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D E D I C A T I O N  

The papers in this volume celebrate Samuel Karlin's contributions to 
mathematical evolutionary theory. His earliest contributions dealt with 
genetic drift, the stochastic phenomena induced by the finiteness of a popu
lation's size. In the late 1960s and 1970s his work addressed the inter
action between linkage, selection, and the mating system in a deterministic 
context. This was succeeded by papers advancing the statistical analysis of 
data for gene frequencies and familial aggregation. Karlin's most recent 
studies in the mathematical evolutionary theory have concerned the evo
lution of behavior and the development of numerical algorithms for com
paring and interpreting DNA sequences. 

The authors of the papers collected here have all been influenced by 
Sam Karlin, either as a mentor, collaborator, constructive critic, or through 
extended stays at Stanford. The papers span the wide range of topics in 
evolutionary theory to which Sam has contributed. This is our opportunity 
to acknowledge the profound effect that he has had on the direction and 
quality of interdisciplinary study in mathematical biology, and on our own 
research. 





P R E F A C E  

IVXathematical theory has been central to the study of evolutionary biol
ogy since the rediscovery of Mendel's work. Will Provine's masterful biog
raphy of Sewall Wright* amply documents the profound effect that this 
theory has had on the leading natural historians of this century. The mathe
matical theory of evolution was established by Wright, R. A. Fisher, and 
J.B.S. Haldane in order to explain observations about variability within 
and between populations and species. The need to explain the origin and 
maintenance of this variability led to the dynamical theories of population 
genetics and, to some extent, to ecology. The need to describe the extant 
patterns of variation led to far-reaching developments in mathematical 
statistics. 

In the past ten years, application of advances in biotechnology to the 
study of populations has resulted in the exposure of previously unexpected 
extensive genetic variability in nature. At the same time, more advanced 
mathematical technology has been applied to the models designed to de
scribe the origin and maintenance of this variability. Samuel Karlin has, 
to a great extent, orchestrated this mathematical advance. 

Mathematical evolutionary theory spans a range of subjects similar to 
that covered by population biology as a whole. What are the roles of 
population size and subdivision on the rate of evolution? Does it make a 
difference to our picture of the evolutionary process if genes are linked or 
unlinked? Can the evolutionary effect of departures from random mating 
such as inbreeding, assortative mating, and sexual selection be quantified? 
What are the advantages of sex, recombination, and dispersal? Is there a 
natural framework within which to simultaneously study behaviors and 
genes that affect these behaviors? What aspects of the environment are 
most important for the evolution of life-history patterns? What kinds of 
inference about organismal evolution can legitimately be made from mo
lecular genetic variability? The papers here contribute to our understand
ing of some of these issues by suggesting new mathematical models, by 
more extensive analysis of standard models, or by comparing data and 
theory. 

The papers have been divided, somewhat arbitrarily, into two groups. 
Part I addresses general problems in evolutionary genetics; these do not 
refer to a specific biological situation, organism, or behavior but take a 

* W. B. Provine, Sewall Wright and Evolutionary Biology (Chicago: University of Chicago 
Press, 1986). 
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general perspective on the mathematical consequences of small population 
size, mutation, gene linkage, population subdivision, and gene flow. In 
Part II the theory is developed for specific biological situations, some of 
which have been associated with general theory, as is the case with kin 
selection. Both approaches to theory have been important to the modern 
study of evolution. 

Stanford, California 

December 1987 



Mathematical Evolutionary Theory 





P A R T 1 

Stochastic and Deterministic 
Genetic Theory 





The foundation stone of population genetic theory with finite population 

size is the Wright-Fisher sampling model. It is described in the paper by 

Ewens and underlies much of the discussion in the papers by Gillespie, 

Watterson, and Kaplan and Hudson. It also forms the background for 

part of Tavare's paper. The binomial (or multinomial) sampling scheme 

produces a Markov chain that describes the change in the genetic con
stitution of the population over time. The eigenvectors of this Markov 
chain have not been found in a useful form, and Wright in 1931 used a 
diffusion approximation to the discrete time stochastic process in order to 
obtain information about the transient properties of the gene frequencies 

The eigenvalues of the Wright-Fisher Markov chain determine the rate 
of evolution of the system. The leading nonunit eigenvalue in the simplest 
case, for example, with N diploid individuals, is 1 — 1/2JV, and this is the 
rate of approach to homozygosity. When the population is partitioned 
into two sexes, or undergoes inbreeding, the rate-determining eigenvalue 
is more complicated, and is often expressed in terms of Ne, the effective 
population size. Other definitions of effective population size have in
volved analogies with different properties of the stochastic model. 

In his paper (Chapter 1), Ewens discusses the various definitions of 
effective population size when a population is subdivided into demes. At 
every generation some of these demes become extinct and are recolonized. 
The manner of recolonization, fast or gradual, is shown greatly to affect 
the various effective population sizes and their relative magnitudes. 

Much of the huge volume of population genetic data accumulated 
during the past twenty years has been interpreted in terms of the interaction 
between drift and mutation. One of the most widely studied genetic models 
with finite population size includes a constant mutation rate, μ, to novel 

alleles. This is the infinite alleles model about which so much has been 
written in the context of the selection-neutrality controversy. The param
eter θ = 4Nμ, with N the population size, has been known for many 

years to govern the distribution of {&}, the number of alleles having i  

representatives (i = 1, 2,..., n) is a sample of size η from such a 

population. 
The magnitude of the compound parameter Θ has been a source of con

troversy between selectionists and neutralists since the mid-1960s. 
Watterson (Chapter 2) studies the distribution of {/?,·} when θ is not con
stant over time, analytically and by numerical simulation. In one simula
tion the mutation rate is held constant and the population is allowed to 
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cycle from one size to another. In particular, it is shown that the simu
lated sample mean of the homozygosity agrees well with the expected 
population homozygosity derived earlier by Maruyama and Fuerst (1985b; 
see Chapter 2). The variance of the sample mean, however, can be uncom
fortably high. 

Tavare (Chapter 3) studies a birth and death process subject to immi
gration at the time points of a Poisson process. Starting from an initial 
immigrant propagule, the new arrivals initiate lineages that evolve inde
pendently from one another. The stochastic process of interest keeps track 
of the sizes of the families in the order of their appearance. When condi
tioned on the population size, the age-ordered family sizes have a joint 
distribution that is the size-biased version of that derived by Ewens (1972; 
see Chapter 2) for the number of alleles with i representatives in the 
infinitely-many neutral alleles model (the /?; of Watterson's paper). The 
special case of the birth process with immigration provides a simple way 
to study the genealogical structure of the (age-ordered) stationary infinite 
alleles model. For example, the asymptotic fractions of the population 
accounted for by the different families have, when written in decreasing 
order, the Poisson-Dirichlet distribution that plays so central a role in 
the mathematical theory of neutral evolution. 

The next paper, by Gillespie (Chapter 4), further examines the Wright 
diffusion approximation. For Wright's diffusion approximation to be 
mathematically legitimate, parameters such as the rates of mutation, rates 
of migration, and fitness differences between genotypes must be of the 
same order of magnitude as the reciprocal of the population size, N, as N 
increases. In his paper, Gillespie surveys what is known about the prop
erties of limiting processes that emerge when other assumptions are made 
about the relationship between these key parameters of evolution and the 
population size. 

In the remaining articles of this section the evolutionary forces under 
study are genotypic selection, recombination, and migration. The interac
tion of these has been a major focus for population genetic theory since 
1970. Linkage disequilibrium is the widely used term for the degree of 
association between the alleles at a pair of loci. With multiple loci an 
adequate description of the gamete frequency distribution must involve 
higher-order associations, that is, associations among three or more genes. 
Christiansen (Chapter 5) suggests that useful measures of association can 
be generated from the powers of a single matrix that has proven effective 
in earlier studies of selection on multiple linked loci (see his formula 4). 
He calls these linear interactions, and shows that they possess desirable 
properties under iteration in the absence of selection. 

In earlier studies of subdivided populations, the linkage disequilibrium 
between a pair of genes had been shown to depend on the variation in 
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gene frequencies among the subpopulations. Christiansen extends this 
principle to multiple loci and to some simple migration arrangements 
among the subpopulations. It is shown, for example, that the measure of 
association among a given set of genes depends only on the frequencies 
of alleles at that set of genes. 

Weir and Cockerham (Chapter 6) have been concerned for a number of 
years with the statistical and stochastic sampling properties of linkage 
disequilibrium in populations that are sampled with respect to the geno
type at two or more loci. They use "descent measures," measures of the 
probability that specific alleles (or combinations of alleles) in the gametes 
that unite to form a zygote are identical by descent. In the present paper, 
they express the frequencies of the ten possible genotypes at two diallelic 
loci in terms of the two gene frequencies and a set of disequilibrium mea
sures. The latter are defined as specific sums of the genotype frequencies 
and can be expressed in terms of the descent measures. Some of these 
disequilibrium measures depend on three or four positions in the two-
locus genotype and may not have the same time-dependent behavior as 
the usual linkage disequilibrium. 

With the assumption of multinomial sampling of individuals from a 
population, maximum likelihood estimates of the various disequilibria 
and variances of these estimates are computed, although some of the al
gebra is daunting. These estimates are then used to construct statistics 
for testing whether specific disequilibria are zero. The test statistics have 
chi-square asymptotic distributions. 

The validity of this procedure was tested numerically with 10,000 rep
licate samples of size 100. When all disequilibria were zero, the fit of the 
test statistic to the chi-square distribution was very good. The presence 
of disequilibria in the underlying population did not have enough of an 
effect on the testing procedure to invalidate it. 

Liberman, Feldman, and Holsinger (Chapter 7) address the notion of 
evolutionary optimality. Their approach extends the notion of Evolution
ary Genetic Stability, originally used in the study of the sex ratio, to 
neutral genetic modifiers of the rate of migration between two populations. 
The genetic model is diploid and consists of two loci, one of which has 
two alleles and is called "major" because it is subject to viability selec
tion on the genotypes. The population is divided into two habitats with 
arbitrary viability regimes in each. The second locus, the modifier, has an 
arbitrary number of alleles, and its function is to control genetically the 
level of migration between the demes. The linkage between the genes is 
arbitrary. 

The first part of the paper develops a class of equilibria at which the 
migration-modifying alleles have frequencies equivalent to those that 
would emerge from a one-locus viability model with the migration rates 
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playing the roles of the genotypic viabilities. It is then shown that at such 
an equilibrium only those alleles that initially reduce the average migra
tion rate in the population can invade. This suggests that zero migration 
has the property of EGS. 

In the Appendix to Chapter 7, internal stability of the equilibrium is 
analyzed numerically. In view of the authors' earlier work on mutation 
modification, the equilibrium structure here is surprisingly complicated. 
In particular, the observation of several instances of cyclic behavior of 
the genotype frequencies poses interesting questions about the mathemat
ical structure of migration models in population genetics. 



C H A P T E R  O N E  

The Effective Population Sizes in 

the Presence of Catastrophes 

Warren J. Ewens 

Introduction 

IVIy long association with Sam Karlin through our work in mathemat
ical population genetics has been a most memorable and enjoyable ex
perience for me. It started in 1964 when I was a postdoctoral student at 
Stanford, has continued to this day, and my aim in this paper is to con
tinue it even further. A simplified description of one aspect of our asso
ciation is as follows: I would become interested in some problem and 
partially develop its mathematical properties, but would eventually be 
defeated by some aspect of the mathematical analysis, or not see the full 
generality of the theory, whereupon I would take the problem to Sam, 
who would solve the mathematical problem, or generalize the theory (or 
do both). I do not wish to imply that more than a small fraction of Sam's 
work in population genetics was initiated in this way, but much of mine 
was finished along these lines. I remember problems relating to the dis
tribution of the number of alleles maintained in the infinitely many alleles 
model (Ewens 1963, 1964; Karlin and McGregor 1967), the fundamental 
theorem of natural selection (Ewens 1969a,b; Karlin and Feldman 1970a 
and subsequent papers), the unexpected complexities of two-locus systems 
(Ewens 1968; Karlin and Feldman 1970b and subsequent papers), the 
evolution of dominance (Ewens 1967; Feldman and Karlin 1971), and in 
particular the eigenvalues (Ewens and Kirby 1975; Karlin and Avni 1975) 
and sampling properties (Ewens 1972; Karlin and McGregor 1972) of the 
infinitely many alleles model, as well as problems of heterozygosity and 
the effective population size (all the above references). I can never thank 
Sam enough for the inspiration of this association, and I here present him 
with a set of further problems, evocative of the those just described, and 
again concerning eigenvalues, sampling theory, heterozygosity, and effec
tive population sizes, as well as other matters recognizable to the initiated. 

So, play it again, Sam: What do you make of this one? 
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Subdivided Populations and Catastrophes 

One of the main concerns of theoretical population genetics is the anal
ysis of the degree and nature of genetic variation in natural populations. 
The degree of variation is, of course, also of interest in practice to those 
who are concerned with the loss of genetic variation through random 
genetic drift, particularly in specific or unusual situations. One circum
stance, discussed at length at a recent conference on minimum viable 
population sizes (Soule 1987), is that of a large population divided into 
comparatively small subpopulations that are liable to complete extinction 
through catastrophic events, with the niche previously occupied by an 
extinct subpopulation being taken over by migrants from another sub-
population. We discuss here the rate of loss of genetic variation in such 
cases and the amount of genetic variation maintained when mutation is 
present, extending the work of Maruyama and Kimura (1980). We find 
that accepted ideas in this situation do not necessarily hold. This occurs 
largely because the very subdivision of the large population has an effect 
on genetic variation often counterbalancing the effects caused by the ex
tinction process. 

Many reasonable models of a "catastrophe and recolonization" process 
may be formed, and any conclusion drawn should not be largely an artefact 
of the particular model chosen. We consider two models here but it is 
clear that others are possible. Further, we sometimes reach different con
clusions in the two models we do consider. A complete investigation of 
the process of modeling for this problem is needed and is far from straight
forward. 

The rate of loss of genetic variation in a population is often measured 
by calculating one or another concept of the effective population size. 
These are defined relative to the simple Wright-Fisher model and we there
fore start by introducing this model and discussing the effective popula
tion sizes to which it leads. 

The Wright-Fisher Model and 
the Effective Population Sizes 

Although most populations of interest to us are diploid, our analysis here 
is more easily carried out, and the main features are not lost, in the haploid 
case, which we (and others, e.g., Maruyama and Kimura 1980) therefore 
use throughout. The "simple" Wright-Fisher model (i.e., allowing no se
lection, mutation, population subdivision, etc.) considers a population of 
M individuals (or genes) in any generation, each of which is of allelic type 
Ai or A2. It is assumed that random sampling of individuals with re-
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placement occurs in choosing the parents forming any daughter genera-
tion, so that if there are i A l genes in any generation, the probability 
that in the next generation there will be j A1 genes is given by 

(1.1) 

Clearly P = {p i ;} is the transition matrix of a Markov chain with ab-
sorbing states at 0 and M. Many properties of this model are known, in 
particular 

1 . l a r g e s t nonunit eigenvalue of (1.2) 
2. prob (two individuals taken at random have 

same parent) (1.3) 
3. where x, is the fraction of 

individuals in generation t who are Av (1.4) 
Thus in this model, 

(1.5) 
(1.6) 
(1.7) 

Suppose in a more complicated model, allowing, say, for geographical 
subdivision, the largest nonunit eigenvalue of the appropriate transition 
matrix is X*. Then the (eigenvalue) effective population size for this model 
is defined, using (1.5), as 

(1.8) 
and the interpretation of this is that insofar as the leading eigenvalue 
is concerned, the complicated model behaves as a simple Wright-Fisher 
model of size N(*\ Similarly, if is the probability that two individuals 
have the same parent, the (inbreeding) effective population size is defined 
as 

(1.9) 
Finally, the variance effective population size (if it exists) is defined, 
using (1.7), as 

(1.10) 
These three quantities are not necessarily equal, so the expression "ef-

fective population size" should not be used without a further adjective 
describing which of the three is intended. Further, in complicated models 
they can be very difficult to calculate, and indeed might not even be 
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well defined, in that there might be no scalar Markovian variable χ such 

that the right-hand side in (1.10) is a constant independent of xt. 

Finally, a fourth definition of effective population size, which we call 

here the mutation effective population size N(
e
m\ has been introduced by 

Maruyama and Kimura (1980), and this new concept should be of con
siderable value in describing the likely degree of genetic variation in pop
ulations subject to mutation. If genes mutate, at rate u, in such a way that 
every mutant is of an entirely novel allelic type, then genetic variation is 
maintained in the population. We now quickly summarize the standard 
theory (Kimura and Crow 1964) assessing this degree of variation for the 
simple Wright-Fisher model for purposes of comparison with later cal
culations. If Pt+J is the probability that two individuals chosen at random 
in generation ( + 1 are of the same allelic type, then neither can be a 
mutant [probability (1 — u)2] and they are either both descended from 
the same parent (probability M-1) or different parents who are of the 
same allelic type [probability (1 — 1JPt]. Thus 

Pt+i = (1 - u)\M-' +(1- M-1JPt]. (1.11) 

The stationary probability P is then, exactly, 

P = ( 1 - m)2[M - ( M -  1)(1 - u ) 2 y \  (1.12) 

If, in a more complicated model, the stationary value of this probability 
is P*, we use (1.12) to define the mutation effective population size exactly 
as the solution for y of the equation 

P* = (1 - u ) 2 [ y - ( y -  1)(1 -u)2]"1. (1.13) 

Ni
lj,m) is not necessarily equal to N(

e
e\ N(^\ or N[v>, and is to be interpreted 

simply as the size of a simple Wright-Fisher population having the same 
stationary value of P as the more complicated model. Unfortunately, /V'™' 
is not necessarily independent of the mutation rate u, although as we note 
later, it will often be rather insensitive to the value of u and also have a 
well-defined limit as u -+ 0. It is therefore a potentially valuable parameter 
in describing an important aspect of the complicated model. 

We now consider two models of catastrophes and the values of the 
various effective population sizes that they define. 

Model 1: Total Replacement 

THEORY 

We consider a total population of Mn individuals consisting of η subpop-
ulations with M individuals in each. In each generation, k of the sub-
populations become extinct, due to catastrophes, and the niche occupied 
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by an extinct subpopulation is refilled by randomly choosing one of the 
surviving subpopulations to produce (apart from its "normal" reproduc
tion of M individuals) a further M to fill the niche. These choices are 
independent, so that a surviving subpopulation can fill more than one 
niche. Superimposed on this "demographic" process is a simple Wright-
Fisher process within any subpopulation, as described above. Random 
changes in allele frequency thus arise at two levels, the demographic or 
"between subpopulations" changes (through the random choice of sub
populations to become extinct), and genetic or "within subpopulations" 
changes (through the Wright-Fisher process). 

A fundamental parameter in this model is the probability q that two 
individuals chosen at random from distinct subpopulations have parents 
in the same subpopulation. We find 

To find the eigenvalue population size for this model, we must first 
find a Markovian variable having a transition matrix generalizing P. The 
appropriate variable is the vector (alf a2, • • •, fl„), where au ... ,an are the 
n u m b e r s  o f  A 1  g e n e s  i n  t h e  v a r i o u s  s u b p o p u l a t i o n s .  N o t e  t h a t  a u  . . . ,  a „  
are interchangeable: the two states (a1; a2,..., a„) and (a2, au ..., a„), for 

example, are regarded as being identical. There are then R = 

states for the process, two of which [(0, 0,..., 0) and (M, M,..., M)] are 
absorbing, with the rest transient. Thus the matrix of transition prob
abilities allows two unit eigenvalues and R — 2 eigenvalues less than unity 
in modulus. The method described below for finding these is reminiscent 
of that used by Ewens and Kirby (1975); is there an approach reminiscent 
of Karlin and Avni (1975)? 

We first write a u  . . .  , a „  in increasing order C i 1  <  a 2  <  a 3  <  •  •  •  <  a n ,  

and then list the possible values in dictionary order, as in Table 1.1. 
The first two states are now temporarily ignored, and if we also ignore 

all zeroes, we can define "sample configurations" 

{2}, {3},..., {M}, {1, 1}, {1, 2},..., {M, M,..., M) (1.15) 

in conformity with the vectors listed in Table 1.1. We write a typical sam
ple configuration χ = (xu ..., xs) and seek the probability P,+ i(x) = 
P,+1(xi,..., xs) that in generation t + 1, a sample of X1 genes from one 
subpopulation, x2 from another, ..., xs from an sth subpopulation, are 
all of the same allelic type. Since a sample of genes from s subpopulations 
can have parents in at most s subpopulations and since also a sample of 
Xi genes in any one subpopulation can have at most Xi parents (all, of 
course, in the same subpopulation), it follows by arguments parallel 

q  =  k(2n — k  —  1 ) / [ n ( n  — l)(n — k)]. (1.14) 
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Table 1.1 
Values of the vector 

to those leading to (1.11) that, apart from an additive constant, 
is a linear combination of probabilities of the form 

where precedes in the ordering 
(1.15). Thus if we form a vector from the values, with the x 
values ordered as in (1.15), 

(1.16) 
where D is a triangular matrix. The eigenvalues of D are the nonunit 
eigenvalues we seek, and these are its diagonal elements, that is, typically 
the coefficient of This is easily seen to be 

The latter term in this expression is the probability that s daughter subpop-
ulations have s different parent subpopulations (i.e., is the "demographic" 
contribution to the eigenvalue), whereas the initial term comes from stan-
dard (Feller 1951) eigenvalues for the Wright-Fisher model (i.e., is the 
"genetic" contribution). The largest eigenvalue depends on the relative 
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contributions from these two sources, being 

A* = max(l — M"', 1 — q) ,  (1.18) 

and thus 

N {
e

e )  = max(M, q~ l ) .  (1.19) 

The ultimate rate of loss of genetic variation is thus decided entirely either 
by within population (genetic) factors, as measured by M, or by between 
population (demographic) factors as measured by q~l, and not by any 
combination of the two. 

It is interesting to confirm the eigenvalues (1.17) in the special case 
M = 1, k — 1. The model reduces in this case to the well-known Moran 
model (1958) of genetics where at unit time points a single individual dies 
and is replaced, with the dying individual not being a possible parent 
of the new individual. (This model first interested Karlin [Karlin and 
McGregor 1962] in genetics.) The largest nonunit eigenvalue in this model 
is well known to be 1 — 2/n(n — 1), and this is what Nl

e
e) reduces to with 

Ai = Jfc = 1. 
It is usually accepted that a subdivided population subject to extinction 

of subpopulations will lose genetic variation more rapidly than an equally 
large random-mating population, or equivalently that it has a smaller 
eigenvalue effective population size. The above shows that this is not nec
essarily true: for example, when M = IO3, η = IO4, k = 4, the eigenvalue 
effective population size in the subdivided case is 1.25 χ IO7, whereas the 
actual population size is only IO7. We will see later that when mutation 
exists, the subdivided population can maintain more genetic variation, on 
the average, than a random-mating population of the same size, again 
against accepted views. 

We find N f  by calculating the probability π* that two different indi
viduals chosen at random have the same parent. Elementary arguments 
show that 

It is interesting to compare the numerical value of Nf  with the actual 
population size Mn. Elementary calculations show that Nf > Mn if and 
only if 

π* = [Μ — 1 + qM(n  — 1 )]/(Mn — 1)M], 

so that 

Nf  =  M(Mn -  1 ) / [M -  1 +  qM(n  -  1)] .  (1.20) 

qMn <  1 .  (1.21) 
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This turns out to be a fundamental inequality, which we will return to 
several times later. 

There appears to be no well-defined expression for since there is 
no scalar Markovian variable in this model. We therefore do not discuss 

further, other than to remark that the only hope for a reasonable 
definition of is through the quasi-Markovian variable concept of 
Norman (1975). 

We turn finally to which can be calculated, using (1.13), once we 
have an expression for Now two individuals taken from the same sub-
population will be of the same allelic type with probability P given by 
(1.12). Two individuals taken from different subpopulations will have 
parents in the same subpopulation (possibly the same parent) with prob-
ability q. Thus, if is the probability that two individuals from different 
subpopulations are of the same allelic type, the identity 

must hold. This gives 
(1.22) 

and hence 
(1.23) 
(1.24) 

This is an exact expression and from it we find, exactly, 
(1.25) 

where 

It is necessary to use these exact calculations to develop various properties 
of i which we now do. 

First, is dependent on u, but as we note later, this dependence is 
often rather weak and thus provides a useful parameter for measuring 
the expected degree of variation in the subdivided population. The limit 
of as the mutation rate u approaches zero is well defined, being 

(1.26) 

This is close to an expression given by Maruyama and Kimura (1980) in 
a similar model. Next, the behavior of as u approaches zero is of 
some interest. Careful handling of small-order terms shows that ap-
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proaches its limiting value from below when (1.21) holds, and otherwise 
from above. We will return to this property later. 

Finally, it is interesting to compare N (
e

m> with JVjf1 and JVj0 Elementary 
calculations show that JVje) > JVj"0 if and only if (1.21) holds. So far as the 
comparison of JVj"0 and JVj0 is concerned, a simple (but incorrect) argu
ment would make these identical. This argument claims that two randomly 
chosen individuals will be of identical genetic type if neither is a mutant 
[probability (1 — u)2], and they are either descended from the same parent 
[probability (JVj,")-1], or different parents [probability 1 — (JVj,0)-1] who 
are of identical allelic type (probability P*). This argument would lead to 

P *  =  (1 -  U f l ( N f ) - 1  +  { 1 -  ( N f y  '}?*], (1.27) 

so that, from (1.13), Nf = N i
e

mK However, this cannot be the case, since 
Nf \ unlike Nf, is a function of u, and the fallacy in the above argument 
(pointed out to me by R. C. Griffiths) is that the probability that the two 
(different) parents of two randomly chosen individuals are of the same 
allelic type is not the same as the corresponding probability for the indi
viduals themselves. Note that this fallacy does not arise in the argument 
leading to (1.25) and (1.26). Thus the final P* in (1.27) should be replaced 
by P* (parents), the probability that the parents of two randomly chosen 
individuals who are themselves different individuals are of the same allelic 
type. 

This fallacious argument is nevertheless of use, since it shows that Nf < 
JVj,"0 if and only if P*(parents) < P*. Now 

P*(parents) = Py + Pd(\ — y), (1-28) 

where y = (JV — l)/(JVj° — 1) is the probability that two randomly chosen 
individuals have different parents who are nevertheless in the same sub-
population. Using (1.23) and (1.28), we eventually find that Nf < JVj"0 if 
and only if (1.21) holds. We have thus shown, by piecing together various 
of the above conclusions, that if (1.21) holds, 

Mn < Nf < JVj"0 < JVjm) < JVjf', (1.29a) 

while if (1.21) does not hold, 

Mn > Nf > Njm) > JVj"0 > JVjf'. (1.29b) 

When qMn = 1, all effective population sizes equal the actual population 
size. These inequalities highlight the importance of the parameter qMn in 
assessing the likely genetic properties of the subdivided population. They 
also raise a curious point: JVj0 and the actual population size are non-
genetic concepts, JVjm) is a totally genetic concept and JVje' is a partially 
genetic concept. Despite this, the various effective population sizes can be 
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ordered, as in (1.28) and (1.29), according to the value of the single pa-
rameter 

N U M E R I C A L E X A M P L E 
Table 1.2 provides numerical examples of the values of the actual popula-
tion size together with the various effective population sizes 
defined above, for various n and k combinations. There are many points 
of interest in the table, the most striking being the wide variation possible 
in the various values. Usually Na and are quite close, as are and 

Table 1.2 
Values of the actual population size (Na), the inbreedingeffective size 
N f , the mutation effective size for and and the 
limiting value together with the eigenvalues effective size 

for various (n, k) combinations. (M = 1000) 
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JV*,"1', but the former two vary from being some two hundred times larger 
than the latter two to being fifty times smaller. This shows that great care 
must be taken in assessing whether the subdivided population tends to 
maintain more variation, or preserve variation longer, than an undivided 
population. The reason why such large differences between the Ne's are 
possible (and this is largely an artefact of modeling of the situation) is 
that the very fact of subdivision tends to preserve genetic variation, and 
the loss of variation through the random loss of subpopulations might, 
or might not, be strong enough to offset this. What is perhaps needed is 
a catastrophe model that does not rely so strongly on subdivision into 
isolated populations. Migration is a factor that should also be taken into 
account. 

Returning to the above model, the observation that the various effective 
population sizes can differ radically from each other, together with the 
two sets of inequalities (1.28) and (1.29) and the condition (1.21), highlights 
the importance of the parameter qMn in this model. This leads to the first 
o f  t h e  p r o b l e m s  t h i s  m o d e l  s u g g e s t s ,  n a m e l y ,  w h y  i s  t h e  p a r a m e t e r  q M n  
of such significance, and what is important about the equation qMn = 1? 

A second problem follows from this. It is well known (Ewens 1979) that 
for so-called exchangeable models (Cannings 1974), the equations 

N [ v )  =  N f  = iV<f> 

are true (assuming N(
e

v) is well defined). Is it then true that the above model 
is exchangeable when qMn = 1? Is there a well-defined Nf in this case? 

A third problem is to construct a realistic catastrophe model that is 
not dependent, as is the above model, on population subdivision, so that 
the effects of catastrophes can be disentangled from the effects of subdi
vision. A possible model is to assume that some fixed number M* of in
dividuals dies in a catastrophe in each generation and that all individuals 
in the daughter generation are descended from the surviving individuals. 
(Simple models along these lines are exchangeable, so that the various 
effective population sizes are equal.) 

As a final problem, it is unclear to what extent the sampling theory for 
random mating populations (Ewens 1972; Karlin and McGregor 1972), 
referred to in several papers in this volume, holds in the subdivided popu
lation model: the calculations above give no clues on this question. 

Model 2: Gradual Replacement 

This model has many of the features of the previous one. There exists a 
fixed number η of subpopulations, and in each generation k of this num
ber become extinct because of catastrophes. However, the niche previously 
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occupied by an extinct subpopulation is now filled by one single offspring 
individual, drawn at random from the surviving individuals. At the same 
time, the number of individuals in each surviving subpopulation increases 
by unity. This model is very close to that analyzed by Maruyama and 
Kimura (1980). 

We consider first the nongenetic properties of the model, focusing on 
the sizes of the various subpopulations. When k = 1, these sizes may be 
written in increasing order, 

(1.30) 
Apart from M u these sizes are random variables and it can be shown 
that, at stationarity, 

(1.31) 

(1.32) 

and in particular 

(1.33) 

Any randomly chosen subpopulation has size given by the geometric dis-
tribution, so that for general k, 

(1.34) 
Thus 

(1.35) 
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and the mean total population size is n 2 /k.  From this, we get an approxi
mation to the probability that two individuals drawn at random are from 
the same subpopulation: 

[2n2(n — k)/ lc2] -=- (n4 /k z)  ̂  2(n — k)/n2 .  (1.36) 

This is approximately twice the value arising in the previous model and 
occurs because the two individuals are more likely to be chosen from the 
larger subpopulations. It is also possible to derive an expression for the 
probability distribution of the total population size. However, this cal
culation is complicated, and we note here only that the mean total popu
lation size is (as noted above) n2/k, with variance (computed by G. A. 
Watterson) of 

n2(n -  k)2 /{k2(2n -k-  1)}. (1.37) 

Note that this result is less than the sums of the variances of the individual 
population sizes, due to a correlation of — (2n — k — l)-1 between indi
vidual population sizes. 

We now add a genetical component to the model. First, suppose any 
individual is of allelic type A1 or A2, and the allelic type of any parent is 
passed without mutation to each offspring. The population will eventually 
consist of entirely A1 or A2 individuals, and the rate at which this occurs 
will be measured by the eigenvalue effective size of the model. To calculate 
this, we must first describe the state of the process (generalizing the vector 
a in Model 1) by a vector of pairs, 

{(a, ,  M ,Ka2 ,  M2) . . . ,  (anMn) l  (1-38) 

where Ui is the number (out of M i)  of individuals in subpopulation i  who 
are A1. We next impose a Wright-Fisher model in each subpopulation: if 
the subpopulation survives the catastrophe at any given time, then in an 
obvious notation, 

' [ (« • ·  ̂ + -  ( M C' )  feH 1  -  ι ) " " 1 ' ( U 9 )  

The eigenstructure of this process appears to be very difficult, and I 
can make no progress toward finding Afjfi. (There are, of course, infinitely 
many eigenvalues.) 

An intuitive argument giving an approximation for the inbreeding ef
fective population size is as follows. If at any time the subpopulation sizes 
are M1, M2,..., Mn, with £ Mi = M, the probability that two individuals 
taken at random are from a population size Mi is M,(M; — 1 )/M(M — 1). 
The probability that they then have the same parent is !/(Mj — 1), and 
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so the overall probability that two individuals have the same parent is 

The expected value of this quantity is approximately and hence 
the inbreeding effective population size should be approximately the mean 
actual population size, It would be desirable to have a more precise 
argument leading to a more accurate value for using the complete 
distribution of population size. 

To discuss the mutation-effective population size, we now allow 
mutation at rate u, with all mutants being of novel allelic type. We first 
calculate PM, the probability that two individuals taken from a subpopu-
lation of size M are of the same allelic type. Clearly For 
an argument similar to that leading to (1.12) shows that 

(1.40) 
G. A. Watterson has pointed out to me that putting 
leads to a very rapid solution of this recurrence relation: 

(1.41) 
where 

Since any subpopulation size actually assumes the value M with prob-
ability given by (1.34), we may calculate the mean probability P that two 
individuals taken at random from the same subpopulation are of the same 
allelic type as 

(1.42) 
where 

(1.43) 
A numerical check for (1.42) is available. Maruyama and Kimura (1980) 
considered a model almost identical to the above, the only difference being 
that catastrophes and population size increases occur in continuous time 
rather than at discrete time points (as here), with theprobability of extinc-
tion of a subpopulation in time being To compare their 
simulations with (1.48), it is necessary to put (andalso their v 
equal to u). Table 1.3 compares their simulated values of with those 
calculated from (1.48). We see that the two sets of values are quite close. 

It seems much more difficult to arrive at an expression for the prob-
ability that two individuals from different populations are of the same 
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Table 1.3 

Simulation (Maruyama and Kimura 1980) and_ approximating 
theoret ical  values  [ from (42)  and (45)]  of  P  and P  J P .  

P  P J P  

u  λ  Sim. Theoret. Sim. Theoret. 

0.05 0.1 0.599 0.693 0.154 0.166 

0.02 0.1 0.599 0.841 0.295 0.333 

0.01 0.1 0.872 0.912 0.507 0.500 

0.001 0.1 0.987 0.990 0.853 0.909 

0.002 0.05 0.958 0.962 0.735 0.714 

0.005 0.05 0.907 0.912 0.506 0.500 

allelic type. The argument leading to (1.22) does not appear to carry over 
to this model. We note from (1.22) that in Model 1, if q and u are both 
small, 

P J P  « 1/(1 + 2u/q )  »1/(1 + n 2 u/k ) ,  (1.44) 

which for η = 10 (the value used in the Maruyama and Kimura simula
tions) gives 

PJP χ  1/(1 + IOw/;.). (1.45) 

We also present, in Table 1.3, the simulation values of P J P  and the values 
calculated from (1.45). Again, "theoretical" and simulation values are close, 
although here we have little justification for using (1.45) as it derives from 
a model different from the present one. Despite this, and encouraged by 
the simulation results, we now form an approximation to P*, the prob
ability that two individuals drawn at random are of the same allelic type. 
We have from (1.36) that 

Ρ *  χ  I n - 1 P  +  ( n  — I jn - 1 P d ,  

and this is approximately 

α(α + 1)(α + |n)-1 log(l + a"1). (1-46) 

Letting u -*• 0 and using (1.13) leads to a suggested approximate limiting 
mutation-effective population size of n2/2k, about half the mean actual 
population size. In the case η = IO5, k = 100, discussed by Muruyama 
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and Kimura (1980), this is 5 χ IO7, in exact agreement with the value they 
calculate, and half of the mean actual population size (108). 

The expression (1.37) suggests that the standard deviation in the actual 
population size is about 2.2 χ IO5, so that the population size will seldom 
exceed 1.005 χ IO8. In other words, the actual population size and the 
mutation-effective population size will seldom differ by more than a factor 
of 2.01. The conjecture by Maruyama and Kimura that the actual popula
tion size might often be of order IO20 (so that there would be an enormous 
difference between actual and mutation-effective population sizes) seems 
to be without foundation. 

Note that if the mutation-effective population size in this model is about 
half the actual population size, we reach conflicting conclusions between 
Models 1 and 2 on the relative values of these quantities when, in Model 
1, q M n  < 1. This emphasizes strongly a point made above and returned 
to below, that the conclusions we draw should not be artefacts of partic
ular models and that we need a more general approach to the catastrophe 
problem. 

It is clear that in Model 1, explicit expressions can be found for many 
quantities of interest. However, for Model 2 the best that has been found 
above, for most quantities of interest, is a set of approximations, some
times based on tenuous arguments. Some specific problems for Model 2, 
some of which are very difficult, are the following. First, find the complete 
set of eigenvalues and hence the eigenvalue effective population size. 
Second, find the probability that two individuals have the same parent 
and then find the inbreeding population size. Third, find an exact expres
sion for P* and thus find the mutation-effective population size. Fourth, 
is there a parameter (analogous to qMn in Model 1) that determines the 
relative magnitudes of these effective population sizes and the mean actual 
population size? Fifth, is there ever a well-defined concept of a variance-
effective population size? Sixth, is there a more realistic catastrophe model 
analogous to Model 2 but not so dependent on population structure? 
Seventh, can the whole concept of modeling the catastrophe process be 
considered so that the conclusions drawn are not artefacts of particular 
models? Finally, can one derive a reasonable sampling theory for Model 
2, generalizing the one we found together many years ago for the random 
mating population case? 
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