ADDIrEVIalon o1 treatment. /A
function is said to be ‘effectively calcu
lable’ if its values can be found by some purely
mechanical process. Although it is fairly easy to get
an intuitive m of this idea it is nevertheless desirable
to have some te, mathematically expressible definition.
( Such s ]de%i%ol:ll was first given by el at Princeton in 1934
Godel [2], 0 mn Part an ed suggestion of Herb
rand, and&ms since begl%ve oped byumnc (Kleene [2]). We shall
_not be concerned much here with this parti definition. defini
tion of effective calculability has been given bzaShurch (Church [3], 356-358)
who identifies it with A-definability. The author has recently suggested a definition
conespondinﬁg;e clos:g to the intuitive idea (Turing [1], see also Post [1]). It was
said above “a ion is effectively calculable if its values can be found by some pure
ly mechanical process.” We may take this statement literally, understanding by a purely
ical process one which could be carried out by a machine. It is possible to give a
mathematical description, in a certain normal form, of the structures of these machines. ']
he development of the idea leads to the author’s definition of a computable function, an
an identification of computability® with effective calculability. (*We shall use the expressi
n¢ table function” to mean a function calculable by a machine, and let ‘effectively
alculable’ refer to the intuitive idea without particular identification with any one of thes:
definitions. We do not restrict the values taken by a computable function to be natural nus
bers; we may for instance have computable propositional functions.) It is not difficult tho
somewhat laborious, to prove these three definitions equivalent (Kleene [3], Turing [2
. In the present paper we make considerable use of Church’s identification of effec
tive calculability with A-definability, or, what comes to the same, of the identification w
ith ¢ tabilitf' and one of the equivalence theorems. In most cases where we have to deal
with an e%ect:ive y calculable function we shall introduce the Corresmg W.FE.F. with so
me such phrase as “the function fis effectively calculable, let F be a A-defining it” or
“let F be a formula such that F (n) is convertible to...whenever n represents a positive integer”
In such cases there is no difficulty in seeing how a machine could in principle be designed to ca
late the values of the function concerned, and assuming this done the equivalence theorem can
ﬂlied. A statement as to what the formula F actually is may be omitted. We may introduce i
iately on this basis a W. F. F. » with the property that w (m, n) conv r if r is the geatest &os
integer for which m" divides n, if any, and is 1 if there is none. We also introduce Dt with the
operties: Dt (r, n) conv 3; Dt (z + m, n) conv 2; Dt (r, n + m) conv 1. There is another point |
made clear in connection with the point of view we are adopting. It is intended that all p
oofs that are given should be regarded no more critically than proofs in classical analysis.
The subject matter, roughly speaking, is constructive systems of logic, but as the purp
ose is directed towards choosing a particular constructive system of logic for pract
ical use; an attempt at this stage to put our theorems into constructive form w
ould be putting the cart before the horse. Those computable functions whic
h take only the values 0 and 1 are of particular importance since they dete
rmine and are determined by computable properties, as may be seen by r
eplacing ‘0’ and ‘1’ by ‘true’ and ‘false’. But besides this of proper
we may have to consider a different type, which is routgylﬁ; stﬁeaking,
ess constructive than the computable properties, but more so than the
eneral predicates of classical mathemaﬁc;ﬁggose we have a com
?umb e function of the natural members taking numbers as values,
en corresponding to this function there is the property of being a value o
f the function. Such a property we shall describe as “axiomatic’; the reason
for using this term is that it is possible to define such a property by giving a
set of axioms, the property to hold for a given argument if and only if it is p
ossible to deduce that it hords from the axioms. Axiomatic properties may
also be characterized in this way. A property { of positive integers is axioma
tic if and only if there is a computable property ¢ of two positive integers such th
at Y(x) is true if and only if there is a positive integer y such that ¢ (x, y) is true.

Or alf‘; 's axiomat M if and only ifgghere is a W. F. F. F such that () is true if
\only @ g [ B heorems. By a numb er theoretic theorems*
e ve t[lre ne me g for this term, but it should be noticed that we are v
, ter recfj c N E rall >pted meaning is probably this: suppose we take an

formula ot te funcuon calculus ox first o d repiace the function variables by primitive recursive relat;

represents a typical number theoretic theorem in wuws [more general] sense.) we shall mean a theorem of the forr

itely many natural nun x’, where 3 ursive functior
defined inductively as folloQg” \ '
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Preface

Alan M. Turing, after his great result in 1936 discovering a universal model of
computation and proving his incompleteness theorem, came to Princeton in
1936-38 and earned a PhD in mathematics. Before 1936 there were no univer-
sal computers. By 1955 there was not only a theory of computation, but there
were real universal (“von Neumann”) computers in Philadelphia, Cambridge
(Massachusetts), Princeton, Cambridge (England), and Manchester. The new
field of computer science had a remarkably short gestation.

The great engineers who built the first computers are well known: Kon-
rad Zuse (Z3, Berlin, 1941); Tommy Flowers (Colossus, Bletchley Park, 1943);
Howard Aiken (Mark I, Harvard, 1944); Prosper Eckert and John Mauchley
(ENIAC, University of Pennsylvania, 1946).

But computer science is not just the construction of hardware. Who were
the creators of the intellectual revolution underlying the theory of computers
and computation?

Turing is very well known as a founder and pioneer of this discipline. In
1936 at the age of twenty-four he discovered the universal model of computa-
tion now known as the Turing machine; in 1938 he developed the notion of
“oracle relativization”; in 1939-45 he was a principal figure in breaking the
German Enigma ciphers using computational devices (though not “Turing
machines”); in 1948 he invented the LU-decomposition method in numerical
computation; in 1950 he foresaw the field of artificial intelligence and made



X PREFACE

remarkably accurate predictions about the future of computing and comput-
ers. And, of course, he famously committed suicide in 1954 after prosecution
and persecution for practicing homosexuality in England.

But as significant as Turing is for the foundation of computer science, he
was not the only scholar whose work in the 1930s led to the birth of this field.

In Fine Hall,' home in the 1930s of the Princeton Mathematics Department
and the newly established Institute for Advanced Study, were mathematicians
whose students would form a significant part of the new fields of computer
science and operations research.

This volume presents the manuscript of Alan Turing’s PhD thesis. It is ac-
companied by two introductory essays that explore both the work and the
context of Turing’s stay in Princeton. My essay elucidates the significance of
Turing’s work (and that of his adviser, Alonzo Church) for the field of comput-
er science; Solomon Feferman’s essay describes its significance for mathemat-
ics. Feferman also explains how to relate some of Turing’s 1938 terminology to
more current usage in the field. But on the whole, the notation and terminol-
ogy in this field have been fairly stable: “Systems of Logic Based on Ordinals”
is still readable as a mathematical and philosophical work.

Andrew W. Appel
Princeton, New Jersey

1 Fine Hall was built in 1930, named for the mathematician Henry Burchard Fine. During the
1930s it housed the Mathematics Department of Princeton University and the mathematicians
(e.g., Godel and von Neumann) and physicists (e.g., Einstein) of the Institute for Advanced
Study. In 1939, the Institute moved to its own campus about a mile away from Princeton Uni-
versity’s central campus. In 1969, the University’s Mathematics Department moved to the new
Fine Hall on the other side of Washington Road. The old building was renamed Jones Hall, in
honor of its original donors, and now houses the departments of East Asian Studies and Near
Eastern Studies.



PREFACE XI

OSWALD VEBLEN, chairman of the Princeton University Mathematics
Department and first professor at the Institute for Advanced Study. His stu-
dents include Alonzo Church (PhD 1927), and his PhD descendants through
Philip Franklin (Princeton PhD 1921) via Alan Perlis (Turing Award 1966)
include David Parnas, Zohar Manna, Kai Li, Jeannette Wing, and 500 other
computer scientists. Veblen has more than 8000 PhD descendants overall.
He helped oversee the development of the pioneering ENIAC digital com-

puter in the 1940s.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)
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ALONZO CHURCH, professor of mathematics, whose students include Alan
Turing, Leon Henkin, Stephen Kleene, Martin Davis, Michael Rabin (Turing
Award 1976), Dana Scott (Turing Award 1976), and Barkley Rosser, and whose
PhD descendants include 3000 other mathematicians and computer scientists,
among them Robert Constable, Edmund Clarke (Turing Award 2007), Allen

Emerson (Turing Award 2007), and Les Valiant (Turing Award 2010).
(Photo from the Alonzo Church Papers. Department of Rare Books and Special Collec-
tion. Princeton University Library.)



PREFACE XIII

SOLOMON LEFSHETZ, professor of mathematics, whose students include
John McCarthy (Turing Award 1971), John Tukey, Ralph Gomory, and Rich-
ard Bellman (inventor of dynamic programming), and whose 6181 PhD de-
scendants include John Nash (Nobel Prize 1994), Marvin Minsky (Turing
Award 1969), Manuel Blum (Turing Award 1995), Barbara Liskov (Turing
Award 2008), Gerald Sussman, Shafi Goldwasser, Umesh and Vijay Vazirani,

Persi Diaconis, and Peter Buneman.
(Photo courtesy of the Princeton University Archives. Department of Rare Books and
Special Collection. Princeton University Library.)
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KURT GODEL, visitor to the Institute in 1933, 1934, and 1935, and professor
at the Institute from 1940, had no students but had an enormous influence
on the fields of mathematics and computer science. His 1931 incompleteness
result—that it will never be possible to enumerate in logic the true statements
of mathematics—stunned mathematicians and philosophers with its unex-
pectedness. His methods—the numerical encoding of syntax and the numeri-
cal processing of logic—set the stage for many techniques of computer sci-
ence. Major results of Church, Kleene, Turing, and von Neumann clearly and

explicitly owe much to Gédel.
(Photo from the Kurt Godel Papers, the Shelby White and Leon Levy Archives Center,
Institute for Advanced Study, Princeton, NJ, USA, on deposit at Princeton University.)



PREFACE XV

JOHN VON NEUMANN, at Princeton University from 1930 and professor at
the Institute for Advanced Study from 1933, had only a few students (includ-
ing the pioneer in parallel computer architecture Donald Gillies), but also had
an enormous influence on the development of physics, mathematics, logic,
economics, and computer science. In 1931 he was the first to recognize the
significance of Godel’s work, and toward 1950 he brought Turing’s ideas of
program-as-data to the engineering of the first stored-program computers.
Stored-program computers are called “von Neumann machines,” and essen-

tially all computers today are von Neumann machines.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)



