


E instein Gravity in a Nutshell





E instein Gravity in a Nutshell

A. Zee

P R I N C E T O N U N I V E R S I T Y P R E S S . P R I N C E T O N A N D O X F O R D



Copyright © 2013 by Princeton University Press

Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

Cover art by Jane Callister

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Zee, A.
Einstein gravity in a nutshell / A. Zee.

pages cm — (In a nutshell)
Summary: “This unique textbook provides an accessible introduction to Einstein’s general theory of

relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend
of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most
exciting frontiers of research today, including de Sitter and anti–de Sitter spacetimes, Kałuza-Klein theory,
and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and
group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy
on beginners, and includes anecdotes from the history of physics that will appeal to students and experts
alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced
mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and
extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students,
Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible
to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well
as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible
introduction to Einstein’s general theory of relativity Guides readers from Newtonian mechanics to the
frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found
in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises
and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual
(available only to teachers) ”— Provided by publisher.

Includes bibliographical references and index.
ISBN 978-0-691-14558-7 (hardback)
1. General relativity (Physics)—Textbooks. I. Title.

QC173.6.Z44 2013
530.11—dc23 2012040613

British Library Cataloging-in-Publication Data is available

This book has been composed in Scala LF with ZzTEX
by Princeton Editorial Associates Inc., Scottsdale, Arizona

Printed on acid-free paper

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://press.princeton.edu


To WW and Max





Contents

Preface xi

0 Part 0: Setting the Stage

Prologue: Three Stories 3

Introduction: A Natural System of Units, the Cube of Physics,
Being Overweight, and Hawking Radiation 10

Prelude: Relativity Is an Everyday and Ancient Concept 17

ONE Book One: From Newton to the Gravitational Redshift

I Part I: From Newton to Riemann: Coordinates to Curvature

I.1 Newton’s Laws 25

I.2 Conservation Is Good 35

I.3 Rotation: Invariance and Infinitesimal Transformation 38

I.4 Who Is Afraid of Tensors? 52

I.5 From Change of Coordinates to Curved Spaces 62

I.6 Curved Spaces: Gauss and Riemann 82

I.7 Differential Geometry Made Easy, but Not Any Easier! 96

Recap to Part I 110



viii | Contents

II Part II: Action, Symmetry, and Conservation

II.1 The Hanging String and Variational Calculus 113

II.2 The Shortest Distance between Two Points 123

II.3 Physics Is Where the Action Is 136

II.4 Symmetry and Conservation 150

Recap to Part II 155

III Part III: Space and Time Unified

III.1 Galileo versus Maxwell 159

III.2 Einstein’s Clock and Lorentz’s Transformation 166

III.3 Minkowski and the Geometry of Spacetime 174

III.4 Special Relativity Applied 195

III.5 The Worldline Action and the Unification of Material Particles
with Light 207

III.6 Completion, Promotion, and the Nature of the Gravitational Field 218

Recap to Part III 238

IV Part IV: Electromagnetism and Gravity

IV.1 You Discover Electromagnetism and Gravity! 241

IV.2 Electromagnetism Goes Live 248

IV.3 Gravity Emerges! 257

Recap to Part IV 261

TWO Book Two: From the Happiest Thought to the Universe

Prologue to Book Two: The Happiest Thought 265

V Part V: Equivalence Principle and Curved Spacetime

V.1 Spacetime Becomes Curved 275

V.2 The Power of the Equivalence Principle 280

V.3 The Universe as a Curved Spacetime 288

V.4 Motion in Curved Spacetime 301

V.5 Tensors in General Relativity 312

V.6 Covariant Differentiation 320

Recap to Part V 334



Contents | ix

VI Part VI: Einstein’s Field Equation Derived and Put to Work

VI.1 To Einstein’s Field Equation as Quickly as Possible 337

VI.2 To Cosmology as Quickly as Possible 355

VI.3 The Schwarzschild-Droste Metric and Solar System Tests
of Einstein Gravity 362

VI.4 Energy Momentum Distribution Tells Spacetime How to Curve 378

VI.5 Gravity Goes Live 388

VI.6 Initial Value Problems and Numerical Relativity 400

Recap to Part VI 406

VII Part VII: Black Holes

VII.1 Particles and Light around a Black Hole 409

VII.2 Black Holes and the Causal Structure of Spacetime 419

VII.3 Hawking Radiation 436

VII.4 Relativistic Stellar Interiors 451

VII.5 Rotating Black Holes 458

VII.6 Charged Black Holes 477

Recap to Part VII 485

VIII Part VIII: Introduction to Our Universe

VIII.1 The Dynamic Universe 489

VIII.2 Cosmic Struggle between Dark Matter and Dark Energy 502

VIII.3 The Gamow Principle and a Concise History of the Early Universe 515

VIII.4 Inflationary Cosmology 530

Recap to Part VIII 537

THREE Book Three: Gravity at Work and at Play

IX Part IX: Aspects of Gravity

IX.1 Parallel Transport 543

IX.2 Precession of Gyroscopes 549

IX.3 Geodesic Deviation 552

IX.4 Linearized Gravity, Gravitational Waves, and the Angular Momentum
of Rotating Bodies 563

IX.5 A Road Less Traveled 578

IX.6 Isometry, Killing Vector Fields, and Maximally Symmetric Spaces 585

IX.7 Differential Forms and Vielbein 594



x | Contents

IX.8 Differential Forms Applied 607

IX.9 Conformal Algebra 614

IX.10 De Sitter Spacetime 624

IX.11 Anti de Sitter Spacetime 649

Recap to Part IX 668

X Part X: Gravity Past, Present, and Future

X.1 Kałuza, Klein, and the Flowering of Higher Dimensions 671

X.2 Brane Worlds and Large Extra Dimensions 696

X.3 Effective Field Theory Approach to Einstein Gravity 708

X.4 Finite Sized Objects and Tidal Forces in Einstein Gravity 714

X.5 Topological Field Theory 719

X.6 A Brief Introduction to Twistors 729

X.7 The Cosmological Constant Paradox 745

X.8 Heuristic Thoughts about Quantum Gravity 760

Recap to Part X 775

Closing Words 777

Timeline of Some of the People Mentioned 791

Solutions to Selected Exercises 793

Bibliography 819

Index 821

Collection of Formulas and Conventions 859



Preface

Not simple, but as simple as possible

Physics should be made as simple as possible,
but not any simpler.

—A. Einstein

Einstein gravity should be made as simple as possible, but not any simpler.
My goal is to make Einstein gravity∗ as simple as possible. I believe that Einstein’s

theory should be readily accessible to those who have mastered Newtonian mechanics and
a modest amount of classical mathematics. To underline my point, I start with a review of
F =ma .

Seriously, what do you need to know to read this book? Only some knowledge of
classical mechanics and electromagnetism! So I fondly imagine, perhaps unrealistically.
More importantly, you need to be possessed of what we theoretical physicists call sense—
physical, mathematical, and also common.

I wrote this book in the same spirit as my Quantum Field Theory in a Nutshell.1 In his
Physics Today review of that book, Zvi Bern wrote this lovely sentence aptly capturing my
pedagogical philosophy: “The purpose of Zee’s book is not to turn students into experts—
it is to make them fall in love with the subject.” I might extend that to “fall in love with the
subject so that they might desire to become experts.” Here I am echoing William Butler
Yeats, who said, “Education is not the filling of a pail, but the lighting of a fire.”

∗ Also known as general relativity.
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A portion of this book can be used for an undergraduate course. I have done it, and I
provide a detailed course outline later in this preface.

Accessible is not to be equated with dumbed-down or watered-down. Also, accessible is
not necessarily the same as elementary: in the last parts of the book, I include some topics
far beyond the usual introductory treatment.

My strategy to make Einstein gravity as simple as possible has two prongs. The first is the
emphasis on symmetry. As some readers may know, I have written an entire book2 on the
role of symmetry in physics, and I absolutely love how symmetry guides us in constructing
physical theories, a notion that started with Einstein gravity, in fact. The second is the
extensive use of the action principle. The action is invariably simpler than the equations of
motion and manifests the inherent symmetry much more forcefully. I can hardly believe
that some well-known textbooks on Einstein’s theory barely mention the Einstein-Hilbert
action. Symmetry and the action principle constitute the two great themes of theoretical
physics.

To get a flavor of what the book is about, you might want to glance at the recaps first;
there is one at the end of each of the ten parts of the book.

How difficult is Einstein gravity?

Any intelligent student can grasp it without too much trouble.
—A. Einstein, referring to his theory of gravity

When Arthur Eddington returned from the famous 1919 solar eclipse expedition that
observed light from a distant star bending in agreement with Einstein gravity, somebody
asked him if it were true that only three people understood Einstein’s theory. Eddington
replied, “Who is the third?” The story, apocryphal3 or not, is one of many4 that gives
Einstein’s theory its undeserved reputation of being incomprehensible.

I believe that in some cases, people like to persist in believing that Einstein’s theory is
beyond them. A renowned philosopher who is clearly well above average in intelligence
(and who understands things that I find impossible to understand) once told me that he
was tired of popular accounts of general relativity and that he would like to finally learn
the subject for real. He also emphasized to me that he had taken advanced calculus5 in
college, as if to say that he could handle the math. I replied that, for a small fee, my
impecunious graduate student could readily teach him the essence of general relativity
in six easy lessons. I never heard from the renowned philosopher again. I was happy and
he was happy: he could go on enunciating philosophical profundities about relative truths6

and physical reality.
The point of the story is that it is not that difficult.
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For whom is this book intended

Experience with my field theory textbook suggests that readers of this book will include the
following overlapping groups: students enrolled in a course on general relativity, students
and others indulging in the admirable practice of self-study, professional physicists in
other research specialties who want to brush up, and readers of popular books on Einstein
gravity who want to fly beyond the superficial discussions these books (including my own7)
offer. My comments below apply to some or all of these groups.8

Personally, I feel special sympathy for those studying the subject on their own, as I
remember struggling9 one summer during my undergraduate years with a particularly
idiosyncratic text on general relativity, the only one I could find in São Paulo back in those
antediluvian times. That experience probably contributed to my desire to write a textbook
on the subject. From the mail I have received regarding QFT Nut, I have been pleasantly
surprised, and impressed, by the number of people out there studying quantum field
theory on their own. Surely there are even more who are capable of self-studying Einstein
gravity. All power to you! I wrote this book partly with you in mind.

Serious students of physics know that one can’t get far without doing exercises. Some
of the exercises lead to results that I will need later.

Quite naturally, I have also written this book with an eye toward quantum field theory and
quantum gravity. While I certainly do not cover quantum gravity, I hope that the reader who
works through this book conscientiously will be ready for more specialized monographs10

and the vast literature out there.
So, I prevaricated a little earlier. In the latter part of the book, occasionally you will need

to know more than classical mechanics and electromagnetism. But, to be fair, how do you
expect me to talk about Hawking radiation, a quintessentially quantum phenomenon, in
chapter VII.3? Indeed, how could we discuss natural units in the introduction if you have
never heard of quantum mechanics? For the readers with only a nodding acquaintance
with quantum mechanics, the good news is that for the most part, I only ask that you
know the uncertainty principle.

I do not doubt that some readers will encounter difficult passages. That’s because I have
not made the book “any simpler”!

In the preface to the second edition of my quantum field theory book, I mentioned that
Steve Weinberg and I, each referring to his own textbook, each said, “I wrote the book that
I would have liked to learn from.” So this is the book I would have liked as an undergrad∗

eager to learn Einstein gravity. I would have liked having at least a flavor of what the latest

∗ In a letter to the editors of Physics Today in 2005, A. Harvey and E. Schucking wrote that, in view of the
“monumental lip service” paid to Einstein in the physics community, “it is a scandal” that Einstein gravity is still
not regularly taught to undergraduates. I find it even more of a scandal that many physics professors proudly
profess ignorance of Einstein gravity, saying that it is irrelevant to their research. Yes, maybe, but this is akin to
being proudly ignorant of Darwinian evolution because it is irrelevant to whatever you are doing.
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excitement was all about. In this spirit, I offer chapter X.6 on twistors, for example, trusting
the reader to be sophisticated enough to know that all one should expect to get from a single
textbook chapter is an entry key to the research literature rather than a complete account
of an emerging area.

The importance of feeling amazed, and amused

I am amazed that students are not amazed.
The action principle amazed Feynman when he first heard about it. In learning theoret-

ical physics, I was, and am, constantly amazed. But in teaching, I am amazed that students
are often not amazed. Even worse, they are not amused.

Perhaps it is difficult for some students to be amazed and amused when they have to
drag themselves through miles of formalism. So this exhortation to be amazed is related
to my attempt to keep the formalism to an absolute minimum in my textbooks and to get
to the physics.

To paraphrase another of my action heroes, students should be required to gasp and
laugh11 periodically. Why study Einstein gravity unless you have fun doing it?

As much fun as possible

Bern started his review of my quantum field theory textbook thus:

When writing a book on a subject in which a number of distinguished texts already exist, any

would-be author should ask the following key question: What new perspectives can I offer that

are not already covered elsewhere? . . . perhaps foremost in A. Zee’s mind was how to make

Quantum Field Theory in a Nutshell as much fun as possible.

Good question! My answer remains the same. I want to make Einstein gravity as much
fun as possible.

Sidney Coleman, my professor in graduate school and thesis advisor, once advised me
that theoretical physics is a “gentleman’s diversion.” I was made to understand that I
should avoid doing long sweaty calculations. This book reflects some of that spirit. Thus,
in chapter VI.1, instead of deriving Einstein’s field equation as a true Confucian scholar
would, I try to get to it as quickly as possible by a method I dub “winging it southern
California style.” Similarly, in chapter VI.2, I get to cosmology as quickly as possible.

This invariably brings me to the dreaded topic of drudgery in general relativity. Many
theory students in my generation went into particle physics rather than general relativity
to avoid the drudgery of spending an entire day calculating the Riemann curvature tensor.
I did.12 But that was the old days. Nowadays, students of general relativity can use ready-
made symbolic manipulation programs13 to do all the tedious work. I strongly urge you,
however, to write your own programs, as I did, rather than open a can. It also goes without



Preface | xv

saying that you should calculate the Riemann curvature tensor from scratch at least a few
times to know how all the cogs fit together.

You make the discoveries

My pedagogical philosophy is to let students discover certain things on their own. Some
of these lessons evolved into what I call extragalactic fables. For example, in part IV, I let
the extragalactic version of you discover electrodynamics and gravity. In chapter IV.3, you
discover that gravity affects the flow of time.

I also whet your appetite by anticipating. For example, I mention the Einstein-Rosen
bridge already in chapter I.6. In working out the shortest distance between two points in
chapter II.2, I mention that you will encounter the same equations when you study motion
around black holes. In part II, I note that the peculiar replacement of a simple equation by
a more complicated looking equation foreshadows Einstein’s deep insight about gravity to
be discussed in part V.

The return of Confusio

Readers of QFT Nut might be pleased to hear that Confusio makes a return appearance,
together with other characters, such as the Smart Experimentalist. Some other friends of
mine, for example the Jargon Guy, also show up. Here I am alluding to what Einstein
referred14 to as “more or less dispensable erudition.”

An outline of this book

This book appears to start at a rather low level, with a review of Newtonian mechanics
in part I. The reason is that I want to treat two topics more thoroughly than usual:
rotations and coordinate transformations. A good understanding of these two elementary
subjects allows us to jump to the Lorentz group and curved spacetime later. My pedagogical
approach is to beat 2-dimensional rotations to death. Depending on how mechanics is
taught, students typically miss, or fail to grasp, some of the material in the chapter on
tensors. I repeat the discussion of tensors under various guises and in different contexts.
One of my students who read the book points to various places where I appear to repeat
myself, but I told her that it is better to hear some key point for the third time15 than not to
have understood it at all. A respected senior colleague and pioneer in Einstein gravity said
to me that a good teacher is someone who never says anything worth saying only once.

I devote part II to a discussion of the all-important action principle, because I believe
that it provides the quickest, and the most fundamental, way to Einstein gravity (and to
quantum field theory). Part III is devoted to special relativity but, in contrast to some
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elementary treatments, the emphasis is on geometry and completion, not on a collection of
paradoxes. In part IV, as was mentioned earlier, I let you discover electromagnetism and
gravity, and so the treatment is somewhat nonstandard. Thus, even if you feel that you
already know special relativity, you might want to take a quick look at part III and part IV.

Many readers probably pick up this book because of a burning desire to learn Einstein
gravity. These readers would have already mastered Newtonian mechanics and special
relativity, and they could probably cut to the chase and skip directly to part V. To them, the
first four parts may appear to be a rather leisurely preparation for Einstein gravity. Still, I
would counsel skimming, rather than skipping, the first four parts. At the very least, parts
I–IV set down the conventions and notation. More importantly, they offer up the ideology
of this text, an ideology that can be simply stated: action!

While I appear to start slow in parts I–III, I am actually setting things up so that we can
go fast in parts V and VI. For example, all the discussion about coordinate transformation
and curved spaces is to prepare the reader for a quick plunge into curved spacetime in
chapter V.1. Similarly, the action principle enables the geodesic equation to be introduced
early on, in part II, so that it is “ready to trot” when needed in part V. In considering
whether to sign up for my course that grew into this book, some students ask how fast I
will be zooming through special relativity to get to the “good stuff.” But special relativity
is good stuff! In particular, it is essential to understand special relativity as the geometry
of spacetime∗ before moving on to general relativity.

The essence of Einstein gravity is explained in parts V and VI. The rest of the book
contains what may be regarded as applications of the theory as developed in part VI. Part X
contains extras that some might consider beyond the scope of an introductory text. The
title is thus something of a misnomer, but to please my publisher, I am obliged to keep
up a running joke I started with my field theory book. A better title might be Gravity from
Newton to the Brane World.

The role of appendices

As a textbook writer, I am torn between being concise and being complete. One way out is to
place numerous topics in appendices to various chapters. Some are fun, such as Einstein’s
derivation of E =mc2 in his 1946 Haifa lectures (see chapter III.6), which, unfortunately,
is in danger of being forgotten and which I much prefer to his 1905 derivation. Another
example is Weyl’s shortcut to the Schwarzschild solution (see chapter VI.3). Some are
results I will need later, but often much later. For example, I talk about the speed of sound
in an appendix to chapter III.6, but I won’t need it until I get to the cosmic microwave
background. Some appendices are peripheral or technical. When possible, I try to give an
intuitive and heuristic understanding before launching into a long development, such as

∗ A multitude of books treat special relativity, but while they all get the job done, they differ widely in conceptual
clarity. Besides the geometrical view of special relativity, I also want to emphasize the Lorentz action as leading
to a unified approach to both massive and massless particles.
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the treatment of Fermi normal coordinates. Some are for enrichment. In sum, the use of
appendices represents my effort to appeal to a broad range of readers with enormously
different levels of knowledge and sophistication. The reader should not feel obliged, upon
first reading this book, to study all the appendices. Each should exercise his or her own
judgment.

Still, a book this size is inevitably incomplete, and so it comes down to the author’s
choice (of course). So many beautiful results, so little space and time! I regard certain
topics, though important, as better covered in more specialized tomes, such as gravitational
lensing, and prefer to include some topics not discussed in several standard textbooks, such
as anti de Sitter spacetime, brane worlds, and twistors.

The most incomprehensible thing about some physics textbooks

The most incomprehensible thing about the physical world is
that it is comprehensible.

—A. Einstein

The most incomprehensible thing about some physics textbooks is that they are in-
comprehensible.

They manage to render the easily comprehensible into the nearly incomprehensible.
Some textbook writers are simplifiers, others are what I call complicators. In defiance of
Einstein’s exhortation, many authors strive to make physics as complicated as possible, or
so it seems to me. In the research literature, the cause of obscurity may be unintentional
or intentional: either the author has not understood the issues involved completely (often
laudably so, when the author is at the cutting edge), or the author wants to impress upon
the reader the profundity of his or her paper by resorting to obfuscations. But in a textbook?

My task, and hope, in my textbooks is to make physics as simple as possible, as the “old
man” with his toy16 said. Having written both a textbook and a couple of popular books, I
am perhaps qualified to express my opinions here. Popular books attempt to make physics
simpler than it really is, thus in some sense deceiving the reader. Textbooks are different:
they must make the reader work to master the subject. But making the reader work is not
the same as making the reader suffer by rendering simple things obscure.

No bijective maps in this book

I am puzzled by students who profess no trouble with the physics but moan∗ about the
math. All the “grown-ups” would say the opposite. The pros regard Riemannian geometry,

∗ Indeed, many of the postings on the sites of online booksellers regarding general relativity texts lament the
difficulty of the math. At the other extreme, a few, by misguided individuals in my opinion, complain about the
lack of rigor.
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which is after all totally logical and algorithmic, as easy, but continue to lose sleep over
Einstein’s theory. Regarding the math, I can say, with only slight exaggeration, that mastery
of the index notation and the chain rule almost suffices. Indeed, any serious student with
a future in theoretical physics should be continually puzzled by the physics but not at all
by the math.

Einstein did not say that physics should be made simple. Of course, physics is not
simple, and understanding Einstein’s theory does require effort. Surely you have heard
that Einstein gravity involves curved spacetime, so there is no getting around learning
the language needed to describe curvature. My strategy is to introduce math only when
necessary, and then to illustrate the key concepts with plenty of examples. I dislike the Red
Army17 approach, and so I do not start by defining bundles on the tangent plane. I bring
in the math gently and sneak in curvature early on via the familiar change of coordinates.

As for rigor, I will let yet another of my action heroes speak. “I’ll differentiate any
function, even the freaking delta function, as many times as I darn well please.” So if you
have to differentiate, just differentiate until the expression you are differentiating starts
bleating for mercy. The trick is to know when it is absolutely necessary to be rigorous
(which is seldom—I would never say never).

I respectfully submit that this book is not for those who want rigor.
While I realize the need for and the benefit of precise definition, for the most part I

simply plead membership in the Feynman18 “Shut up and calculate” school of physics.19

Thus, I won’t trouble your sleep with assertions such as “A bijective differentiable map of
a manifold, whose inverse is also differentiable, is called a diffeomorphism.” Regarding
statements like this, I think that another Einstein quote may be apropos: “We should
take care not to make the intellect our god; it has, of course, powerful muscles, but no
personality.”20 Yet another relevant quote: “The people in Göttingen sometimes strike me,
not as if they wanted to help one formulate something clearly, but instead as if they wanted
only to show us physicists how much brighter they are than we.”21 Alas, “the people in
Göttingen” have now gone off and multiplied,∗ and some even live in our midst. Precise
definitions are indeed necessary occasionally, but by and large, they don’t do much good
in theoretical physics. Some things are better left undefined. In this connection, also keep
in mind the distinction between true clarity and false clarity.22 For example, I consider the
insistence on saying “pseudo-Riemannian manifolds” in a book of this level false clarity
at best.

As I was putting the finishing touches on this book, I read about some notes23 Feynman
scribbled to himself before teaching some course: “First figure out why you want the
student to learn the subject and what you want them to know, and the method will result
more or less by common sense.” Well said! As it turned out, that was the method I followed
when writing this book.

If you feel that bijection is indispensable for your existential essence, then I also respect-
fully submit that this book is not for you.

∗ One tribe is known to look at “old fashioned” indices with contempt. Only coordinate-free notations24 are
good enough for them.
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But of course I am not against mathematics. For instance, I am all for differential forms
(see chapters IX.7 and IX.8). However, when faced with a new formalism, I tend to be
practical and ask, “For the time invested in learning it, what is the payoff?” How significant
is it for the physics?

Teaching from this book and self-studying

It would be ideal to teach a leisurely year-long course based on this book. But I have also
taught Einstein gravity at the University of California, Santa Barbara, as a scandalously
short one-quarter undergraduate course consisting of only 29 lectures. The students al-
legedly knew the action principle and special relativity, but I was appropriately skeptical.
Here is the actual course plan.

Lecture 1 gives an overview. Lectures 2–6 cover chapters I.5 and I.6, starting with the
notion of a metric and illustrated with numerous examples, including the Poincaré half
plane, and ending with locally flat coordinates and a count of the components contained
in the curvature tensor. Lectures 7 and 8 cover part II, and lectures 9 and 10 part III. In
lectures 11 and 12, I let the students discover electromagnetism and gravity and derive
how gravity affects the flow of time. Lectures 13–15 introduce the equivalence principle
and cover part V up to chapter V.3, ending with closed, flat, and open universes.

The second half of the course proceeds as follows:

Lecture 16: the geodesic equation reduced to Newton’s equation, gravitational redshift, spher-

ically symmetric spacetime with time dependence

Lecture 17: the motion of particles and light in static spherically symmetric spacetime

Lecture 18: covariant differentiation, the geometrical picture

Lecture 19: to Einstein’s field equation as quickly as possible

Lecture 20: the Riemann curvature tensor and its symmetry properties

Lecture 21: the Einstein-Hilbert action

Lecture 22: the cosmological constant and the expanding universe

Lecture 23: Schwarzschild metric, with precession of planets and radar echo delay described

in words and pictures

Lecture 24: the energy momentum tensor

Lecture 25: general proof of energy momentum conservation

Lecture 26: the Einstein tensor and the Bianchi identity

Lecture 27: black holes in various coordinates

Lecture 28: the causal structure of spacetime

Lecture 29: Hawking radiation and a grand review

So it is entirely possible to cover the bulk of this book in a one-quarter course! I did it.
Students were expected to do some reading and to fill in some gaps on their own. Of course,
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instructors could deviate considerably from this course plan, emphasizing one topic at the
expense of another. They might also wish to challenge the better students by assigning the
appendices and some later chapters.

Here I come back to those I applauded earlier for self-studying Einstein gravity. Some
of you might want to know which chapters to read. The answer is of course that you
should read them all, in an ideal world. But if you want to get “there” quickly, I suggest
the following. You are on your own regarding the first three parts: it all depends on what
you already know. So try starting with part IV and see how often you need to refer back to
an earlier chapter. Part V is indispensable, particularly the equivalence principle and the
tour of curved spacetimes. You need to understand the covariant derivative, but you could
skip the somewhat heavier appendices in chapter V.6. After the covariant derivative, you
are ready for the heart of the matter, Einstein’s field equation, in chapter VI.1. The rest
of part VI forms the core of a traditional course on general relativity, but my emphasis
is somewhat less on working out orbits in detail. That’s it! You would have then reached
a certain level of mastery of Einstein gravity. You could then regard the rest of the book,
parts VII–X, as a buffet of topics that you could browse at your leisure. Part X contains
more speculative topics, including some that may not be of lasting value. Be warned!
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Notes

1. Hereafter referred to as QFT Nut.
2. A. Zee, Fearful Symmetry. Hereafter, Fearful.
3. See chapter VI.3.
4. Chaim Weizmann, the first president of Israel and a chemist, once crossed the ocean with Albert Einstein

on the same liner, and Einstein tried to explain the theory of relativity to him. When asked about this later,
Weizmann said something like “I did not understand his theory, but he certainly convinced me that he did.”

5. For the record, I took a philosophy course in college. To further emphasize that I am not totally lacking in
“philosophical credentials,” I was once invited by a philosophy professor to lecture, thanks to one of my
popular books, to an auditorium full of philosophers. I like philosophers.

6. Einstein once said that he should have called his work “invariance theory” and lamented his use of the word
“relative.”

7. A. Zee, An Old Man’s Toy. Hereafter, Toy/Universe.
8. In my introduction to Feynman’s book on quantum electrodynamics, I wrote about three different kinds of

readers of that book. Only part 0 of this book will be comprehensible to the first kind. See R. P. Feynman,
QED: The Strange Theory of Light and Matter, with a new introduction by A. Zee, Princeton Science Library,
2006.

9. An undergrad friend had also deluded me into thinking that it was salutary to read Einstein in the original
German!

10. Read J. Polchinski, String Theory, for example.
11. QFT Nut, p. 473.
12. For the record, I started my research career with John Wheeler, studying gravitational wave emission from

neutron stars. For Wheeler’s influence on his students, see Charles W. Misner, “John Wheeler and the
Recertification of General Relativity as True Physics,” in General Relativity and John Archibald Wheeler, ed. I.
Ciufolini and R. Matzner, Springer, 2010.

13. See my remarks in chapter IX.9, for example.
14. A. Einstein, Autobiographical Notes, Open Court, 1999.
15. In any case, if you think that I talk too much about tensors, you could simply feel smugly superior to those

poor souls who never get it.
16. See Toy/Universe. Also see figure 2b in the prologue to book two.
17. I learned this terminology (which, I should clarify, referred to the Russian, not the Chinese, version) in a

conversation with Steve Weinberg about textbooks. It has something to do with lining up all the tanks first.
18. A colleague who got his doctorate at Caltech told me the following story. He was examined by a committee

consisting of Feynman and a bunch of lesser lights. One of the lesser lights posed a question to my friend, who
proceeded to answer it perfectly, outlining the calculation necessary and explaining the physical significance
of the result. The lesser light then opined ominously, “You should have also said . . . ” and hereforth issued
from his mouth a long string of highfalutin hundred-dollar words. Feynman turned to the lesser light and
announced to the rest of the room, “But that’s exactly what he said!”

Here is a totally gratuitous Feynman story that has nothing to do with the discussion at hand. During the
exam, Feynman asked a question about quantum mechanics that the student was unable to answer. Feynman
exploded, saying something like “Quantum mechanics was invented in the 1920s and it’s now 1972; you
really should have mastered quantum mechanics by now!” A committee member turned to Feynman and
said softly, “Dick, Dick, it’s now 1973.”

19. A colleague told me his retort to Feynman: “Shut up and contemplate.” Of course, Feynman is capable of
doing both. Contrary to myth, Feynman won the national Putnam mathematics competition. Here we are
talking about people who can only talk and not calculate.
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20. The quote is possibly apocryphal.
21. Quoted in C. Reid, Hilbert, Springer, 1996, p. 142.
22. As one of my professors, an exceedingly distinguished theoretical physicist, used to say, the main purpose

of all the talk about tangent bundles and pullback is to frighten young children. This is not entirely true, but,
oh well.

23. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, volume III, Addison Wesley
(Commemorative issue 2004), p. xi.

24. I am certainly not against coordinate-free notations. In physics, the only issue is which notation is best suited
for the job at hand. Coordinate-free notations are great for proving general theorems but are not so good for
calculating. In this connection, I might regale the reader with a story. At a recent Santa Barbara conference
on black holes, dS, AdS, gravity dual, and so on—in short, the latest hot stuff—I was chatting at lunch
with two leading young researchers, up and coming stars, not some aging curmudgeons with congealed
opinions. When I mentioned how some people clamored for index-free notations, one of these two leading
lights basically said to please get those people out of her sight. The other told me a more illuminating story.
During grad school, to deepen his understanding of Einstein gravity, he enrolled in a course taught by a
famous mathematician. As it happened, he was the only student able to do the problems in the final exam
involving actual calculations: he did them by first using old fashioned indices and then translating back into
the abstract notation used in the course.

The index-free notation in Einstein gravity is somewhat analogous to using vectors without committing
to any specific coordinate choice. For example, one can prove easily that �L= �r × �p is conserved, but try to
do the spinning top on an oscillating inclined plane without setting up coordinates! The difference between
the uninitiated and the misinformed is that the uninitiated is not acquainted with a particular formalism,
while the misinformed insists that only the particular formalism he or she likes is any good.
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Prologue

Three Stories

Story 1: The drowning beauty and the scrawny lifeguard

Since I started my quantum field theory text1 with a story, possibly apocryphal, about
Feynman in a quantum mechanics class, I feel compelled to start this text also by telling a
story, possibly true,2 about Feynman. The movie opens on a gorgeous southern California
beach. We zoom in on a lifeguard, noticeably scrawnier than the other lifeguards. But
on the other hand, we soon discover that he is considerably smarter. Egads, it is Dick
Feynman, in the days before Baywatch! Perched on his high chair, he has been watching
an attractively curvaceous swimmer with great interest, plotting how he could win the girl’s
affection, all the while solving a field theory problem in his head. Suddenly, he notices that
the girl is splashing about frantically. She is going under! Must be a cramp! An action hero
is as an action hero does: Feynman jumps down from his lookout and goes into action.∗

The other lifeguards are already proceeding in a straight line (starting from point F, the
lifeguard station, in figure 1, going along the dotted line) toward the girl (at point G). That
would be the path of least distance. But no, Feynman has already calculated the path that
would allow him to reach the girl in the least amount of time. Time counts more than
space here: least time trumps least distance. Our hero (like other humans) can run much
faster, even on a soft sandy beach, than he can swim. So the rescuer should spend more
time running before plunging into the sea. A simple high school level calculation (exercise
1) shows Feynman the best path to take (see the solid line in figure 1). Our hero beats the
other guys and gets to the eternally grateful girl first!

∗ “Physics is where the action is.” See chapter III.2.
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Figure 1 The best possible path for Feynman to follow
to get to the drowning girl is along the solid lines
from F to G.

But you don’t have to calculate to see that there is an optimal path. Only a cretin would
follow the third path (the dashed line) shown in the figure!

In the 17th century, Fermat discovered that light, just like Feynman, also follows a least
time principle, and as a result “bends” as it enters from one medium (say, air) into another
(say, water). To read these very words, you have, or rather your saintly mother has, cleverly
positioned in your eyes a blob of watery substance (known to the cognoscenti as a lens)
that you squeeze just so, using tiny muscles, to bend light to your advantage and bring the
ambient light bouncing off these words on the printed page into focus. Your mother, as the
product of eons of evolution, was oh so clever, giving you eyes. As we speak (so to speak),
you are using precisely this phenomenon of light bending to save the light entering your
eyes some time, a phenomenon known as refraction, and to gain yourself some knowledge
about physics and the universe—an activity evolution applauds: reading this book could
conceivably boost your reproductive advantage.

We all know that light travels in a straight line, but we also notice easily that when light
enters water from air, it bends (as shown in figure 1 with “sand” replaced by “air”). Indeed,
that explains why people standing in swimming pools appear to have comically short legs,∗

a phenomenon you can test by sticking a pencil in a glass of water.
It has also been known ever since Euclid† that the shortest path between two points

is a straight line. Ergo, if light is always in a hurry to get from one point to another, it

∗ If you can’t explain that, see figure 7.1 in Fearful. See also the common mirage shown in figure 7.2: on a
hot day, the highway beneath a distant car appears to be wet, but is in fact dry. This mirage shows that light only
cares about the local, not the global, minimum in time of transit.

† Babies have no need for Euclid; as soon as they can crawl, they move toward the obscure objects of their
desire along a straight line.
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wants to move in a straight line. Fermat and others realized that the bending of light could
be explained if light moves more slowly in water than in air. Indeed, if light were really
stupid, it would move in a straight line through point M to get from F to G, just like the
other lifeguards.

Story 2: An ant and her honey

When I was a kid, I was challenged by a puzzle about an ant and a drop of honey. An ant
located on the outside of a cylindrical glass of radius R and a vertical distance d below the
rim, sees, never mind how, or perhaps smells, a drop of honey directly opposite her, but
on the inside of the glass (see figure 2a). The ant wants to get to the honey in the shortest
possible time,3 crawling at some constant speed.

The solution depends on a cute trick. Imagine that the glass is made of paper. Tear out
the bottom and cut the cylindrical glass down some vertical line. Lay the paper down flat,
as shown in figure 2b. Further, imagine the paper to be double-sheeted, so the side with the
drop of honey could be folded out, as shown in figure 2c. Now clearly, the path of shortest
distance between the ant and the honey is a straight line, with distance

√
(πR)2 + (2d)2.

The path is also indicated in figure 2b, with the segment inside the glass indicated by a
dotted line. A really dumb ant would go up vertically to the rim of the glass, then move
along the rim to a point above the honey, and then go down (or along a number of similar
paths equal in distance to the one just described).

This puzzle contains two of the themes central to this book: the shortest path between
two points and curvature, intrinsic and extrinsic.

honey

ant

2πR

(c)

honey

honey

ant

2πR

πR

d

R

ant

d
d

(b)(a)

Figure 2 The best possible path for the ant to follow to get to her honey.
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Draw circles and triangles on a flat piece of paper. Then roll the paper up into a cylinder.
The radius and circumference of a circle maintain the same value as when flat: the paper
is neither stretched nor compressed in any way. Similarly, the three angles in the triangle
remain the same. A cylinder has extrinsic curvature, but zero intrinsic curvature: it is
intrinsically flat. In contrast, the sphere is intrinsically curved: there is no way to construct
a sphere from a flat piece of paper without stretching and compressing the paper.

The proverbial guy and gal in the street think that cylinders are curved, but you and the
ant∗ know better. The uninitiated are talking about extrinsic curvature, regarding how the
2-dimensional surface of a cylinder is embedded into an external 3-dimensional Euclidean
space.

Imagine a civilization of mites living on some curved surface. The mites are much
smaller than the characteristic radius of the curvature of the surface. Once they learn
how to measure the distance along any path (by pacing off the steps they have to take,
for instance) they are ready for geometry. They could define the straight line between two
points P1 and P2 as the path of least distance. Eventually, the mite professors of geometry
could determine whether the world of mites is curved without getting out of their world to
take a look. For example, with enough government funding, the professors could organize
teams of mites to draw small circles of any desired radius by finding the set of all points a
fixed distance from a given point P. Then they can measure the circumference of the circle
and compute

R = lim
radius→0

6
(radius)2

(
1 − circumference

2π radius

)
(1)

as the circle shrinks to zero. For flat space, R vanishes everywhere. Thus, a nonvanishing
value of R gives the mites a measure of the intrinsic curvature at P—of how the geometry
of their world differs† from Euclid’s flat geometry. (The factor of 6 provides a convenient
normalization to match another definition of R to be given later.) Another measure would
be the extent that the sum of the angles enclosed by a triangle deviates from π .

Our mites are not interested in the extrinsic curvature, since they cannot get off the
surface to take a look. Similarly, we are only interested in the intrinsic curvature of our
universe, not in the extrinsic curvature, since we cannot get out‡ of the universe to take
a look.

∗ Ants will eventually find the shortest path to food if the starting point is the location of the colony, but you
need a whole colony of them to do so. Their trick is to lay down pheromone on the path as they go along and to
prefer to follow paths with the stronger pheromone. It is crucial that the pheromone evaporates at some fixed rate
and that ants often wander off the beaten paths to try out nearby paths. (Moral: wander off the beaten paths!) We
explore this variational principle in chapter II.2. A multitude of physicists may also eventually solve the mystery
of quantum gravity. The paths correspond to published papers, the strength of the pheromone to the prestige of
the authors and the number of citations received, and so on and so forth. Not a perfect analogy by any means.

† Early in the 20th century, a distinguished professor, Sir Arthur Eddington, did precisely that, defining a
straight line by the trajectory of light. See chapter VI.3.

‡ There exist some wild speculations that our universe is embedded in a much larger spacetime, but even in
these theories, it does not appear that their proponents can get out of our universe, at least not until after this
book is published. See chapter X.2.
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Story 3: Dueling thinkers

Professor Vicious and Dr. Nasty have been at each other’s throats for decades. Theoretical
physicists are forever fighting over who did what when. They are constantly bickering,
telling each other (as the joke goes), “Nyah, nyah, what you did is trivial and wrong, and I
did it first!”

Of course, the fight for credit goes on in every field, but in theoretical physics, it is almost
a way of life, since ideas are by nature ethereal. And the stakes are high: the victor gets to
go to Stockholm, while the loser is consigned to the dustbin of history, a history largely
written by the victor with the help of an army of idolaters and science writers.

We are finally going to settle matters between Vicious and Nasty once and for all. We
place the two of them at two ends of a long hall, Vicious at x = 0 and Nasty at x = L.

We now tell Vicious and Nasty to solve the basic mystery of why the material world comes
in three copies.4 As soon as they figure it out, they are to push a button in front of them.
When the button is pushed, a pulse of light is flashed to the middle of the room where,
at x = L/2, our experimental colleague, an electronics wiz, has set up a screen. When the
screen detects the arrival of a light pulse, all kinds of bells and whistles are rigged to go
off. In particular, if, and only if, two light pulses arrive at the screen at precisely the same
instant, a huge imperial Chinese gong will be bonged.

“Fair is fair, any and all priority claims will be settled,” we tell Vicious and Nasty. “Now
go to work and solve the mystery of the family problem: why do quarks and leptons come
in three sets?” The dueling duo immediately assume the Rodinesque pose of the deep
thinker and lock themselves in a think to the death.

Meanwhile, you are sitting on a train, moving smoothly relative to the dueling thinkers.
Denote the time and space coordinates in your rest frame by t ′ and x′. In the Newtonian
universe, time is absolute, and so we have t ′ = t . In your frame, Vicious and Nasty are
moving by according to x′ = vt and x′ = L+ vt , respectively, but you are sitting at x′ = 0.
Of course, in the duelists’ frame, you are the one who appears to be moving, gliding by at
x = −vt (see figure 3).

Some time passes, and all of a sudden we all hear a loud bong of the gong. “The best
possible outcome, you solved the problem simultaneously!” we exclaim joyously with
much relief. “You guys are equally smart and you should go to Stockholm together!”

The arrangement is electronically fool-proof. We won’t have either of them gloating, “I
did it first!” Peace shall reign on earth. But guess what?

A Swede is sitting next to you. He, too, heard the gong. That’s the whole point of the
gong: you either heard it or you didn’t. It is all admissible in a court of law. Now, not only is
the Swede on the Committee, but he also happens to be an intelligent Swede. He reasons
as follows.

The two thinkers are gliding by as described by x′ = vt ′. When Professor Vicious pushed
the button, she sent forth a multitude of photons surging toward the screen at the speed
of light c. But the screen was also moving forward, away from the surging photons. Of
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v

x = 0 x = L

screen with
light detector

x = L/2

Figure 3 Professor Vicious versus Doctor Nasty.

course, light moves at the maximum allowed speed in the universe, and it soon catches
up with the screen. The opposite is true for Dr. Nasty. The screen is moving toward the
photons he sent forth. Thus, to reach the screen, his photons have less distance to cover
than Vicious’s photons.

Hence, reasons the Swede, for the two bunches of photons to reach the screen at the
same time and so cause the gong to bong, the photons sent out by Vicious must have
gotten going earlier. Thus, Vicious solved the problem first. With malicious glee, the Swede
solemnly intones, “After Professor Vicious is awarded the Nobel Prize, she will kindly help
us stuff Dr. Nasty into the dustbin of history!”

As Vicious5 enjoys her fleeting immortality, we bemoan or toast, as our taste might
be, the fall of simultaneity. Nasty, trying to climb out of the dustbin, insists that he and
Vicious had been sitting still, thinking hard, and it was the Swede who was moving. Since
the gong had bonged, Nasty is absolutely sure that he and Vicious hit their buttons at the
same instant and so he is entitled to half the prize, while the Swede is equally sure that
Vicious hit her button before Nasty hit his.

The very notion of simultaneity depends on the observer!
Meanwhile, another Swede, also on the Committee, is moving by on another train

described in the duelists’ frame by x = vt . You can fill in the rest.
Young Einstein has bent the stately flow of time out of shape. Albert himself thought

up this gedanken experiment—I have merely added a few dramatic details—showing that
the constancy of the speed of light necessarily has to alter our notion of simultaneity in
time.
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In theoretical physics, we say, “Mind-boggler in, mind-boggler out!” We feed the mind-
boggling fact that the speed of light does not depend on the observer into the wondrous
machinery of logic and out pops another mind-boggling fact, namely that simultaneity is
in the mind of the beholder. Making up one gedanken experiment after another, Einstein
showed that our common sense notion of time must be modified.

Exercises

1 Derive Snell’s law: sin θw/ sin θa = cw/ca < 1, where cw and ca denote the speed of light in water and in air,
respectively.

2 Suppose the ant is outside a hemispherical bowl and the drop of honey is inside the bowl directly across
from her. Find the shortest distance.

3 What happens if the ant can crawl faster on the outside of the glass than on the inside?

Notes

1. QFT Nut.
2. R. P. Feynman, QED: The Strange Theory of Light and Matter, with a new introduction by A. Zee, Princeton

Science Library, 2006.
3. A colleague told me that this reminded him, at least superficially, of the umveg test (http://www.guidehorse

.com/intellig.htm) for assessing intelligence in horses.
4. I am referring to the fact that quarks and leptons come in three families.
5. In his autobiography, Michael Faraday wrote of his conception of scientists: “My desire to escape from trade,

which I thought vicious and selfish, and to enter into the service of Science, which I imagined made its
pursuers amiable and liberal. . . . ” Do I detect in the word “imagined” a trace of cynical disillusion?
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A Natural System of Units, the Cube of Physics, Being Overweight,
and Hawking Radiation

Planck gave us natural units

Max Planck∗ is properly revered for his profound contribution to quantum mechanics. But
he is also much loved for his second greatest contribution to physics: in a far-reaching and
insightful paper, he gave us a natural system of units.

Once upon a time, we used some English king’s feet to measure lengths.† Einstein
recognized that with the universal speed of light c, we no longer need separate units for
length and time. Even the proverbial guy and gal in the street understand that henceforth,
we could measure length in lightyears.

We and another civilization, be they in some other galaxy, would now be able to agree
on a unit of distance, if we could only communicate to them what we mean by one year
or one day. Therein lies the rub: our unit for measuring time derives from how fast our
home planet spins and revolves around its star. Only homeboys would know. How could
we possibly communicate to a distant civilization this period of rotation we call a day, which
is merely an accident of how some interstellar debris came together to form the rock we
call home?

∗ In his personal life, Planck suffered terribly. He lost his first wife, then his son in action in World War I, then
both daughters in childbirth. In World War II, bombs totally demolished his house, while the Gestapo tortured
his other son to death for trying to assassinate Hitler.

† Notions we take for granted today still had to be thought up by someone. Maxwell, in his magnum opus
on electromagnetism, proposed that the meter be tied to the wavelength of light emitted by some particular
substance, adding that such a standard “would be independent of any changes in the dimensions of the earth,
and should be adopted by those who expect their writings to be more permanent than that body.” The various
eminences of our subject could be quite sarcastic.
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Newton’s discovery of the universal law of gravity brought another constant G into
physics. Comparing the kinetic energy 1

2mv
2 of a particle of mass m in a gravitational

potential with its potential energy −GMm/r and canceling off m, we see that the combi-
nation∗GM/c2 has dimensions of length. In other words, having two universal constants c
andG at hand allows us to measure masses in terms of our unit for length (or equivalently
time), or lengths in terms of our unit for mass.

Planck with his constant � made a monumental contribution to physics by noting that
the quantum world gives us for free a fundamental set of units that physicists call natural
units.

Three big names, three basic principles, three natural units

To see how, note that Heisenberg’s uncertainty principle tells us that � divided by the
momentum Mc is a length. Equating the two lengths GM/c2 and �/Mc, we see that the
combination �c/G has dimensions of mass squared. In other words, the three funda-
mental constants G, c, and � allow us to define a mass,1 known rightfully as the Planck
mass

MP =
√

�c

G
(1)

We can immediately define, with Heisenberg’s help, a Planck length

lP = �

MPc
=
√

�G

c3
(2)

and, with Einstein’s help, a Planck time

tP = lP

c
=
√

�G

c5
(3)

Einstein, Newton, and Heisenberg—three big names, three basic principles, three
natural units to measure space, time, and energy by. We have reduced the MLT system
to nothing! We no longer have to invent or find some unit, such as the good king’s foot,
to measure the universe with. We measure mass in units of MP, length in units of lP, and
time in units of tP. Another way of saying this is that in these natural units, c = 1, G= 1,
and � = 1. The natural system of units is understood no matter where your travels might
take you, within this galaxy or far beyond.

Newton small, so Planck huge, and the Mother of All Headaches

The Planck mass works out to be 1019 times the proton massMp. That humongous number
1019, as we will see, is responsible for the Mother of All Headaches plaguing fundamental

∗ You will learn shortly what this combination means physically.



12 | Introduction

physics today.2 That MP is so gigantic compared to the known particles can be traced back
to the extreme feebleness of gravity: G is tiny, so MP is enormous.

As the Planck mass is huge, the Planck length and time are teeny. If you insist on
contaminating the purity of natural units by manmade ones, tP comes out to be ∼5.4 ×
10−44 second, the Planck length lP ∼ 1.6 × 10−33 centimeter, and the Planck mass MP ∼
2.2 × 10−5 gram!

It is important to realize how profound Planck’s insight was. Nature herself, far tran-
scending any silly English king or some self-important French revolutionary committee,
gives us a set of units to measure her by. We have managed to get rid of all manmade units.
We needed three fundamental constants, each associated with a fundamental principle,
and we have precisely three!

This suggests that we have discovered all∗ the fundamental principles that there are.
Had we not known about the quantum, then we would have to use one manmade unit to
describe the universe, which would be weird. From that fact alone, we would have to go
looking for quantum physics.

The cube of physics

Here is a nifty summary of all of physics as a cube (see figure 1). Physics started with
Newtonian mechanics at one corner of the cube, and is now desperately trying to get to
the opposite corner, where sits the alleged Holy Grail. The three fundamental constants,
c−1, �, and G, characterizing Einstein, Planck or Heisenberg, and Newton, label the three
axes. As we turned on one or the other of three constants (in other words, as each of these
constants came into physics), we took off from the home base of Newtonian mechanics.†

Much of 20th century physics consisted of getting from one corner of the cube to another.
Consider the bottom face3 of the cube. When we turned on c−1 we went from Newtonian
mechanics to special relativity. When we turned on �, we went from Newtonian mechanics
to quantum mechanics. When we turned on both c−1 and �, we arrived at quantum field
theory, in my opinion the greatest monument of 20th century physics.

Newton himself had already moved up the vertical axis from Newtonian mechanics to
Newtonian gravity by turning on G. Turning on c−1, Einstein took us from that corner to
Einstein gravity, the main subject of this book.‡ All the Stürm und Drang of the past few
decades is the attempt to cross from that corner to the Holy Grail of quantum gravity, when
(glory glory hallelujah!) all three fundamental constants are turned on.§

∗ These days, fundamental principles are posted on the physics archive with abandon. There might be
hundreds by now.

† By this I mean the three laws, F =ma and so on, not including the law of universal gravitation.
‡ The corner with c−1 = 0 but � �= 0 and G �= 0 is relatively unpublicized and generally neglected. It covers

phenomena described adequately by nonrelativistic quantum mechanics in the presence of a gravitational field.
Two fascinating experiments in this area are: (1) dribbling neutrons like basketballs, and (2) interfering a neutron
beam with itself in a gravitational field.4

§ This statement carries a slight caveat, which we will come to in chapter VII.3.
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Figure 1 The cube of physics.

In our everyday existence, we are aware of only two corners of this cube, because these
three fundamental constants are either absurdly small or absurdly large compared to what
humans experience.

The universe’s obesity index

As the obesity epidemic sweeps over the developed countries, one government after
another has issued some kind of obesity index, basically dividing body weight by size.
As we have seen, for an object of mass M , the combination GM/c2 is a length that can be
compared to the characteristic size of the object. So, Nature has her own obesity index for
any object, from electron to galaxy. Indeed, as is well known, John Michell in 1783 and the
Marquis Pierre-Simon Laplace in 1796 pointed out that even light cannot escape from an
object excessively massive for its size.

More precisely, consider an object of mass M and radius R. A particle of mass m at the
surface of this object has a gravitational potential energy −GMm/R and kinetic energy
1
2mv

2. Equating these two energies gives the escape velocity vescape = √
2GM/R. Setting

vescape to c tells us that if 2GM >Rc2, not even light can escape, and the object is a black
hole.5 Remarkably, even though the physics behind the argument∗ is not correct in detail
(as we now know, we should not treat light as a Newtonian corpuscle with a tiny mass), this

∗ This often cited Newtonian argument actually does not establish the existence of black hole defined as an
object from which nothing could escape. The escape velocity refers to the initial speed with which we attempt to
fling something into outer space. In the Newtonian world, we could certainly escape from any massive planet in
a rocket with a powerful enough engine.
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Figure 2 A plot ofM versusR for various objects in the universe. EW stands for electroweak
and GUT for grand unified theory. The shaded area represents the “black hole” regime
with 2GM >R.

criterion, including the factor of 2, turns out to hold in Einstein’s theory. Figure 2 shows
a plot of M versus R for various objects in the universe.

Hawking radiation

Unless you have been hiding out in the jungles of New Guinea, you would have heard that
in an extremely influential paper, Stephen Hawking, building on the earlier work of Jacob
Bekenstein and others, and working in collaboration with Gary Gibbons, pointed out this
purely classical argument needs to be amended when quantum effects are included: black
holes evaporate and radiate particles.

In fact, the temperature of the radiation, known as the Hawking temperature TH of the
black hole, can be estimated by using dimensional analysis. You may be puzzled,∗ since
there are two masses in the problem, the mass M of the black hole and the Planck mass
MP. With two masses, any function of M/MP is admissible, and so dimensional analysis
appears to be inapplicable. Indeed, we need one more piece of information. The key is that

∗ I was talking to a distinguished condensed matter physicist just the other day, and he was puzzled about
precisely this point. So your unspoken question may be widespread.
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Newton’s constant G is a multiplicative measure of the strength of gravity. In Einstein’s
theory as well as in Newton’s, the gravitational field around an object of mass M can only
depend on the combination ofGM . Let us now set c and � (but notG) to 1. The combination
GM is a length and hence an inverse mass. On the other hand, Boltzmann and the
founding fathers of statistical mechanics had long ago revealed to us that temperature,
a highly mysterious concept at one time, is merely the average energy6 of the microscopic
constituents of macroscopic matter. Hence temperature has the dimensions of energy, that
is, of a mass in units with c = 1.

It follows immediately that TH ∼ 1
GM

. This “sophisticated” dimensional analysis cap-
tures an essential piece of physics: the radiation is explosive! As the black hole radiates
energy, M goes down and TH goes up, and thus the black hole radiates faster. The radiative
mass loss accelerates. Certainly not something you want to see in the kitchen: an object
that gets hotter as it loses energy.

In chapter VII.3, we will see that the overall numerical constant can be determined in a
couple of lines of algebra, so that

TH = �c3

8πGM
(4)

We have restored c and � by high school dimensional analysis using everyday unnatural
units. It is gratifying to see that indeed, with � = 0 and quantum effects turned off, TH = 0,
and the black hole does not radiate.

Thermodynamics states that entropy S is given by dE = T dS. Here E is just the mass
of the black hole. Integrating dS

dM
= 1

TH
∼GM , we obtain

S ∼GM2 ∼
(
M

MP

)2

(5)

Note that, as expected, S is dimensionless.
Using the fact that the black hole has radius R ∼GM and hence surface area A∼ R2,

we conclude that

S ∼ R2

G
∼ A

l2P
(6)

You should be shocked, shocked, shocked. Most theoretical physicists were, and are.
Not shocked?
Normally, the entropy of a system is extensive, that is, proportional to its volume.

Somehow, a black hole has an entropy proportional to its surface area rather than to
its volume. This fact has led to the so-called holographic principle. Many fundamental
physicists believe that this mysterious property of black holes holds the key to quantum
gravity.

All of this merely from dimensional analysis!
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Notes

1. Some readers might wonder why we do not use the mass of the electron me. In modern particle physics,
the electron may not always have had the mass it has now, and in fact it might have been massless in the
early universe. The masses of elementary particles depend on quantum field theoretic notions known as
spontaneous symmetry breaking and the Higgs mechanism. We should express me in terms of MP, not MP
in terms of me. In different areas of physics, different units are used: for example, the size of the hydrogen
atom might be used as a length unit.

2. I return to this problem in due course, in chapter X.8, for example.
3. This face, regarded as a square, was discussed in the very first section of the first chapter in QFT Nut.
4. See appendix 5 to chapter X.8; for more details, see J. J. Sakurai and J. Napolitano, Modern Quantum

Mechanics, pp. 110 and 133.
5. Named by John Wheeler almost 200 years later.
6. The Boltzmann constant k, which is merely a conversion factor between energy units and the markings on

some tubes containing mercury known as degrees, has been set to 1.



Prelude

Relativity Is an Everyday and Ancient Concept

Butterflies will fly indifferently toward every side

Relativity is all about the notion that you are as good as the next guy, or to put it relatively,
the other guy is as good as you.

More seriously, relativity expresses the fact that the laws of physics as deduced by two
observers in uniform motion with respect to each other must be the same.

We physicists believe in the fundamental principle that physics should not depend on
the physicist, unlike some other academic disciplines we need not name, in which the
truth can vary according to the practitioner.

The proverbial guy in the street thinks that relativity started with Albert Einstein (1879–
1955), but you know better, of course. Surely, some smart human had an inkling of it as
soon as sufficiently smooth transport∗ became available, perhaps even the proverbial “cave
man”† drifting downriver on a log watching his buddies moving by. Galileo Galilei (1564–
1642) first1 explicitly stated the principle of relativity. In Dialogue Concerning the Two Chief
World Systems (first published in 1632) the character Salviati says:

Shut yourself up with some friend in the main cabin below decks on some large ship, and

have with you there some flies, butterflies, and other small flying animals. Have a large bowl

of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel

beneath it. With the ship standing still, observe carefully how the little animals fly with equal

speed to all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the

∗ Of course, we are on a spinning rock orbiting a star in a rotating galaxy hurtling toward its neighbor at high
speed, but our transport is so smooth that we didn’t notice it for the longest time.

† Or a Sung dynasty poet in a boat; see Fearful, p. 52.
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vessel beneath; and, in throwing something to your friend, you need throw it no more strongly

in one direction than another, the distances being equal; jumping with your feet together, you

pass equal spaces in every direction. When you have observed all these things carefully (though

doubtless when the ship is standing still everything must happen in this way), have the ship

proceed with any speed you like, so long as the motion is uniform and not fluctuating this way

and that. You will discover not the least change in all the effects named, nor could you tell from

any of them whether the ship was moving or standing still. In jumping, you will pass on the

floor the same spaces as before, nor will you make larger jumps toward the stern than toward

the prow even though the ship is moving quite rapidly, despite the fact that during the time

that you are in the air the floor under you will be going in a direction opposite to your jump. In

throwing something to your companion, you will need no more force to get it to him whether

he is in the direction of the bow or the stern, with yourself situated opposite. The droplets will

fall as before into the vessel beneath without dropping toward the stern, although while the

drops are in the air the ship runs many spans. The fish in their water will swim toward the

front of their bowl with no more effort than toward the back, and will go with equal ease to bait

placed anywhere around the edges of the bowl. Finally the butterflies and flies will continue

their flights indifferently toward every side, nor will it ever happen that they are concentrated

toward the stern, as if tired out from keeping up with the course of the ship, from which they

will have been separated during long intervals by keeping themselves in the air. And if smoke is

made by burning some incense, it will be seen going up in the form of a little cloud, remaining

still and moving no more toward one side than the other. The cause of all these correspondences

of effects is the fact that the ship’s motion is common∗ to all the things contained in it, and to

the air also. That is why I said you should be below decks; for if this took place above in the

open air, which would not follow the course of the ship, more or less noticeable differences

would be seen in some of the effects noted.2

That† is so beautifully stated! Much better than most popular physics books on the
market (see figure 1).

Galileo’s ship was updated to Einstein’s train‡ and later to rocket ships and other space
vehicles. Let’s use Einstein’s train, moving smoothly along the x-axis with velocity u (see
figure 2). Let an event occur at the point (x , y , z) at time t for the observer on the train (call
her Ms. Unprime) and at the point (x′, y′, z′) at time t ′ for the observer on the ground (Mr.
Prime). We are of course utilizing the profound and brilliant insight of Galileo’s contem-
porary René Descartes (1596–1650) that geometry can be reduced to algebra by associating
three numbers with each point in space. The Galilean transformation states that

t ′ = t (1)

∗ The phrase “common to all the things contained in it” will play a starring role when we get to Einstein’s
equivalence principle, as we will see in part V.

† Galileo intended this passage as a refutation of the argument that the earth could not rotate since otherwise
objects would fall toward the west.

‡ The historian Peter Galison has pointed out that in the period leading up to 1905, the year Einstein proposed
his theory of special relativity, high speed trains and the telegraph linked the cities of Europe, and an increasingly
technological society was preoccupied with clock synchronization among other things.3
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Figure 1 Galileo’s vision: butterflies fly normally in
a cabin on a smoothly moving ship.

y′

x′

z′

y

x

z

ut u⇒

Figure 2 Galilean transformation.

and

x′ = x + ut , y′ = y , and z′ = z (2)

with u the constant relative velocity between the two observers.
We simply differentiate: dx

′
dt ′ = dx′

dt
= dx

dt
+ u. Thus, if Ms. Unprime tosses a ball forward

with speed v, Mr. Prime sees the ball moving forward with speed v′ = v + u, in accordance
with everyday observation, as known to you, me, and Salviati. We have derived the Galilean
law∗ for the addition of velocities:

v′ = v + u (3)

Differentiating again, we obtain the ball’s acceleration a′ = dv′
dt

= dv
dt

= a. Since Newton’s
law of motion F =ma involves acceleration, we conclude that Newtonian mechanics is
invariant under the Galilean transformation, as Salviati told us.

∗ Which you can verify these days at any major airport with a moving sidewalk.
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Special relativity in one minute

Special relativity can be simply summarized. (Of course, we will be going through it
in much greater detail later.) Maxwell’s laws of electromagnetism turned out not to be
invariant under the Galilean transformation. The speed of light c is determined by how
fast an electric field can turn into a magnetic field and vice versa and so does not depend
on the observer. In total defiance of (3), Maxwell had

c �= c + u (4)

In the high noon showdown between Maxwell and Galileo, Maxwell won. The Galilean
transformation had to be replaced by the Lorentzian transformation involving that univer-
sal constant of Nature, c for celeritas.∗ The relations (1) and (2) between space and time
were modified.

General relativity in 30 seconds

That was special relativity in 60 seconds. But then we could ask, what would happen if u
were not constant, if Salviati’s ship encountered a storm, as it were? In deriving a′ = a, we
used du

dt
= 0, but if that were not so, we would have

a′ = a + du

dt
(5)

Multiply this by m, the mass of the ball Ms. Unprime tossed forward, to obtain ma′ =
ma +mdu

dt
. Mr. Prime, invoking Newton’s law, thus sees an additional force mdu

dt
acting

on the ball.
What could that force possibly be? The answer to that question will lead us to curved

spacetime and Einstein gravity.4

Truth is not relative

Later in life, Einstein moaned that he should have called his work “invariant theory” instead
of “relativity theory.” Had he been more judicious in his choice of words, you, I, and
Einstein would have been spared the spectacle of eminent humanities scholars asserting
that “Truth is relative” since “There is no absolute truth: Einstein proved it so.” Of course,
you know that Einstein said exactly the opposite. Physics must be invariant and true.

Notes

1. Perhaps some historian will track down others before Galileo.
2. Galileo, Dialogue Concerning the Two Chief World Systems, trans. S. Drake, University of California Press,

1953, pp. 186–187.
3. See P. Galison, Einstein’s Clocks, Poincaré’s Maps: Empires of Time, W. W. Norton, 2004.
4. Nitpickers, please! It’s what I could say in 30 seconds!

∗ Einstein used V in his 1905 paper.



BOOK ONE

From Newton to the Gravitational Redshift





Part I From Newton to Riemann: Coordinates to Curvature





I.1 Newton’s Laws

The foundational equation of our subject

For in those days I was in the prime of my age for invention
and minded Mathematicks & Philosophy more than at any time
since.

—Newton describing his youth in his memoirs

Let us start with one of Newton’s laws, which curiously enough is spoken as F =ma but
written asma = F . For a point particle moving inD-dimensional space with position given
by �x(t)= (x1(t), x2(t), . . . , xD(t)), Mr. Newton taught us that

m
d2xi

dt2
= F i (1)

with the index∗ i = 1, . . . , D. For D ≤ 3 the coordinates have traditional “names”: for
example, for D = 3, x1, x2, x3 are often called, with some affection, x , y , z, respectively.

Bad notation alert! In teaching physics, I sometimes feel, with only slight exaggeration,
that students are confused by bad notation almost as much as by the concepts. I am using
the standard notation of x and t here, but the letter x does double duty, as the position of the
particle, which more strictly should be denoted by xi(t) or �x(t), and as the space coordinates
xi, which are variables ranging from −∞ to ∞ and which certainly are independent of t .

The different status between x and t in say (1) is particularly glaring if N > 1 particles

are involved, in which case we write m
d2xia
dt2

= F i
a or md2�xa

dt2
= �Fa with xia(t) for a =

1, 2, . . . , N . But certainly ta is a meaningless concept in Newtonian physics. In the
Newtonian universe, t is the time ticked off by a universal clock, while �xa(t) is each
particle’s private business. We will have plenty more to say about this point. Here xia(t)
are 3N functions of t , but there are still only 3 xi.

∗ See appendix 2.
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Some readers may feel that I am overly pedantic here, but in fact this fundamental
inequality of status between x and t will come to a head when we get to the special theory
of relativity. (I now drop the arrow on �x.) Perhaps Einstein as a student was bothered by
this bad notation. One way to remedy the situation is to use q (or qa) to denote the position
of particles, as in more advanced treatments. But here I bow to tradition and continue to
use x.

Have differential equation, will solve

After Newton’s great insight, we “merely” have to solve some second order differential
equations.

To understand Newton’s fabulous equation, it’s best to work through a few examples. (I
need hardly say that if you do not already know Newtonian mechanics, you are unlikely to
be able to learn it here.)

A priori, the force F i could depend on any number of things, but from experience we
know that in many simple cases, it depends only on x and not on t or dx

dt
. As physicists

unravel the mysteries of Nature, it becomes increasingly clear that fundamental forces
are derived from an underlying quantum field theory and that they have simple forms.
Complicated forces often merely result from some approximations we make in particular
situations.

Example A

A particle in 1-dimensional space tied to a spring oscillates back and forth.
The force F is a function of space. Newton’s equation

m
d2x

dt2
= −kx (2)

is easily solved in terms of two integration constants: x(t) = a cos ωt + b sin ωt , with

ω =
√

k
m

. The two constants a and b are determined by the initial position and initial
velocity, or alternatively∗ by the initial position at t = 0 and by the final position at some
time t = T . Energy, but not momentum, is conserved.

Example B

We kick a particle in 1-dimensional space at t = 0.
The force F is a function of time. This example allows me to introduce the highly useful

Dirac1 delta function, or simply delta function.2 By the word “kick” we mean that the
time scale τ during which the force acts is much less than the other time scales we are

∗ See part II.
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–τ

1–τ

τ t →

δ(t)

0

Figure 1 The delta function, which could
be thought of as an infinitely sharp spike,
is strictly speaking not a function, but the
limit of a sequence of functions.

interested in. Thus, take F(t)= wδ(t), where the function δ(t) rises sharply just before
t = 0, rapidly reaches its maximum at t = 0, and then sharply drops to 0. Because we
included a multiplicative constant w, we could always normalize δ(t) by

∫
dt δ(t)= 1 (3)

As we will see presently, the precise form of δ(t) does not matter. For example, we could
take δ(t) to rise linearly from 0 at t = −τ , reach a peak value of 1/τ at t = 0, and then fall
linearly to 0 at t = τ . For t <−τ and for t > τ , the function δ(t) is defined to be zero. Take
the limit τ → 0, in which this function is known as the delta function. In other words the
delta function is an infinitely sharp spike. See figure 1.

The δ function is somehow treated as an advanced topic in mathematical physics, but in
fact, as you will see, it is an extremely useful function that I will use extensively in this book,
for example in chapters II.1 and III.6. More properties of the δ function will be introduced
as needed.

Integrating

d2x

dt2
= w

m
δ(t) (4)

from some time t− < 0 to some time t+ > 0, we obtain the change in velocity v ≡ dx
dt

:

v(t+)− v(t−)= w

m
(5)

Note that in this example, neither energy nor momentum is conserved. The lack of
conservation is easy to understand: (4) does not include the agent administering the kick. In
general, a time-dependent force indicates that the description is not dynamically complete.
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Example C

A planet approximately described as a point particle of massm goes around its sun of mass
M �m.

This is of course the celebrated problem Newton solved to unify celestial and terrestrial
mechanics, previously thought to be two different areas of physics. His equation now reads

m
d2�r
dt2

= −GMm
�r
r3

(6)

where we use the notation �r = (x , y , z) and r = √�x . �x =√
x2 + y2 + z2.

John Wheeler has emphasized the interesting point that while Newton’s law (1) tells us
how a particle moves in space as a function of time, we tend to think of the trajectory of
a particle as a curve fixed in space. For example, when we think of the motion of a planet
around the sun, we think of an ellipse rather than a spiral around the time axis. Even in
Newtonian mechanics, it is often illuminating to think in terms of a spacetime picture
rather than a picture in space.3

Newton and his two distinct masses

By thinking on it continually.
—Newton (reply given when

asked how he discovered
the law of gravity)

Conceptually, in (6), m represents two distinct physical notions of mass. On the left hand
side, the inertial mass measures the reluctance of the object to move. On the right hand
side, the gravitational mass measures how strongly the object responds to a gravitational
field. The equality of the inertial and the gravitational mass was what Galileo tried to verify
in his famous apocryphal experiment dropping different objects from the Leaning Tower
of Pisa. Newton himself experimented with a pendulum consisting of a hollow wooden
box, which he proceeded to fill with different substances, such as sand and water. In our
own times, this equality has been experimentally verified4, 5 to incredible accuracy.

That the same m appears on both sides of the equation turns out to be one of the
greatest mysteries in physics before Einstein came along. His great insight was that this
unexplained fact provided the clue to a deeper understanding of gravity. At this point, all
we care about this mysterious equality is that m cancels out of (6), so that �̈r = −κ �r

r3 , with
κ ≡GM .

Celestial mechanics solved

Since the force is “central,” namely it points in the direction of �r , a simple symmetry
argument shows that the motion is confined to a plane, which we take to be the (x-y)
plane. Set z= 0 and we are left with
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ẍ = −κx/r3 and ÿ = −κy/r3 (7)

I have already, without warning, switched from Leibniz’s notation to Newton’s dot notation

ẋ ≡ dx

dt
and ẍ ≡ d2x

dt2
(8)

Since this is one of the most beautiful problems6 in theoretical physics, I cannot resist
solving it here in all its glory. Think of this as a warm-up before we do the heavy lifting
of learning Einstein gravity. Also, later, we can compare the solution here with Einstein’s
solution.

Evidently, we should change from Cartesian coordinates (x , y) to polar coordinates
(r , θ). We will do it by brute force to show, in contrast, the elegance of the formalism
we will develop later. Differentiate

x = r cos θ and y = r sin θ (9)

twice to obtain first

ẋ = ṙ cos θ − r sin θ θ̇ and ẏ = ṙ sin θ + r cos θ θ̇ (10)

and then

ẍ = r̈ cos θ − 2ṙ sin θ θ̇ − r cos θ θ̇2 − r sin θ θ̈

and ÿ = r̈ sin θ + 2ṙ cos θ θ̇ − r sin θ θ̇2 + r cos θ θ̈ (11)

(Note that in each pair of these equations, the second could be obtained from the first by
the substitution θ → θ − π

2 , so that cos θ → sin θ , and sin θ → − cos θ .)
Multiplying the first equation in (7) by cos θ and the second by sin θ and adding, we

obtain, using (11),

r̈ − rθ̇2 = − κ

r2
(12)

On the other hand, multiplying the first equation in (7) by sin θ and the second by cos θ
and subtracting, we have

2ṙ θ̇ + rθ̈ = 0 (13)

I remind the reader again that we are doing all this in a clumsy brute force way to show
the power of the formalism we are going to develop later.

After staring at (13) we recognize that it is equivalent to

d

dt
(r2θ̇ )= 0 (14)

which implies that

θ̇ = l

r2
(15)

for some constant l . Inserting this into (12), we have

r̈ = l2

r3
− κ

r2
= −dv(r)

dr
(16)
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where we have defined

v(r)= l2

2r2
− κ

r
(17)

Multiplying (16) by ṙ and integrating over t , we have∫
dt

1
2
d

dt
ṙ2 =

∫
dt ṙ r̈ = −

∫
dt
dr

dt

dv(r)

dr
= −

∫
dr

dv(r)

dr

so that finally

1
2
ṙ2 + v(r)= ε (18)

with ε an integration constant.
This describes a unit mass particle moving in the potential v(r)with energy ε. Plot v(r).

Clearly, if ε is equal to the minimum of the potential vmin = − κ2

2l2 , then ṙ = 0 and r stays
constant. The planet follows a circular orbit of radius l2/κ . If ε > vmin the orbit is elliptical,
with r varying between rmin (perihelion) and rmax (aphelion) defined by the solutions to
ε = v(r). For ε > 0 the planet is not bound and should not even be called a planet.

We have stumbled across two conserved quantities, the angular momentum l and the
energy ε per unit mass, seemingly by accident. They emerged as integration constants,
but surely there should be a more fundamental and satisfying way of understanding
conservation laws. We will see in chapter II.4 that there is.

Orbit closes

One fascinating apparent mystery is that the orbit closes. In other words, as the particle
goes from rmin to rmax and then back to rmin, θ changes by precisely 2π . To verify that this
is so, solve (18) for ṙ and divide by (15) to obtain dr

dθ
= ±(r2/l)

√
2(ε − v(r)). Changing

variable from r to u = 1/r , we see, using (17), that 2(ε − v(r)) becomes the quadratic
polynomial 2ε − l2u2 + 2κu, which we can write in terms of its two roots as l2(umax −
u)(u− umin). Since u varies between umin and umax, we are led to make another change
of variable from u= umin + (umax − umin) sin2 ζ to ζ , so that ζ ranges from 0 to π

2 . Thus,
as the particle completes one round trip excursion in r , the polar angle changes by (note
that umin = 1/rmax and umax = 1/rmin)


θ = 2
∫ rmax

rmin

ldr

r2
√

2(ε − v(r))
= 2

∫ umax

umin

ldu√
2ε − l2u2 + 2κu

= 2
∫ umax

umin

du√
(umax − u)(u− umin)

= 4
∫ π

2

0
dζ = 2π (19)

That this integral turns out to be exactly 2π is at this stage nothing less than an apparent
miracle. Surely, there is something deeper going on, which we will reveal in chapter I.4.
Note also that the inverse square law is crucial here. Incidentally, the change of variable
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here indicates how the Newtonian orbit∗ (and also the Einsteinian orbit, as we will see in
part VI) could be determined. See exercise 2.

Bad notation alert! In (1), the force on the right hand side should be written as F i(x(t))

(in many cases). In C, the gravitational force exists everywhere, namely F(x) exists as a
function, and what appears in Newton’s equation is just F(x) evaluated at the position of
the particle x(t). In contrast, in A, with a mass pulled by a spring, F(x) does not make
sense, only F(x(t)) does. The force exerted by the spring does not pervade all of space, and
hence is defined only at the position of the particle x(t), not at any old x. I can practically
hear the reader chuckling, wondering what kind of person I could be addressing here, but
believe me, I have encountered plenty of students who confuse these two basic concepts:
spatial coordinates and the location of particles. I may sound awfully pedantic, but when we
get to curved spacetime, it is often important to be clear that certain quantities are defined
only on so-called geodesic curves, while others are defined everywhere in spacetime.

A historical digression on the so-called Newton’s constant

Wouldn’t we be better off with the two eyes we now have plus a
third that would tell us what is sneaking up behind? . . . With six
eyes, we could have precise stereoscopic vision in all directions
at once, including straight up. A six-eyed Newton might have
dodged that apple and bequeathed us some levity rather than
gravity.

—George C. Williams7

Physics textbooks by necessity cannot do justice to physics history. As you probably know, in
the Principia, Newton (1642–1727) converted his calculus-based calculations to geometric
arguments,8 which most modern readers find rather difficult to follow. Here I want to
mention another curious point: Newton never did specifically define what we call his
constant G. What he did with ma = GMm/r2 was to compare the moon’s acceleration
with the apple’s acceleration: amoonR

2
lunar orbit =GMearth = aappleR

2
radius of earth. But to write

GMearth = aappleR
2
radius of earth, he had to prove what is sometimes referred to as the first of

Newton’s two “superb theorems,” namely that with the inverse square law the gravitational
force exerted by a spherical mass distribution acts as if the entire mass were concentrated
in a point at the center of the distribution. (See exercise 4.) Even with his abilities, Newton
had to struggle for almost 20 years, the length of which contributed to the bitter priority
fight he had with Hooke on the inverse square law, with Newton claiming that he had the
law a long time before publication. You should be able to do it faster by a factor of ∼104 as
an exercise.

∗ On the old one pound note, a portrait of Newton together with his orbits appears on the back. Amusingly,
the artist felt compelled to put the sun at the center, rather than one of the foci, of the ellipse.
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Knowing the moon’s period and Rlunar orbit, Newton could calculate amoon. Since
Rradius of earth had been known since antiquity, he was thus able to calculate aapple and
obtained agreement∗ with Galileo’s measurement of aapple. This of course represents one
of the most magnificent advances in physics history, with Newton unifying9 the previously
disparate subjects of celestial and terrestrial mechanics in one stroke. I don’t have space
to dwell on this here, but I do want to call your attention to the fact that Newton did not
need to know G and Mearth to perform his feat.

Indeed, G was not measured until 1798 by Henry Cavendish (1731–1810) using equip-
ment built and designed by his friend John Michell (1724–1793), now of black hole fame,
who died before he could carry out the experiment.

Needless to say, what I have presented here should only be regarded as a comic book
version of history.

Appendix 1: Where is hell?

You will find it in this appendix, sort of.
Curiously, contrary to what some textbooks and popular books stated, Cavendish’s goal was not to measure

G, but Mearth and hence the earth’s density. Why this was of more interest to physicists of the time than G is in
itself another interesting tidbit in physics history.

I mentioned that Newton had two superb theorems and that the first triggered his feud with Hooke. His second
superb theorem states that there is no gravitational force inside a spherical shell.10 Are you curious why Newton
would even attack such a problem? An erroneous calculation had convinced him that the earth was much less
dense than the moon, which led his friend Edmond Halley (1656–1742), who by the way published the Principia
at his expense, to propose the hollow earth theory.11 Witness the popularity of the idea in science fiction, notably
Jules Verne’s Journey to the Center of the Earth (1864). The idea may seem absurd to us, but at that time, a location
for hell had to be found, and leading physicists gave serious thought to this pressing problem. Every epoch in
physics has its own top ten problems.

So now we understand Cavendish’s interest in Mearth and hence in the density of the earth rather than in G.
Some textbooks give the impression that people easily obtained Mearth by multiplying the density of rock and the
volume of the earth. Not so easy if you think that the earth might be hollow! We learn from Newton’s second
theorem that there is no gravitational force in hell, so the usual portrayal of the leaping flames can’t be right!

Appendix 2: Fear of indices

Occasionally, a student or two would profess, unaccountably, a “fear of indices.” In fact, there is nothing to
fear.12 At this stage, just stand back and admire how clever the invention of indices is. Instead of giving names
to each coordinate axis, such as x , y , and z, we could pass fluidly between different dimensions by writing xi ,
with i = 1, 2, . . . , D. The length of the alphabet we use does not limit us, and we could easily go beyond 26
dimensions.

When we get to Einstein’s theory, there will be a flood of indices, and we will have to distinguish between
upper and lower indices. In Newtonian mechanics, there is no significance to whether we write the index as a
superscript or a subscript. Have no fear: we will discuss each of these features of indices when the need arises.
At this point, we merely note that a quantity can carry more than one index. In the text, we wrote xia, with
i = 1, 2, . . . , D labeling the different spatial directions, and a = 1, 2, . . . , N labeling the different particles. We
will encounter more examples as we go along.

∗ Newton’s first try did not lead to excellent agreement, because the value for the earth’s equatorial radius was
off. Just a reminder that physics never progresses as smoothly as textbooks say.
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With only slight exaggeration, we could say that the invention of indices represents one of the really clever
ideas13 in the history of physics and mathematics, almost a “magic trick” that enables us to deal with as many
particles in as many spatial dimensions as we like with the mere addition of some subscripts and superscripts.

Exercises

1 Show that for some suitably smooth function f (x), the integral
∫∞
−∞ dxδ(x)f (x)= f (0). Then show that

δ(ax)= δ(x)/|a| by evaluating the integral
∫∞
−∞ dxδ(ax)f (x) for some smooth function f (x).

2 Determine the orbit r(θ) by changing variable from r to u= 1/r . We will need the result of this exercise later.

3 Newton thought that light consists of “corpuscles.” Calculate the deflection of light by the sun, applying what
you learned in the text to the case ε > 0. Note that the mass of these minute “particles of light” drops out in
Newtonian theory anyway. We will need this result to compare with Einstein’s theory later in chapter VI.3.

4 Prove Newton’s first superb theorem: the gravitational force exerted by a spherical mass distribution acts as
if the entire mass were concentrated in a point at the center of the distribution.

5 Prove Newton’s second superb theorem.

6 Suppose engineers can build a straight tunnel connecting two cities on earth. Then we could have a free
unpowered “gravity express”14 by simply dropping a railroad car into the tunnel, allowing it to fall from one
city to the other. Use Newton’s two superb theorems to calculate the transit time.

Notes

1. Also introduced by Cauchy, Poisson, Hermite, Kirchoff, Kelvin, Helmholtz, and Heaviside. See J. D. Jackson,
Am. J. Phys. 76 (2008), pp. 707–709.

2. Rigorous mathematicians go berserk at physicists’ use of the word “function” here; they prefer to call it a
distribution, defined as the limit of a function. But working physicists do not give a flying barf about such
niceties. In any case, I do not personally know a theoretical physicist suffering any harm by calling δ(t) a
function.

3. Consider a game of tennis. Compare a hard drive down the line and a soft lob high over the net. In both

cases, we are to solve Newton’s law d2x
dt2

= 0, d
2y

dt2
= −g, with the boundary conditions x(0)= 0, x(T )=L, and

y(0)= y(T )= 0. (The problem is so elementary that we won’t bother to explain the notation, that y denotes
the vertical direction, that y = 0 is the ground, that T is the time of flight before the ball hits the ground,
that L is the length of the tennis court, and so on and so forth. You might want to draw your own figure.)
The solution is x = Lt/T , y = 1

2g(T − t)t . Note that the two types of tennis shots are governed by the same
equation and the same L. Hence we obtain the same solution, but keep in mind that T is small in the case
of the hard drive and that T is large in the case of the soft lob. Now eliminate t to obtain y as a function
of x, namely y(x)= 1

2gT
2(1 − x

L
) x
L

, a parabola in both cases (of course). But compare the curvature of the

two parabolas: we have d2y

dx2 = −g(T /L)2, very small in the case of the hard drive (small T ) and very large in
the case of the lob (large T ). The hard drive down the line barely skimming over the net, and the soft lob
climbing lazily high up into the sky, look and feel totally different pictured in space. In contrast, consider y
as a function of t . We also have two parabolas (of course), namely y(t)= 1

2g(T − t)t , as given earlier. Now

compare the curvature of the two parabolas: we have d2y

dt2
= −g, the same in both cases. The curvature of the

ball’s trajectory in spacetime is universal (universal gravity, get it?). But we tend to see in our mind’s eye the
two parabolas y(x) in space, one for the hard drive and one for the lob, which look quite different, rather than
the parabolas y(t) in spacetime, which have the same curvature. I learned this long ago from John Wheeler.

4. Currently to one part in 1013. The modern round of experiments started with Loŕand Eötvös in 1885 and
continues with the Eöt-Wash experiment led by E. Adelberger in our days.
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5. The equality of the gravitational and inertial mass of the neutron has also been verified to good accuracy
using neutron interferometry.

6. For Newton’s letter to Halley about Hooke on the inverse square, see P. J. Nahin, Mrs. Perkins’s Electric Quilt,
Princeton University Press, 2009.

7. G. C. Williams, The Pony Fish’s Glow, Basic Books, 1997, p. 128.
8. S. Chandrasekhar, Newton’s Principia for the Common Reader, Oxford University Press, 2003.
9. Fearful, pp. 74–75.

10. For a popular account, see Toy/Universe.
11. N. Kollerstrom, “The Hollow World of Edmond Halley,” J. Hist. Astronomy 23 (1992), p. 185.
12. Surely most readers are familiar with indices. My son the biologist informs me that even biologists use indices

routinely; for example, on p. 20 of Genetics and Analysis of Quantitative Traits by M. Lynch and B. Walsh, indices
appear without explanation or apology.

13. A colleague told me to mention that indices are crucial in computer programming, something that many
readers can relate to.

14. Toy/Universe, p. xxix.



I.2 Conservation Is Good

An integrability condition

Conservation has been important to physics from day one.1 In this chapter, we discuss the
origin of various conservation laws in Newtonian mechanics.

The most important case is when the force F i depends only on x and can be written in
the form

F i(x)= −∂V (x)

∂xi
(1)

for i = 1, 2, . . . , D. As we all learned, V (x) is called the potential.
Suppose such a function V (x) exists; then a clever person might have the insight to

multiply each of Newton’s equations

m
d2xi

dt2
= F i = −∂V (x)

∂xi
(2)

by dxi

dt
to obtain the D equations

m
d2xi

dt2

dxi

dt
= −∂V (x)

∂xi

dxi

dt
, with i = 1, . . . , D (3)

He or she would then recognize that the sum of these D equations could be written as

d

dt

[
1
2
m
∑
i

(
dxi

dt

)2

+ V (x)

]
= 0 (4)

which we could verify by explicit differentiation. Lo and behold, the total energy, defined by

E = 1
2
m
∑
i

(
dxi

dt

)2

+ V (x) (5)

is conserved. It does not change in time.
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For D = 1, (1) holds automatically: V (x) is simply given by − ∫ x
dx′F(x′). For D > 1,

the D equations in (1), namely F i(x) = − ∂V (x)

∂xi
, imply the consistency or integrability

condition

∂F i(x)

∂xj
= ∂F j(x)

∂xi
(6)

(Since derivatives commute, both sides of (6) are equal to − ∂2V (x)

∂xi∂xj
.) Thus, given F i(x), we

merely have to check to see whether (6) holds. If not, then V does not exist. If yes, then we
could integrate F i(x)= − ∂V (x)

∂xi
for each i to determine V .

Apples do not fall down

Suppose V (r) depends only on r ≡
(∑D

i=1(x
i)2
) 1

2 . In other words, the potential does not
pick out any preferred direction. We take this for granted nowadays, but it represents one
of the most astonishing insights of physics.2 Newton realized that the apple did not fall
down, but toward the center of the earth.

Differentiating r2 =∑D
i=1(x

i)2, we obtain rdr =∑
i x

idxi (an “identity,” which we will

use again and again in this text) or ∂r

∂xj
= xj

r
, so that

F i = −xi

r
V ′(r) and

∂F i(x)

∂xj
= −1

r
[δijV ′(r)+ xixj

r2
(−V ′(r)+ rV ′′(r))]

which is manifestly symmetric under i ↔ j .
Here we have introduced the Kronecker delta δij , defined by

δkj = 1 if k = j , δkj = 0 if k �= j (7)

(which we can think of as an ancestor of the Dirac delta function3 introduced in chapter I.1).
The important point is not the somewhat involved expression for ∂F i(x)

∂xj
, but that it is a

linear combination of δij and xixj . We haven’t talked about tensors yet (see chapter I.4),
but this result could have been anticipated by a “what else can it be?” type of argument.
Not having any preferred direction, we could only construct an object with indices i and
j out of δij and xixj . We could have seen immediately that the integrability condition (6)
holds.

Note that this discussion holds for any value of D.

Conservation of angular momentum

Suppose the force in (2) points toward the center, so that it has the form F i = f (r)xi

(with f (r)= −V ′(r)/r , as we just saw). Then we obtain angular momentum conservation
immediately. To see this, multiply Newton’s equation (2)

m
d2xi

dt2
= f (r)xi (8)
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by xj , so that md2xi

dt2
xj = f (r)xixj . Subtract from this the same equation but with i and j

interchanged. Regardless of the function f (r), we find

xj
d2xi

dt2
− xi

d2xj

dt2
= 0 (9)

But this is the same as

d

dt

(
xj
dxi

dt
− xi

dxj

dt

)
= 0 (10)

Clever, eh? I am constantly amazed by how brilliant early physicists were.

The quantity lij ≡
(
xj dx

i

dt
− xi dx

j

dt

)
, the angular momentum per unit mass, is con-

served. Recall that in the preceding chapter, this fact seemingly fell out when we changed
to polar coordinates. Note also that the argument given here holds for any D ≥ 2.

Exercise

1 Let N particles interact according to

ma

d2xi
a

dt2
= − ∂V (x)

∂xi
a

(11)

with a = 1, . . . , N . Suppose V (x1, . . . , xN) depends only on the differences xi
a
− xib, with a , b = 1, . . . , N .

Show that the total momentum
∑

a ma
dxia
dt

is conserved.

Notes

1. Fearful.
2. I once explained this point to humanists using Einstein’s terminology by saying that “The words up and

down have no place in the Mind of the Creator.” See A. Zee, New Lit. Hist. 23 (1992), pp. 815–838. See also
web.physics.ucsb.edu/jatila/supplements/zee lecture.pdf.

3. In the sense that δ(x − y) is zero for x �= y.



I.3 Rotation: Invariance and Infinitesimal Transformation

Rotation in the plane

My pedagogical strategy for this chapter is to take something you know extremely∗ well,
namely rotations in the plane, present it in a way possibly unfamiliar to you, and go through
it slowly in great detail, “beating the subject to death,” so to speak.

I have already mentioned that Monsieur Descartes had the clever idea of reducing
geometry to algebra. Put down Cartesian coordinate axes so that a point P is labeled by two
real numbers (x , y). Suppose another observer (call him Mr. Prime) puts down coordinate
axes rotated by angle θ with respect to the axes put down by the first observer (call her
Ms. Unprime) but sharing the same origin O. Elementary trigonometry tells us that the
coordinates (x , y) and (x′, y′) assigned by the two observers to the same point P are related
by† (see figure 1)

x′ = cos θ x + sin θ y , y′ = − sin θ x + cos θ y (1)

The distance from P to the origin O of course has to be the same for the two observers.
According to Pythagoras, this requires

√
x′2 + y′2 =√

x2 + y2, which you can check us-
ing (1).

Introduce the column vectors �r =
(
x

y

)
and �r ′ =

(
x′
y′
)

and the rotation matrix

R(θ)=
(

cos θ sin θ

− sin θ cos θ

)
(2)

so that we can write (1) more compactly as �r ′ = R(θ)�r .

∗ If you don’t know rotations in the plane extremely well, then perhaps you are not ready for this book. A
nodding familiarity with matrices and linear algebra is among the prerequisites.

† For example, by comparing similar triangles in the figure, we obtain x′ = (x/ cos θ)+ (y − x tan θ) sin θ .
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y

O

P

x

y′
x′

θ

Figure 1 The same point P is labeled by (x , y)
and (x′ , y′), depending on the observer’s frame of
reference.

As you recall from a course on mechanics, we can either envisage rotating the physical
body we are studying or rotating the observer. We will consistently rotate the observer.

We have already used the word “vector.” A vector is a physical quantity (for example the
velocity of a particle in the plane) consisting of two real numbers, so that if Ms. Unprime

represents it by �p =
(
p1

p2

)
, then Mr. Prime will represent it by �p′ = R(θ) �p. In short, a

vector is something that transforms like the coordinates
(
x

y

)
under rotation.

Given two vectors �p =
(
p1

p2

)
and �q =

(
q1

q2

)
, the scalar or dot product is defined by �pT .

�q = p1q1 + p2q2. Here T stands for transpose and �pT the row vector (p1, p2). By definition,
rotations leave �p2 ≡ �pT . �p = (p1)2 + (p2)2 invariant. In other words, if �p′ = R(θ) �p, then
�p′2 = �p2. Since this works for any vector �p, including the case in which �p happens to be
the sum of two vectors �p = �u+ �v, and since �p2 = (�u+ �v)2 = �u2 + �v2 + 2�uT . �v, rotation
also leaves the dot product between two arbitrary vectors invariant: the invariance of �p2

implies that �u′T . �v′ = �uT . �v.
Since �u′ = R�u (to unclutter things, we often suppress the θ dependence in R(θ)) and so

�u′T = �uTRT , we now have �uT . �v = �u′T . �v′ = (�uTRT ) . (R�v)= �uT . (RTR)�v. (The transpose
MT of a matrix M is of course obtained by interchanging the rows and columns of M .) As
this holds for any two vectors �u and �v, we must have the matrix equation

RTR = I (3)

where, as usual, I denotes the identity or unit matrix: I =
(

1 0
0 1

)
. Indeed, we could verify

(3) explicitly:

R(θ)T R(θ)=
(

cos θ − sin θ

sin θ cos θ

) (
cos θ sin θ

− sin θ cos θ

)
=
(

1 0

0 1

)
(4)

Matrices that satisfy (3) are called orthogonal.
Taking the determinant of (3), we obtain (det R)2 = 1, that is, det R = ±1. The determi-

nant of an orthogonal matrix may be −1 as well as +1. In other words, orthogonal matrices

also include reflection matrices, such as P =
(

1 0
0 −1

)
, a reflection in the y-axis.
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To focus on rotations, let us exclude reflections by imposing the condition (since
det P = −1)

det R = 1 (5)

Matrices with unit determinant are called special.
We define a rotation as a matrix that is both orthogonal and special, that is, a matrix that

satisfies both (3) and (5). Thus, the rotation group of the plane consists of the set of all
special orthogonal 2 by 2 matrices and is known as SO(2).

Note that matrices of the form PR for any rotation R are also excluded by (5), since
det(PR) = det P det R = (−1)(+1) = −1. In particular, a reflection in the x-axis( −1 0

0 1

)
, which is the product of P and a rotation through 90◦, is also excluded.

Act a little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious
but brilliant idea that to rotate through, say, 29◦, you could just as well rotate through a
zillionth of a degree and repeat the process 29 zillion times. To study rotations, it suffices
to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A rotation
through a finite angle could always be obtained by performing infinitesimal rotations
repeatedly. As is typical with many profound statements in physics and mathematics, Lie’s
idea is astonishingly simple. Replace the proverb “Never put off until tomorrow what you
have to do today” by “Do what you have to do a little bit at a time.”

When the angle is small enough, the rotation is almost the identity, that is, no rotation
at all. Thus, we can write

R(θ)� I + A (6)

where A denotes some infinitesimal matrix.
Now suppose we have never seen (2). Indeed, suppose we have never even heard of

sine and cosine. Instead, let us define rotations as the set of linear transformations on
2-component objects �u′ = R�u and �v′ = R�v that leave �uT . �v invariant. Following Lie, we
solve this condition on R, namely (3) RTR = I , by considering an infinitesimal transfor-
mation R(θ) � I + A. Since by assumption, A2 can be neglected relative to A, RTR �
(I + AT )(I + A)� (I + AT + A)= I . We thus obtain AT = −A, namely that A must be
antisymmetric. But there is basically only one 2-by-2 antisymmetric matrix:

J =
(

0 1

−1 0

)
(7)

In other words, the solution of AT = −A is A = θJ for some real number θ . Thus,
rotations close to the identity have the formR = I + θJ +O(θ2)=

(
1 θ

−θ 1

)
+O(θ2). The

antisymmetric matrix J is known as the generator of the rotation group.
An equivalent way of saying this is that for infinitesimal θ , the transformation x′ �

x + θy and y′ � y − θx (you could verify that (1) indeed reduces to this to leading order in
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θ ) obviously satisfies the Pythagorean condition x′2 + y′2 = x2 + y2 to first order in θ . Or,
write x′ = x + δx , y′ = y + δy and solve xδx + yδy = 0.

Alternatively, simply draw figure 1 for θ infinitesimal. Since we know the transformation
is linear, we could determine the matrixR in (6) by looking at the figure to see what happens
to the two points (x = 1, y = 0) and (x = 0, y = 1) under an infinitesimal rotation.

Now recall the identity ex = limN→∞(1 + x
N
)N (which you can easily prove by differen-

tiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

R(θ)= lim
N→∞ R

(
θ

N

)N
= lim

N→∞

(
1 + θJ

N

)N
= eθJ (8)

The first equality represents Lie’s profound idea. For the last equality, we use the identity
just mentioned, which amounts to the definition of the exponential.

Some readers may not be familiar with the exponential of a matrix. Given a well-behaved
function f with a power series expansion, we can define f (M) for an arbitrary matrix
M using that power series. For example, define eM ≡∑∞

n=0 M
n/n!; since we know how

to multiply and add matrices, this series makes perfect sense. (Whether or not any given
series converges is of course another issue.) We must be careful, however, in using various
identities that may or may not generalize. For example, the identity eaea = e2a for a a real
number, which we could prove by applying the binomial theorem to the product of two
series (square of a series in this case) generalizes immediately. Thus, eMeM = e2M . But for
two matrices M1 and M2 that do not commute with each other, eM1eM2 �= eM1+M2.

This provides an alternative but of course equivalent path to our result. To leading order,

we have every right to write R
(
θ
N

)
= 1 + θJ

N
� e

θJ
N and thus R(θ)= R

(
θ
N

)N = eθJ .

Finally, we easily check that the formula R(θ)= eθJ reproduces (2) for any value of θ .
We simply note that J 2 = −I and separate the exponential series into even and odd terms.
Thus

eθJ =
∞∑
n=0

θnJ n/n! =
( ∞∑
k=0

(−1)kθ2k/(2k)!

)
I +

( ∞∑
k=0

(−1)kθ2k+1/(2k + 1)!

)
J

= cos θ I + sin θ J = cos θ

(
1 0

0 1

)
+ sin θ

(
0 1

−1 0

)
=
(

cos θ sin θ

− sin θ cos θ

)
(9)

which is precisely R(θ) as given in (2). Note this works because J plays the same role as
i in the identity eiθ = cos θ + i sin θ .

Poor Lie, he never made it into the 20th century.

Two approaches to rotation

Notice that I actually gave you two different approaches to rotation. Let us summarize the
two approaches. In the first approach, applying trigonometry to figure 1, we write down (1)
and hence (2). In the second approach, we specify what is to be left invariant by rotations
and hence define rotations by the condition (3) that rotations must satisfy. Lie then tells
us that it suffices to solve (3) for infinitesimal rotations. We could then build up rotations
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through finite angles by multiplying infinitesimal rotations together, thus also arriving
at (2).

It might seem that the first approach is much more direct. One writes down (2) and that
is that. The second approach appears more roundabout and involves some “fancy math.”
It might even provoke an adherent of the first “more macho” approach to wisecrack, “Why,
with a bit of higher education, sine and cosine are not good enough for you any more? You
have to go around doing fancy math!” The point is that the second approach generalizes
to higher dimensional spaces (and to other situations) much more readily than the first
approach does, as we will see presently. Dear reader, in going through life, you would be
well advised to always separate fancy but useful math from fancy but useless math.

Before we go on, let us take care of one technical detail. We assumed that Mr. Prime and
Ms. Unprime set up their coordinate systems to share the same origin O. We now show
that this condition is unnecessary if we consider two points P and Q (rather than one point,
as in our discussion above) and study how the vector connecting P to Q transforms.

Let Ms. Unprime assign the coordinates �rP = (x , y) and �rQ = (x̃ , ỹ) to P and Q, respec-
tively. Then Mr. Prime’s coordinates �r ′

P = (x′, y′) for P and �r ′
Q = (x̃′, ỹ′) for Q are then

given by �r ′
P = R(θ)�rP and �r ′

Q = R(θ)�rQ. Subtracting the first equation from the second and
defining 
x = x̃ − x, 
y = ỹ − y, and the corresponding primed quantities, we obtain(


x′


y′

)
=
(

cos θ − sin θ

sin θ cos θ

) (

x


y

)
(10)

Rotations leave the distance between the points P and Q unchanged: (
x′)2 + (
y′)2 =
(
x)2 + (
y)2. You recognize of course that this is a lot of tedious verbiage stating the
perfectly obvious, but I want to be precise here. Of course, the distance between any two
points is left unchanged by rotations. (This also means that the distance between P and
the origin is left unchanged by rotations; ditto for the distance between Q and the origin.)

Invariance and geometry

There is no royal road to geometry.
—Euclid’s advice to a prince

Let no one unversed in geometry enter here.
—Plato’s motto, carved over the

entrance to his academy

Let us take the two points P and Q to be infinitesimally close to each other and replace
the differences 
x′, 
x, and so forth by differentials dx′, dx, and so forth. Indeed,
2-dimensional Euclidean space is defined by the distance squared between two nearby
points:

ds2 = dx2 + dy2 (11)
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Rotations are defined as linear transformations∗ (x , y)→ (x′, y′), such that

dx2 + dy2 = dx′2 + dy′2 (12)

The whole point is that this now makes no reference to the origin O (and whether Mr.
Prime and Ms. Unprime even share the same origin).

The column d �x =
(
dx1

dx2

)
≡
(
dx

dy

)
is defined as the basic or ur-vector, the template for

all other vectors. To repeat, a vector is defined as something that transforms like d �x under
rotations.

So, a vector is defined by how it transforms. An array of two numbers �p =
(
p1

p2

)
is a

vector if it transforms according to �p′ = R(θ) �p.
Sometimes it is very helpful, in order to understand what something is, to be given an

example of something that is not. As a simple example, given a �p, then
(
ap1

bp2

)
is definitely

not a vector if a �= b. (You could easily write down more outrageous examples, such as(
(p1)2p2

(p1)3+(p2)3

)
. That ain’t no vector!) You will work out further examples in exercise 1. An

array of numbers is not a vector unless it transforms in the right way.1

Oh, about the advice Euclid gave to the prince who wanted to know a quick way of
mastering geometry. Mr. E is also telling you that, to master the material covered in this
book, there is no way other than to cogitate over the material until you get it and to work
through as many exercises as possible.

From the plane to higher dimensional space

The reader who has wrestled with Euler angles in a mechanics course knows that the
analog of (2) for 3-dimensional space is already quite a mess. In contrast, Lie’s approach
allows us, as mentioned above, to immediately jump to D-dimensional Euclidean space,
defined by specifying the distance squared between two nearby points (compare this with
(11)), as given by the obvious generalization of Pythagoras’ theorem:

ds2 =
D∑
i=1

(
dxi

)2 =
(
dx1

)2 +
(
dx2

)2 + . . . +
(
dxD

)2
(13)

This is as good a place as any to say a word about indices. As I said in chapter I.1, in
my experience teaching, there are always a couple of students confounded by indices.
Dear reader, if you are not, you could simply laugh and skip to the next paragraph.
Indices provide a marvelous notational device to save us from having to give names to
individual elements belonging to a set. (For example, consider all humans hi now alive,
with i = 1, 2, . . . , P where P denotes the population size.) Take a look at the 19th century
physics literature, before the use of indices became widespread. I am always amazed by

∗ Indeed, most, but not all, of the readers2 of this book are constantly rotating between two coordinate systems.
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the fact that, for example, Maxwell could see through the morass of the electromagnetic
equations written out component by component.

Rotations are defined as linear transformations d �x′ =Rd �x that leave ds unchanged. The
preceding discussion allows us to write this condition as RTR = I . As before, we want
to focus on rotations by imposing the additional condition det R = 1. The set of D-by-D
matrices R that satisfy these two conditions forms the simple orthogonal group SO(D),
which is just a fancy way of saying the rotation group in D-dimensional space.

Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher
dimensional spaces. All we have to do is satisfy the two conditionsRTR = I and det R = 1.

So let us follow Lie and writeR � I +A. ThenRTR = I is solved by requiringA= −AT ,
namely that A must be antisymmetric. But it is very easy to write down all possible
antisymmetric D-by-D matrices! For D = 2, there is basically only one: the J introduced
earlier. For D = 3, there are basically three of them:

Jx =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎠ , Jy =

⎛
⎜⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎟⎠ , Jz =

⎛
⎜⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎟⎠ (14)

Any 3-by-3 antisymmetric matrix can be written as A= θxJx + θyJy + θzJz, with three
real numbers θx , θy, and θz. At this point, you can verify that R � I + A, with A as given
here, satisfies the condition det R = 1.

The three matrices Jx, Jy, Jz are known as the generators of the 3-dimensional rotation
group SO(3). They generate rotations, but are of course not to be confused with rotations,
which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

The upshot of this whole discussion is that any 3-dimensional rotation (not necessarily
infinitesimal) can be written asR(θ)= eA and is thus characterized by three real numbers.
As I said, those readers who have suffered through the rotation of a rigid body in a course
on mechanics must appreciate the simplicity of studying the generators of infinitesimal
rotations and then simply exponentiating them.

Index notation and rotations

Some readers will find this obvious, but others might find it helpful if we derive the
condition RTR = I explicitly once again using the index notation. I prefer to go slow here,
since we will need some of the same formalism later when we get to special relativity. Once
the reader feels sure-footed, we could then dispense with indices.

Let me start by reminding the reader that aD-by-D matrixM carries two indices and has
entries Mij , with the standard convention that the first index labels the rows, the second
the column (for i , j = 1, 2, . . . , D). For example, for D = 2, M =

(
M11 M12

M21 M22

)
, and M12 is
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the entry in the first row and the second column, whereas M21 is the entry in the second
row and the first column. Note that the transpose of a matrix M is given by (MT )ji ≡Mij .
Thus, if �v is a column vector with entries vj , then the entries of the column vector �u=M �v
are given by ui =∑

j M
ijvj . For A and B two D-by-D matrices, the product AB is defined

as the matrix with the entries (AB)ij =∑
k A

ikBkj . (If everything here is news to you, see
the first footnote in this chapter.)

Under a rotation,

dx′i =
∑
j

Rijdxj = Ri1dx1 + Ri2dx2 + . . . + RiDdxD (15)

(I have written the sum out explicitly for the benefit of the rare reader afflicted by fear
of indices.) Also, as was mentioned in chapter I.1, at this stage it is completely arbitrary
whether we write upper or lower indices.

Let us pause and recall the Kronecker delta symbol δij introduced in (I.2.7), defined
to be equal to +1 if i = j and 0 otherwise, and which we can also think of as a D-by-D
unit matrix. We will be encountering the highly useful Kronecker delta often in this book.
For example,

∑
j A

jBj =∑
k

∑
j δ

kjAkBj . Since δkj vanishes unless k is equal to j , the
double sum on the right hand side collapses to the single sum on the left hand side. In
other words, the Kronecker delta allows us to write a single sum as a double sum. It seems
like a really silly thing to do, but as we will see presently, it is an extremely useful trick that
we use quite often in this book.

We now determine how the matrix R must be restricted for it to be a rotation. The
statement that ds2 =∑D

i=1(dx
i)2 as defined in (13) is left unchanged by the rotation implies

that (with all indices running over 1, . . . , D)

∑
i

(dx′i)2 =
∑
i

∑
k

∑
j

RikdxkRijdxj =
∑
j

(dxj)2 =
∑
k

∑
j

δkjdxkdxj (16)

In the last step, we used what we just learned.
Since the infinitesimals dxi can take on arbitrary values, to have the second term equal

to the last term in (16), we must equate the coefficients of dxkdxj and demand that

∑
i

RikRij = δkj =
∑
i

(RT )kiRij = (RTR)kj (17)

Indeed, we obtain RTR = I just as in (3), but now in D-dimensional space for any D.
We end this section with a trivial remark. So far in this chapter, we have written the

column vectors as columns. But columns take up so much space, and so for typographical
convenience (editors must be placated!) we will henceforth write the entries of a column
vector as d �x = (dx1, dx2, . . . , dxD), a practice we will indulge in throughout this book.
(If we want to be insufferably pedantic, we could put in a T for transpose: the column
ur-vector d �x = (dx1, dx2, . . . , dxD)T .)
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Einstein’s repeated index summation

Observe that in all those sums in (16) the indices to be summed over always ap-
pear twice, that is, they are repeated. For example, in the second term in (16),∑

i

∑
k

∑
j R

ikdxkRijdxj , the indices i , k, and j all appear repeated. Thus, we could adopt
the so-called repeated index summation convention proposed by Albert Einstein himself:
omit the pesky summation symbol and agree that if an index is repeated, then it is to be
summed over. For example, dx′i =∑

j R
ijdxj can now be written as dx′i = Rijdxj : in the

expression on the right hand side, the index j appears twice and is thus to be summed
over.∗ In contrast, i is a “free” index and does not appear twice in the same expression.
Notice that free indices must match on opposite sides of any equation. It is rightly said
that one of Einstein’s greatest contribution to physics is the repeated index summation
convention.† When we get to Einstein gravity, we will meet lots of indices to be summed
over, and it would be silly to keep on writing the summation symbol.

Vector fields

The vectors we encounter may well vary in space. For example, the flow velocity in a fluid
in general would depend on where we are. We are then dealing with a vector field �V (�x).
Again, consider two observers studying the same vector field. Mr. Prime would see

�V ′(�x′)= R �V (�x) (18)

with �x′ = R�x of course. In other words, the two observers are studying the same vector
field at the same point P. See figure 2. As another example, the familiar electric �E(�x) and
magnetic fields �B(�x) are both vector fields.

Physics should not depend on the observer

Let me stress again why physicists constantly talk about vectors. The laws of physics often
involve the statement that one vector is equal to another, for example, Newton’s law states
m�a = �F . Applying a rotation matrix R(θ), we obtain mR(θ)�a = R(θ) �F . If �F transforms
like a vector, then m�a′ = �F ′. Ms. Unprime and Mr. Prime see the same Newton’s law, and
more generally, the same laws of physics!

This statement, while self-evident, is profound, and in some sense, it is what makes
physics possible. Physics should not depend on the physicist. Ms. Unprime and Mr. Prime

∗ When a pair of repeated indices, such as j here, is summed over, they are often said to be contracted with
each other. In a tiny abuse of terminology, people also say that Rij is contracted with dxj .

† It appeared only in his later work. In 1905, Einstein did not even use vector notation! In one system, the
coordinates were denoted by x , y , z, in the other, by ξ , η, ζ ; the components of the force acting on the electron
were called X , Y , Z. To modern eyes, his notation was a horrific mess.
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y

x

y′

x′P

Figure 2 Two observers studying the same vector field.

see different accelerations �a and �a′, and different forces �F and �F ′, but the same Newton’s
law. We say that Newton’s law is invariant—that is, it does not change—under rotation.∗

We should also remind ourselves that mass is an example of a scalar: a physical quantity
that does not change under rotation. If it does change, Newton’s law would not be invariant
under rotation and one observer would be preferred over another, which is unacceptable.
Physics rests on the democratic ideal.

Let me remind you that the gravitational force in the planetary problem studied in
chapter I.1 is derived from what is sometimes called a central potential, namely one without
a preferred direction: F i(x)= − ∂

∂xi
V (r)= − xi

r
V ′(r). Hence, �F is proportional to �x and

so a fortiori transforms like a vector.
At this point, it may be worthwhile to be a bit more pedantic and professorial. Some

authors give long-winded speeches about covariance versus invariance, and take great pain
to distinguish the two. We should too. The equation m�a = �F is covariant, that is, the two
sides transform the same way under rotations. The physics expressed by Newton’s second
law is, however, invariant, that is, independent of observers related by a rotation. If physics
depends on how you tilt your head, we are in trouble. Physics does not, but the way physics
is expressed, in terms of equations, does.

Here is the profound and trivial statement. Under a certain set of transformations, a
purportedly fundamental equation is said to be covariant if the two sides of the equation
transform in the same way. If so, then that transformation is known as a symmetry of
physics.3 Physics is said to be invariant under that transformation. As we will see, both sides
of Einstein’s field equation transform in the same way, as tensors, under what are known
as general coordinate transformations. I will explain what a tensor is in the next chapter. I
will allow myself the luxury of using the words invariance and covariance interchangeably
and simply trust you to be discerning.

Since we can always move the quantity on the right hand side of an equation to the
left hand side, we can rewrite a physical law of the form �u= �v in the form �w ≡ �u− �v =
0. Physics students sometimes joke that they could already write down the ultimate

∗ The reader who has already been exposed to the special theory of relativity knows that this notion of invariance
represents the essence of Einstein’s insight. We will of course have a great deal more to say about that!
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equation of physics, namely X = 0, whatever X is. Thus, the statement of invariance
merely expresses the mathematically obvious fact that if �w = 0, then R(θ) �w = 0. (Strictly
speaking, the 0 on the right hand side should be written as �0, but we don’t want to be that
pedantic!)

Descartes versus Euclid

I remember how excited I was when I learned about analytic geometry. Surely you were
excited too. What a genius, that Descartes! Henceforth, we could prove geometric theorems
by doing algebra. After Descartes,4 physics can no longer live without the concept of
coordinates,∗ but he also managed to obscure what was once obvious to Euclid. We now
must also insist on invariance. Indeed, the notion of invariance is at the heart of what we
mean by geometry.

For example, suppose somebody hands you a formula for the area of a triangle with
vertices at (a1, b1), (a2, b2), (a3, b3). You better insist that the formula is invariant under
rotation. In fact, this requirement, plus the requirement that the area should scale as the
square of the separation between the three vertices, suffices to determine the formula.
This simple example rings in the central motif of this book.

Appendix 1: Differential operators rather than matrices

Here I have to divide readers into the haves and the have-nots, but only temporarily. What I will say may sound
difficult, but really, it amounts to not much more than a notational triviality.

If you have studied quantum mechanics, you would know that the generators J of rotation studied here
are related to angular momentum operators. You would also know that in quantum mechanics, observables are
represented by hermitean operators. However, in our discussion, the J s come out naturally as antisymmetric
matrices and are thus antihermitean. To make them hermitean, we multiply them by some multiples of i.

If you have not studied quantum mechanics, then the preceding would sound like gibberish to you, but do
not worry. Simply take the attitude that, hey, it is a free country, and we can always invite ourselves to define a
new set of physical quantities by multiplying an existing set of physical quantities by some constant. Heck, we
could multiply by

√
17i if we want.

Even though here we are nowhere near quantum mechanics, we will bow to customary usage and define Jx ≡
−iJx and so forth. From (14) we see that, for example, Jz acting on the column vector (x , y , z) gives i(y , −x , 0).
Thus, instead of using matrices, we could also represent Jz by i(y ∂

∂x
− x ∂

∂y
), since Jzx = i(y ∂

∂x
− x ∂

∂y
)x = iy,

Jzy = i(y ∂
∂x

− x ∂
∂y
)y = −ix, and Jzy = i(y ∂

∂x
− x ∂

∂y
)z = 0. Note that Jz is precisely the z-component of the

angular momentum operators in quantum mechanics. We can naturally pass back and forth between matrices
and differential operators. We will not make use of this differential representation until a later chapter.

∗ Regarding the argument (which I mentioned in a footnote in the preface) between those who live with
coordinates and those who live coordinate free, I would say that the proof of angular momentum conservation,
which I already gave, not once, but twice in the two preceding chapters using coordinates, provides an example in
favor of the latter group: d

dt
�l = d

dt
(�r × �p)=m d

dt
(�r × d�r

dt
)=md�r

dt
× d�r

dt
+m�r × d2�r

dt2
= 0 for rotationally symmetric

potentials. While this indeed looks simpler than the two previous discussions, the former group could also say
that this requires learning “considerable formal math,” such as the cross product and its various properties.
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Appendix 2: Rotations in higher dimensional space

Here we discuss rotations in D-dimensional Euclidean space. As you have no doubt heard, Einstein combined
space and time into a 4-dimensional spacetime. Thus, what you will learn here about SO(4) will be put to good
use.∗ If you prefer, you could skip this discussion and come back to it later.

Start with a D-by-D matrix with 0 everywhere. Generalize (14). Stick a 1 into the mth row and nth column,
and a (−1) into the nth row andmth column. Call this matrix J(mn). We put the subscripts (mn) in parentheses to
emphasize that (mn) labels the matrix. They are not indices to tell us which element of the matrix we are talking
about. As explained before, we define J(mn) = −iJ(mn) so that explicitly

J
ij

(mn)
= −i(δmiδnj − δmjδni) (19)

To repeat, in the symbol J ij
(mn)

, the indices i and j indicate respectively the row and column of the entry J ij
(mn)

of
the matrix J(mn), while the indices m and n, which I put in parentheses for pedagogical clarity, indicate which
matrix we are talking about. The first indexm on J(mn) can take onD values, and then the second index n can take
on only (D − 1) values since, obviously, J(mm) = 0. Also, since J(nm) = −J(mn), we require m> n to avoid double
counting. Thus, there are only 1

2D(D − 1) real antisymmetric D-by-D matrices J(mn), and A could be written as
a linear combination of them: A= i

∑
m>n θmnJ(mn), where θmn denote 1

2D(D − 1) real numbers. (As a check,
for D = 2 and 3, 1

2D(D − 1) equals 1 and 3, respectively.) The matrices J(mn) are known as the generators of the
group SO(D).

Notice a notational peculiarity: for SO(3), the J s could be labeled with one index rather than two indices. The
reason is simple. In this case, the indices m, n take on 3 values, and so we could write Jx = J23, Jy = J31, and
Jz = J12. We will, as we do here, often pass freely between the index sets (123) and (xyz). In general, rotations
are labeled by the plane they occur in, say the (m-n) plane spanned by the mth and nth axes. In 3-dimensional
space, and only in 3-dimensional space, a plane is uniquely specified by the vector perpendicular to it. Thus, a
rotation commonly spoken of as a rotation around the z-axis is better thought of as a rotation in the (1-2) plane,
that is, the (x-y) plane. (In this connection, note that the J in (7) appears as the upper left 2-by-2 block in Jz in
(14).) In contrast, for SO(4) it makes no sense to speak of a rotation around, say, the third axis.

The reader who has studied some group theory knows that the essence of the group is captured by the extent
to which the multiplication of two group elements does not commute. For rotations, everyday observations show
that R(θ)R(θ ′) is in general quite different from R(θ ′)R(θ). See figure 3.

Following Lie, we could try to capture this essence by focusing on infinitesimal rotations. Let R1 � I + A

and R2 � I + B. Then R1R2 � (I + A)(I + B)� I + A+ B + AB +O(A2, B2) (where rather pedantically we
have indicated that to the desired order if we keep AB, we should also keep terms of order O(A2, B2), but we
will see immediately that they are irrelevant). If we multiply in the other order, we simply interchange A and
B, thus R2R1 � (I + A)(I + B)� I + B + A+ BA+O(A2, B2). Hence, R1R2 and R2R1 differ by the amount
[A, B] ≡ AB − BA, a quantity known as the commutator between A and B.

More formally, given two matrices X and Y , to measure how they differ from each other, we could ask how
X−1Y differs from the identity. If X = Y , then this product is equal to the identity. Now, the inverse of a matrix
I +A infinitesimally close to the identity is easy to determine: it is just I −A, since (I −A)(I +A)= I +O(A2).
Thus, let us calculate (R2R1)

−1R1R2:

(R2R1)
−1R1R2 = [I − (B + A+ BA+O(A2, B2))][I + A+ B + AB +O(A2, B2)]

= I + [A, B] + . . . (20)

For SO(3), for example,A is a linear combination of the Jis, known as the generators of the Lie algebra. Thus,
we could write A= i

∑
i θiJi and similarly B = i

∑
j θ

′
j
Jj . Hence [A, B] = i2

∑
ij θiθ

′
j
[Ji , Jj ], and so it suffices

to calculate the commutators [Ji , Jj ].
Recall that for two matrices M1 and M2, (M1M2)

T =MT
2 M

T
1 . Transpose reverses the order. Thus ([Ji , Jj ])T =

−[Ji , Jj ]. In other words, the commutator [Ji , Jj ] is itself an antisymmetric 3-by-3 matrix and thus could be
written as a linear combination of the Jks:

[Ji , Jj ] = icijkJk (21)

∗ Higher dimensional rotation groups often pop up in the most unlikely places in theoretical physics. For
example, SO(4) is relevant for a deeper understanding of the spectrum of the hydrogen atom.5
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(a)

(b)

Figure 3 A marine recruit in a boot camp is standing and facing north. When the drill sergeant
shouts, “Rotate by 90◦ eastward around the vertical axis” our recruit turns to face east. Suppose
the sergeant next shouts, “Rotate by 90◦ westward around the north-south axis.” Our recruit
ends up lying down on his back with his head pointing west, his feet pointing east. But what
would happen if the sergeant reverses his two commands? You could easily verify that our recruit
now ends up lying down on his left elbow, with his head pointing north. The order matters. For
this reason, the study of rotations has been a bête noire for generations of physics students.

for a set of real (convince yourself of this!) numbers cijk. The summation over k is implied by the repeated index
summation convention.

By explicit computation using (14), we find

[Jx , Jy ] = iJz (22)

You should work out the other commutators or argue by cyclic substitution x → y → z→ x. The three commu-
tation relations may be summarized by

[Ji , Jj ] = iεijkJk (23)

We define the totally antisymmetric symbol εijk by saying that it changes sign upon the interchange of any pair
of indices (and hence it vanishes when any two indices are equal) and by specifying that ε123 = 1. In other words,
we found that cijk = εijk.

Lie’s great insight is that the preceding discussion holds for any group whose elements are labeled by a set of
continuous parameters (such as θi , i = 1, 2, 3 in the case of SO(3)), groups now known as Lie groups. Expanding
the group elements around the origin, we arrive at (20) and hence the structure (21) for any continuous group.
The set of all commutation relations of the form (21) is said to define a Lie algebra, with cijk referred to as the
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structure constants of the algebra. The matrices Ji are called the generators of the Lie algebra. The idea is that
by studying the Lie algebra, we go a long way toward understanding the group.

You should now work out (exercise 4), starting from (19), the Lie algebra for SO(D):

[J(mn) , J(pq)] = i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (24)

This may look rather involved to the uninitiated, but in fact it is quite simple. First, the right hand side,
a linear combination of the J s, as required by the general argument above, is completely fixed by the first
term by noting that the left hand side is antisymmetric under three separate interchanges: m↔ n, p ↔ q, and
(mn) ↔ (pq). Next, all those Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in
common, then the commutator vanishes. If they do have an integer in common, you simply “cross off” that
integer. This is best explained by using SO(4) as an example. We have [J(12) , J(34)] = 0, [J(12) , J(14)] = iJ(24),
[J(23) , J(31)] = −iJ(21) = iJ(12), and so forth. The first of these relations says that rotations in the (1-2) plane and
in the (3-4) plane commute, as you might expect. Do write down a few more and you will get it.

Exercises

1 Suppose we are given two vectors �p and �q in ordinary 3-dimensional space. Consider this array of three

numbers:

(
p2q3

p3q1

p1q2

)
. Prove that it is not a vector, even though it looks like a vector. (Check how it transforms

under rotation!) In contrast,

(
p2q3−p3q2

p3q1−p1q3

p1q2−p2q1

)
does transform like a vector. It is in fact the vector cross product

�p × �q.

2 Show that the product of two delta functions δ(x)δ(y) is invariant under rotation around the origin.

3 Using (14) show that a rotation around the x-axis through angle θx is given by

Rx(θx)=
⎛
⎜⎝

1 0 0

0 cos θx sin θx

0 − sin θx cos θx

⎞
⎟⎠

Write down Ry(θy). Show explicitly that Rx(θx)Ry(θy) �= Ry(θy)Rx(θx).

4 Calculate [J(mn) , J(pq)].

5 Given a 3-vector �p, show that the quantity �pi �pj when averaged over the direction of �p is given by
1

4π

∫
dθdϕ cos θ �pi �pj = 1

3 �p2δij .

Notes

1. Outside of physics, people often erroneously call any array of numbers a vector. Of course, people are free to
call anything anything, so let’s not quibble about the word “erroneously.”

2. I say “most, but not all,” because it is conceivable that you are a native speaker of Guugu Yimithirr. See
G. Deutscher, Through the Language Glass, H. Holt and Co., 2010, p. 161.

3. The intellectual precision of our definition of symmetry is necessary lest we make the same mistake as the
ancient Greeks. See Fearful, pp. 11–12 and figure 2.2.

4. According to one story, take it or leave it, Descartes was lying in bed when he noticed a fly buzzing around
the room. He then realized that he could fix the fly’s position given how far the fly was from two intersecting
walls and the ceiling.

5. For example, J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, pp. 265–268.
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A tensor is something that transforms like a tensor

Long ago, an undergrad who later became a distinguished condensed matter physicist
came to me after a class on group theory and asked me, “What exactly is a tensor?” I told
him that a tensor is something that transforms like a tensor. When I ran into him many
years later, he regaled me with the following story. At his graduation, his father, perhaps
still smarting from the hefty sum he had paid to the prestigious private university his son
attended, asked him what was the most memorable piece of knowledge he acquired during
his four years in college. He replied, “A tensor is something that transforms like a tensor.”

But this should not perplex us. A duck is something that quacks like a duck. Mathemati-
cal objects could also be defined by their behavior. We already saw in the preceding chapter
that a vector is defined by how it transforms: V ′i = RijV j . Consider a collection of “math-
ematical entities” T ij with i , j = 1, 2, . . . , D in D-dimensional space. If they transform
under rotations according to

T ij → T ′ij = RikRjlT kl (1)

then we say that T transforms like a tensor, and hence is a tensor. (Here we are using the
Einstein summation convention introduced in the previous chapter: The right hand side
actually means

∑D
k=1

∑D
l=1 R

ikRjlT kl and is a sum of D2 terms.) Indeed, we see that we
are just generalizing the transformation law of a vector.

Fear of tensors

In my experience teaching, a couple of students are invariably confused by the notion of
tensors. The very word “tensor” apparently make them tense. Dear reader, if you are not
one of these unfortunates, so much the better for you! You could zip through this chapter.
But to allay the nameless fear of the tensorphobe, I will go slow and be specific.
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Think of the tensor T ij as a collection of D2 mathematical entities that transform
into linear combinations of one another. To help the reader focus, I will often spe-
cialize to D = 3. Compounded and intertwined with their fear of tensors, the unfor-
tunates mentioned above are also unaccountably afraid of indices, as mentioned in
chapter I.1. For them, let us list T ij explicitly for D = 3. There are 32 = 9 of them:
T 11, T 12, T 13, T 21, T 22, T 23, T 31, T 32, T 33. That’s it, 9 objects that transform into linear
combinations of one another. For example, (1) says that T ′21 = R2kR1lT kl = R21R11T 11 +
R21R12T 12 + R21R13T 13 + R22R11T 21 + R22R12T 22 + R22R13T 23 + R23R11T 31+
R23R12T 32 + R23R13T 33. This shows explicitly, as if there were any doubt to begin with,
that T ′21 is given by a particular linear combination of the 9 objects. That’s all: the ten-
sor T ij consists of 9 objects that transform into linear combinations of themselves under
rotations.

We could generalize further and define∗ 3-indexed tensors, 4-indexed tensors, and so
forth by such transformation laws as W ′ijn = RikRjlRnmWklm. Here we will focus on 2-
indexed tensors, and if we say tensor without any qualifier, we often, but not always, mean
a 2-indexed tensor. With this definition, we might say that a vector is a 1-indexed tensor
and a scalar is a 0-indexed tensor, but this usage is not common. A scalar transforms as a
tensor with no index at all, namely S′ = S; in other words, a scalar does not transform.

Tensor field

In the preceding chapter, we introduced the notion of a vector field V i(�x), nothing more or
less than a vector function of position. That it is a vector means that it transforms according
to V ′i(�x′)=RijV j(�x). Now consider the derivative of this vector field ∂V j(�x)

∂xk
, which we will

call Wkj(�x).
Use the fact that �x′ = R�x implies �x = R−1�x′ = RT �x′ and thus ∂xk

∂x′h = (RT )kh = Rhk. (The
O in the rotation group SO(D) is crucial: the inverse of a rotation is its transpose.) Then

∂

∂x′h = ∂xk

∂x′h
∂

∂xk
= Rhk ∂

∂xk
(2)

Thus

W ′hi(�x′)≡ ∂V ′i(�x′)
∂x′h = Rhk ∂

∂xk
(RijV j(�x))= RhkRij ∂V

j(�x)
∂xk

= RhkRijWkj(�x) (3)

Comparing with (1) we see that Wkj(�x) transforms like a tensor and, hence, is a tensor.
Indeed, it is a tensor field.

Notice that a tensor T ij transforms as if it were composed of two vectors viwj , that
is, T ij and viwj transform in the same way. (Compare viwj → v′iw′j = RikvkRjlwl =
RikRjlvkwl with (1).) It is important to recognize that only in exceptional cases does a
tensor T ij happen to be equal to viwj for some v and w. In general, a tensor cannot be

∗ Our friend the Jargon Guy tells us that the number of indices carried by a tensor is known as its rank. (The
Jargon Guy is a new friend of the author; he did not appear in QFT Nut.)
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written in the form viwj . Our tensor field Wkj(�x) offers a ready example: in general, it is
not equal to some vector Uk multiplied by V j(�x).

Also, note in our example that the differential operator ∂

∂xk
transforms (2) like a vector.

For example, if φ′(x′)= φ(x) transforms like a scalar, then ∂φ

∂xk
transforms like a vector.

Indeed, that’s why you have encountered the notation �∇ for the gradient in an elementary
physics course. This remark will be important later when we revisit Newton’s inverse
square law in chapter II.3. Do exercise 1 now.

Representation theory

Go back to the 9 objects T ij that form a tensor. Mentally arrange them in a column⎛
⎜⎜⎜⎜⎜⎝

T 11

T 12

...

T 33

⎞
⎟⎟⎟⎟⎟⎠

The linear transformation on the 9 objects can then be represented by a 9-by-9 matrix
D(R) acting on this column. (Here we are going painfully slowly because of common
confusion on this point. Some authors refer to this column as a 9-component “vector,”
which is a horrible abuse of terminology. We reserve the word “vector” for something that
transforms like a vector V ′i = RijV j . It is not true that any old collection of stuff arranged
in a column is a vector. Don’t call anything with feathers a duck!)

For every rotation, specified by a 3-by-3 matrixR, we could thus associate a 9-by-9 matrix
D(R) transforming the 9 objects T ij linearly among themselves. We say that the 9-by-9
matrix D(R) represents the rotation matrix R in the sense that

D(R1)D(R2)= D(R1R2) (4)

Multiplication of D(R1) and D(R2)mirrors the multiplication ofR1 andR2, as it were. The
tensor T is said to furnish a 9-dimensional representation of the rotation group SO(3).
The 9-by-9 matrices D(R) represent R. Notice that with this jargon, the vector furnishes a
3-dimensional representation of the rotation group, known as the defining or fundamental
representation.

Reducible versus irreducible

Let us now pose the central question of representation theory. Given these 9 entities T ij

that transform into each other, consider the 9 independent linear combinations that we
can form out of them. Is there a subset among them that only transform into each other?
A secret in-club, as it were.

A moment’s thought reveals that there is indeed an in-club. Consider Aij ≡ T ij − T ji.
Under a rotation,
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Aij → A′ij = T ′ij − T ′ji = RikRjlT kl − RjkRilT kl

= RikRjlT kl − RjlRikT lk = RikRjl(T kl − T lk)= RikRjlAkl (5)

I have again gone painfully slow here, but it is obvious, isn’t it? We just verified in (5) that
Aij transforms like a tensor and is thus a tensor. Furthermore, this tensor changes sign
upon interchange of its two indices (Aij = −Aji) and is said to be antisymmetric. The
transformation law (1) treats the two indices democratically, without favoring one over
the other, and thus preserves the antisymmetric character of a tensor: if Aij = −Aji, then
A′ij = −A′ji also.

Let us count. The index i in Aij could take on D values; for each of these values,
the index j could take on only D − 1 values (since the D diagonal elements Aii = 0 for
i = 1, 2, . . . , D, no Einstein repeated index summation here); but to avoid double counting
(sinceAij = −Aji) we should divide by 2. Hence, the number of independent components
inA is equal to 1

2D(D − 1). For example, forD = 3, we have the 3 objects:A12, A23, andA31.
The attentive reader would recall that we did the same counting in the previous chapter.

Obviously, the same goes for the symmetric combination Sij ≡ T ij + T ji. You could
verify as a trivial exercise that S′ij = RikRjlSkl. A tensor Sij that does not change sign
upon interchange of its two indices (Sij = Sji) is said to be symmetric. Evidently, the sym-
metric tensor S has more components than the antisymmetric tensorA. In addition to the
components Sij with i �= j , S also hasD diagonal components, namely S11, S22, . . . , SDD.
Thus, the number of independent components in S is equal to 1

2D(D − 1) + D =
1
2D(D + 1).

For D = 3, the number of components in A and S are 1
2

. 3 . 2 = 3 and 1
2

. 3 . 4 = 6,
respectively. (ForD = 4, the number of components inA and S are 6 and 10, respectively.)
Thus, in a suitable basis, the 9-by-9 matrix referred to above actually breaks up into a 3-
by-3 block and a 6-by-6 block. We say that the 9-dimensional representation is reducible:
it could be reduced to smaller representations.

But we are not done yet. The 6-dimensional representation is also reducible. To see this,
note

S′ii = RikRilSkl = (RT )kiRilSkl = (R−1)kiRilSkl = δklSkl = Skk (6)

where we have used the O in SO(D). (Here we are using repeated index summation:
the indices i and k are both summed over.) In other words, the linear combination
S11 + S22 + . . . + SDD, the trace of S, transforms into itself, that is, does not transform
at all. It is a loner forming an in-club of one. The 6-by-6 matrix describing the linear
transformation of the 6 objects Sij breaks up into a 1-by-1 block and a 5-by-5 block. See
figure 1.

Again, for the sake of the beginning student, let us work out explicitly the 5 objects that
furnish the representation 5 of SO(3). First define a traceless symmetric tensor S̃ by

S̃ij = Sij − δij (Skk/D) (7)

(The repeated index k is summed over.) Explicitly, S̃ii = Sii − D(Skk/D) = 0, and S̃ is
traceless. Specialize to D = 3. Now we have only 5 objects, namely S̃11, S̃22, S̃12, S̃13, S̃23.
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9 → 5 + 3 + 1

Figure 1 How the collection of 9 objects T ij splits up. The figure is meant
to be schematic: the dots do not represent the original 9 objects, but linear
combinations of them, and the positions of the dots are not meaningful.

We do not count S̃33 separately, since it is equal to −(S̃11 + S̃22). Under an SO(3) rotation,
these 5 objects transform into linear combinations of one another, as we just explained.

Let us be specific: the object S̃13, for example, transforms into S̃′13 = R1kR3lS̃kl =
R11R31S̃11 +R11R32S̃12 +R11R33S̃13 +R12R31S̃21 +R12R32S̃22 +R12R33S̃23 +R13R31S̃31

+R13R32S̃32 + R13R33S̃33 = (R11R31 − R13R33)S̃11 + (R11R32 + R12R31)S̃12 + (R11R33 +
R13R31)S̃13 + (R12R32 − R13R33)S̃22 + (R12R33 + R13R32)S̃23, where in the last equality,
we used S̃ij = S̃j i and S̃33 = −(S̃11 + S̃22). Indeed, S̃13 transforms into a linear combina-
tion of S̃11, S̃22, S̃12, S̃13, S̃23.

To summarize, what we found is that if, instead of the basis consisting of the 9 entities
T ij , we use the basis consisting of the 3 entities Aij , the single entity Skk (remember
repeated index summation!), and the 5 entities S̃ij , the 9-by-9 matrix D(R) (that represents
rotation in the sense of (4)) breaks up into a 3-by-3 matrix, a 1-by-1 matrix, and a 5-by-5
matrix “stacked on top of each other.” This is represented schematically as

D(R)= (9-by-9 matrix)→

⎡
⎢⎢⎢⎣

(3-by-3 block) 0 0

0 (1-by-1 block) 0

0 0 (5-by-5 block)

⎤
⎥⎥⎥⎦ (8)

Note that once we chose the new basis, this decomposition holds true for all rotations.
(For the readers who know their linear algebra, the technical statement is that there exists
a similarity transformation that block-diagonalizes D(R) for all R. Incidentally, we will
encounter plenty of similarity transformations later.)

More generally, the D2 representation furnished by a general 2-indexed tensor decom-
poses into a 1

2D(D − 1)-dimensional representation, a ( 1
2D(D + 1)− 1)-dimensional rep-

resentation, and a 1-dimensional representation. We say that in SO(3), 9 = 5 + 3 + 1. (In
SO(4), 16 = 9 + 6 + 1.)

You might have noticed that in this entire discussion we never had to write out R
explicitly in terms of the 3 rotation angles and how the 5 objects S̃11, . . . , S̃23 transform
into one another in terms of these angles. It is only the counting that matters. You might
regard that as the difference between mathematics and arithmetic.



I.4. Who Is Afraid of Tensors? | 57

5 → 2 + 2 + 1

Figure 2 Under SO(3), the 5 objects inside the solid line transform
into linear combinations of each other, but under the smaller group of
transformations SO(2), the objects inside each of the 3 dashed lines
transform into linear combinations of each other. The 5 breaks up as
5 → 2 + 2 + 1. As in figure 1, this figure is meant to be schematic.

Restriction to a subgroup

You definitely do not have to master group theory1 to read this book, but it would be useful
for you to learn a few basic concepts and to be able to count. For instance, the notion of a
subgroup. Consider the group SO(2) that we studied to exhaustion, consisting of rotations
around the z-axis, say. Evidently, SO(2) is a subgroup of SO(3) in that its elements are all
elements of SO(3) and form a group all by themselves. The components of the 3-vector V i

could be split into two sets: (V 1, V 2) and V 3. Under a rotation around the z-axis, (V 1, V 2)

transform as a 2-vector and V 3 as a scalar. We say that upon restriction to the subgroup
SO(2), the irreducible representation 3 breaks up into the representations 2 and 1 of the
subgroup, a decomposition we write as 3 → 2 + 1. All the group theoretic results we need
in this book could be obtained by explicit listing and simple counting.

Look at the 5 objects, S11, S22, S12, S13, S23, that furnish the representation 5 of SO(3).
Now consider a restriction to the subgroup SO(2). In other words, we restrict ourselves to
rotations around the z-axis, that is, rotations under whichV 3 → V ′3 = V 3, namely rotations
with R33 = 1 and R13, R23, R31, R32 all vanishing. Since SO(2) does not touch the index
3, we conclude immediately that the combination S11 + S22 = −S33 does not transform,
or in other words, it transforms as a singlet under SO(2). Similarly, the pair (S13, S23)

transforms as a doublet, since the index 3 is “invisible” to SO(2): the group transforms
the indices 1 and 2 into each other, while leaving the index 3 alone. Indeed, we see that our
earlier expression for S′13 collapses to S′13 =R11S13 +R12S23, as expected. Finally, you can
verify that the remaining combinations (S12, S11 − S22) transform like a doublet. These
results could be summarized by saying that, upon restriction to the subgroup SO(2), the
irreducible representation 5 of the group SO(3) breaks up as 5 → 2 + 2 + 1. See figure 2.

Tensors in Newtonian mechanics

Let us give another example, particularly apt for a book on gravity, of a Newtonian tensor.
Consider two nearby particles moving in a potential. Denote their trajectories by �x(t)
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and �y(t), respectively, determined by d2xi

dt2
= −∂iV (�x) and d2yi

dt2
= −∂iV (�y). (I am also

testing whether there are any readers who do not understand thoroughly the concept of
notational freedom.) We want to know how the separation vector �s ≡ �y − �x changes with
time, keeping terms to leading order in �s:

d2si

dt2
= d2yi

dt2
− d2xi

dt2
= −∂i[V (�y)− V (�x)] = −∂i[V (�x + �s)− V (�x)] � −∂i∂jV (�x)sj

The object Rij (�x)≡ ∂i∂jV (�x) is manifestly a tensor if V (�x) is a scalar. For example, verify
that Rij =GM(δijr2 − 3xixj)/r5 for the gravitational potentialV (�x)= −GM/r . Note that
Rij is a symmetric traceless tensor. Since Rii = ∂i∂iV (�x)= �∇2V , the tracelessness merely
reaffirms the fact that the 1/r potential satisfies Laplace’s equation �∇2V = 0. Also, Rij is
manifestly not the product of two vectors, but it transforms as if it were.

Let us see how rotational covariance works in the equation

d2si

dt2
= −Rij sj (9)

The right hand side has to be linear in the vector �s. Since the left hand side transforms like
a vector, the right hand side must also: indeed, it is given by a tensor R contracted∗ with
a vector �s. A tensor is needed on the right hand side.

Imagine yourself falling toward a spherical planet or star. With no loss of generality,
let your location at some instant be (0, 0, r) along the z-axis. The tensor R written out
as a matrix is then diagonal and is given by (for example, R33 =GM(δ33r2 − 3x3x3)/r5 =
GM(1 − 3)/r3)

R = GM

r3

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ (10)

Thus, the sign of d2�s
dt2

depends on the orientation of �s.
To see why this is so and to understand what tensors are all about, imagine surrounding

yourself with a circular arrangement of balls lying in the (x-z) plane (see figure 3a) and
initially at rest in your frame. Using (9) and (10), we can now write down how the separation
between two balls along different directions changes.

Since we are going to specify the direction, we will denote the separation simply by
s. Along the z-axis, s grows according to (see (9)) d2s

dt2
= −R33s = +2GM

r3 s. The plus sign
indicates that the two balls move away from each other. In contrast, along the x-axis, s de-
creases according to d2s

dt2
= −R11s = −GM

r3 s. The two balls approach each other. (Similarly
for two balls aligned along the y-axis.) (Note that acting on �s on the right hand side of (9)
by a tensor makes it possible for d2s

dt2
to change sign depending on the orientation of �s.)

Inspecting figure 3a, you see why. Look at it as an observer on the planet. In the first case,
one of the two balls, being closer to the planet, is falling faster than the other. Thus, they

∗ When a pair of repeated indices, such as j in (9), is summed over, they are often said to be contracted with
each other (as mentioned in a footnote in the preceding chapter) in the sense that this index no longer appears
in the result, as shown by the left hand side of (9).
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z

(a) (b)

x

Figure 3 A falling ring of balls as seen by an observer on the planet (a), and
as seen by an observer falling with the balls (b).

are moving away from each other. In the second case, the two balls are coming closer due
to spherical symmetry: they are both heading toward the center of the planet. As Newton
pointed out, objects do not fall down to earth, but toward the center of the earth.

In your rest frame (figure 3b) as you fall along with the balls, however, you see a tidal
force acting on the circular ring (or a spherical shell if you prefer) of balls. The force
appears to stretch the ring in the z-direction and to squeeze it in the orthogonal direction.
When we come to Einstein’s prediction of gravitational waves in chapter IX.4, we will see
that gravitational waves act on the detector according to equations analogous to (9) and
(10). Note also for future reference that the tidal force Rij (�x) ≡ ∂i∂jV (�x) involves two
derivatives acting on the gravitational potential V (�x).

Invariant tensors

In D-dimensional space, define the antisymmetric symbol εijk...n carrying D indices to
have the following properties:

ε
...l...m... = −ε...m...l... and ε12...D = 1 (11)

In other words, the antisymmetric symbol ε flips sign upon the interchange of any pair
of indices. It follows that ε vanishes when two indices are equal. (Note that the second
property listed is just normalization.) Since each index can take on only values 1, 2, . . . , D,
the antisymmetric symbol forD-dimensional space must carryD indices as already noted.
For example, for D = 2, ε12 = −ε21 = 1, with all other components vanishing. For D = 3,
ε123 = ε231 = ε312 = −ε213 = −ε132 = −ε321 = 1, with all other components vanishing (as
was already noted in the preceding chapter).
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Using the Kronecker delta and the antisymmetric symbol, we can write the defining
properties of rotations RTR = I and det R = 1 as

δijRikRjl = δkl (12)

and

εijk
...nRipRjqRkr . . . Rns = εpqr

...s det R = εpqr
...s (13)

respectively. In (13) we used the definition of det R. (Verify this for D = 2 and 3.)
Referring to (1), we see that we can describe δij and εijk

...n as invariant tensors: they
transform into themselves. For the rest of this text, we will often use, implicitly or explicitly,
the notion of invariant tensors.

For example, for SO(3), using (13) you can show that εijkAiBj ≡ Ck defines a vector
�C = �A× �B, the familiar cross product. Various identities follow. Consider, for example,

εijkεlnk = δilδjn − δinδjl (14)

To prove this, simply note that both sides transform as invariant tensors with four indices,
and the symmetry properties (such as under i ↔ j ) of the two sides match. Contracting
with Aj , Bl, and Cn, we obtain an identity you might recognize: �A × ( �B × �C) = �B( �A .
�C)− �C( �A . �B).

Closing of Newtonian orbits once again

We can now go back to the apparent mystery in chapter I.1, that the Newtonian orbits in
a 1/r potential close. Out of the conserved angular momentum vector �l = �r × �p = �r × �̇r
(we are using the notation of chapter I.1; we have effectively set the mass to unity and
hence the second equality) we can form the Laplace-Runge-Lenz vector �L ≡ �l × �̇r + κ

r
�r .

Computing the time derivative �̇L, you can verify (see exercise 4) that �L is conserved for
an inverse square central force. When �̇r is perpendicular to �r , which occurs at perihelion
and aphelion, the vector �L points in the direction of �r . We could take the constant vector
�L to point toward the perihelion, and thus the position of the perihelion does not change.

Hence the orbit closes.
This result does not hold in Einstein gravity. The precession of the perihelion of Mercury,

which we will discuss in chapter VI.3, is of course one of the classic tests of general
relativity.

Appendix: Two lemmas for future use

There is a lot more we could say about tensors, but let me mention two simple lemmas that we will happen to
need later.

Let Sij and Aij be two arbitrary and unrelated tensors, symmetric and antisymmetric, respectively. Then
SijAij = 0. (See exercise 5.)
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Tensors can have all kinds of symmetry properties, which you can explore on your own and in the exercises. For
example, a totally antisymmetric 3-indexed tensor T ijk is such that T flips sign under the interchange of any pair
of indices (for example, T ijk = −T jik = +T jki). A multi-indexed tensor can also have symmetry properties under
the interchange of a specific pair, or may have no symmetry at all. Consider, for example, a tensorGkij symmetric
under the interchange of the first pair of indices only, that is, Gkij =Gikj . To be pedantic and absolutely clear,
sometimes I like to put a space or a dot between the indices, thus Gki j or Gki .j to separate the “special” pair
from the other indices. For example, our tensor could happen to be Gki .j = ∂k∂iWj(�x) for some vector field Wj .

Given Gki .j , define Hk.ij ≡Gki .j +Gkj .i . (Note that Hk.ij =Hk.ji by definition, but Hi .kj is in general not
equal to Hk.ij .) Then we can solve for G in terms of H :

Gki .j = 1
2
(Hk.ij +Hi .jk −Hj .ki) (15)

(See exercise 8.)

Exercises

1 Define �∇ ≡
(

∂

∂x1 , ∂

∂x2 , . . . , ∂

∂xD

)
. Show that if φ is a scalar, then ( �∇φ)2 = �∇φ . �∇φ =∑

k

(
∂φ

∂xk

)2
and ∇2φ

transform like a scalar. The Laplacian is defined by

∇2 = �∇ . �∇ = ∂2

∂(x1)2
+ ∂2

∂(x2)2
+ . . . + ∂2

∂(xD)2

2 Show that the symmetric tensor Sij is indeed a tensor.

3 Show that the infinitesimal volume element d3x is a scalar.

4 Show that the Laplace-Runge-Lenz vector is conserved.

5 Show that SijAij = 0 if Sij is a symmetric tensor and Aij an antisymmetric tensor.

6 Let T ijk be a totally antisymmetric 3-indexed tensor. Show that T has 1
3!D(D − 1)(D − 2) components.

Identify the one component for D = 3.

7 Consider for SO(3) the tensor T ijk from exercise 6. Show that it transforms as a scalar.

8 Prove the lemma in (15).

9 Verify (13) for D = 2 and 3.

Note

1. For a concise introduction to some of the group theory needed in theoretical physics, see QFT Nut, appendix B.
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Euclidean spaces described with different coordinates

In discussing rotations in chapter I.3, I emphasized that Euclid is defined by Pythago-
ras. That the square of the distance between two neighboring points in 2-dimensional
Euclidean space with coordinates (x , y) and (x + dx , y + dy) is given by ds2 = dx2 + dy2

defines what we mean by Euclidean space.
But even the familiar Euclidean space can look unfamiliar. You know well that in many

physics problems, one set of coordinates is often much more convenient than another.
Indeed, in discussing Newton’s planetary orbit problem in chapter I.1, we changed from
Cartesian∗ coordinates (x , y) to polar coordinates (r , θ), with x = r cos θ and y = r sin θ .
Differentiating, we have dx = dr cos θ − r sin θ dθ and dy = dr sin θ + r cos θ dθ , so that

ds2 = dx2 + dy2 = (dr cos θ − r sin θ dθ)2 + (dr sin θ + r cos θ dθ)2 = dr2 + r2dθ2 (1)

We are free to make any coordinate transformation we feel like. Consider the most gen-
eral transformation x = f (u, v), y = g(u, v). Then dx = fu(u, v)du+ fv(u, v)dv where
fu ≡ ∂f

∂u
and so on, and dy = gu(u, v)du+ gv(u, v)dv. Just plug in to obtain ds2 = dx2 +

dy2 = (f 2
u

+ g2
u
)du2 + (f 2

v
+ g2

v
)dv2 + 2(fufv + gugv)dudv. With a gunky choice of f and

g you will end up with a mess of a coordinate system that would only make your life
miserable. (Note that even the innocuous change x = u + v and y = v leads to ds2 =
du2 + 2dv2 + 2dudv with the rather unpleasant dudv cross term.) Of course, it was discov-
ered long ago that by choosing f (u, v)= u cos v and g(u, v)= u sin v, we can get rid of the
cross term. By now probably all the nice choices for f and g have already been published
by someone.

∗ When I was in high school, I got the erroneous impression that the notion of coordinates originated with
Descartes. In fact, by the time of Ptolemy, astronomers in the West certainly had latitudes and longitudes. In
China, Chang Heng, roughly a contemporary of Ptolemy, was said to have derived, by watching a woman weaving,
a system of coordinates to map heaven and earth with. The Chinese words for latitudes and longitudes, “jing”
and “wei,” are just the terms for warp and weft in weaving.
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I presume that you also know how to go from Cartesian coordinates (x , y , z) in 3-
dimensional Euclidean space E3 to spherical coordinates (r , θ , ϕ), with x = r sin θ cos ϕ,
y = r sin θ sin ϕ , z= r cos θ . The more-than-familiar (and who can blame you if you have
been in it all your life?)E3 could be described by either ds2 = dx2 + dy2 + dz2 in Cartesian
coordinates or by

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (2)

in spherical coordinates.

From Latin to Greek

We can systematize and generalize this toD-dimensional space easily enough. In previous
chapters, I used Latin letters for the index on the coordinates. I now switch, for later
convenience, from Latin to Greek and call the coordinates xμ = (x1, x2, . . . , xD). Then,
for Euclid’s spaces ED, Pythagoras said that ds2 =∑D

μ=1 (dx
μ)2.

We write this in the fancier form ds2 =∑D
μ=1

∑D
ν=1 gμνdx

μdxν by introducing a D-
by-D matrix g whose diagonal elements are all equal to one and whose other elements
are all zero, the famous matrix known far and wide as the identity matrix. To repeat, the
indices μ, ν run over 1, 2, . . . , D, and gμν is defined by gμμ = 1 and gμν = 0 if μ �= ν. (In
other words, it is just the Kronecker delta introduced in chapter I.3: gμν = δμν.) Thus, in the
double sum for ds2, the terms withμ �= ν drop out and we are left with ds2 =∑D

μ=1 (dx
μ)2.

Now a word on notation. In the chapter on rotation, I have already introduced this
expression for ds2, and furthermore, the repeated index summation convention. Einstein
suggested that between us friends we could omit the cumbersome summation symbol
and agree that if an index is repeated, then it is to be summed over. Thus, we suppress the
double summation

∑D
μ=1

∑D
ν=1 and write simply ds2 = gμνdx

μdxν. Hereμ and ν are both
repeated and hence summed over. Unless there is a risk of confusion, no more summation
symbols!

The metric

The matrix gμν is called the metric, a word meaning measure, as in geometry, the science
of measuring the earth. We use the metric to measure space. This step of introducing a
metric for Euclidean spaces seems like one of those totally senseless moves that certain
academics like and publish. In the discussion just given, the metric is simply the identity
matrix.

But as soon as we change coordinates, the metric is no longer so simple. As we have
already noted in (1), with polar coordinates, the plane E2 is described by a metric with
grr = 1, gθθ = r2, and grθ = 0 = gθr . With spherical coordinates,E3 is described by a metric
with grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ , with all other entries zero, as in (2).
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In both examples, the metric is not given by the identity matrix. Furthermore, the
metric gμν(x) varies from point to point. For example, gϕϕ depends on both r and θ .
Note, however, that for these examples, the metric is diagonal. (That is why polar and
spherical coordinates are so popular!) In general, the metric gμν need not be diagonal
(as shown in the example ds2 = du2 + 2dv2 + 2dudv, for which guu = 1, gvv = 2, guv =
gvu = 1). However, in this text, for the sake of simplicity, we will mostly stick to metrics
that are diagonal. Furthermore, since dxμdxν = dxνdxμ, the metric is symmetric under
interchange of indices: gμν = gνμ. It goes without saying that the reader encountering all
this for the first time should verify everything I say.

Lower indices appear

The attentive reader might have noticed that lower indices have sneakily appeared! The
metric gμν carries lower indices, while dxμ carries an upper index. When I taught Einstein
gravity, the appearance of upper and lower indices invariably confused some students. In
this text, I will try to motivate the point of introducing upper and lower indices, more
from a utilitarian, rather than a profoundly mathematical, point of view. My strategy is to
introduce this business of two kinds of indices in stages.

At this stage, the motivation, to put it bluntly, is that we just feel like it. But this
caprice immediately leads to a useful rule. In the Einstein repeated index summation,
we will insist that when we sum over a pair of repeated indices, one of them must be
upstairs, the other downstairs. This is manifestly, and trivially, satisfied by the only example
ds2 = gμν(x)dx

μdxν we have encountered thus far. The whole business of two kinds of
indices may seem unnecessary at this point, but later, you will see that the distinction
between upper and lower indices becomes essential, or at least highly useful.

A word about terminology: Some authors refer to ds2 = gμν(x)dx
μdxν as the square

of the line element, reserving the term metric for the object gμν(x) contained in the
line element. I find it convenient to abuse terminology and simply refer to both as the
metric.

Let me mention one trivial point, but one with the potential for confusing beginners.
Some years ago, when I surveyed the students in my class for points of confusion, one
student told me that for quite a while he did not realize that gρμ(x)dxρdxμ, gζψ(x)dxζdxψ ,
and so on, all denote the same thing! Perhaps this is because the summation symbol
has been suppressed: the same student could recognize that

∑D
μ=1

∑D
ν=1 gμν(x)dx

μdxν =∑D
ρ=1

∑D
μ=1 gρμ(x)dx

ρdxμ =∑D
ζ=1

∑D
ψ=1 gζψ(x)dx

ζdxψ .

Change of coordinates, curved space, and curved spacetime

We all know that in Euclidean 3-space, if we restrict r to be equal to a, we would find
ourselves on the surface of a sphere of radius a. In other words, the set of points at a
distance a from the origin form a sphere with radius a.
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This procedure gives us an easy way to determine the metric on a sphere. Simply
take the metric (2) ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 and set r = a. Then dr = 0, so that
ds2 collapses to a2(dθ2 + sin2 θdϕ2). From 3-dimensional flat space we have “lost” the
coordinate r and gone to a 2-dimensional curved space with coordinates xμ = (x1, x2)=
(θ , ϕ). Without loss of generality, we can take a as the unit of distance and set a = 1. So,
on the unit 2-dimensional sphere S2

ds2 = dθ2 + sin2 θdϕ2 (3)

with a metric given by g11 = gθθ = 1, g22 = gϕϕ = sin2 θ , and g12 = gθϕ = g21 = gϕθ = 0.
The take-home message here is that curved space is just a skip and a hop away from the

familiar change of coordinates. This is fortunate for students of physics: when you learned
to change coordinates, you were actually also learning about curved spaces. We are now
going to develop a general formalism for changing coordinates. Even though you already
know how to change coordinates, it pays to learn this formalism, because we can also use
it to study curved space and curved spacetime (which, as you have surely heard, plays a
central role in Einstein gravity).

Change of coordinates, curved space, and curved spacetime: basically the same deal, as
you will see.

How do we know whether a space is curved or not?

This raises an exceedingly interesting and crucial question: given a space with the metric
gμν(x), how do we know whether it is curved or flat?

A complicated looking metric does not necessarily mean that the space is curved, since
somebody could have simply chosen an especially gunky coordinate system. It could be flat
space in disguise. To forcefully bring home this point, I invite you to consider ds2 = (1 +
u2)du2 + (1 + 4v2)dv2 + 2(2v − u)dudv and ds2 = (1 + u2)du2 + (1 + 2v2)dv2 + 2(2v −
u)dudv. One describes flat space, the other a space that at some points is violently curved.
Which is which?

Puzzled, you reply: “How could I possibly tell?”
That’s in fact the correct answer at this stage of this discussion. The two metrics I just

gave you look almost identical except for one single 2 → 4. In one of the most famous
episodes in mathematics, Carl Friedrich Gauss (1777–1855) solved this problem for 2-
dimensional spaces. His work was then generalized by his student Bernhard Riemann
(1826–1866). Later, in chapter VI.1, given any metric in any number of dimensions, you
will be able to calculate, and even better, to train the computer to calculate, something
called the Riemann curvature tensor, which will tell you once and for all if the space is flat
or curved. No more thinking involved! Gauss and Riemann did it for you.

But for now, let me ask you to think about two simple examples in good old 2-
dimensional space, for which our intuition is allegedly pretty good. We know that ds2 =
dr2 + r2dθ2 describes flat space. Consider

ds2 = dρ2 + sin2 ρ dθ2 (4)
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Is the space being described flat or curved? Or consider the space described by

ds2 = cos2 ρ dρ2 + sin2 ρ dθ2 (5)

Is it flat or curved? You should think about this before reading on. The answers are given
in appendix 1.

Remember the civilization of mites in the prologue? You are in the same position as
the mite professors of geometry: they can measure the distance between infinitesimally
separated points, and from that they have to figure out whether their world is curved. We
will face the same problem as the mites when we get to cosmology in parts V and VI.

The logic of differential geometry

Differential geometry, as developed by Gauss and Riemann, tells us that given the metric,
we can calculate the curvature. The logic goes as follows. The metric tells you the distance
between two nearby points. Integrating, you can obtain the distance along any curve joining
two points, not necessarily nearby. Find the curve with the shortest distance. By definition,
this curve is the “straight line” between these two points. Once you know how to find
the “straight line” between any two points, you can test all of Euclid’s theorems to see
whether our space is flat. For example, as described in the prologue, the mite geometers
could now draw a small circle around any point, measure its circumference, and see if
it is equal to 2π times the radius. (See appendix 1.) Thus, the metric can tell us about
curvature.

Take an everyday example: given an airline table of distances, you can deduce that the
world is curved without ever going outside. If I tell you the three distances between Paris,
Berlin, and Barcelona, you can draw a triangle on a flat piece of paper with the three cities at
the vertices. But now if I also give you the distances between Rome and each of these three
cities, you would find that you can’t extend the triangle to a planar quadrangle (figure 1). So
the distances between four points suffice to prove that the world is not flat. But the metric
tells you the distances between an infinite number of points.

Paris

Barcelona

Berlin

Rome

Figure 1 The distances between four
cities suffice to prove that the world is
not flat.


