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Preface to the English Language Edition

The English language edition of the Nemickii-Stepanov treatise
has gone through many vicissitudes. Several years ago when only
the first edition was available in this country a complete transla-
tion was made by Dr. Thomas Doyle, at the time a member of the
faculty of Dartmouth College. This translation was edited by Donald
Bushaw and John McCarthy, at the time graduate students at
Princeton University. Hardly was this done when there appeared
a much enlarged second edition of the book. Dr. Arnold Ross of
the University of Notre Dame undertook to prepare an English
translation of the first four chapters which he actually had to
rewrite for the most part. Undoubtedly American mathematicians
are greatly in debt to Dr. Ross for the enormous amount of work
which he has done in this connection. The last two chapters, which
did not differ too much in the two editions, were finally put in
proper shape by Dr. Robert Bass, who utilized in the process
translations of the few new sections by Dr. McCarthy and by Dr.
Lawrence Markus. It seems fair to say that this edition contains
all the material of the second Russian edition of the book.

A couple of years ago there appeared a brief summary written
by Nemickii giving a resumé of the recent work done under his
guidance by the very active Moscow school. The English language
version of this resumé, prepared by Dr. McCarthy, is included at
the end of Part One.

The book falls naturally into two parts: Part One on classical
differential equations, and Part Two on topological dynamics and
ergodic theory. The first part has its own bibliography and index, and
the last two chapters, making up the second part, as well as the
Appendix, have individual bibliographies,

Readers may be interested in the supplement to Chapter 5,
written by Nemickii, which was published by the American Mathe-
matical Society as Translation No. 103 (1954).

v



In conclusion we wish to say that the work was done under the
auspices of the Air Research and Development Command under
Contract AF 18(600)-332.

January 1, 1956

Princeton, N. ]J. S. LEFSCHETZ
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CHAPTER I
Existence and Continuity Theorems

1. Existence Theorems
In the qualitative theory of differential equations one considers
systems of differential equations of the form
ax

i

(1.01) = fi(%q, %o, .« ., %), 1=1,2 ... n,
or
dx, )
(1.02) — =[xy, .. ., %, B), i=1,2 ..., n,
at
where the f, are assumed to be continuous functions of their arguments
in a certain domain G of the Euclidean space R™ = {(xy, .. ., x,)}

the phase space, and in an interval a < ¢t < b.

1.11. THEOREM. (Euxistence of solutions [45], [52], [54]1).
Consider a system of differential equations (1.01) where the functions
fi(#%y, ..., x,) are assumed to be conttnuous in a certaint closed and
bounded domain G. Let Ay(%x1g, %ap, - - -, %ng) be an arbitrary interior
point of G. Then there exists a solution of the system (1.01), which
passes through A at the time t, and which is defined in the interval

D
t, — _ <<t +

MV MV
where D 1is the distance of A, from the boundary of the domain G and
M is an upper bound of |f,(xy, ..., %,)| in the domain G.

The proof of this theorem follows.

1.12. e-solutions. We call a system of # functions #(f), ...,
%,(¢) defined on @ < ¢ < b a solution of the system (1.01) up to the
error ¢ or simply an e-solution of (1.01) if each of these functions is

1The numbers in square brackets refer to the bibliography at the end of each part
of the book.

{3



4 EXISTENCE AND CONTINUITY THEOREMS

continuous, sectionally smooth?, and satisfies the following system
of integral equations

(1121)  Z,(t) = %,y - f: 1y Ry, ., By dt f;@l(t) i,

where 0,(¢) are piecewise continuous functions on [a, b], less than ¢ in
absolute value.

1.13. Euler polygons. Consider a point dq(x;g, - - ., %,9) 0f G
at distance D > 0 from the boundary. Let M be an upper bound
of |f,(#,, ..., x,)| in the domain G. In view of the uniform con-
tinuity of the functions f,(x,, ..., ¥,) in the domain G, for every
¢ > 0 there exists a ¢ = 0 such that the inequality |, — x| < 6
implies that for all ¢

i Xy v %0 ) — (] 23 ) <e (=12,...,n).

We subdivide our domain G into cubes with sides of length 4.
Proceeding in the direction of increasing ¢ we draw a segment
along the straight line

X, == Xy + fz(xlo: Xops « - o an) (t— "‘o)
from A, to the intersection A;(%y;, %ay, . . -, %,1) 7 A, say at time

t,, of this line with one of the faces, say /, of a cube containing 4,
We write

Xy = X9+ [ (10, Fags + - - Xno) (fr — o), T < by
Through the point A; we draw the line
% = %+ [, (%11, Ko+ o %) (E— 1),

and proceed in the direction of increasing ¢ until we reach the
point A, (%9, Xg9, . . ., X,,) 7 A; of intersection of our line and a
face different from / of a cube containing A4,.

This construction yields a polygon (an Euler polygon)

xz:)zz(t)’ tzto

is the right derivative of %,

where, if %,

(1'131) )?:(t) = fz‘(xl:‘; Xagr oo xm) for ta =t< tH-l'
A similar construction carried out in the direction of decreasing

%A function defined in an interval [a, b] is sectionally smooth if it is continuous in
this interval and is differentiable at every point of the mterval except for at most
a finite number of points where it has right and left derivatives. Moreover, we assume
that the right and the left derivatives are bounded in the whole interval [a, b].
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¢t yields a polygon

¥, = %,(1), L=,

12

with successive vertices A,(f), Aa(ty), .. to >t >1t.... In a
manner similar to the above

(1.132)  "%,(t) = f,(¥y,, %ay, - - o Xp,) fOT £ >80,

Let us determine how far we may continue the above construc-
tion in either direction without leaving the domain G. Our polygon
remains in G as long as

U VI (7)) = D.

But by (1.131) and (1.132), we have

f VI(F 2dt] <t —t)| MVn.
Thus our construction may be continued as long as
lt —t,MVn <D,

that is as long as

D
<t =St ——

(1.133) ty—
MV'n MVn

1.14. Let us show that our polygon is an ‘“e-solution”. By
construction each of the functions %, (¢) is continuous and sectionally
smooth. It remains to verify that these functions satisfy equations
(1.121).

The system of integral equations which the functions %,(f) must
satisfy is equivalent to the system

E() = L(E(), Z(0), .. . £,0)) + 6,00),

where #%,(¢) designates, say, the right-hand derivative of Z,(t).
Consider a fixed value of ¢ and the corresponding point
B(t) = (%(), ..., %,(t)) of our polygon. Then

() = %, + F. (¥, ¥ o oo, X0 (E— 1),

where %, ..., %, are the coordinates of the vertex immediately
preceding B. Let us denote this vertex by C(¢). Thus, for the given
value of ¢, %,(t) = (%1, Xa0 « - -, %)
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If we define step functions %, (¢) by the equalities ¥, ()= %,(})=%,,
then

~

jz;(t) = fz(gél(t)) x2(t)J e xn<t)>'
If we let

0.0) = f.(%1(), - - -, 2o () — 1, (%a(8), Bal0), - . ., 2o (1)),
then
Z(t) = L.(% (), %), . . ., %,0) + 0,0).
Since the points C(f) and B(¢) lie in the same cube of our par-
tition, we have

0,0)] = | (F1(8), . 2, (8)) — £, (B (), Z(8), . - %, ()| <
Moreover, since

are continuous and

fz(%l(t% ;%2(25)! AR ’En(t))
assume only a finite number of values, the functions 6,(¢) are
piecewise continuous. This completes the proof of our assertion.

The following observation will be useful in the sequel.

1.15. In constructing e-solutions we may replace Euler polygons
by what we shall call “universal polygons”. Let the domain G be
partitioned into cubes with sides of length §/2. We take a point
in each one of these cubes, say the center, and determine the value
of the functions f,(%y, %5, . . ., %,), 2 =1, 2, ..., n, at each of these
points. Beginning at a point 4, we construct a polygon by a method
similar to that used in the construction of Euler polygons. Here,
however, the direction of each of the sides of our polygon is deter-
mined by the value of f;(xy, x,, . . ., x,,) at the previously selected
point of the corresponding cube.,

1.16. Let us now take a sequence of positive numbers
£, &5, . . ., &, . . . tending to zero and proceeding as in 1.13, let us
construct consecutively an ¢-solution, through a point 4 interior
to G, an e,-solution through A4, and so on. Since the interval (1.131)
for which our approximate solutions are defined does not depend
on ¢, all of these solutions can be constructed for one and the same
interval, say,

D D

ty— ——= =< ¢ .
" M+/n t°+M\/n

1A
fIA
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We denote an g;-solution by {#%(¢)}. We shall prove that the family
of solutions

{x?k(t)}’ k = ]" 2) M
forms an equicontinuous and uniformly bounded family of func-

tions.
Since

K4(t) = %o + [ 1068, 25, wR)dE + [ 05() dt,
0 0

we have
D

Mym Vv

wB) <L+ M

where L is an upper bound of the absolute values of the coor-
dinates of points in G. Furthermore,

Hhe

wpe(t - b) — xe(t) = [, a4 [0 d,

t
and therefore

xSk (t + R) — x%(t)] < M + hey.

The last two inequalities establish our assertion.
1.17. In view of Arzela’s theorem 3 there exists a sequence of

indices #q, #g, ..., #y, ... such that the » sequences xZ=(¢),
¢=1,2 ..., #n converge in the interval

7 D <ttt + b

O Myn T T Mym

to continuous functions
(), ..., %,(t).

Passing to the limit in the equalities
wonn(t) = g+ [ fulagme, agm, . wom) e [ Om(e) d,
0 0

and observing that the f,(xy, %, . . ., %,,) are uniformly continuous
in G and that

|07 (8)] < e, , for every e, ,
3This theorem states that every infinite family of functions uniformly bounded

and equicontinuous on a closed interval [a, b] contains a umiformly convergent
sequence of functions. Cf. Memorie Acad. Bologna (5) vs. 5 (1895) and 8 (1899).
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we obtain
5t) = 2 + [ fi(520), - xa0) b
or
d
’Zt(t) = £ ), . . 2 (0).

This completes the proof of Theorem 1.11.

1.2. We shall extend our existence theorem to systems of
type (1.02).

Let f, be defined and continuous for points 4 (x4, %,, . . ., x,,) of
a closed and bounded domain G and for values of ¢ in an interval
[ty — b, ty + b]. We introduce a new independent variable 7 such
that dt/dv = 1. Then the given system (1.02) may be written in
the form

d
[Exi = f,(%, ¥p, - . ., X, 1),
(1.201) ’
l dt
=
dr

Applying our existence theorem to the closed and bounded domain
of the (# + 1)-dimensional space (..., %,, ¢) determined by G
and the interval ¢, — b < ¢ <, + b, we assure the existence of a
solution of system (1.02) in the interval (f, — 4, ¢, + 4), where
min (D, b)
T 1My

We shall speak of (1.201) as the parametric system corresponding
to the system (1.02).

1.21 As a simple corollary of our existence theorem, we obtain
the following result which is very important for the theory of
dynamical systems.

1.21. TurorREM. If as time increases, a given trajectory (an
integral curve) vemains in a closed bounded region I' imbedded in an
open domain G for which the conditions of our existence theovem ave
fulfilled, then the motion (the solution) may be continued for the whole
infinite interval [t,, + ).

Let 2D be the distance of the boundary of G from the boundary
of I'. Then successive applications of our existence theorem always
lead to points whose distance from the boundary of G is not less
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than D. Consequently, at each step we can continue our solution
for another interval of at least the length D/M+/%.

1.3. Theorem 1.21 does not allow us to decide from the form
of a given system of equations whether or not its solutions can be
continued for the infinite interval — co < ¢ < 4 o0. We indicate
several sufficient conditions for such continuation. [58], [59].

1.31. THEOREM. I} the functions

i@y, 2, o x), e Fa(Xy, %y e, Xy)
are continuous for — 00 < x, << -+ 00, and, moreover, if
fz(xl) x2) MRS ] xn) = O(‘x1| + |x2! + e + lxn|)
for 1%] + ...+ |x,| > + oo, then the solutions of the sysiem

dx
—C‘i—t— = fi(xb x2’ sy x’ﬂ)
are defined on the whole axis — co << t << + 0.
1.32. Tt follows from the hypotheses of our theorem that

(1.321) lfo (g, %9y o oy %) << A max ([, ..., [%,], 1),

?

where 4 is some positive constant. For, if ||+ ...+ |x,| > D >0,
where D is some sufficiently large number, then the ratios

’fz (xl’ Koy« ooy xn)]
2z,
remain bounded, whereas the functions f,(x,, ..., x,) themselves
are bounded in the region |x,| 4+ ...+ |x,| = D.

1.33. Let us consider first the cube [x,—x,| <b (1 =1, 2,..., %),
and let M be an upper bound of |f,(x, #,, ..., %,}| in this cube.
According to the existence theorem, the solution passing through
A, is defined in the whole interval [4,, ¢, + (b/M+/n)].

Set x4, ,, and b equal to ¢;, 0, and 1 respectively. Then it follows
from the inequality (1.321) and the condition |x,(f} —c¢,| =1
that we may take M = A(c +1) = A max [c + 1, 1] with
c=maxle,| (0 =1,2,..., n). Write

b 1 1
t — T e T e,
VoM Mmoo A+ 1)4/n
Then our solution is defined for 0 < ¢ <, and in this interval

0] <c + 1.
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Next, let us take x,, ¢, b equal to x;(¢), ¢, 1 respectively. Then
we may take M = A max (¢ + 2,1) = A(c + 2). We write

b 1 1
Myn~ Myn Alc+2)v/n
and observe that the solution is defined in 4, = ¢ =4 + 4, = 7,

Combining both of the above results we see that our solution
is defined in the interval [0, 7,]. The inequality |, (f) — #,;{({,)| = 1
for t, <t <1, =, + 1,, implies that [x,(r,)] = ¢ + 2. Continuing
this process for m steps we obtain a number ¢, = 1/(c + m)Ady/n

such that our solution is defined in the interval [0, z,] where
T, =108+t +...+1t, and |x,(r,,)] = ¢ + m. The series

ly =

o

1 z 1
Aync+m+ 1
diverges. Therefore by means of a sufficiently large number of
steps we can continue our solution for an interval of arbitrarily
large length.*

1.34. CorOLLARY. If

fol®e % o ooy %, ) = O(|%] -+ %] + ..« + |%4])

uniformly in t, then solutions of the system dxjdt = f; may be con-
tinued to the whole t-axis.
Indeed, let us consider the corresponding parametric system

dx,

T = f, (%, %p, - . ., %, 1),
dat

=1,

dr

1From the estimates given in the proof it follows that
[#:0)] = Ofe*)
where the constant ¢ may be chosen independently of the initial conditions. In
fact, after the mth step in the process of continuation we have
] =6+ m,

for
1 "t

t=t,+t2+...+tm=A\/Wzc+7.+1'
i=0

Thus ¢ is asymptotically equal to 471x~% log m or m is asymptotically equal to
eAntt | This proves our assertion since 4 is chosen independently of the initial
conditions.
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Since
fi(xy, %o, oo %y, O << Amax (%], ..., (%, 1)
where A4 is independent of ¢, then obviously
lfi(xg, %y oo, %, B)] < A max (%), ..., [x,], ¢, 1)

Consequently the conditions of Theorem 1.31 are fulfilled by the
parametric system.

1.35. The last result may be somewhat generalized.

If functions f,, f,, ..., f, are continuous in an (# + 1)-dimen-
sional domain 0 <<{ < + oo and — o0 < %, << + o0, if there
exists a function L(r) continuous for 0 <7 < + co and such
that [’ (1/L(r))dr = oo, and if |f,(%, ..., %,, t)] < L(r), where
r?*=x2+ ...+ 2, then all the solutions of the system dx,/dt= ,
may be continued over the entire ¢-axis.

We omit the proof of this theorem even though it is quite simple
and refer the reader to the original work of Wintner [58].

2. Certain Uniqueness and Continuity Theorems

In what follows we shall consider systems of equations (1.01)
in which the functions f,(x,, ..., x,) satisfy Lipschitz conditions
in a bounded closed domain G called the Lipschitz domain. That is

i, 2, o ) — s 25 E) | < L3 i
The number L is called a Lipschitz constant. To indicate explicitly
the connection between the domain G and the constant L we shall
write G, instead of G.

We establish first the following simple lemma [5] which is quite
essential for what follows.

2.11 LemMA. If a function y(t) satisfies the inequality

(2.111) YOl <M (1 + & [ 1y @) 0] 41

where f(t) is continuous, then we have the inequality

11
(2112) ()] < MOy
Multiplying (2.111) by [f(¢)], we get

(113) OO <M 6] 0+ k[ Iy @)11/@)1 )
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Let v(t) = [; |v()f()|dt. Then the inequality (2.113) may be
written in the form

V() < M)A - ko),

or
v'(f)
L < ML
Thus
log (1 + ko(t)) < &M [ |f(f)]dt
and hence

|7(8)|at

1+kf Foy o at < o
By hypothesis

[v()!

S <1+kf F )y ()] dt,

whence
hMﬁov(tndt

vl < Me

2.12. We shall use our lemma to establish a fundamental
inequality.
Consider two e-solutions

ey, WO
In view of (1.121),
P (1) — x2(1)
= () [, D, 2 D, 2D, 2
0
+ [ [0 ) — 0 (t) ) a.
Making use of Lipschitz inequalities, we get

00) — P O] < 1 — 5
+fL 3 2l — x<2|dt+j 100 (1) — 62 (¢)| dt
K I=1
for 1=1,2,...,#n, and ¢ >, Adding these inequalities and
writing

8 = max |x{) — x{@| (G=1,2...n),
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and remembering that
@] <e and 0P =,
we obtain the inequality

S W) — 2P )] <no +n [ L3 b ) — AP (0)] de

2=1 i=1

n
me(T — t,) + nd

+ 2ne(t — ty) < (2ne(T — t,) + nd) [1 4

.f:L S #(1) _x<§>(z)1d¢} ty<t<T.

0 =1

Applying Lemma 2.11, we obtain
n ¢
S (0 — 2P0 < 2ne(T —ty) + 8] [
=1

for ) <t < T. If {, > ¢ we assume that ¢, > ¢ = T and invert the
order of integration throughout. Setting { = T and simplifying,
we obtain, in either case,

(2.124) 3 |A0() — 2B ()] < 2mft— Ly el - nSer I,

i=1
In what follows we shall refer to this estimate as the fundamental
inequality.

2.2. We shall discuss next a number of immediate consequences
of the fundamental inequality, all of which are of basic importance
in the theory of differential equations.

2.21. TueoreEM (Uniqueness). If the right-hand members of
system (1.01) satisfy Lipschitz conditions, then there exists a unique
solution satisfying given imitial conditions.

Let {xM(t)}, {2 (¢)} be two solutions defined on a segment
[ty, t;] and satisfying the same initial conditions at £, (or at ).
We may consider these solutions as e-solutions for an arbitrarily
small e. Applying the fundamental inequality and observing that
6 = 0, we obtain

n
3 1P (t) — 2P ()] < 2n(ty — ty) ee™ 0.
i=1
Since ¢ is arbitrarily small, we have
n
D lal) —xB(@) =0 for f, <t=4,
i=1

which proves our assertion.
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2.22. THEOREM (continuity in the initial conditions). Let the right-
hand members of (1.01) satisfy Lipschitz conditions in a domain G.
If a solution {x,} = {x;(t, ty, Xy, - - ., Xno)} = %(t) is defined for
by =t =T, then for every m > 0 there is a 6 > 0 such that for
Fo—%,0l <0 (6=1,2,...,n) the solution x, = x,(t, by, Xir -+, Xpg)
= %,(t) 1S also defined for ty <t < T and for all values of t in this
nterval |X,(8) — x,(t)] <.

The fundamental inequality (2.124) with ¢ = 0 yields
(2.221) S UE(E) — %, ()| < noerH0

=1
for every value of ¢ in #, << ¢ < T for which #,(¢) is defined. For
some d > 0, the d-neighborhood of the segment C : ,(¢), {, St <7,
lies in the interior of G;. If n < d, we let

1

wL(T—tg)

(2.222) 6=
ne

If we take the (closed) d-neighborhood of C as the domain G of
Theorem 1.11, then D =d-—# > 0, we see at once that the
solution %(¢) through (%,,, . . ., %,,) can be extended at least as far
as T in view of the inequality (2.221) and the choice of d. Also,
throughout the interval ¢, < ¢ < T, we have

1% (t) — x:(8)] < 7.

2.3. One should note that the choice of § depends not only
upon the degree of the desired approximation, that is upon %, but
also upon the length (T" — ¢,) of our time interval. In many problems
of mechanics, it is essential to seek solutions in which é can be
chosen independently of the length of the time interval. Such
motions possess a certain degree of stability with respect to the
change in the initial conditions. Detailed study of such motions
and of the methods of their characterization was carried out by
the inspired Russian scientist Liapounoff. We shall meet these
ideas and methods in the subsequent chapters.

2.4. Stability of solutions with respect to changes in the
right-hand members of our system. Let a system (1.01) be
replaced by a system

az, o . o _
(2.411) == iy, %oy oo, %) 4 0,(%y, %y -« 0, £,),
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and let |6,] < & for all values of %, in a closed domain G;. Then
every solution %,(¢) of systems (2.411) is obviously an e-solution
of system (1.01). If x,(¢) is a solution of system (1.01) satisfying
the same initial condition as a solution Z%,(f) of system (2.411),
then, in view of the fundamental inequality, we obtain

(2.412) £,(6) — 2:(0)] < 2m |t — to] e,

It follows from this estimate that for a fixed interval of time we
may make the difference of the above solutions arbitrarily small
by choosing ¢ sufficiently small.

2.42. TFrequent use is made of the process of linearization, i.e.,
of a replacement of a given nonlinear system by a linear system.
In particular, such a method is considered permissible if the non-
linear terms have small parameters. The above inequality (2.412)
makes it possible to obtain a numerical estimate of the error resulting
from linearization.

2.5. A method of approximate integration [35]. In deriving
the fundamental inequality we required that the functions 6,(¢)
should be piecewise continuous.

Observing this, one may develop the following method of ap-
proximate integration of (1.01).

2.51. For a given & > 0 we partition the domain G, into
cubes of side 4, where § is so small that the inequalities

%, — x| <6 =1,...,n) imply
’ ’ ’ &
(20, %y o oo 2) — Fo (00 20 o ) < 5
We construct new functions f,(x, %, . . ., %,) which assume

throughout each cube the values of the corresponding functions
f.(x%q, ..., x,) at the center of the cube. Obviously,

Ifz‘(xl’ Koy o v s xn) _*71'(7‘1; Koy v v 0y xn)| e

On the boundaries of the cubes we allow each f; to be manyvalued.
Let us consider next the system of equations

(2.511)

Within each cube the solutions of (2.511) form a family of
parallel straight line segments whose direction is determined by
the values of f;(%, ..., x,) at the center of this cube.
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By a solution %, (¢) of the system (2.511) we shall mean a polygon
constructed as follows: Given a point 4, we choose one (there may
be more than one) of the above segments 4,4,, say, 4_;4,4;
passing through A,. If 4, is the initial point of a segment solution
A,A, of (2.511), we choose 4,4, as the second link, and so on
until we exhaust that interval of time for which we seek an ap-
proximation to a solution of (1.01).

2.52. A solution of (2.511) is an e-solution of the system

(1.01). For, if %, = %,(t) (j=1,...,n) is a solution of (2.511),
this system may be written

az; o _

—d_lf - fz(xl’ Koy ov o xn)

+ im0, Z(0), .. 5,0) — filE ), 0, .. 2,(1)]

where the difference in the brackets is numerically smaller than
in the domain G, and is piecewise continuous in £ For %,(¢), as
well as f,(x, %,, . . ., 4,) are continuous, and f,(x;, %, . . ., ¥,) as-
sumes only a finite number of values.

2.53. We observe that in constructing an approximate solution
we need not start our polygon at the given initial point of the
desired solution.

Let us construct polygon solutions of (2.511) starting at the
center of each cube of our partition. Let 4,, ..., A, be the family
of all such solutions. Then, for every solution {x,(f)} of (1.01)
defined for a time interval T, there exists a polygon A; = {x(¢)}
such that

(2.531) 1%, () — 290 ()| < 2neTe™™ + noe .
Since we may assume that 6 =< ¢, the inequality (2.531) yields
,(t) — 20 (2)] = 2ne(T + e

Thus, for a fixed T, the error may be made arbitrarily small by
choosing ¢ sufficiently small.

2.6. Toroidal and cylindrical phase spaces. We shall
conclude this section with a few remarks regarding the generality
of the theorems considered above.

In all of our proofs we considered an n-tuple (xy, %,, ..., %,) as
a point in an #-dimensional Euclidean space. This assumption was
not necessary. We may assume that our solution space is a manifold
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every point of which has a neighborhond homeomorphic to an #-
dimensional sphere of an s-dimensional Euclidean space R". In
particular it can be an arbitrary domain in an #-dimensional
Euclidean space. In case the space is only locally Euclidean, then
the estimates of the interval of existence of solutions must ob-
viously be changed.

A special role is played by systems of differential equations (1.01)
in which the right-hand members are defined for all values of the
variables %y, %,, . . ., #, but in which certain of these variables are
cyclic, 1.e., they take values only in a finite interval of length y,.
The domains of definition of these variables may be extended to
the whole infinite line. Here we shall identify points whose ith
coordinates differ by y,.

Consider for example a system of two equations

dx a
— =Pl y), == Q).

If (x, y) are plane coordinates then the solution space is a plane.
If x varies from — o0 to + oo but y is a cyclic coordinate, then
the solution space is a cylinder. If both coordinates are cyclic,
then the space is a torus. The theorem on unlimited continuation
of solutions applies to the cylindrical as well as to the toroidal
solution space.

3. Dynamical systems defined by a system of differential
equations.

We shall give here only a few basic definitions and elementary
results pertaining to dynamical systems.

3.1. First, we study an important property of systems of
differential equations satisfying the uniqueness conditions of
(2.21).

3.11. To indicate the dependence of solutions upon the initial
conditions explicitly, we write

(3.111) x, = x,(t, g, 29, ..., 2l?)

for that solution of (1.01) which passes through the point x{”
when ¢ = ¢,. If {, = 0, then we abbreviate (3.111) by writing

(3.112) %= x,0 %0, ..., x20).

n
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Next, we consider
(3.113) x; = %8 —1y, 20, ..., 29,

Since the right-hand members of (1.01) do not contain ¢ explicitly,
(3.113) is a solution of (1.01). Moreover, we observe that it is the
solution which passes through x{ for ¢ = ¢,

In particular, we have the important relation

(3.114)  x,(ty, 2y (ty, 0, .., 2, .., 2, (f, 2, .. x“”))
=x,(t + b, 29, .., 20,

For both the right-hand member and the left-hand member
of (3.114), considered as functions of £, represent solutions
passing through the same point x,(t;, 2, .. ., ) for £, = 0.

3.12. Let us denote the solution (3.112) passing through the
point p(x%, ..., %9 by the symbol f(p, t). Thus for every ¢,
f(p, ) = ¢ is a definite point on the trajectory through 4 and in
particular f(p, 0) = p. Moreover, if for every p in G, the function
f(p, t) is defined for t e T = (— oo, 4 o0) then

(3.121) f(p, t) is continuous in both of its arguments in
' G, x T,

and in view of (3.114),

(3.122) 1, 8+ 1) = [(f(p, ), 1)

Thus f(p, ¢) defines a one-parameter group of transformations of
the solution space G, into itself. It is customary to speak of the
set of all the transformations of this group as a dynamical system
and of the totality of all the points f(p, ¢) for a fixed p and
~— 00 <t <<+ o as a trajectory of this dynamical system.

3.2. In general, even if the f,(x,, ..., x,) satisfy Lipschitz con-
ditions or other conditions assuring uniqueness of solutions in a
domain G of an n-dimensional Euclidean space or of a locally
Euclidean manifold, the corresponding system (1.01) does not
necessarily define a dynamical system, since it may have solutions
which cannot be continued for all values of . Some sufficient
conditions for unlimited continuation were given in Sections
1.2 and 1.3.

We shall show, however, that by merely changing the independent
variable, i.e., by changing the parametrization of the integral curves
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of the given system, we can arrive at a system whose solutions do
determine a dynamical system.

In other words, if we are interested only in the geometrical or,
more precisely, topological properties of individual integral curves
or of the whole family of integral curves, then we may limit our-
selves to the study of differential equations which define dynamical
systems.

3.21. DErFINITION. Two systems (1.01) are called equivalent if
their solutions (including the singular points) coincide geometrically.
A system (1.01) will be called a D-system if its solutions define a
dynamical system.

A point p(%y, ..., %,.) is called a singular point of (1.01) if
f:(*10, - - -, x,0) = O simultaneously for all the right-hand members
of 7, of a system (1.01).

3.22. THEOREM (R. E. Vinograd) [55]. Consider a system (1.01)
satisfying Lipschitz conditions in an open domain G, C R™. There
exists a D-system defined over the whole R* and equivalent to (1.01)
m G;.

3.23. Let us prove first that every system (1.01) may be
replaced by an equivalent system with bounded right-hand members.

We define ¢,(x) so that 3

gi(x) =1 it ()l =1,
1

@ (x) = 1) it fi(x) >1,
wl) = 7 ) <—1,

and we write @) = II", ¢,(x). Obviously 0 < ¢, ()
lf.(x)p, ()] <1, and ¢,(x) are continuous. Therefore 0 < @(x)
If:(x)p(x)] <1 and @(x) is continuous.

The system

[ p—

~

A TA

dx;
= — 1)
is equivalent to the given system in G, and its right-hand members
are bounded.
3.24. We may assume therefore that system (1.01) has bounded
right-hand members.

®Here » is an abbreviation for (x;, #,, ..., #,).
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We observe that in this case we have

f:'v(x)dt < 1l

where
o(x) = sz% (&), c=Mya.
=1
Thus,
3.241. For a finite t' the length of the trajectory
x(t,x),  0=<t<{,
s finite.

3.242. Now let x(f, %) be a solution of (1.01) which cannot
be continued beyond ¢ = #;. The trajectory defined by this solution
must bave a limit point ) on the boundary B of G for otherwise,
in view of Theorem 1.21, the solution could have been continued
indefinitely.

By 3.241, the above limit point x® on the boundary is unique
and it is approached along the trajectory as ¢ — f,.

3.243. Write F = R*— (G, and let

N o(x, F)

y(x) = 5

o I) + olx, 2°) + 1
where ¢ (¥, y) is the distance between x and y, ¢ (x, F)=min,z0(x, y),
and x'® is a fixed point of G,.

The function y(x) is continuous everywhere in R*, 0 < p(x) < 1,
and y(x¥) = 0 in I and nowhere else.

Let us consider the system

dx

= ().

It is equivalent to the given system and has bounded right-hand
members in G;. To prove that (3.243) determines a dynamical
system, it suffices, in view of (3.242), to show that we can extend
indefinitely solutions corresponding to half-trajectories of finite
length s, terminating at a point ¥V e B C F.

We observe that

(3.243)

‘o S ds
~Jov(x)p(x)’
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where we may for definiteness assume s > 0. Next, for every
point x = x(s) on our trajectory

_ e(x F) .
/‘/)(x)ﬁg(x’ F)+Q(x,x‘°))+1<g(x’ F>_r121;1@(x:y)

= o(x, 2M) S sp—s.

Since 0 << v(x) = ¢, then

1 {* ds 1 Sg— S
P = — =——log —-
cJosy—s ¢ So

Thus ¢t = o as s — s,

3.244. We extend the domain of definition of the right-hand
members of (3.243) by setting them equal to zero in F. Since f,(x)
are bounded in G, and y(x) is continuous and vanishes on the
boundary B, the extended system has continuous right-hand
members. The new system is a D-system for which all points of
F are singular points. This completes the proof of Theorem 3.22.
The above reasoning also yields the following:

3.245. THEOREM. Given a system (1.01) and a closed set D C G,
there exists a D-system which is equivalent to the given system on
G — @ and has all the points of D as equilibrium points.

3.25. We shall return now to the study of the properties of
dynamical systems.

3.251. DEFINITION. A point ¢ is called an e-limit point of a

trajectory f(p, ) if there exists a sequence #, %, ..., ¢, — + ©
such that lim ¢(f(p, ¢,), ¢) = 0. A point g¢ is called an oa-limit point
of a trajectory f(p, t) if there exists a sequence ty, %y, ..., %,, ..., =>—00

such that lim ¢ (f(p, ¢,), ¢) = 0. The set of all w-limit points of
a given trajectory we shall call its w-limit set, and we shall denote
this set by £,. Similarly, the a-limit set A, of a given trajectory is
the set of all its «-limit points. Both £, and 4, are closed sets.

3.252. THEOREM. If q is either an w- or an a-limit point of a
trajectory [(p, t), then all other points of the trajectory f(q, t) are also
w- or a-limit points respectively of the given trajectory f(p, t).

Let » = f(g, #) be a point on the trajectory f(g, ¢). Since ¢ is an
o-limit point, there exists a sequence {¢,} with ¢, — + o and
such that f(p, ¢,) — ¢. Then by Theorem 2.22, f(p, ¢, + ) — (g, ?)
and since ¢, + { — + oo, the point 7 is an w-limit point.

This theorem may also be stated as follows:
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3.253. Both w- and a-limit sets of a trajectory consist of whole
trajectories.

3.254. We now classify trajectories according to the properties
of their «- and w-sets.

3.2541. We say that a solution (or a trajectory) recedes in
the positive direction if it has no w-limit points.

3.2542. A solution (or a trajectory) f(p, t) is called asymptotic
in the positive direction if there exist w-limit points, but they do
not belong to this solution.

3.2543. A solution (or a trajectory) f(p, ¢) is called stable in
the positive direction in the sense of Poisson if it has w-limit points
which belong to this solution.

We introduce similar definitions describing behavior of solutions
as t —— oo.

3.255. We now consider two important classes of solutions of
(1.01) stable in the sense of Poisson. These are the singular points
and the periodic solutions.

It is clear that if a point p(xy, . . ., %,,) is a singular point, then
the set of functions x,(!) = %, (¢ = 1, .. ., #) is a solution of (1.01).
Thus a singular point (%, . . ., %,,) is a trajectory and f(p, ¢) = p
for all {. Therefore every singular point is its own «- as well as w-
limit point, and hence is a trajectory stable in the sense of Poisson.

The set of all singular points is a closed set, and by 3.245, it
can be an arbitrary closed set.

If a trajectory /(p, ) has a unique limit point either for £ - 4 co
or for t - —oo then, in view of 3.253, this limit point is a singular
point.

3.256. THEOREM. If every neighborhood, however small, of a point
P contains a trajectory traversed over an arbitrarily long time span,
then P is a singular poind.

If p is not a singular point, there exists a, such that p,=f(p, ;) #p.
Thenp_y = /(p, —1,) + p as well. Let d — min [o(p, 1), 0(p, p_1)]-
By the continuity in the initial conditions we can find a 6 > 0
such that o(p, x) < 6 implies that o(f(p,t), f(x,t))<d/3 for
—t, =t = ¢. We may assume that é << d/3. Then the trajectory
f(x, t) through any point x in the é-neighborhood of p does not
remain in this neighborhood for [f] = |4,].

3.257. Consider next the periodic solutions of (1.01), i.e., the
solutions x,(#) in which all the functions #,(f) are periodic with a
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common period 7. The trajectory of a periodic solution f(p, ¢) is
a closed curve in the phase space and f(p, t + T) = f(p, t).

Thus every point of a periodic solution is an «- as well as an
w-limit point and therefore such a solution is stable in the sense
of Poisson.

3.258. It is easy to find examples of systems of differential
equations whose solutions are receding, periodic, or are singular
points. The problem of constructing asymptotic solutions and
solutions which are non-periodic and stable in the sense of Poisson
is somewhat more difficult.

We note that a solution which is not a singular point and which
has a single a- or w-limit point is asymptotic. For, as was shown
in 3.255, this limit point is a singular point and the solution cannot
reach a singular point (which itself is a solution) in finite time in
view of the uniqueness condition. It is clear therefore that any
system whose singularities include a saddle point or a nodal point
will have asymptotic solutions. Consider for example the system

ax dy

E:x, ;ﬁ—y, x = Cyet, y=Cyel.

The point x = 0, ¥ = 0 is a singular point. All other solutions are
asymptotic for ¢ - — oo and recede for { — + 0.
We shall consider next the more complicated examples of asymp-
totic solutions whose w-limit sets contain more than one point.
3.26. Limit cycles. Consider a system

d
(3.2601) ?zi; —Puy) 20wy

dt
A periodic solution of (3.2601) is called a limat cycle if it is either
the «- or the w-limit set of another solution of this system. Let C
be the closed trajectory of a limit cycle. If C is the w-limit set for
solutions contained in its interior, as well as for solutions lying in
its exterior, then the limit cycle is called stable. If C is the u-limit
set for trajectories in the interior and for those in the exterior of
C, then the limit cycle is called wunstable. If, however, C is the a-
limit set for the trajectories in the interior (exterior), but is the
w-limit set of the trajectories in the exterior (interior) of C, then
the limit cycle is called semqi-stable.
3.261. Example. Given the system
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— 2 2
y_ y 1 2 2

Passing to polar coordinates, we let ¥ = r cos § and y = 7 sin 0.

Then

ax x dy y
— = (1 —?); L= (1 —2).
7 y+ (=) — =t (1—77)

Multiplying the first of these equations by x and the second by y
and adding, we obtain

dr_l ) 0
%w— — ¥ (7’> ).

Next, multiplying the first equation by y, the second one by ux,
subtracting, and making use of the identity
dy dx , 40

S 7R TR T}

k4

we get
an
—_— = 1
dat
Integrating the equation
a
Lot
1— 72
we get
1 1+
1 iﬂ‘: 2% + log A, where A = { T
_— 1—r7,
Thus
Ae?t— 1 Ae?t + 1
’r:m for 0<7<1, andrz;l—ézt—: for r > 1.

We observe that in both cases » — 1 as ¢ — + 0. Consequently
all the solutions outside the circle # = 1, as well as all those inside,
are spirals approaching this circle. Therefore the periodic solution
x = cos {0, + ), y = sin (§, + ¢) is a stable limit cycle.
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3.262. Example. Given the system

ax dy
MM 2 2__ ] A 2 2_ 1
7 y+a+yi—1), —=a+y(+yr—1),
which in polar coordinates has the form
dr g
=yt —1), —=1 = 0).
A G U7 r=0)
Integrating these equations we get 6 = 0, 4 ¢ and
1
r=0 r=——— for 0<r7,<1, A= (1—rd)r
V1+ dert ’ e
r=1 7:—1—~ for 7,>1, A= (2—1)/r}

The parameter A4 is always positive and we see at once that for the
solutions outside the circle » = 1, as well as for the solutions inside
this circle, we have » - 1 as { - — co. Thus the circle r = 1 is
the a-limit set of the solutions originating outside the circle as well
as for those originating inside. We note that these latter spiral
toward the origin » = 0 as  — +- co. Thus the solution ¥ = cos (§,-£),
y = sin (6, + ¢) is an unstable limit cycle and the solution ¥ = y =0
is a position of stable equilibrium.
3.263. Example. Consider the system

d__x — x(xz + yz__ 1)2_y
dt ’
d
Z =@y =12t
In polar coordinates this becomes
dr dao
3.2631 — =yt —12 —=1
( ) il Gl E
If we let #2 = u, we get
d
3—7: = 2u(u — 1),
or
d
ot
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In view of the identity

we get

or

1 1 1 1
ww—12 u  u—1 (w—1)*

u

log

1
———— =1log C + 2,
u———l\ uw—1 og L+

1

Yo e = ce,

7w— 1

Finally, setting # — 1 = v, we get

1
(3.2632) (— + 1) elv = Ce?t for v>0 (r > 1),
v

and

1
(3.2633) (—1 ———) e~lv = Ce2t for v < 0 (r < 1).

v

Let us consider the behavior of solutions v = v(C, £) of (3.2632)
and (3.2633) in the neighborhood of » = 0. For ¢ positive and
sufficiently large (3.2633) has a unique solution »(C, #) < 0.

Moreover, as ¢ — o, v(C, #) — 0 and hence 7 = Vv + 1 - 1. For

t negative and sufficiently large numerically (3.2632) has a unique

solution v(C, ¢) > 0. This solution v(C, t) - 0 as { - — oc, whence

#r — 1 in this case as well. Thus in this example the solution

x = cos (0, + t), y = sin (6, + ¢) is a semi-stable limit cycle.
3.264. Example. Let us consider the system

(3.2641)

dx ) 2 Dy L,
—— T — —_— x —_—
7 y+ @24y S 1
dy . 1
=t (x2+3’2-1)3’5mm_—1
for % 4+ 92 £ 1, and

d d

x--—y, y:x for «% -4 y?=1.

at dt

In polar coordinates this system takes the form
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dr

= #{r* — 1} sin o for r#1,
(3.2642)

g for =1

7 or v =1,

and in both cases df/dt = 1.
Thus in every neighborhood of the periodic solution

(3.2643) x=cos (B, +¢), y=sin (8, + ?)
of (3.2641) there are infinitely many periodic solutions
(3.2644) % =17,c0s (B +t), y=r,sin (6, 4 ¢)

where 7, = V'1 + (1/kx) satisfies the condition sin (72— 1)-1 = 0.
In each ring-shaped region between two consecutive circles (3.2644),
the trajectories are spirals approaching these two circles. Thus
every solution (3.2644) is a limit cycle.

3.265. We should now give some examples of nonperiodic
solutions stable in the sense of Poisson.

In the next chapter we shall see that there exist no such solutions
either in the plane or on the surface of a two-dimensional cylinder.
However, there do exist such solutions on a torus.

Let us introduce real Cartesian coordinates (p, ¢#) in the plane
and let us identify any two points (¢, ¢) and (p + n, & 4 m)
whose coordinates differ by integers # and m respectively.

On the resulting torus consider the system
dp ad

=1,
dt dt

(3.265)

Whenever we are interested only in the geometrical arrangement
of integral curves, we may consider the one equation dd/dp = «.
There are two essentially different cases: one in which « = p/g is
a rational number and the other in which « is irrational.
3.266. Example. Consider the integral curves of the equation
ad
(3.2661) w_P
dp ¢
where ¢ is a natural number, $ is an integer, and the fraction p/g
is irreducible. The solution corresponding to the initial conditions
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¢ = 0, ¥ =, has the form

(3.2662) 9 =8, + %’p'

As ¢ takes on the value ¢, the coordinate ¢ in (3.2662) takes the

value 9, + #, the resulting point of our integral curve on the torus

coincides with the initial point (0, #,), and the curve is closed.

Thus the torus is covered by closed integral curves of (3.2661).
3.267. Example. We consider next the equation

a9

dy

where « is an irrational number.
In this case there are no closed curves among the integral curves

(3.2671) «

(3.2672) =10 + ap

of (3.2671). For, suppose that a point (¢, #,) on the integral curve
(3.2672) coincides with the initial point (0, ;). Then

By =)+ ap; = O + na =9 + m

(m, n integers), whence no = m, and « = m/n is a rational number.

Since all the trajectories can be obtained from the trajectory
? = ap by a translation along the ¢ axis, we need to consider
only this trajectory in detail. Its intersections with the meridian
p=0are p=0,9,=na, n=0, 41, 4-2,...,. These points are
everywhere demse in this meridian.

Write (a) = a — [a], where [«] is the greatest integer in a.
To prove our assertion we need only to show that the set (na),

n=20,1,2,... is everywhere dense in the interval [0, 1]. Since
« is irrational, the $ 4 1 numbers
(3.2673) 0, («),..., (pa)

are all distinct and since they are all distributed among the p
intervals

h B+ 1
(3.2674) Ih:?§ﬁ<i (h=01,...,p—1),

b
one of these intervals must contain at least two of the numbers
(3.2673). Let (k) and (kyx) be two such numbers. They differ
by less than 1/p since each of the intervals I, is of length 1/p.
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If %, > k,, we write £ = k, — k,. Then either
(ko) eI, or (ka)el, ;.
In either case, the sequence
(ka), (2ka), (3ka), ...,

continued as long as may be necessary, will partition the interval
[0, 1] into segments of length less than 1/p.

To show that every e-neighborhood of a point in [0, 1], contains
a point of the set (na), it suffices to take p > 1/e in the above
discussion.

Thus the set (n«) is everywhere dense in [0, 1], and therefore
every point of the meridian ¢ = 0 is a limit point for the set of
points ¢ = #n, ¥ = na of our trajectory. Similarly, every point
@ = @y, ¥ = ¥, is a limit point for the set of points

p=n-+g, ¥=aln+ @)

of the same trajectory.

It follows that the trajectory & = ap and hence every trajectory
of (3.2671) is everywhere dense on the torus. In particular, every
trajectory, even though it is not closed, contains some of its w-limit
points.

3.268. Example. Consider the system

d a9

(3.268) d_qt’ — @), =l ).

Trajectories of this system lie on the trajectories of the system
(3.265). However, system (3.268) has a singular point at ¢ = 0,
©# = 0. This singular point splits the trajectory of (3.265) through
the origin (stable in the sense of Poisson) into three trajectories
of (3.268), viz., the singular point (0, 0), and two other trajectories
each of which is asymptotic in one direction and stable according
to Poisson in the other.

3.27. The qualitative theory of differential equations whose
right-hand members do not contain time explicitly, concerns itself
with the solution of the following two problems.

3.271. The classification of solutions and the study of relation-
ships between different classes of solutions. This problem is essen-
tially solved and the results of such investigations will be presented
in the following chapters.
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3.272. The search for methods of determining the types of
solutions admitted by a given system of differential equations on
the basis of information supplied by the analytic properties of the
right-hand members of this system. This problem is far from being
completely solved. The reader will find the basic known results in
the subsequent chapters of our book.

4.1. Families of Integral Curves

We consider now a family S of integral curves filling either a
region G or a closed region G in R™.

4.11. DEFINITION. A family S of trajectories filling a domain G
(not necessarily open) in R, is called a vegular family (a notion
due to Hassler Whitney [58]) if there exists a homeomorphism (one
to one and bicontinuous mapping) of the domain G onto a set E C R"
or R™1, which maps trajectories into parallel straight lines so that
the images of different integral curves lie on different straight lines.

It is clear that a regular family of trajectories cannot contain
trajectories which are either stable in the sense of Poisson or are
asymptotic. On the other hand, there exist dynamical systems
whose integral curves recede in both directions but whose families
of trajectories are, nevertheless, not regular. Consider, for example,
the system

ax

. Y
— =siny, - = cos?y.
7 y y

dat

The integral curves of this system are the curves x + ¢ = (cos y)™!
and the straight lines y = k7 4 «/2, £ = 0, 41, .... We consider
only the strip

G:—=
2

IA
IA

T
y 5
Although all the integral curves situated within this strip recede
in both directions (cf. Fig. 1), the family of integral curves filling
this strip is not regular.

To prove this, draw a segment PQ with the endpoints P and Q
on the lines y = —n/2 and +x/2 respectively, and consider a
sequence of points P, on this segment, converging to P. Write
L, for the trajectory passing through P,, and L and L’ respec-
tively for the lower and the upper boundaries of the strip. Assume
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that our family of trajectories is regular, and let f be a homeo-
morphism of Definition 4.11. Then the sequence f(P,)e¢f(L,)
converges to the point f(P) ¢ f(L). Moreover, since f(L,) and f(L)
are parallel straight lines, any convergent sequence of points
¥, € f(L,) has its limit point of f(L). To obtain a contradiction we
observe that if {Q,} is a sequence such that Q,eL,and Q,—~QeL’,

then y, = (Q.) « (L,) and f(Q,) - (@) € /(L'). Thus f(Q) must
lie on f(L) as well as on f(L’). This is a contradiction.

‘U
W/
72 10 L
L)
@
1
0 @ x
L,
]
L
E 2
7 Ly,
E /2
Fig. 1

The following theorem elucidates the part played by regular
families in the theory of differential equations.

4.12. THEOREM. Let G be a domain in which the system (1.01)
satisfies both the uniqueness and the existence conditions (cf. Sections
1 and 2) and let q be a non-singular point of G. Then there exists a
neighborhood of q such that the family of integral curves filling this
neighborhood forms a regular family.

Since ¢ is not a singular point, then at ¢ the integral curve L
passing through ¢ has a well-defined tangent and hence a well-
defined normal hyperplane N as well.

By the continuity of the right-hand members of (1.01), there
exists a closed spherical neighborhood S,(g7, R) C G with center at
g and of radius R, such that the directions of tangent vectors to
integral curves at any point inside or on the boundary of the
sphere S, deviate from the direction of the tangent vector at ¢
by less than /4.
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Consider the closed (# — 1)-sphere N,(g, R) = N N S,. Through
every point p € IV, there passes a solution f(p, ¢) defined for |¢| < 4,
Since N, is closed, then for sufficiently small R, 0 < hy, = g.l.b &,
in view of Theorem 1.11. Also, the periods of the periodic solu-
tions passing through IV, (if there are such) have a lower bound ¢,
provided R is chosen small enough. Write

Z
h = min (ho, ?") .

Then through every point 4 e NV, there is an integral arc f(p, £)
defined for —/ < ¢ < h. The totality of these integral arcs forms
a tube 7y, of length of time 24,

A closed set which has one and only one point in common with
every trajectory arc of the tube, is called a section of the tube.
The set N, in our construction is a section of the tube t,,.

Write T = [—#h, +4] and consider the circular cylinder N; x T.
The correspondence between the points f(p, ¢), p e Ny, —h <t < h
of the tube 74, and the points (p, ¢) of N, X T is one-to-one. Since,
moreover, in one direction this correspondence is a continuous
mapping of a compactum, this correspondence is a homeo-
morphism.

The image of ¢ is an inner point of the cylinder and therefore ¢
is an inner point of the tube 7,,. Any neighborhood of ¢ com-
pletely contained in 7,, will serve as the desired neighborhood.

4.2 We shall discuss now conditions under which a system of
differential equations will define a regular dynamical system (i.e.
with a regular family of trajectories).

4.21. TueoreM. (E. A. Barbashin [3]). Consider a system of
differential equations (1.01) which defines a dynamical system in a
domain G. If there exists a single-valued function u(xy, ..., %,)
satisfying the condition

(4.211)

n G, then owr dynamical system s regular.

Let u(p) = u(xy, ..., x,) be a single-valued function defined in
a domain G, having in G derivatives of the first order, and satisfying
the condition (4.211). If f(p, t) = (x,(t), . . ., x,(¢)) is a trajectory
of a dynamical system defined by (1.01), then
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or

where
u(t) = u(f(p, t)) = u(x (), ..., x,(2).
Integrating, we get u(f) = u(0) + ¢, or

(4.212) u(f(p, 1)) = u(p) + ¢.

Let F be the set of all points ¢ for which #(g) = 0. It follows
from (4.212) that every trajectory has one and only one point in
common with F.

Consider the topological product Z of the set F and the real
axis 7.8

If p € G, then by (4.212), f(p, —u(p)) = ge F. The mapping o
defined by w(p) = (¢, ¢,), where f, =-—u(p) is a one-to-one
mapping (since u(p) is single-valued) of G onto Z, and maps trajec-
tories into parallel straight lines in Z C R**, We shall show next
that both ¢ and ¢! are continuous.

Let a sequence of points #y, ps, . . ., Px, . . . cOnverge to a point
po. From the continuity of «(p) it follows that u(p,) tends to u(p,)
and from the continuity of f(p, ) it follows that

f(Pk: —”M(Zbk)) = qr > f(Po» ‘“(?o)) = 4o-
Thus,
Y(pr) = v (Po)-

Conversely, if a sequence (g, ¢*) converges, say, to (g, ), then
g, — ¢ and #® — {. Thus the initial points ¢, of the integral arcs

(4.213) g 1), 0 <t <tk

tend to the initial point ¢ of the integral arc

(4.214) fg, 1), o0=<t<i

and the time intervals #® tend to £. By the continuity of /(p, {),

8The set Z consists of the points of an (» -4 1)-dimensional space, situated on
parallel straight lines passing through the points of the set F.
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the endpoints

pr = v (g ™)) = [gw 1),
of the arcs (4.213) tend to the endpoint

p=v7g ) =1g 7
of the arc (4.214).
Theorem 4.21 yields important corollaries.
4.22 If solutions of (1.02) are defined for — oo << t<C + o,
then the associated parametric system (1.201) is vegular.
The conditions (4.211) corresponding to the parametric system
(1.201} will read

. u ou

— =1
ot

— ox;

It will be satisfied by the single-valued and continuous function
u =1

4.23. The conclusions of Theorem 4.21 still hold if we replace
condition (4.211) by

(4.231) N = ﬁq/—t
i=1 0x;

Let » satisfy the condition (4.231). Make the substitution

[, =K% > 0.

;[
¢ = [ Na.

If |t - oo, then |#'| — oo. The new system
dx, 1

4.232 — = .

( ) dt’ N fl

is equivalent to the original system and also defines a dynamical
system. The condition (4.211) for (4.232) becomes

|

4.233 R
( ) = ox, N

f ;=L
It is clear that u satisfies (4.233).
4.24. A system of the form

dx, OF

4.241 =,
( ) at  ox;
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is said to possess a velocity potential F(x,, . . ., #,). Corollary 4.23
vields
4.241. If

" (0F\?
z(—) >K2> 0,
o0x.,

=1 ¢

then the system (4.241) s rvegular

5.1. Fields of Linear Elements

Consider again a system of type (1.01). Such a system assigns
a vector (f;, fs, ..., f,) to every point p(x, ..., x,) at which all
the functions f,(xy, . .., #,) are defined and at which they do not
all vanish. In a domain G in which f; are all continuous, system
(1.01) defines a vector field continuous except at the singular points.
It may sometimes happen that we may augment the definition of
our vector field so that it will become continuous everywhere. More
precisely, we may sometimes find a function (¥, . . ., x,) continu-
ous everywhere except possibly at the singular points and such that
the functions /4 are continuous everywhere and do not vanish
simultaneously.

5.11. The theory of differential equations also studies systems
in the so-called symmetric form:

dx, ax, dx,,

Xy oo %) Xglooonx) 0 Xl m)

(5.11)

We note that system (1.01) assigns to each point p a wvector
(f, - - -, ) whereas system (5.11) assigns to each point a linear
element (line position) dwy :dxy:...:dx, =X, X,:...:X,.
This linear element is associated with two vectors, the vector
(X4, ..., X,) and the vector (—X,,...,—X,).

5.12. We now ask if there exists a system of type (1.01) whose
trajectories are the integral curves of our-initial system (5.11) and
which has no singular points other than those of (5.11).

To state the problem geometrically, we ask if it is possible to
choose a positive sense on each linear element and a suitable value
for vector length so that the resulting vector field should be con-
tinuous everywhere except at the singular points.

Analytically, the problem consists in finding a function p(x,, ..., x,)
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such that the products Xy, X,v, ..., X,y are continuous in D,
and do not vanish simultaneously anywhere in D,, if D, is a domain
where (5.11) has no singular points.

5.13. We note that the problem of orientation of a field of
linear elements defined in a domain D, is equivalent to the problem
of establishing a positive direction along each integral curve of a
system of type (5.11) in such a way that every two integral curves
which are near each other must agree in direction.

5.14. 1t is not always possible to orient a field of elements in the
plane. This can be seen from the following example.

Consider the field of linear elements in the plane defined by the
differential equation

dy
dx
where @ is the polar angle. As is usual, in a neighborhood of a point

near which the absolute value of the right-hand member is not
bounded, we consider the equation

cot

\4
5.141 —
(5.141) :

dx
— = tan —(Pi.
dy 2
It is clear that the field of linear elements is defined and is
continuous everywhere except at the point (0, 0). Introducing polar
coordinates, we obtain

3 3
cos 22 dr = 7 sin —(pakp.
2 2

Solving this equation, we obtain three integral half-lines

7 57
(P:—y ¢:n: (p:?; 7>0)

and three families of similar curves (Fig. 2)

a
T ——
3p\ P
(cos—(p)
2
with the parameter a and
T 14 11 l5%4
(IT) ——§—<q)<?, (IT) ?<qﬂ<n, (I1I) n<<p<§.
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The above field cannot be oriented. For, let us choose the direction
away from the origin on the half-line ¢ = x/3, » > 0 as positive.
Take a point 4 on this half-line and draw a circle through p with
the center at (0, 0). As we move along the circumference, say in

the counterclockwise direction, considerations of continuity will
Y
)

Fig. 2

assign as positive the direction toward the origin on the halfline
@ = m, ¥ > 0 and the direction away from the origin on the halfline
@ = 5n/3, r > 0. We find that in view of the orientation induced
in the family (III) by considerations of continuity as we move
along the circumference, we shall arrive at the initial point with
orientation opposite to that chosen originally.

5.141. The selected positive direction for the linear element
through a point ¢ on the circle in Fig. 2 may be indicated by a
tangent unit vector v(g). The angle (2n7 or 2ux + #) through which
v rotates as g spans the circle once in the positive sense, is a property
of our field of directions. The rotation angle for the circle in our
example is —xn. In this discussion the circle could be replaced by
any other simply-closed curve containing the origin.
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5.142. We observe that if we write system (5.141) in the form
dy  sing  rsing y
dx 1—cosp 7(1—cosg) Va4 —x

and then replace it by the system

dy_

o
JERRp— 2 2 __ —
it V- yt—x dt

¥
of type (1.01), then we introduce new singular points (points of
equilibrium) filling the positive half of the x-axis.

5.143. In the above example the domain D (cf. 5.13) is not
simply-connected (it does not contain the point (0, 0)). As will be
seen from the next theorem, this is not accidental.

5.15. THEOREM. A continuous field of linear elements in a simply-
connected domain D of the plane can be orviented.

The domain D can be approximated from within by a bounded
domain D; composed of squares, and therefore it suffices to prove
our theorem for such domains D;. Let us choose the sides of our
squares so small that within each one of them the oscillation of
the direction of linear elements is less than =/4. If we choose a
positive direction on one of the elements, then considerations of
continuity will lead to a unique definition of positive direction for
all other elements of the same square. To extend the definition to
the element through a point p outside the square we again use
considerations of continuity and proceed stepwise along a chain of
adjacent squares until we reach p.

The positive direction for the linear element through p is defined
uniquely, for if we proceed toward p along two different paths,
which yield different orientations at $, then the closed path defines
a reversal of the direction of the vector field. Indeed in this case
our vector field turns through an angle of z -+ 2kx (k is an integer)
around some closed curve consisting of the edges of the squares;
however the algebraic sum of the rotation angle around each of
the squares in the interior of our path must equal the rotation
around the outside path, and this is zero modulo 2z. This is a
contradiction and the theorem is proved.



CHAPTER II

Integral Curves of a System of Two
Differential Equations

1. General Properties of Integral Curves in the Plane.

1.1 Consider the system

dx
(1.01) — =P, y),

7 = Q(x, ¥).

SRS

Let the functions P(x, y) and Q(x, y) satisfy Lipschitz conditions
in some domain G; (a Lipschitz domain) of the plane. We shall
study the behavior of the integral curves of this system. In view
of I, 3.2 we may assume without loss of generality that the system
(1.01) defines a dynamical system in G;.

The basic results in this case were obtained by Bendixson [7]
and Poincaré [47].

We make use of the continuity of the vector field [P(x, v),
Q(x, )] defined by the right-hand members of (1.01), through
the following basic lemmas.

1.11. Lemma. If a point P, of G, is not a singular point, then
theve exists an ¢ > 0 such that the circle S(P,, €) with center at P,
and of radius ¢ does not contain singular points either on its boundary
or in its interior, and such that the angle between the vector of the field
[P(¥,¥), Qx, v)] at Py and the vector of the field at an arbitrary
point of the circle, S(P,, &) is less than /4.

In what follows we shall speak of such a circle as a smail neigh-
borhood of P,.

We write f+(Q,) for the half-trajectory (semi-trajectory) f(Q,, t),
0 < ¢ << 40 and f=(Q,) for the half-trajectory f(Q,, t), —o0 <t = 0.

1.12. LemMA. Let S(P,, &) be a small neighborhood of a point
Py. Let N and N’ be the points of intersection of the circumference
of S(P,, &) with the normal at Py to the trajectory through P,. Then

{39]
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there exists a positive & << & such that for every point Qy of S(P,, 6),
either the half-trajectory f+(Q,) or the half-trajectory f~(Q,) cuts
across the segment NN’ of the normal, before leaving S(P,, &).

This lemma is an immediate consequence of the theorem on
local regularity of the family of integral curves in a neighborhood
of a nonsingular point (cf. 1.4.12).

Lemma 1.12 can be proved directly as well. Let Qg e S(P,, ¢).
Then the trajectory through @ lies within two vertical right angles
whose common vertex is @, and whose bisector is parallel to the

Fig. 3

tangent at P, of the trajectory through P, (cf. Fig. 3). Let § = ¢/2
and let Q, ¢ S(P,, 6). Then the points C, C’ of the intersection of
the sides of one of the above vertical angles and the normal, lie
on the segment NN’ of this normal. The half-trajectory which lies
within this angle cuts across the segment NN’ before leaving
S(Py, €).

We note that both half-trajectories f+(Q,) and f~(Q,) do leave
the small neighborhood S(P,, ¢). For suppose that f+(Q,), say,
remains in S(P,, ). Then its w-limit set contains exactly one point
which must therefore be a singular point, which contradicts our
hypothesis regarding S (P,, ¢). The same conclusion may be arrived
at by observing that since the velocity vector V (p) defined by the
right-hand members of (1.01), does not vanish in S{P,, &), then
V(P = u > 0 for peS(P,, ¢). Moreover, the component V_(p)
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of V(p) along the tangent at P, does not change its direction
and |V,| = u/24/2. Therefore for [t| > 2¢4/2/u, }(P,, ¢) lies outside
of S(P,, ¢).

1.13. The normal NP N’ divides the small neighborhood
S(P,, €) of Pyinto two parts, D; and D,. Suppose that the trajectory
through P, cuts across the segment NN’ from D, to D, with in-
creasing . We shall speak of D; and D, as the negative and the
positive sides of the segment NN’ respectively. With increasing
t all the trajectories cutting across NN' pass from the megative to the
positive side of NN’

1.2. THEOREM. Every trajectory of (1.01) possessing at least
one-sided stability in the sense of Poisson, is either a singular point
or a periodic solution.

Let f(A, t) be a trajectory, not a singular point, stable in the
sense of Poisson for, say, # = 0, and let P, be an w-limit point
of f(4, ¢) lying on this trajectory. Since P, is not a singular point,
it has a small (cf. 1.11) neighborhood S(P,, ¢). Choose ¢ as in
Lemma 1.12. Since P, is an w-limit point of f(4, ¢), every half-
trajectory f(P,, t), t =1, > 0 enters S(P,, 6) (reenters—if £, is
sufficiently large) and therefore, by the choice of ¢, it cuts the
segment NN'. Let P, be the first such intersection following P,
on f(P,, t).

If P, = P, then the solution f{(4, ¢) is periodic.

Suppose P; # P,. We shall show that this contradicts the
hypothesis that P, is an w-limit point.

If P, # P,, only the two arrangements indicated in Fig. 4 are
possible. Denote by G, the closed domain bounded by the arc
PP, of our trajectory and by the segment P,P, of the normal.
The arrangement in Fig. 4 (a) implies that the trajectory f(P;, f)
remains in G, for all¢ > 0. Moreover, if we take a small neighborhood
S(P,, &) not containing P, then f*+(P,) cannot enter the correspond-
ing ¢,-neighborhood of the point P,. For if f*(P;) should enter
the §,-neighborhood of P, then by Lemma 1.12 it would have
to cut across the normal segment PyP; from the positive to the
negative side of NN’ (cf. 1.13), which is impossible. We dispose of
the alternative in Fig. 4(b) in a similar manner.

1.3. Assume that a Lipschitz domain G, is bounded, closed,
and contains no singular points. Then, in view of the uniform con-
tinuity of P(x, y) and Q(x, y), there exists g, > 0 such that
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o(P,, P,) < g, for P, P, eG,, implies that the angle formed by
the vectors of the field at P; and P,, is less than z/4.

Fig. 4

Let L,, be the arca < ¢ < b of a (nonsingular) trajectory
f(Py, t), and let (L,,), be an e-neighborhood of L,,. Since the set
of singular points is closed, ¢ may be chosen so small that (L,,),
contains no singular points either in its interior or on its boundary.
Taking (L,,), as the domain G, we choose & < g,. If NP,N’ is
a normal to L, at P, = f(P,, ;), a = ¢; = b, then all the trajec-
tories cutting across NPy N’ within (L), agree in direction (cf.
1.13) with L, at P;.

We shall speak of such an ¢-neighborhood of L, as a small
neighborhood of L, (cf. 1.11).

1.41. THEOREM. Let L, be a closed nonsingular trajectory of a
dynamical system in the plane. Then for every ¢ > 0 there exists a
0 > 0 such that for every point P, in the S-neighborhood of Ly, at
least one of the half-trajectories f+(P;) or [~(Py) is contained in the
e-neighborhood of L,.

Let T be the period of L,. Then L, =L, = {f{(P,y, )}, 0=t<T,
Py e L;, and the discussion in 1.3 assures the existence of a small
neighborhood (L,), of L,. We may assume that ¢ =e. Also,
S(P,, €) is a small neighborhood of P,. Let S(P,, d,) be a cor-
responding S(P,, é)-neighborhood as in 1.12. Next, let y > 0 be
such that for every P e S(P, y) we have

(1.4) o(f(Py, 8), F(P, 1)) <6, for 0<t=T.

Take P;eS(P,, y) on the normal NPyN’. Since }{Py, T) = P,
then f(Py, T)eS(P,, J,), and the trajectory f(f(Py, T), t) cuts
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the normal segment NN’ before leaving S (P, ¢,). Let Py == (P4, T),
T, # 0, be the first such intersection following P,.

Let C be the closed curve formed by the arc f(Py, ), 0S¢t < T,
and by the segment P,7; of the normal to L; at P,. The curve C
together with L; form a ring-shaped region I" contained in the ¢,-
neighborhood (Ly),, of L,.

If P,= P;, both half-trajectories f+(Q,) and f~(Q,) lie in
(L1)e,C (L4), for every point @, in the ring-shaped region I" bounded
by L, and f(P,, t).

Let P, # P;. We distinguish two arrangements on the normal
at Py, viz., (1) PyPyP, and (2) P,P,P,.

In the first case, for every @, e I, the positive half-trajectory
f*(Qy) cannot leave the region I', and in the second case, the
negative half-trajectory /~(Q,), Q, € I', cannot leave I

Let d be the distance between the arcs f(P,, t), 0 =¢t <7, and
(P, t), 0 =t =Ty, in case P, # P, lies on NP, and let d’' be the
distance between these arcs for a choice of P; £ P, on N'P,. Let
the ring-shaped regions corresponding to these choices of P,, be
I'and I"". Then both 4 and 4’ are positive. Take 0 << § < min (4, d").
Then (L,),CI'uI"C (L,), C(L,),, and this J fulfills the require-
ments of our theorem.

1.411. The above theorem implies that integral curves in the
plane cannot approach a periodic solution arbitrarily close and then
recede both for # - + oo and for £ - —oo0. However, this may
occur in K3, for example.

1.42. DEFINITION. We shall say that a half-trajectory f+(Qg) [f~(Qp)]
approaches a trajectory A spivally if for any point Pye A and an
arbitrarily small segment P P P, of the normal to A at the point P,
there exists &, such that the half-trajectory {(Qq, t), t >ty [§ <to]
intersects Py PP, infinitely many times tn such a way that either all
the points of intersection lie on PP, or all of them lie on PyP,.

A trajectory L is said to approach a trajectory A spirally if a
half-trajectory of L approaches A spirally.

1.43. THEOREM. If a closed integral curve L is contained in the
w-limit set 2 of some trajectory f(P,, t), then Q = L and, if f(P,, t)
1s not closed, the half-trajectory [+(P,) approaches L spirally.

Take a point Qye L. Since L CQ, there exists a sequence
P;= f(Py, t;), 1=1,2,..., such that #;, > 4+ o0 and P, — Q,.
Consider a sequence &, > 0, such that P, ¢ (L),. By Theorem

)
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1.41, for each ¢, there exists a 6, such that for P, (L)(,f either
[~(Ppn,) or fH(P m,) lies in (L) . 6, We may take my < my <. ...
Since P, ;¢ (L), we have f*(P, ) C (L e, We note that ¢, — 0.
Since, by the above, the half- tra]ectory ]‘*( o) Temains out51de
(L), for only a finite duration 0 < ¢ =T, </, , we have QCL
and hence Q = L. Also, there exists a 7o such that every neigh-
borhood (L), 1 =7, is a small neighborhood of L. Hence L is
approached spirally by f+(P,).

1.44. The mode of approach to a nonsingular w-limit
point. Let Pye Q(f*(Q,)) be a nonsingular point. Let S(P,, ¢)
be a small neighborhood of P, (cf. 1.11 and 1.12). Since P, is an
w-limit point of f+(Q,), there exists arbitrarily near P, a point
Q1 € S(P,, ¢) of intersection of this half-trajectory and the segment
NN’ (cf. 1.11) of the normal to f(P,, t) at P,.

1.441. IfQ, lies on N P, then the successive intersections 010505, . ..
of 17(Qo) with NN’ all lie on N P, are arranged on NP, in that order,
and tend to P,

Write @y = (04, t,). The arc Cyy = f(Q,, 8), 0 <t < t, and the
subsegment (,0Q, of the segment NN’ form a closed curve C. We
shall see that

1.442. If P,¢ Oy, ) then the closed curve C above separates
the point Py and every half-trajectory f(Qq, t), t < —06 << 0. Moreover,
no trajectory can pass from the domain containing the point P into
the domain contarming the half-trajectory f(Q,, t), t < —d < 0,
with increasing t. The domains veferved to above ave the extevior and
the interior of C.

The set of points not on C is decomposed by C into two domains
D+ and D~. Since no trajectory cuts across the arc Cy,, a trajectory
can pass from one of these domains into the other only by cutting
across the segment Q,0, of the normal. Since, moreover, a trajectory
cutting across Q,0, must agree in direction with f(Q,, ) at Q,,
the half-trajectories /~(Q,) and f+(Q,) except for the points Q, and
@, lie in the different domains, say D~ and D+ respectively, and
no trajectory can pass from D+ into D— with increasing &.

To prove 1.441, it suffices to show that Q, e Q1 P,. If Q, € PN’,
then by Lemma 1.12, /+(Q,) in coming close to P, would have to
cut across NN’ in the wrong direction, i.e., from D+ into D~ with
increasing ¢. If Q, e NQ,, then P, e D~ and hence is bounded away

from f+(Q,).
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To complete the proof of 1.442, we need only to observe that in
view of 1.441, Pje D+

1.45. The mode of approach to an arc of a trajectory con-
tained in an w-limit set. Let P, e Q(f+(Q)) be a nonsingular
point not on f+(Q), and let S(P,, ¢) be a small neighborhood of P,.
Use the notation of Lemma 1.12 and of Section 1.44.

We observe first that the whole half-trajectory f+(P,) lies in D+
and hence is bounded away from the (negative) half-trajectory
O, 8), 1= —0 <0

Next, consider an arc Ly = f(P,, t), 0 =t <{,. For all Q,
sufficiently close to P, say for ¢ = ¢;, the whole arc L,; = f(Q,, {),
0 =t £ {, lies in a small neighborhood of Lj,. Thus each of these
arcs L,; in cutting a normal to Ly, cuts it in the same direction as
Ly, and L, tend to Ly as ¢ tends to -+ co.

1.46. LEMMA. Consider a trajectory [(p, t). Let f(Qq, t) CR(f(p,1)).
If Pye Q(f(Qq, 1)), then either Py e {(Qy, t) or Py is a singular point
(or both).

If PyeQ(f(Q,, 1)), then PyeQ(f(p, t)). If Py ¢ f(Qy, ) and if
P, is a nonsingular point, then in view of 1.442, f+(p) will enter
the region D+ containing the w-limit point P, and will be bounded
away from every point of the half-trajectory f(Q,, ), t = —0 < 0.
Hence no point on this half-trajectory can be an w-limit point of
ft(p), which is a contradiction.

1.47. THEOREM. Ifthe w-limit set of a trajectory f(p, t) is bounded
and contains no singular points, then it consists of exactly ome closed
trajectory L. If f(p, t) is not a closed trajectory, then it spirals toward
L as t tends to —+ 0.

Let Q, e 2(f(p, 1)) and let Py e 2(f(Q,. t)). (Here 2(f(Qy, 1)) is
not empty in view of the boundedness of Q(f(p, £))). Since P, is
nonsingular, then Py e /(Q,, ¢) by Lemma 1.46, and hence /(¢Q,, ?)
is a closed curve by Theorem 1.2. The conclusions of our theorem
follow at once from Theorem 1.43.

1.471. If a trajectory L is not closed, then it may have a limit
cycle for ¢ — + oo as well as for ¢t — —o0. In view of the discussion
in 1.45, if both of the limit cycles exist, they are distinct.

1.48. THEOREM. I} L, consists of the w-limit points of a trajectory
L and is not a closed trajectory, then the set of the w-limit points of
Ly, if not empty, consists of singular points.

This theorem follows at once from Theorem 1.2 and Lemma 1.46.



