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Introduction 

Transitive pseudogroups of local diffeomorphisms preserving 

geometric structures on manifolds have been studied by many authors; 

the origins of this subject are classical, and may be said to lie in the 

works of Sophus Lie and Elie Cartan. The structure of such a pseudo-

group Γ acting on a manifold X is reflected in the structure of the Lie 

algebra of formal infinitesimal transformations of Γ, that is to say, 

those formal vector fields on X which are formal solutions to the 

linear partial differential equation which defines the infinitesimal trans

formations of Γ. The Lie algebras of formal vector fields obtained in 

this way provide examples of what are now known as transitive Lie 

algebras: such Lie algebras are, in general, infinite-dimensional. 

The study of transitive Lie algebras was first placed on a strictly 

algebraic basis by the paper ([16]) of V. W. Guillemin and S. Sternberg. 

Subsequent work of Guillemin ([11]) characterized transitive Lie algebras 

as linearly compact topological Lie algebras which satisfy the descending 

chain condition on closed ideals, and established the existence of a 

Jordan-HSlder decomposition in such Lie algebras. This latter result 

is a weak analogue of the Levi decomposition for finite-dimensional Lie 

algebras. Several authors have since adopted this abstract algebraic 

viewpoint for the study of transitive algebras; one result of their work 

has been the rigorous and progressively simplified proofs ([12], [14], 

[15], [21], [23], [29]), in the category of transitive Lie algebras, of 

the classification of the infinite-dimensional primitive Lie pseudogroups 

given by E. Cartan ([3]). We shall make use of this classification in 

the present work. 



Transitive Lie algebras have been studied also to provide insight 

into the behavior of the integrability problem for transitive pseudogroup 

structures. A precise formulation of this problem may be found in 

([20]); for surveys of the principal results concerning this problem, we 

refer the reader to ([8]) and the introduction of ([9]). The role played 

by real transitive Lie algebras and their non-abelian minimal closed 

ideals in the integrability problem was elucidated by H. Goldschmidt 

and D. C. Spencer ([9])· In our present work, we give a complete 

algebraic description of the structure of these non-abelian minimal 

closed ideals. Our study was undertaken as a tool for the investigation 

of the integrability problem, and is an essential element in the proof of 

Conjecture III of ([9]) as outlined in ([8]) and in greater detail in the 

introduction to ([31]). The proof of this conjecture implies, in 

particular, that the integrability problem is solved for all transitive 

Lie pseudogroups acting on Rn  which contain the translations, a fortiori 

for all flat pseudogroups. In an attempt to prove Conjecture I of ([9]) 

following the outline suggested there, we found that the geometry of 

pseudo-complex structures (induced structures on real submanifolds of 

complex n-space (En) was expressed in the structure of non-abelian 

minimal closed ideals of complex type in real transitive Lie algebras. 

From this observation, we were able to construct simple counterexamples 

to Conjectures I and II of ([9]) involving such closed ideals; these 

counterexamples have appeared in our note ([4]). Our presentation 

follows through Section four the outline given in §13 of ([9]); this part 

of the present work contains our results on the structure of non-abelian 

minimal closed ideals of real type which are used by Goldschmidt in 

([31]) to prove Conjecture I of ([9]) for these closed ideals. In a 

sequel to ([31]), Goldschmidt will present a proof of Theorem 9 of 



([8]) which relies on our description of non-abelian minimal closed 

ideals of complex type in terms of pseudo-complex structures given in 

Section five; in this way, the proof of Conjecture III of ([9]) will be 

completed. 

In this work, we shall view transitive Lie algebras from an 

abstract viewpoint as topological Lie algebras, following the work of 

Guillemin and Sternberg ([11] , [16]) mentioned above. Let K be a 

field of characteristic zero, endowed with the discrete topology (even 

when K is equal to IR or ¢). A transitive Lie algebra is a linearly 

compact topological Lie algebra over K which possesses a fundamental 

subalgebra, that is, an open subalgebra L^ containing no ideals of L 

except {θ}; this is equivalent ([11]) to requiring that L satisfy the 

descending chain condition on closed ideals. Any finite-dimensional 

Lie algebra L over K becomes a transitive Lie algebra when endowed 

with the discrete topology, since {θ} is then a fundamental subalgebra 

of L. However, in the infinite-dimensional examples the topology plays 

a more essential role. If Γ is a transitive pseudogroup acting on a 

manifold X, and L is the Lie algebra of formal infinitesimal trans

formations of Γ at a point χ eX, then the isotropy subalgebra of L, 

that is, the subalgebra of formal vector fields in L which vanish at x, 

is a fundamental subalgebra I? of L. Conversely, it is a theorem of 

H. Goldschmidt ([6]) that any transitive Lie algebra L over JR and 

fundamental subalgebra L^ C L can be realized in this way. The 

abstract viewpoint of Guillemin and Sternberg which we adopt is thus 

seen to be completely consistent with the differential-geometric view

point. 



As we mentioned above, Guillemin proved ([11]) that a Jordan-

Holder decomposition can be introduced in any transitive Lie algebra L. 

Such a decomposition consists of a finite descending chain 

L = I0  D I i  3 ···  ̂  fn = {0} 

of closed ideals of L, such that, for each integer ρ with 0< p< n-1, 

either 

(i) The quotient IpAp+j is abelian; or 

(ii) The quotient Ip/^p +  i i- s  non-abelian, and is a minimal closed 

ideal of L/l ,. 
' P + 1 

Guillemin also showed that the number and type of quotients of type (ii), 

both as topological Lie algebras and as topological L-modules, is 

independent of the choice of Jordan-Holder sequence for L. The 

existence of such a decomposition had been conjectured (in the category 

of transitive pseudogroups) by E. Cartan. The quotient of a transitive 

Lie algebra by a closed ideal is again a transitive Lie algebra, since 

it also satisfies the descending chain condition on closed ideals; there

fore, each of the quotients Ip/l i-n a  Jordan-Holder sequence for a 

transitive Lie algebra L is a closed ideal in a transitive Lie algebra 

L/l j. Quotients of type (i); that is, closed abelian ideals of transi

tive Lie algebras, have been extensively studied as part of the work of 

Goldschmidt and Spencer ([9] » [10]). We shall concentrate here upon 

the structure of quotients of type (ii), that is, non-abelian minimal 

closed ideals of transitive Lie algebras. The investigations of 

Goldschmidt and Spencer cited above reduce the integrability problem 

for a transitive pseudogroup Γ to a series of questions concerning the 



structure of the quotients I / both as topological Lie algebras and 

topological L-modules, appearing in a Jordan-HSlder sequence for the 

Lie algebra L of formal infinitesimal transformations of Γ. As a 

consequence, our results bear directly upon the integrability problem 

for transitive pseudogroup structures. 

We now describe the main results of this work; to simplify our 

outline, we assume, unless otherwise specified, that all Lie algebras 

considered below are defined over the field IR of real numbers. Many 

of our results are obtained for linearly compact topological Lie algebras 

without the assumption of transitivity. For the sake of clarity, we 

make several preliminary observations before beginning our outline 

itself. 

Let L be a linearly compact topological Lie algebra, and suppose 

that I is a non-abelian minimal closed ideal of L. Then it is known 

([11]) that I possesses a unique maximal closed ideal J; moreover, the 

quotient l/J is a non-abelian simple transitive Lie algebra R. The 

commutator ring of R, that is, the algebra of IR-Iinear mappings 

c : R —*• R such that, for all ξ, η e R, 

c(U.l]) = [c(£), η] 

is, according to ([11]), actually a field which is a finite algebraic 

extension of ]R. Thus, the field is equal to IR or to (E; we shall, 

then, say that the non-abelian minimal closed ideal I of L is of real 

or complex type, respectively. The simple real transitive Lie algebra 

R may be viewed naturally as a transitive Lie algebra over its 

commutator field K^, and every real-linear derivation of R is actually 

Kj^-Iinear. Unless R is finite-dimensional, it need not be true that 



every derivation of R is inner. However, the space Der(R) of deriva

tions of R has a natural structure of transitive Lie algebra over K^, 

and the adjoint representation of R allows us to identify R with a closed 

ideal of finite codimension in Der(R). For η an integer > 0, consider 

the local algebra 

F  = Kr[[xI· "'· xJ] 

of formal power series in η indeterminates over (when η = 0, we 

mean that F = Kp); endow F with the Krull topology. The maximal 

ideal F0  of F consists of those formal series which vanish at the origin; 

the powers comprise a fundamental system of neigh

borhoods of zero in F, which is a linearly compact topological algebra. 

The space Der(F) of derivations of F has a natural structure of transi

tive Lie algebra over K^, with the Lie bracket given by the usual 

commutator of derivations; the stabilizer 

Der0(F) = {ξ e Der (F) j £(F°) C F0} 

of F° is a fundamental subalgebra of Der(F). There are natural 

structures of topological Lie algebra over and topological Der(F)-

module on the tensor product 

Der(R) (X) F ; 
R 

/\ 

the Hausdorff completion Der(R) F of this space inherits linearly 
R 

compact structures of topological Lie algebra and topological Der(F)-

module. Furthermore, the transitive Lie algebra Der(F) acts by 
Λ 

derivations on the Lie algebra Der(R) (X)k- F. We can, then, form the 
R 

semi-direct product 



(Der(R) ® F) © Der(F) , 
R 

/S 
which is a transitive Lie algebra over and R F is then a non-

R 
abelian minimal closed ideal in this Lie algebra. 

We come now to the actual outline of our results on the 

structure of non-abelian minimal closed ideals. Although our results 

are of greater interest and novelty in the case of ideals of complex 

type, it will be convenient to treat the real case first. We maintain 

the notational conventions of the previous paragraph. 

Assume that the non-abelian minimal closed ideal I of L is of 

real type. Then the normalizer 

N = N l(J) 

in L of the maximal closed ideal J of I is a subalgebra of finite co-

dimension in L, as is proved in ([11]). Set η = dim(L/N), and 

F = JRttx1, ... , xn]] . 

In Theorem 4.2 we prove that there exists a morphism of real topolo

gical Lie algebras 

Φ : L - (Der(R) ( S ) j r F ) © Der(F) , 

such that the restriction of Φ to I is an isomorphism 

Φ  I 1  : X - R ® e F  .  

The kernel of Φ is equal to the commutator of I in L, and the projection 

ir(®(L)) of $(L) onto Der(F) is a transitive closed subalgebra of Der(F), 
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in the sense that 

= Der(F) . 

Guillemin proved in ( [11]) that I and are isomorphic as 

abstract Lie algebras; our proof of Theorem 4 . 2 consists mainly of a 

close examination of Guillemin's work, combined with the observation 

(Lemma 2. 6) that the topology of Der(R) as a transitive Lie algebra 

coincides with the weak topology Der(R) inherits as a subspace of the 

continuous linear transformations of R. 

We now assume that the non-abelian minimal closed ideal 1 of L 

is of complex type. As above, the normalizer of J in L is 

a subalgebra of finite codimension n in L . In Section five, we show 

that I may be viewed naturally as a complex topological Lie algebra 

with J a maximal closed complex ideal, and that L acts, via the adjoint 

representation, on I by continuous complex-linear mappings. This 

action of L on I may be complexified to a representation of the complex 

Lie algebra on I; the normalizer N u of J under this 

representation is a complex subalgebra of of finite (complex) codi-

mension m <; n, since N " must contain We then associate 

to L and N " a (unitary) monomorphism of complex local algebras 

whose image we call H. Using the natural 

identification 

we allow Der to act on and denote 
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by A the stabilizer 

A = { | e D e r ( I R [ [ x 1 x j ]) | |(H) C H> 

of H; then A is a transitive Lie subalgebra of Der(IR[[x^, . . . , x n ] ]) 

in the sense that 

Der(IRt[x1 , . . . , x j ]) = A + Der°(3R[ [ x j XQ] ] ), 

and 

A 0 = A n Der°(IR[[x 1 , . . . , x j ]) 

is a fundamental subalgebra of A . Upon defining the semi-direct product 

(Der (R) (gl^H) © A 

as before, we obtain a real transitive Lie algebra in which R (x) ^H 

forms a non-abelian minimal closed ideal. In Theorem 5.2 , we prove 

that there exists a morphism of real topological Lie algebras 

i|j : L — (Der(R) ® a H ) © A 

such that the restriction of i[i to I is an isomorphism 

•Hj : I - R ® ^ . 

The kernel of I|J is equal to the commutator of I in L, and the projection 

•^(^(L)) of i|;(L) onto A is a transitive subalgebra of A, in the sense that 

A = TT(i|J(L)) + A 0 . 

We also associate to L and N " a Hermitian mapping 

( N " / N _ ) X ( N ' ' / ) - ( L _ / ( N " + N " ) ) 
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which we call the Levi form of I. The vanishing of is shown in 

Proposition 5 .4 to be equivalent to the existence of an isomorphism 

of real local algebras such that the complexification 

when restricted to H, is an isomorphism of H onto the subring 

In Proposition 5. 6, we prove 

that if L is a real transitive Lie algebra with fundamental subalgebra I? 

and abelian subalgebra V such that 

then the Levi form of each non-abelian quotient of complex type 

occurring in a Jordan-Holder sequence for L must vanish. This 

proposition is an essential result for the proof of Conjecture III of ( [9 ] ) . 

A key step in the proof of Proposition 5 .6 is provided by an unpublished 

result of Guillemin, which states that if I is a non-abelian minimal 

closed ideal of a transitive Lie algebra L (over any field of character-

istic zero) and N-^(J) is the normalizer in L of the maximal closed ideal 

J of I, then contains every fundamental subalgebra L^ of L. We 

have reproduced Guillemin's result here as Proposition 4 . 5. 

Returning to our discussion of ideals of complex type, the 

monomorphism 

which we construct from L and N " , may be viewed geometrically as the 



pullback mapping associated to the formal expansion φ at 0 e Kn  of an 

embedding 

φ : U — (Em , p(0) = 0 

of a neighborhood U of 0 in IRn as a generic real submanifold of (Em. 

Using results of Goldschmidt ([6]) on the analytic realization of transi

tive Lie algebras, one can show that φ can be chosen to be convergent, 

in which case y(U) becomes a real-analytic generic real submanifold of 

<Em; the proof of this will appear in a separate publication. Moreover, 

the local biholomorphic mappings of CCm  which preserve φ (U) restrict 

to form a transitive analytic pseudogroup Γ on <p(U); this places strong 

restrictions on the structure of the real submanifold φ(ϋ) C CCm. The 

subring HCd [[x^, ... , χ ] ] then corresponds to the restrictions to 

φ (U) of the formal holomorphic functions at 0 e (Em. The analytic 

infinitesimal transformations of Γ are the restrictions to <p(U) of those 

holomorphic vector fields defined near ψ (U) in (Em  which are tangent to 

9>(U); the real subalgebra AC Der(]R[[x^, ... , Xq] ]) corresponds to 

the formal infinitesimal transformations at 0 of Γ. We show that the 

Levi form of I can be identified with the Levi form, in the differential-

geometric sense, of the real submanifold y(U). In these terms, 

Proposition 5.4 asserts that the Levi form of I vanishes if and only if 

p(U) can be chosen to be an n-dimensional real hyperplane of (Em; 

indeed, this proposition accomplishes our analytic constructions explicitly 

in the special case in which I has vanishing Levi form. We make no 

appeal to these analytic constructions in the formal development of our 

work, although many of our results were conceived through such 

geometric considerations. We provide informal geometric interpretations 

in Section five to many of our formal statements. 
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One consequence of our structural descriptions, Theorems 4 . 2 

and 5. 2, is that if I is a non-abelian minimal closed ideal of a linearly-

compact topological Lie algebra L, then there exists a closed sub-

algebra L1 of L such that 

This is proved in Corollaries 4 . 5 and 5 .1 . 

To conclude our introduction, we describe the organization of 

this work. Section one is a compendium of results on transitive and 

linearly compact Lie algebras, containing those facts of which we make 

use in the remainder of this book. A serious effort was made to keep 

this section self-contained; the reader may, nonetheless, find it 

valuable to consult the references ( [11] , [ 16 ] , [24 ] ) for additional 

information. 

In Section two, we consider derivations of transitive Lie algebras. 

In contrast to the finite-dimensional case, it is not, in general, true 

that every derivation of a simple transitive Lie algebra is inner. Let 

K be a field of characteristic zero, let n > 1 be an integer, and L be a 

closed Lie subalgebra of Deri such that 

set In Proposition 2. 1 we show that 

if D is a derivation of L into Der such that 

then D is induced by the adjoint action of a unique element of 

D e r in particular, if D is a derivation of L such 
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that then D results from the adjoint action of a unique 

element of the normalizer of L^ in Der The 

significance of the latter result rests in the fact that L^ is of finite 

codimension in its normalizer. We apply this result to the classical 

simple transitive infinite-dimensional Lie algebras L defined in Section 

one; in Theorem 2. 1, we prove that for the unique primitive real iza-

tions of the classical algebras as transitive Lie subalgebras of 

Der the first Hochschild-Serre cohomology group 

vanishes. As a corollary, we deduce that the space Der(L) of 

derivations of L has a natural structure of transitive Lie algebra in 

which L is identified, via the adjoint representation, with a closed 

ideal of finite codimension. These results hold for any simple 

transitive Lie algebra L over a field K which is either algebraically 

closed or equal to the field of real numbers IR, by virtue of the 

known classification of such Lie algebras. For these algebras L, we 

establish, in Section three, the isomorphism 

Dei 

This endows the space Der with a structure 

of transitive Lie algebra in which | forms a 

non-abelian minimal closed ideal. The results of the remainder of the 

book are essentially independent of Section three, which is included only 

for completeness. Most of the material in Section two was previously 

known, but our proofs are particularly elementary and may be new. 



In Section four we have included, for the benefit of the reader, 

most of the results on closed ideals and Jordan-Holder decompositions 

contained in Guillemin's paper ([11]). This section culminates in 

Theorem 4.2, which is the first of our topological structure theorems 

for non-abelian minimal closed ideals described above. Section five 

contains our results on non-abelian minimal closed ideals of complex 

type; these results have been outlined previously. 



§1. Preliminaries 

Throughout this section, we denote by K an arbitrary field of 

characteristic zero which is endowed with the discrete topology. 

Let V be a Hausdorff topological vector space over K. Then V is 

said to be linearly compact if: 

(i) V is complete; and 

(ii) There exists a fundamental system {V } of neighborhoods of Q 

in V such that each V is a vector subspace of finite codimension in V. 

An example of such a space is provided by the local algebra 

F  = K t t x i  x J]  

of formal power series over K in η indeterminates χ,, ... , χ . Denote 
In 

by F^ the maximal ideal of F, which consists of those formal power 

j l  
series whose constant term vanishes. I f  F denotes the ( £  +  I )  -  r s t  

power of  f",  then the  ideals  ^  Q form a  fundamental  system of  

neighborhoods of O for the Krull topology on F; endowed with this topology, 

F  becomes a  l inearly  compact  topological  vector  space  over  K.  Further

more, in this topology, multiplication in the algebra F is a continuous 

mapping F XF -*-F; thus we see that F is a linearly compact topological 

algebra over K. If V is a finite-dimensional vector space over K, then 

V is linearly compact in the discrete topology. Moreover, since a finite-

dimensional Hausdorff vector space satisfying (ii) above is necessarily 

discrete ,  the  discrete  topology provides  the  only  l inearly  compact  s t ruc ture  

on a  f ini te-dimensional  space .  In  the  sequel ,  a  f ini te-dimensional  vector  

space will often be implicitly endowed with the discrete topology. 



The properties of Iinearly compact spaces which we shall require 

are subsumed in the following proposition. 

Proposition 1.1. Let V and W be linearly compact topological 

vector spaces over K. 

(i) If V1  is a closed subspace of V, then both V' and V/V' are 

linearly compact. 

(ii) A subspace V1  of V is open if and only if V1  is closed and of 

finite codimension in V. 

(iii) If Y1  and V" are closed subspaces of V, then the sum V + V" 

is closed in V. 

(iv) The topological direct sum V (f) W is linearly compact. 

(v) If ψ : V -» W is a continuous linear mapping, then the image 

IJO(V) is a closed subspace of W, and φ is an open mapping of V onto <p(V). 

In particular, any continuous linear bijection φ : V -• W is a topological 

isomorphism. 

(vi) (Closed graph theorem). A linear mapping φ : V -• W is con

tinuous if and only if the graph of φ is closed in V X W. 

(vii) If {^} is a family of linearly compact spaces, then the 

product JJ is linearly compact. If {(V^ an  inverse system of 

a 
linearly compact vector spaces and continuous linear mappings, then the 

projective limit Iim is linearly compact. 

(viii) (Chevalley's theorem). Let U be an open subspace of V, and 

let 


