p 
q 

where q is a natural number, p is an integer, and the fraction pjq 
is irreducible. The solution corresponding to the initial conditions 
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cp = 0, {} = {}0 has the form 

(3.2662) {} = {}0 + _p_ cp. 
q 

As cp takes on the value q, the coordinate {} in (3.2662) takes the 
value {}0 + p, the resulting point of our integral curve on the torus 
coincides with the initial point (0, {}0 ), and the curve is closed. 
Thus the torus is covered by closed integral curves of (3.2661). 

3.267. Example. We consider next the equation 

(3.2671) 
d{} 
-= 0( 

dcp 
where IX is an irrational number. 

In this case there are no closed curves among the integral curves 

(3.2672) 

of (3.2671). For, suppose that a point (cp1 , {}1 ) on the integral curve 
(3.2672) coincides with the initial point (0, {}0 ). Then 

{}1 = {}o + 1XffJ1 = {}o + niX = {}o + m 
(m, n integers), whence niX = m, and IX= mjn is a rational number. 

Since all the trajectories can be obtained from the trajectory 
{} = IXffJ by a translation along the {} axis, we need to consider 
only this trajectory in detail. Its intersections with the meridian 
cp = 0 are cp = 0, {}n =niX, n = 0, ±1, ±2, ... , . These points are 
everywhere dense in this meridian. 

Write (1X) =IX- [1X], where [IX] is the greatest integer in IX. 
To prove our assertion we need only to show that the set (niX), 
n = 0, 1, 2, ... , is everywhere dense in the interval [0, 1]. Since 
IX is irrational, the p + 1 numbers 

(3.2673) 

are all distinct and since they are all distributed among the p 
intervals 

(3.2674) (h = 0, 1, 0 0 ., p- 1), 

one of these intervals must contain at least two of the numbers 
(3.2673). Let (k11X) and (k21X) be two such numbers. They differ 
by less than 1/P since each of the intervals Ih is of length 1jp. 
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If k2 > k11 we write k = k2 - k1• Then either 

(koc) E 10 or (koc) E I'P_1• 

In either case, the sequence 

(koc), (2koc), (3koc), ... , 
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continued as long as may be necessary, will partition the interval 
[0, 1 J into segments of length less than 1jp. 

To show that every s-neighborhood of a point in [0, 1], contains 
a point of the set (noc), it suffices to take p > 1/s in the above 
discussion. 

Thus the set (noc) is everywhere dense in [0, 1], and therefore 
every point of the meridian cp = 0 is a limit point for the set of 
points cp = n, f) = noc of our trajectory. Similarly, every point 
cp = cp0 , f) = 1}0 , is a limit point for the set of points 

cp = n + cp0 , f)= oc(n + cp0 ) 

of the sarne trajectory. 
It follows that the trajectory f) = occp and hence every trajectory 

of (3.2671) is everywhere dense on the torus. In particular, every 
trajectory, even though it is not closed, contains some of its w-limit 
points. 

3.268. Example. Consider the systern 

(3.268) 

Trajectories of this systern lie on the trajectories of the systern 
(3.265). However, systern (3.268) has a singular point at cp = 0, 
f) = 0. This singular point splits the trajectory of (3.265) through 
the origin (stable in the sense of Poisson) into three trajectories 
of (3.268), viz., the singular point (0, 0), and two other trajectories 
each of which is asymptotic in one direction and stable according 
to Poisson in the other. 

3.27. The qualitative theory of differential equations whose 
right-hand rnembers do not contain tirne explicitly, concerns itself 
with the solution of the following two problems. 

3.271. The classification of solutions and the study of relation-
ships between different classes of solutions. This problem is essen-
tially solved and the results of such investigations will be presented 
in the following chapters. 
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3.272. The search for methods of determining the types of 
solutions admitted by a given system of differential equations on 
the basis of information supplied by the analytic properties of the 
right-hand members of this system. This problem is far from being 
completely solved. The reader will find the basic known results in 
the subsequent chapters of our book. 

4.1. Families of Integral Curves 

We consider now a family S of integral curves filling either a 
region G or a closed region G in Rn. 

4.11. DEFINITION. A family S of trafectories filling a domain G 
(not necessarily open) in Rn, is called a regular family (a notion 
due to Hassler Whitney [58]) if there exists a homeomorphism (one 
to one and bicontinuous mapping) of the domain G onto a set E C Rn 
or Rn+I, which maps trafectories into parallel straight lines so that 
the images of different integral wrves lie on different straight lines. 

It is clear that a regular family of trajectories cannot contain 
trajectories which are either stable in the sense of Poisson or are 
asymptotic. On the other hand, there exist dynamical systems 
whose integral curves recede in both directions but whose families 
of trajectories are, nevertheless, not regular. Consider, for example, 
the system 

dx . 
-=Silly, 
dt 

dy - = cos2 y. 
dt 

The integral curves of this system are the curves x + c = (cos y)-1 

and the straight lines y = kn + n/2, k = 0, ± l, .... We consider 
only the strip 

Although all the integral curves situated within this strip recede 
in both directions (cf. Fig. l), the family of integral curves filling 
this strip is not regular. 

To prove this, draw a segment PQ with the endpoints P and Q 
on the lines y = -n/2 and +n/2 respectively, and consider a 
sequence of points P n on this segment, converging to P. Write 
Ln for the trajectory passing through P n, and L and L' respec-
tively for the lower and the upper boundaries of the strip. Assume 
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that our family of trajectories is regular, and let f be a homeo-
morphism of Definition 4.11. Then the sequence f(P n) E f(Ln) 
converges to the point f(P) E f(L). Moreover, since f(Ln) and f(L) 
are parallel straight lines, any convergent sequence of points 
Yn E f(Ln) has its limit point of f(L). To obtain a contradiction we 
observe that if {Qn} is a sequence such that Qn E Ln and Qn --+Q E L', 
then Yn = f(Qn) E f(Ln) and f(Qn)--+ f(Q) E f(L'). Thus /(Q) must 
lie on f(L) as well as on f(L'). This is a contradiction. 

y 

Fig. 1 

The following theorem elucidates the part played by regular 
families in the theory of differential equations. 

4.12. THEOREM. Let G be a domain in which the system (l.Ol) 
satisfies both the uniqueness and the existence conditions (cf. Sections 
l and 2) and let q be a non-singular point of G. Then there exists a 
neighborhood of q such that the family of integral curves filling this 
neighborhood forms a regular family. 

Since q is not a singular point, then at q the integral curve L 
passing through q has a well-defined tangent and hence a well-
defined normal hyperplane N as well. 

By the continuity of the right-hand members of (l.Ol), there 
exists a closed spherical neighborhood S0 (q, R) C G with center at 
q and of radius R, such that the directions of tangent vectors to 
integral curves at any point inside or on the boundary of the 
sphere S0 deviate from the direction of the tangent vector at q 
by less than n/4. 
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Consider the closed (n- 1 )-sphere N 1 (q, R) = N n 5 0• Through 
every point p E N 1 there passes a solution f(p, t) defined for ltl < h'P. 
Since N 1 is closed, then for sufficiently small R, 0 < h0 = g.l.b h'P 
in view of Theorem l.ll. Also, the periods of the periodic solu-
tions passing through N 1 (if there are such) have a lower bound t0 , 

provided R is chosen small enough. Write 

h = min ( h0 , ; ) • 

Then through every point p E N 1 there is an integral arc f(p, t) 
defined for -h < t < h. The totality of these integral arcs forms 
a tube r 2h of length of time 2h. 

A closed set which has one and only one point in common with 
every trajectory arc of the tube, is called a section of the tube. 
The set N 1 in our construction is a section of the tube r 2h. 

Write T = [-h, +h] and consider the circular cylinder N 1 X T. 
The correspondence between the points f(p, t), p E Nv -h < t < h 
of the tube r 2h and the points (p, t) of N 1 X Tis one-to-one. Since, 
moreover, in one direction this correspondence is a continuous 
mapping of a compactum, this correspondence is a homeo-
morphism. 

The image of q is an inner point of the cylinder and therefore q 
is an inner point of the tube r 2h. Any neighborhood of q com-
pletely contained in r 2h will serve as the desired neighborhood. 

4.2 We shall discuss now conditions under which a system of 
differential equations will define a regular dynamical system (i.e. 
with a regular family of trajectories). 

4.21. THEOREM. (E. A. Barbashin [3]). Consider a system of 
differential eq~tations (1.01) which defines a dynamical system in a 
domain G. If there exists a single-valued function u(x1, ..• , xn) 
satisfying the condition 

(4.2ll) 

in G, then our dynamical system is regular. 
Let u(p) = u(xv .. . , xn) be a single-valued function defined in 

a domain G, having in G derivatives of the first order, and satisfying 
the condition (4.2ll). If f(p, t) = (x1 (t), ... , xn(t)) is a trajectory 
of a dynamical system defined by (1.01), then 
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or 

where 
u(t) = u(f(p, t)) = u(x1 (t), .. . , xn(t)). 

Integrating, we get u(t) = u(O) + t, or 

(4.212) u(f(p, t)) = u(p) + t. 
Let F be the set of all points q for which u(q) = 0. It follows 

from (4.212) that every trajectory has one and only one point in 
common with F. 

Consider the topological product Z of the set F and the real 
axis T. 6 

If pEG, then by (4.212), f(p, -u(p)) = qE F. The mapping 1p 
defined by 1p(p) = (q, t 11 ), where t11 = -u(p) is a one-to-one 
mapping (since u(p) is single-valued) of G onto Z, and maps trajec-
tories into parallel straight lines in Z C Rn+l. We shall show next 
that both 'lfJ and 1p-1 are continuous. 

Let a sequence of points Pv p2, ••• , pk, ... converge to a point 
Po· From the continuity of u (p) it follows that u (pk) tends to u (p0 ) 

and from the continuity of f(p, t) it follows that 

f(Pk, -u(pk)) = qk ->- f(Po, -u(Po)) = qo. 
Thus, 

'lfJ(Pk)--+ 1J!(Po)· 
Conversely, if a sequence (qk, t<k>) converges, say, to (q, l), then 
qk --+ q and t<k> --+ l. Thus the initial points qk of the integral arcs 

(4.213) 0 < t < t<k) 

tend to the initial point q of the integral arc 

(4.214) f(q, t), 0 < t < l, 

and the time intervals t<k> tend to l. By the continuity of f(p, t), 

6The set Z consists of the points of an (n + i)-dimensional space, s1tuated on 
parallel straight lines passing through the points of the set F. 
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the endpoints 

pk = 'ljJ-l((qk, f(k>)) = f(qk, f(kl), 

of the arcs (4.213) tend to the endpoint 

p = 1p-1(q, l) = f(q, l) 

of the arc (4.214). 
Theorem 4.21 yields important corollaries. 
4.22 If solutions of (1.02) are defined for - oo < t < + CJ:), 

then the associated parametric system (1.201) is regular. 
The conditions (4.211) corresponding to the parametric system 

(1.201) will read 

It will be satisfied by the single-valued and continuous function 
u = t. 

4.23. The conclusions of Theorem 4.21 still hold if we replace 
condition (4.211) by 

(4.231) 
n a 

N = "'__!!__I· > K 2 > 0. ~a • -i=l xi 

Let u satisfy the condition (4.231). Make the substitution 

t' =I: N dt. 

If It! --+ CJ:), then !t'l --+ oo. The new system 

(4.232) dxi 1 
dt' = N fi 

is equivalent to the original system and also defines a dynamical 
system. The condition (4.211) for (4.232) becomes 

n OU 1 
2:--f.=l. 
i=l oxi N • 

(4.233) 

It is clear that u satisfies (4.233). 
4.24. A system of the form 

(4.241) dxi oF 
7ii = oxi. 
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is said to possess a velocity potential F(x11 •• • , xn)· Corollary 4.23 
yields 

4.241. If 
n (ap)2 Lox. >K2>0, 

•=1 • 

then the system ( 4. 241) is regular 

5.1. Fields of Linear Elements 

Consider again a system of type ( l. 0 l). Such a system assigns 
a vector (/1 , / 2, ••• , fn) to every point p(x1, •• • , xn) at which all 
the functions fi(xv ... , xn) are defined and at which they do not 
all vanish. In a domain G in which fi are all continuous, system 
(l.Ol) defines a vector field continuous except at the singular points. 
It may sometimes happen that we may augment the definition of 
our vector field so that it will become continuous everywhere. More 
precisely, we may sometimes find a function 1p(x1, .•. , xn) continu-
ous everywhere except possibly at the singular points and such that 
the functions /;11' are continuous everywhere and do not vanish 
simultaneously. 

5.11. The theory of differential equations also studies systems 
in the so-called symmetric form: 

( 5.11) 

We note that system ( l. 0 l) assigns to each point p a vector 
(/11 ••• , fn) whereas system (5.11) assigns to each point a linear 
element (line position) dxl: dx2: ... : dxn =XI: x2: ... : xn. 
This linear element is associated with two vectors, the vector 
(Xv .. . , Xn) and the vector (-X1, ... , -Xn). 

5.12. We now ask if there exists a system of type (l.Ol) whose 
trajectories are the integral curves of our.initial system (5.11) and 
which has no singular points other than those of (5.11). 

To state the problem geometrically, we ask if it is possible to 
choose a positive sense on each linear element and a suitable value 
for vector length so that the resulting vector field should be con-
tinuous everywhere except at the singular points. 

Analytically, the problem consists in finding a function 1p(x1 , ... , xn) 
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such that the products X 1 'If, X 2 1p, .•• , X n 'If are continuous in D1 
and do not vanish simultaneously anywhere in Dv if D1 is a domain 
where (5.11) has no singular points. 

5.13. We note that the problem of orientation of a field of 
linear elements defined in a domain D1 is equivalent to the problem 
of establishing a positive direction along each integral curve of a 
system of type (5.11) in such a way that every two integral curves 
which are near each other must agree in direction. 

5.14. It is not always possible to orient a field of elements in the 
plane. This can be seen from the following example. 

Consider the field of linear elements in the plane defined by the 
differential equation 

(5.141) 
dy cp 
-=cot-
dx 2 

where cp is the polar angle. As is usual, in a neighborhood of a point 
near which the absolute value of the right-hand member is not 
bounded, we consider the equation 

dx cp 
-=tan-. 
dy 2 

It is clear that the field of linear elements is defined and is 
continuous everywhere except at the point (0, 0). Introducing polar 
coordinates, we obtain 

3cp 3cp 
cos - dr = r sin - dcp. 

2 2 

Solving this equation, we obtain three integral half-lines 
n 5n 

m- m-n m--r - 3' T - ' T - 3' 
and three families of similar curves (Fig. 2) 

with the parameter a and 

(I) 
n n --<m<-3 T 3' (II) 

n 
3<cp<n, 

r > 0, 

(III) 
5n 

n < cp < -. 
3 
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The above field cannot be oriented. For, let us choose the direction 
away from the origin on the half-line rp = n/3, r > 0 as positive. 
Take a point p on this half-line and draw a circle through p with 
the center at (0, 0). As we move along the circumference, say in 
the counterclockwise direction, considerations of continuity will 

!J 

Fig. 2 

assign as positive the direction toward the origin on the halfline 
rp = n, r > 0 and the direction away from the origin on the halfline 
rp = 5nj3, r > 0. We find that in view of the orientation induced 
in the family (III) by considerations of continuity as we move 
along the circumference, we shall arrive at the initial point with 
orientation opposite to that chosen originally. 

5.141. The selected positive direction for the linear element 
through a point q on the circle in Fig. 2 may be indicated by a 
tangent unit vector v(q). The angle (2nn or 2nn + n) through which 
v rotates as q spans the circle once in the positive sense, is a property 
of our field of directions. The rotation angle for the circle in our 
example is -:rc. In this discussion the circle could be replaced by 
any other simply-dosed curve containing the origin. 
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5.142. We observe that if we write system (5.14I) in the form 

dy sm rp r sm rp y 
dx I - cos rp r (I - cos rp) y x2 + y2 _ x 

and then replace it by the system 

dx - = Vx2 +y2 -x 
dt 

of type (I.OI), then we introduce new singular points (points of 
equilibrium) filling the positive half of the x-axis. 

5.143. In the above example the domain D (cf. 5.I3) is not 
simply-connected (it does not contain the point (0, 0)). As will be 
seen from the next theorem, this is not accidental. 

5.15. THEOREM. A continuous field of linear elements in a simply-
connected domain D of the plane can be oriented. 

The domain D can be approximated from within by a bounded 
domain D1 composed of squares, and therefore it suffices to prove 
our theorem for such domains D1 . Let us choose the sides of our 
squares so small that within each one of them the oscillation of 
the direction of linear elements is less than n/4. If we choose a 
positive direction on one of the elements, then considerations of 
continuity will lead to a unique definition of positive direction for 
all other elements of the same square. To extend the definition to 
the element through a point p outside the square we again use 
considerations of continuity and proceed stepwise along a chain of 
adjacent squares until we reach p. 

The positive direction for the linear element through p is defined 
uniquely, for if we proceed toward p along two different paths, 
which yield qifferent orientations at p, then the closed path defines 
a reversal of the direction of the vector field. Indeed in this case 
our vector field turns through an angle of n + 2kn (k is an integer) 
around some closed curve consisting of the edges of the squares; 
however the algebraic sum of the rotation angle around each of 
the squares in the interior of our path must equal the rotation 
around the outside path, and this is zero modulo 2n. This is a 
contradiction and the theorem is proved. 



CHAPTER II 

Integral Curves of a System of Two 
Differential Equations 

1. General Properties of Integral Curves in the Plane. 

1.1 Consider the system 

dx 
(1.01) dt = P(x, y), 

dy 
- = Q(x, y). 
dt 

Let the functions P(x, y) and Q(x, y) satisfy Lipschitz conditions 
in some domain GL (a Lipschitz domain) of the plane. We shall 
study the behavior of the integral curves of this system. In view 
of I, 3.2 we may assume without loss of generality that the system 
(1.01) defines a dynamical system in GL. 

The basic results in this case were obtained by Bendixson [7] 
and Poincare [ 4 7]. 

We make use of the continuity of the vector field [P(x, y), 
Q(x, y)J defined by the right-hand members of (1.01), through 
the following basic lemmas. 

1.11. LEMMA. If a point P 0 of GL is not a singular point, then 
there exists an c > 0 such that the circle S(P0 , c) with center at P 0 
and of radius c does not contain singular points either on its boundary 
or in its interior, and such that the angle between the vector of the field 
[P(x, y), Q(x, y)J at P 0 and the vector of the field at an arbitrary 
point of the circle, S(P0 , c) is less than nj4. 

In what follows we shall speak of such a circle as a small neigh-
borhood of P 0 • 

We write f+(Q 0 ) for the half-trajectory (semi-trajectory) f(Q 0 , t), 
0 < t <+wand f-(Q 0 ) for the half-trajectory f(Q 0 , t), -oo < t < 0. 

1.12. LEMMA. Let S(P0 , c) be a small neighborhood of a point 
P 0• Let N and N' be the points of intersection of the circumference 
of S(P0 , c) with the normal at P 0 to the trajectory through P0 • Then 

[39] 
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there exists a positive b < e such that for every point Q0 of S (P 0 , b), 
either the half-trajectory f+(Q 0 ) or the half-trajectory f-(Q 0 ) cuts 
across the segment NN' of the normal, before leaving S (P 0 , e). 

This lemma is an immediate consequence of the theorem on 
local regularity of the family of integral curves in a neighborhood 
of a nonsingular point (cf. !.4.12). 

Lemma 1.12 can be proved directly as well. Let Q0 E S(P0 , e). 
Then the trajectory through Q0 lies within two vertical right angles 
whose common vertex is Q0 and whose bisector is parallel to the 

Fig. 3 

tangent at P 0 of the trajectory through P 0 (cf. Fig. 3). Let b = e/2 
and let Q0 E S(P0 , b). Then the points C, C' of the intersection of 
the sides of one of the above vertical angles and the normal, lie 
on the segment NN' of this normal. The half-trajectory which lies 
within this angle cuts across the segment NN' before leaving 
S(P0 , e). 

We note that both half-trajectories f+(Q 0 ) and f-(Q0 ) do leave 
the small neighborhood S(P0 , e). For suppose that f+(Q 0 ), say, 
remains in S(P0 , s). Then its w-limit set contains exactly one point 
which must therefore be a singular point, which contradicts our 
hypothesis regarding 5(P0 , e). The same conclusion may be arrived 
at by observing that since the velocity vector V (p) defined by the 
right-hand members of (1.01), does not vanish in S(P0 , e), then 
/iV(P)/1 > fl > 0 for p E S(Po, e). Moreover, the component v.(P) 
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of V (p) along the tangent at P 0 , does not change its direction 
and 1 V.l 2 ,u/2v2. Therefore for It/ > 2cV2/,u, f(P0 , t) lies outside 
of S(P0 , c). 

1.13. The normal N P0N' divides the small neighborhood 
S(P0 , c) of P 0 into two parts, D 1 and D2• Suppose that the trajectory 
through P0 cuts across the segment NN' from D 1 to D 2 with in-
creasing t. We shall speak of D1 and D 2 as the negative and the 
positive sides of the segment NN' respectively. With increasing 
t all the trajectories cutting across NN' pass from the negative to the 
positive side of NN'. 

1.2. THEOREM. Every trajectory of (1.01) possessing at least 
one-sided stability in the sense of Poisson, is either a singular point 
or a periodic solution. 

Let f(A, t) be a trajectory, not a singular point, stable in the 
sense of Poisson for, say, t > 0, and let P0 be an w-limit point 
of f(A, t) lying on this trajectory. Since P 0 is not a singular point, 
it has a small (cf. l.ll) neighborhood S(P0 , c). Choose o as in 
Lemma 1.12. Since P0 is an w-limit point of f(A, t), every half-
trajectory /(P0 , t), t > t0 > 0 enters S(P0 , o) (reenters-if t0 is 
sufficiently large) and therefore, by the choice of o, it cuts the 
segment NN'. Let P 1 be the first such intersection following P 0 

on f(P0 , t). 
If P 1 = P 0 then the solution f(A, t) is periodic. 
Suppose P 1 of: Po- We shall show that this contradicts the 

hypothesis that P 0 is an w-limit point. 
If P 1 of: P 0 , only the two arrangements indicated in Fig. 4 are 

possible. Denote by G\ the closed domain bounded by the arc 
P0P 1 of our trajectory and by the segment P1P0 of the normal. 
The arrangement in Fig. 4 (a) implies that the trajectory f(P11 t) 
remains in G1 for all t > 0. Moreover, if we take a small neighborhood 
S(P0, c1) not containing P1 , then f+(P1 ) cannot enter the correspond-
ing <5 1-neighborhood of the point P 0 • For if j+(P1 ) should enter 
the <5 1-neighborhood of P 0 , then by Lemma 1.12 it would have 
to cut across the normal segment P 0P 1 from the positive to the 
negative side of NN' (cf. 1.13), which is impossible. We dispose of 
the alternative in Fig. 4(b) in a similar manner. 

1.3. Assume that a Lipschitz domain GL is bounded, closed, 
and contains no singular points. Then, in view of the uniform con-
tinuity of P(x, y) and Q(x, y), there exists eo> 0 such that 
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e(Pl, P2) <eo for plp2 E Gv implies that the angle formed by 
the vectors of the field at P 1 and P 2 , is less than n/4. 

Fig. 4 

Let Lab be the arc a < t < b of a (nonsingular) trajectory 
/(P0 , t), and let (Lable be an 8-neighborhood of Lab· Since the set 
of singular points is closed, 8 may be chosen so small that (Lable 
contains no singular points either in its interior or on its boundary. 
Taking (Lable as the domain GL we choose 81 < f!o· If NP1N' is 
a normal to Lab at P 1 = f(P 0 , t1 ), aS: t1 < b, then all the trajec-
tories cutting across NP1 N' within (Lab)

81 
agree in direction (cf. 

1.13) with Lab at P 1 . 

We shall speak of such an 8cneighborhood of Lab as a small 
neighborhood of Lab (cf. 1.11). 

1.41. THEOREM. Let L 1 be a closed nonsingular trajectory of a 
dynamical system in the plane. Then for every 8 > 0 there exists a 
<5 > 0 such that for every point P 1 in the <5-neighborhood of L 1 , at 
least one of the half-trajectories f+(P1 ) or f~(P1 ) is contained in the 
8-neighborhood of L 1. 

LetT be the period of L 1 • Then L 1 = L07 = {I(P0 , t)}, 0 < t < T, 
P 0 E Lv and the discussion in 1.3 assures the existence of a small 
neighborhood (L1 )

82 
of L 1. We may assume that 82 S: 8. Also, 

S(P0 , 82 ) is a small neighborhood of P0 • Let S(P0 , <5 2 ) be a cor-
responding S(P0 , b)-neighborhood as in 1.12. Next, let y > 0 be 
such that for every P E S(P0 , y) we have 

(1.4) e(/(P0 , t), f(P, t)) <<52 for 0 < t < T. 

Take P 1 E 5(P0 , y) on the normal NP0N'. Since f(P0 , T) = P0 , 

then f(P1 , T) E 5(P0 , o2 ), and the trajectory f(/(Pv T), t) cuts 
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the normal segmentNN' before leaving S(P0 , s2 ). Let P 2 = f(P1 , T 1 ), 

T1 # 0, be the first such intersection following P1. 

Let C be the closed curve formed by the arc f(P1, t), 0:::;: t < T 1 
and by the segment P 2P 1 of the normal to L 1 at P0 . The curve C 
together with L 1 form a ring-shaped region r contained in the s2-

neighborhood (L 1 )s
2 

of L 1• 

If P 2 = Pv both half-trajectories f+(Q 0 ) and f-(Q 0 ) lie in 
(L 1 )s, C (L1)s for every point Q0 in the ring-shaped region r bounded 
by L 1 and f(P1 , t). 

Let P 2 =I= P 1• We distinguish two arrangements on the normal 
at P0 , viz., (1) P0P 2P1 and (2) P0P 1P 2• 

In the first case, for every Q0 E r, the positive half-trajectory 
f+(Q 0 ) cannot leave the region r, and in the second case, the 
negative half-trajectory f-(Q 0 ), Q0 E r, Cannot leave r. 

Let d be the distance between the arcs f(P0 , t), 0 < t < T, and 
f(P1 , t), 0 < t < T1 , in case P 1 =I= P0 lies on NP0 and let d' be the 
distance between these arcs for a choice of P 1 =I= P 0 on N' P 0 • Let 
the ring-shaped regions corresponding to these choices of P 1 , be 
rand F'. Then both d and d' are positive. Take 0 < o <min (d, d'). 
Then (L1)6 c r u F' c (L1)s, c (Lds I and this 0 fulfills the require-
ments of our theorem. 

1.411. The above theorem implies that integral curves in the 
plane cannot approach a periodic solution arbitrarily close and then 
recede both for t--+ + oo and for t--+ -00. However, this may 
occur in R 3, for example. 

1.42. DEFINITION. We shall say that a half-trajectory f+(Q 0 )[f-(Q0 )] 

approaches a trajectory A spirally if for any point P0 E A and an 
arbitrarily small segment P 1 P 0P 2 of the normal to A at the point P 0, 

there exists t0 such that the half-trajectory f(Q0 , t), t > t0 [t < t0 ] 

intersects P 1 P 0P 2 infinitely many times in such a way that either all 
the points of intersection lie on P 1P0 or all of them lie on P0P 2• 

A trajectory L is said to approach a trajectory A spirally if a 
half-trajectory of L approaches A spirally. 

1.43. THEOREM. If a closed integral curve L is contained in the 
w-limit set Q of some trajectory f(P0 , t), then Q = L and, if f(P0 , t) 
is not closed, the half-trajectory f+(P0 ) approaches L spirally. 

Take a point Q0 E L. Since L C Q, there exists a sequence 
P 1 = f(P0 , t1), j = 1, 2, ... , such that t1 --+ + oo and P,--+ Q0 • 

Consider a sequence s1 > 0, such that P 1_ 1 ¢ (L) 6 .• By Theorem 
' 
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1.41, for each s; there exists a a, such that for P m; E (L )61 either 
j-(P m) or f+(P m) lies in (L)

81
• We may take m1 < m2 < .... 

Since P;_1 ¢ (L) 8 we have f+(P m) C (L) 6 • We note that s;--+ 0. 
' ' ; Since, by the above, the half-trajectory f+(P 0 ) remains outside 

(L )6 for only a finite duration 0 < t < T 6 < tm , we have Q C L 
and'hence Q = L. Also, there exists a io ~uch that every neigh-
borhood (L) 61 , i > io is a small neighborhood of L. Hence L is 
approached spirally by f+(P0 ). 

1.44. The mode of approach to a nonsingular w-limit 
point. Let P0 E Q(t+(Q0 )) be a nonsingular point. Let S(P0 , s) 
be a small neighborhood of P0 (cf. 1.11 and 1.12). Since P0 is an 
w-limit point of f+(Q 0 ), there exists arbitrarily near P0 a point 
Q1 E S(P0 , s) of intersection of this half-trajectory and the segment 
NN' (cf. l.ll) of the normal to f(P0 , t) at P 0 • 

1.441. If Q1 lies on N P 0, then the successive intersections Q1Q2Q3, ••• 

of f+(Q 0 ) with NN' all lie on NP0, are arranged on NP0 in that order, 
and tend to P 0. 

Write Q2 = f(Qv t1 ). The arc C12 = f(Qv t), 0 < t < t1 and the 
subsegment Q1Q2 of the segment NN' form a closed curve C. We 
shall see that 

1.442. If P 0 ¢ f(Q 0 , t) then the closed curve C above separates 
the point P0 and every half-trafectory f(Q 1 , t), t <-a< 0. Moreover, 
no trafectory can pass from the domain containing the point P 0 into 
the domain containing the half-trafectory f(Q 1 , t), t <-a< 0, 
with increasing t. The domains referred to above are the exterior and 
the interior of C. 

The set of points not on C is decomposed by C into two domains 
D+ and D-. Since no trajectory cuts across the arc C12, a trajectory 
can pass from one of these domains into the other only by cutting 
across the segment Q1Q2 of the normal. Since, moreover, a trajectory 
cutting across Q1Q2 must agree in direction with f(Qv t) at Q11 

the half-trajectories f-(Q 1 ) and f+(Q 2 ) except for the points Q1 and 
Q2, lie in the different domains, say D- and D+ respectively, and 
no trajectory can pass from D+ into D- with increasing t. 

To prove 1.441, it suffices to show that Q2 E Q1P0 • If Q2 E PoN', 
then by Lemma 1.12, f+(Q 2 ) in coming close to P 0 would have to 
cut across NN' in the wrong direction, i.e., from D+ into D- with 
increasing t. If Q2 E NQ1, then P 0 ED- and hence is bounded away 
from f+(Q 2 ). 
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To complete the proof of 1.442, we need only to observe that in 
view of 1.441, P 0 ED+. 

1.45. The mode of approach to an arc of a trajectory con-
tained in an w-limit set. Let P0 E Q(I+(Q)) be a nonsingular 
point not on f+(Q), and let S(P0 , e) be a small neighborhood of P 0• 

Use the notation of Lemma 1.12 and of Section 1.44. 
We observe first that the whole half-trajectory f+(P0 ) lies in D+ 

and hence is bounded away from the (negative) half-trajectory 
f(Ql, t), t < -o < o. 

Next, consider an arc L01 = f(P 0 , t), 0 < t < t0 • For all Q; 
sufficiently close to P0, say fori=:::: i 0 , the whole arc L 11 = f(Q,, t), 
0 < t < t0 lies in a small neighborhood of L01 . Thus each of these 
arcs L,1 in cutting a normal to L01 , cuts it in the same direction as 
L 0v and Lil tend to L01 as i tends to + oo. 

1.46. LEMMA. Consider a trajectory f(p, t). Let f(Q 0, t) CQ(f(p, t)). 
If P0 E Q(f(Q0 , t) ), then either P0 E f(Q 0 , t) or P 0 is a singular point 
(or both). 

If P 0EQ(/(Q0, t)), then P0 EQ(f(p, t)). If P0 ¢f(Q0 , t) and if 
P0 is a nonsingular point, then in view of 1.442, f+(p) will enter 
the region D+ containing thew-limit point P0 and will be bounded 
away from every point of the half-trajectory f(Q0, t), t < -o < 0. 
Hence no point on this half-trajectory can be an w-limit point of 
f+(p), which is a contradiction. 

1.47. THEOREM. If thew-limit set of a trajectory f(p, t) is bounded 
and contains no singular points, then it consists of exactly one closed 
trajectory L. If f (p, t) is not a closed trajectory, then it spirals toward 
L as t tends to + oo. 

Let Q0 EQ(f(p, t)) and let P0 EQ(j(Q0,t)). (Here Q(f(Q0,t)) is 
not empty in view of the boundedness of Q(f(p, t))). Since P0 is 
nonsingular, then P0 E f(Q0 , t) by Lemma 1.46, and hence f(Q0 , t) 
is a closed curve by Theorem 1.2. The conclusions of our theorem 
follow at once from Theorem 1.43. 

1.471. If a trajectory L is not closed, then it may have a limit 
cycle fort--+ + oo as well as fort--+ -oo. In view of the discussion 
in 1.45, if both of the limit cycles exist, they are distinct. 

1.48. THEOREM. If L1 consists of thew-limit points of a trajectory 
L and is not a closed trajectory, then the set of the w-limit points of 
L 1, if not empty, consists of singular points. 

This theorem follows at once from Theorem 1.2 and Lemma 1.46. 


