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Preface

Networks such as the Internet, the World Wide Web, and social and biological
networks of various kinds have been the subject of intense study in recent years.
From physics and computer science to biology and the social sciences, researchers
have found that a great variety of systems can be represented as networks, and that
there is much to be learned by studying those networks. The study of the web,
for instance, has led to the creation of new and powerful web search engines that
greatly outperform their predecessors. The study of social networks has led to new
insights about the spread of diseases and techniques for controlling them. The study
of metabolic networks has taught us about the fundamental building blocks of life
and provided new tools for the analysis of the huge volumes of biochemical data
that are being produced by gene sequencing, microarray experiments, and other
techniques.

Inthis book we have gathered together a selection of research papers covering
what we believe are the most important aspects of this new branch of science. The
papers are drawn from a variety of fields, from many different journals, and cover
both empirical and theoretical aspects of the study of networks. Along with the
papers themselves we have included some commentary on their contents, in which
we have tried to highlight what we believe to be the most important findings of
each of the papers and offer pointers to other related literature. (Note that within
the text of our commentary we have for convenience marked in bold text citations
to papers that themselves are reproduced within this book; we hope this will save
the reader some unnecessary trips to the library.)

After a short introduction (Chapter 1), the book opens with a collection of his-
torical papers (Chapter 2) that predate the current burst of interest in networks, but
that lay important foundations for the later work. Chapter 3 reproduces a selection
of papers on empirical studies of networks in various fields, the raw experimental
data on which many theoretical developments build. Then in Chapter 4, which
occupies the largest portion of the book, we look at models of networks, focusing
particularly on random graph models, small-world models, and models of scale-free
networks. Chapter 5 deals with applications of network ideas to particular real-
world problems, such as epidemiology, network robustness, and search algorithms.
Finally, in Chapter 6 we give a short discussion of the most recent developments
and where we see the field going in the next few years. There will of course be
many developments that we cannot anticipate at present, and we look forward with
excitement to the new ideas researchers come up with as we move into the 21st
century.
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This field is growing at a tremendous pace, with many new papers appearing
every day, so there is no hope of making a compilation such as this exhaustive;
inevitably many important and deserving papers have been left out. Nonetheless,
we hope that by collecting a representative selection of papers together in one
volume, this book will prove useful to students and researchers alike in the field of
networks.

A number of people deserve our thanks for their help with the creation of
this book. First, our thanks must go to our editor Vickie Kearn and everyone else
at Princeton University Press for taking on this project and helping to make it a
success. Many thanks also to Adam Makkai, who translated from the original
Hungarian the remarkable short story Chainsthat forms the first article reproduced
in the book. And of course we have benefited enormously from conversations with
our many erudite colleagues in the field. It is their work that forms the bulk of the
material in this volume, and we are delighted to be a part of such an active and
inspiring community of scientists.

Mark Newman
Albert-Laszl6 Barabasi
Duncan Watts



Chapter One

Introduction

Networks are everywhere. From the Internet and its close cousin the World Wide
Web to networks in economics, networks of disease transmission, and even terrorist
networks, the imagery of the network pervades modern culture.

What exactly do we mean by a network? What different kinds of networks
are there? And how does their presence affect the way that events play out? In the
past few years, a diverse group of scientists, including mathematicians, physicists,
computer scientists, sociologists, and biologists, have been actively pursuing these
questions and building in the process the new research field of network theory, or
the “science of networks” (Barabasi 2002; Buchanan 2002; Watts 2003).

Although it is still in a period of rapid development and papers are appearing
daily, a significant literature has already accumulated in this new field, and it there-
fore seems appropriate to summarize it in a way that is accessible to researchers
unfamiliar with the topic. That is the purpose of this book. We begin by sketching
in this introductory chapter a brief history of the study of networks, whose begin-
nings lie in mathematics and more recently sociology. We then place the “new”
science of networks in context by describing a number of features that distinguish
it from what has gone before, and explain why these features are important. At the
end of the chapter we give a short outline of the remainder of the book.

1.1 A BRIEF HISTORY OF THE STUDY OF NETWORKS

The study of networks has had a long history in mathematics and the sciences. In
1736, the great mathematician Leonard Euler became interested in a mathematical
riddle called the Konigsberg Bridge Problem. The city of Konigsberg was built on
the banks of the Pregel River in what was then Prussia,! and on two islands that lie
in midstream. Seven bridges connected the land masses, as shown in Figure 1.1.
(There are many more than that today.) A popular brain-teaser of the time asked,
“Does there exist any single path that crosses all seven bridges exactly once each?”
Legend has it that the people of Konigsberg spent many fruitless hours trying to
find such a path before Euler proved the impossibility of its existence. The proof,
which perhaps seems rather trivial to us now, but which apparently wasn’t obvious
in 1736, makes use of a graph—a mathematical object consisting of points, also
called vertices or nodes, and lines, also called edges or links, which abstracts away

1Today Konigsberg lies in Russia and is called Kaliningrad.
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FIGURE 1.1 A map of eighteenth century Konigsherg, with its seven bridges
highlighted.

all the details of the original problem except for its connectivity. In this graph there
are four vertices representing the four land masses and seven edges joining them
in the pattern of the Konigsberg bridges (Figure 1.2). Then the bridge problem can
be rephrased in mathematical language as the question of whether there exists any
Eulerian path on the network. An Eulerian path is precisely a path that traverses
each edge exactly once. Euler proved that there is not, by observing that, since
any such path must both enter and leave every vertex it passes through, except the
first and last, there can at most be two vertices in the network with an odd number
of edges attached. In the language of graph theory, we say that there can at most
be two vertices with odd degree, the degree of a vertex being the number of edges
attached to it.2 Since all four vertices in the Kénigsberg graph have odd degree,
the bridge problem necessarily has no solution. The problem of the existence of
Eulerian paths on networks, as well as the related problem of Hamiltonian paths
(paths that visit each vertex exactly once), is still of great interest to mathematicians,
with new results being discovered all the time.

Many consider Euler’s proof to be the first theorem in the now highly de-
veloped field of discrete mathematics known as graph theory, which in the past
three centuries has become the principal mathematical language for describing the
properties of networks (Harary 1995; West 1996). In its simplest form, a network is
nothing more than a set of discrete elements (the vertices), and a set of connections
(the edges) that link the elements, typically in a pairwise fashion. The elements

2\ithin physics some authors have referred to this quantity as the “connectivity” of a vertex, and the reader
will see this usage in some of the papers reproduced in this book. As the word connectivity already has another
meaning in graph theory, however, this choice of nomenclature has given rise to some confusion. To avoid such
confusion, we will stick to standard usage in this book and refer to the degree of a vertex.
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Ficure 1.2 Left: asimplified depiction of the pattern of the rivers and bridges
in the Konigsberg bridge problem. Right: the corresponding network of vertices
and edges.

and their connections can be almost anything—people and friendships (Rapoport
and Horvath 1961), computers and communication lines (Faloutsos et al. 1999),
chemicals and reactions (Jeong et al. 2000; Wagner and Fell 2001), scientific
papers and citations (Price 1965; Redner 1998)3—causing some to wonder how so
broad a definition could generate anything of substantive interest. But its breadth
is precisely why graph theory is so powerful. By abstracting away the details of
a problem, graph theory is capable of describing the important topological fea-
tures with a clarity that would be impossible were all the details retained. As a
consequence, graph theory has spread well beyond its original domain of pure
mathematics, especially in the past few decades, to applications in engineering
(Ahuja et al. 1993), operations research (Nagurney 1993), and computer science
(Lynch 1996). Nowhere, however, has graph theory found a more welcome home
than in sociology.

Starting in the 1950s, in response to a growing interest in quantitative meth-
ods in sociology and anthropology, the mathematical language of graph theory
was coopted by social scientists to help understand data from ethnographic studies
(Wasserman and Faust 1994; Degenne and Forsé 1999; Scott 2000). Much of the
terminology of social network analysis—actor centrality, path lengths, cliques, con-
nected components, and so forth—was either borrowed directly from graph theory
or else adapted from it, to address questions of status, influence, cohesiveness, social
roles, and identities in social networks. Thus, in addition to its role as a language
for describing abstract models, graph theory became a practical tool for the analy-
sis of empirical data. Also starting in the 1950s, mathematicians began to think of
graphs as the medium through which various modes of influence—information and
disease in particular—could propagate (Solomonoff and Rapoport 1951; Erdés
and Rényi 1960). Thus the structural properties of networks, especially their con-
nectedness, became linked with behavioral characteristics like the expected size
of an epidemic or the possibility of global information transmission. Associated

3Throughout this book citations highlighted in bold text refer to papers that are reproduced within this book.
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with this trend was the notion that graphs are properly regarded as stochastic ob-
jects (Erdés and Rényi 1960; Rapoport 1963), rather than purely deterministic
ones, and therefore that graph properties can be thought of in terms of probability
distributions—an approach that has been developed a great deal in recent years.

1.2 THE “NEW” SCIENCE OF NETWORKS

So what is there to add? If graph theory is such a powerful and general language
and if so much beautiful and elegant work has already been done, what room is
there for a new science of networks? We argue that the science of networks that has
been taking shape over the last few years is distinguished from preceding work on
networks in three important ways: (1) by focusing on the properties of real-world
networks, it is concerned with empirical as well as theoretical questions; (2) it
frequently takes the view that networks are not static, butevolve in time according to
various dynamical rules; and (3) it aims, ultimately at least, to understand networks
not just as topological objects, but also as the framework upon which distributed
dynamical systems are built. As we will see in Chapter 3, elements of all these
themes predate the recent explosion of interest in networks, but their synthesis into
a coherent research agenda is new.

Modeling real-world networks

The first difference between the old science of networks and the new is that, social
network analysis aside, traditional theories of networks have not been much con-
cerned with the structure of naturally occurring networks. Much of graph theory
qualifies as pure mathematics, and as such is concerned principally with the com-
binatorial properties of artificial constructs. Pure graph theory is elegant and deep,
but it is not especially relevant to networks arising in the real world. Applied graph
theory, as its name suggests, is more concerned with real-world network problems,
but its approach is oriented toward design and engineering. By contrast, the recent
work that is the topic of this book is focused on networks as they arise naturally,
evolving in a manner that is typically unplanned and decentralized. Social net-
works and biological networks are naturally occurring networks of this kind, as are
networks of information like citation networks and the World Wide Web. But the
category is even broader, including networks—Ilike transportation networks, power
grids, and the physical Internet—-that are intended to serve a single, coordinated
purpose (transportation, power delivery, communications), but which are built over
long periods of time by many independent agents and authorities. Social network
analysis, for its part, is strongly empirical, but tends to be descriptive rather than
constructive in nature. With the possible exception of certain types of random
graph models (Holland and Leinhardt 1981; Strauss 1986; Anderson et al. 1999),
network analysis in the social sciences has largely avoided modeling, preferring
simply to describe the properties of networks as observed in collected data.
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In contrast to traditional graph theory on the one hand, and social network
analysis on the other, the work described in this book takes a view that is both
theoretical and empirical. In order to develop new graph-theoretic models that
can account for the structural features of real-world networks, we must first be
able to say what those features are and hence empirical data are essential. But
adequate theoretical models are equally essential if the significance of any particular
empirical finding is to be correctly understood. Just as in traditional science, where
theory and experiment continually stimulate one another, the science of networks
is being built on the twin foundations of empirical observation and modeling.

That such an obvious requirement for scientific validity should have made its
first appearance in the field so recently seems surprising at first, but is understand-
able given the historical difficulty of obtaining high quality, large-scale network
data. For most of the past fifty years, the collection of network data has been
confined to the field of social network analysis, in which data have to be collected
through survey instruments that not only are onerous to administer, but also suffer
from the inaccurate or subjective responses of subjects. People, it turns out, are
not good at remembering who their friends are, and the definition of a “friend” is
often quite ambiguous in the first place.

For example, the General Social Survey* requests respondents to name up to
six individuals with whom they discuss “important matters.” The assumption is that
people discuss matters that are important to them with people who are important to
them, and hence that questions of this kind—so-called “name generators”—are a
reliable means of identifying strong social ties. However, arecent study by Bearman
and Parigi (2004) shows that when people are asked about the so-called “important
matters” they are discussing, they respond with just about every topic imaginable,
including many that most of us wouldn’t consider important at all. Even worse,
some topics are discussed with family members, some with close friends, some with
coworkers, and others with complete strangers. Thus, very little can be inferred
about the network ties of respondents simply by looking at the names generated by
the questions in the General Social Survey. Bearman and Parigi also find that some
20% of respondents name no one atall. One might assume that these individuals are
“social isolates”—people with no one to talk to—yet nearly 40% of these isolates
are married! It is possible that these findings reveal significant patterns of behavior
in contemporary social life—perhaps many people, even married people, really do
not have anyone to talk to, or anything important to talk about. But apparently
the respondent data are so contaminated by diverse interpretations of the survey
instrument, along with variable recollection and even laziness, that any inferences
about the corresponding social network must be regarded with skepticism.

The example of the General Social Survey is instructive because it typifies
the uncertainties associated with traditional, survey-based collection of network
data. If people have difficulty identifying even their closest confidants, how can
one expect to extract reliable information concerning more subtle relations? And
if, in response to this obstacle, survey instruments become more elaborate and spe-

4See ht t p: / / www. nor c. uchi cago. edu/ pr oj ect s/ gensoc. asp.
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cific, then as the size of the surveyed population increases, the work required of
the researcher to analyze and understand the resulting volume of raw data becomes
prohibitive. A better approach would be to record the activities and interactions of
subjects directly, thus avoiding recall problems and allowing us to apply consistent
criteria to define relationships. In the absence of accurate recording technologies,
however, such direct observation methods are even more onerous than the admin-
istration of surveys.

Because of the effort involved in compiling them, social network datasets
rarely document populations of more than a hundred people and almost never
more than a thousand. And although other kinds of (nonsocial) networks have
not suffered from the same difficulties, empirical examples prior to the last decade
have been few—probably because other network-oriented disciplines have lacked
the empirical focus of sociology. The lack of high quality, large-scale network data
has, in turn, delayed the development of the kind of statistical models with which
much of the work in this book is concerned. Such models, as we will see, can be
very successful and informative when applied to large networks, but tend to break
down, or simply don’t address the right questions, when applied to small ones. As
an example, networks of contacts between terrorists have been studied recently by,
for instance, Krebs (2002), but they are poor candidates for statistical modeling
because the questions of interest in these networks are not statistical in nature,
focusing more on the roles of individuals and small groups within the network
as a whole. The traditional tools of social network analysis—centrality indices,
structural measures, and measures of social capital—are more useful in such cases.

Recent years, however, have witnessed a dramatic increase in the availability
of network datasets that comprise many thousands and sometimes even millions
of vertices—a consequence of the widespread availability of electronic databases
and, even more important, the Internet. Not only has the Internet focused popular
and scientific attention alike on the topic of networks and networked systems, but
it has led to data collection methods for social and other networks that avoid many
of the difficulties of traditional sociometry. Networks of scientific collaborations,
for example, can now be recorded in real time through electronic databases like
Medline and the Science Citation Index (Newman 2001a; Barabési et al. 2002),
and even more promising sources of network data, such as email logs (Ebel et al.
2002; Guimera et al. 2003; Tyler et al. 2003) and instant messaging services (Smith
2002; Holme et al. 2004), await further exploration. Being far larger than the
datasets of traditional social network analysis, these networks are more amenable
to the kinds of statistical techniques with which physicists and mathematicians are
familiar. Asthe papersin Chapter 3 of this volume demonstrate, real networks, from
citation networks and the World Wide Web to networks of biochemical reactions,
display properties—Ilike local clustering and skewed degree distributions—that
were not anticipated by the idealized models of graph theory, and that have forced
the development of new modeling approaches, some of which are introduced in
Chapter 4.
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Networks as evolving structures

A second distinguishing feature of the work described in this book is that, whereas
in the past both graph theory and social network analysis have tended to treat
networks as static structures, recent work has recognized that networks evolve over
time (Barabasi and Albert 1999; Watts 1999). Many networks are the product of
dynamical processes that add or remove vertices or edges. For instance, a social
network of friendships changes as individuals make and break ties with others. An
individual with many acquaintances might, by virtue of being better connected or
better known, be more likely to make new friends than someone else who is less
well connected. Or individuals seeking friends might be more likely to meet people
with whom they share a common acquaintance. The ties people make affect the
form of the network, and the form of the network affects the ties people make.
Social network structure therefore evolves in a historically dependent manner, in
which the role of the participants and the patterns of behavior they follow cannot
be ignored.

Similar statements apply to other kinds of networks as well: processes oper-
ating at the local level both constrain and are constrained by the network structure.
A principal objective of the new science of networks (as dealt with by a number
of papers in Chapter 4), is an understanding of how structure at the global scale
(say, the connectivity of the network as a whole) depends on dynamical processes
that operate at the local scale (for example, rules governing the appearance and
connections of new vertices).

Networks as dynamical systems

The final feature that distinguishes the research described in this book from pre-
vious work is that traditional approaches to networks have tended to overlook or
oversimplify the relationship between the structural properties of a networked sys-
tem and its behavior. A lot of the recent work on networks, by contrast, takes a
dynamical systems view according to which the vertices of a graph represent dis-
crete dynamical entities, with their own rules of behavior, and the edges represent
couplings between the entities. Thus a network of interacting individuals, or acom-
puter network in which a virus is spreading, not only has topological properties,
but has dynamical properties as well. Interacting individuals, for instance, might
affect one another’s opinions in reaching some collective decision (voting in a gen-
eral election, for example), while an outbreak of a computer virus may or may not
become an epidemic depending on the patterns of connections between machines.
Which outcomes occur, how frequently they occur, and with what consequences,
are all questions that can only be resolved by thinking jointly about structure and
dynamics, and the relationship between the two.

Questions of this nature are not easily tackled, however; dynamical prob-
lems lie at the forefront of network research, where there are many unanswered
guestions. One class of problems on which some progress has been made, and
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which is addressed in Section 5.1, is that of contagion dynamics. Whether we are
interested in the spread of a disease or the diffusion of a technological innovation,
it is frequently the case that contagion occurs over a network. Not only physical
but also social contacts can significantly influence the probability that a particular
disease or piece of information will be transmitted, and also what effect it will have.
In traditional mathematical epidemiology, as well as research on the diffusion of
information, it is usually assumed that all members of the population have equal
likelihood of interaction with all others. Clearly this assumption requires modifi-
cation once we take network structure into account. As the papers in Section 5.1
demonstrate, the particular structure of the network through which a contagious
agent is transmitted can have a dramatic impact on outcomes at the level of entire
populations.

1.3 OVERVIEW OF THE VOLUME

Mirroring the themes introduced above, this volume is divided into a number of
parts, each of which is preceded by an introduction that outlines the general theme
and summarizes the contributions of the papers in that part. Chapter 2 sets the stage
by presenting a selection of papers that we feel are important historical antecedents
to contemporary research. Although recent work on networks takes a distinctly
different approach from traditional network studies, a careful reading of Chapter 2
reveals that many of the basic themes were anticipated by mathematicians and
social scientists years or even decades earlier. Given their age, some of these
contributions seem remarkably familiar and modern, occasionally to the extent that
recent papers almost exactly replicate previous results. Power-law distributions,
random networks with local clustering, the notion of long-range shortcuts, and
the small-world phenomenon were all explored and analyzed well before the new
science of networks reconstituted the same ideas in the language of mathematical
physics.

Chapter 3 emphasizes the empirical side of the new science of networks, and
Chapter 4 presents some of the foundational modeling ideas that have generated
a great deal of subsequent interest and activity. By exploring some tentative ap-
plications of the ideas introduced in Chapters 3 and 4, Chapter 5 takes the reader
to the cutting edge of network science, the relationship between network structure
and system dynamics. From disease spreading and network robustness to search
algorithms, Chapter 5 is a potpourri of topics at this poorly understood but rapidly
expanding frontier. Finally, Chapter 6 provides a short discussion of what we see
as some of the most interesting directions for future research. We hope the reader
will be encouraged to strike out from where the papers in this volume leave off,
adding his or her own ideas and results to this exciting and fast-developing field.



Chapter Two

Historical developments

The study of networks has had a long history in mathematics and the sciences,
stretching back at least as far as Leonhard Euler’s 1736 solution of the Konigsberg
Bridge Problem discussed in Chapter 1. In this chapter we present a selection of
historical publications on the subject of networks of various kinds. Of particular
interest to us are papers from mathematical graph theory and from the literature
on social networks. For example, the classic model of a network that we know
of as the random graph, and which is discussed in greater detail in Section 4.1,
was first described by the Russian mathematician and biologist Anatol Rapoport
in the early 1950s, before being rediscovered and analyzed extensively by Paul
Erd6s and Alfréd Rényi in a series of papers in the late 1950s and early 1960s.
Around the same time, a social scientist and a mathematician, Ithiel de Sola Pool
and Manfred Kochen, in collaboration gave a beautiful and influential discussion
of the “small-world effect” in an early preprint on social networks.

Thus, while much of this book is devoted to recent work on networks in the
physics and applied mathematics communities, many of the crucial ideas that have
motivated that work were well known, at least to some, many decades earlier. The
articles reproduced in this chapter provide an overview of some of the original
work on these topics and set the scene for the material that appears in the following
chapters.

Karinthy (1929)

The first publication reproduced in this chapter is in fact not a scientific paper at all,
but a translation of a short story, a work of fiction, originally published in Hungarian
in 1929. Certainly this is an unusual way to start a volume of scientific reprints,
but, as the reader will see, this brief story, published more than seventy years ago,
describes beautifully one of the fundamental truths about network structure that has
driven scientific research in the field for the last few decades, the concept known
today as the “small-world effect,” or “six degrees of separation.”

The writer Frigyes Karinthy (1887-1938) became an overnight sensation in
Hungary following the publication in 1912 of his first book, a volume of literary
caricature, which is required reading in Hungarian schools even today. Karinthy’s
1929 volume of short stories, entitled Everything is Different, did not receive the
same warm welcome from the literary establishment. Friends and critics alike
believed the book to be little more than a scheme for making some quick money
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by stringing together a set of short pieces with scant respect for coherence or
flow. Among the pieces in this collection, however, is one gem of a story, entitled
“Chains,” in which the writer raised in a fictional context some of the questions
that network theory would be struggling with for much of the rest of the century.
Without any pretensions to scientific rigor or proof, Karinthy tackled and suggested
answers to one of the deep problems in the theory of networks.

In “Chains” Karinthy argues, as Jules Verne did fifty years earlier, that the
world is getting smaller. Unlike Verne in “Around the World in Eighty Days,”
however, Karinthy proposes to demonstrate his thesis not by physical means—
circumnavigating the globe—but by a social argument. He claims that people are
increasingly connected to each other via their acquaintances, and that the dense web
of friendship surrounding each person leads to an interconnected world in which
everyone on Earth is at most five acquaintances away from anyone el se.

To back up this remarkable claim, Karinthy demonstrates that it is possible
to connect a Nobel prize winner to himself via a chain of just five acquaintances.
He also points out, however, that this may not be an entirely fair example, because
famous people with many social connections can be more easily connected to others,
an insight whose relevance in the study of networks has only been fully appreciated
quite recently. To show that his “five degrees of separation” claim also applies to
less prominent people than Nobel laureates, he connects a worker in a Ford factory
to himself, again via five acquaintances. Finally, he argues that the changing nature
of human acquaintance patterns is a consequence of human exploration, of the
demolition of geographical boundaries, and of new technologies that allow us to
stay in touch even when we are thousands of miles apart.

The idea of chains of acquaintances linking distant individuals has been
revisited many times in the decades since Karinthy’s story. Jane Jacobs in her
influential 1961 book The Death and Life of Great American Cities recalls:

When my sister and | first came to New York from a small city,
we used to amuse ourselves with a game we called Messages. The
idea was to pick two wildly dissimilar individuals—say a head hunter
in the Solomon Islands and a cobbler in Rock Island, lllinois—and
assume that one had to get a message to the other by word of mouth;
then we would each silently figure out a plausible, or at least possible,
chain of persons through which the message could go. The one who
could make the shortest plausible chain of messengers won. The head
hunter would speak to the head man of his village, who would speak to
the trader who came to buy cobra, who would speak to the Australian
patrol officer when he came through, who would tell the man who was
next slated to go to Melbourne on leave, etc. Down at the other end
the cobbler would hear from his priest, who got it from the mayor,
who got it from a state senator, who got it from the governor, etc. We
soon had these close-to-home messengers down to a routine for almost
everybody we could conjure up.

— Jacobs (1961), pp. 134-135
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Jacobs settles on an unusually long chain, however; the path in her example is at
least nine links long, not counting the links that are presumably missing between
the man heading to Melbourne and the governor.

Solomonoff and Rapoport (1951)

Scientific interest in the structure of networks began to develop in earnest in the
1940s and 1950s. Perhaps the most profound thinker in the field during this period
was Anatol Rapoport, a Russian immigrant to the United States who worked not
in sociology but in mathematical biology. Trained first as a pianist in Vienna,
Rapoport turned to mathematics after realizing that a successful career as a concert
performer would require the support of a wealthy patron, which he didn’t have
(Spencer 2002). He was unusual in developing an interest for mathematical biology
at a time when mathematicians and biologists hardly spoke to each other, and he
developed startling and prescient views about many topics that fall into the area
we now call complex systems. In particular, he was decades ahead of his time in
his views on the properties and importance of networks, developing methods that
concentrated, as we often do today, on general statistical properties of networks,
rather than individual properties of network nodes or edges. In a 1961 paper with
William H. Horvath, he wrote,

The theoretician’s interest, however, is seldom focused on a partic-
ular large sociogram [i.e., network]. Rather, the interesting features of
large sociograms are revealed in their gross, typical properties. Thus
one seeks to define classes of sociograms, or else describe them by
a few well-chosen parameters. It is perhaps natural to consider sta-
tistical parameters, since one is interested in trends or averages, or
distributions rather than particulars.

— Rapoport and Horvath (1961)

This remarkable statement could easily serve as a manifesto for the revolution in the
study of networks that has recently taken place, four decades later, in the physics
and mathematics communities.

In this chapter, we reproduce the important 1951 paper by Rapoport and Ray
Solomonoff which presents the first systematic study of what we would now call a
randomgraph. The paper is important both because it introduces the random graph
for the first time and because it demonstrates one of the most crucial properties of the
model: as the ratio of the number of edges to vertices in the graph is increased, the
network reaches a point at which it undergoes an abrupt change from a collection of
disconnected vertices to a connected state in which, in modern parlance, the graph
contains a giant component.

The paper starts by considering a graph composed of a collection of vertices
randomly connected to one another by edges (or axons, to use the paper’s neurolog-
ically inspired terminology). The authors discuss three natural systems in which
such networks might appear: neural networks, the social networks of physical con-
tacts that are responsible for the spread of epidemic disease, and a network problem
rooted in genetics.
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Solomonoff and Rapoport define a quantity called the weak connectivity,
which is the expected number of vertices reachable through the network from a
randomly chosen vertex. In the modern terminology of networks, the weak con-
nectivity is the average component size in the network. Solomonoff and Rapoport
then derive an iteration relation for the weak connectivity by reasoning about the
behavior of a simple component-finding algorithm which is equivalent to what we
would today call a burning algorithm or breadth-first search. This result leads them
to conclude that the average component size depends crucially on the mean de-
gree a, where the degree again is the number of edges connected to a vertex. They
show that for a < 1 the network is broken into many small isolated islands, but
that when the mean degree exceeds a = 1 a giant component forms that contains
a finite fraction of all the vertices in the network. Thus, although they did not
use this language, Solomonoff and Rapoport predicted! in 1951 the existence of a
phase transition from a fragmented network for ¢ < 1 to one dominated by a giant
component for a > 1.

Erd6s and Rényi (1960)

Despite the early contributions of Solomonoff and Rapoport, random graph theory
did not really take off until the late 1950s and early 1960s, when several important
papers on the subject appeared almost simultaneously (Ford and Uhlenbeck 1957;
Erd6s and Rényi 1959, 1960; Gilbert 1959). Among these, the most influential,
and the most relevant to current work, were the papers by Paul Erd6s and Alfréd
Rényi, who are considered the fathers of the modern theory of random graphs.
Between 1959 and 1968 Erd&s and Rényi published eight papers on random graphs
that set the tone for network research for many decades to come. The next paper
reproduced in this section (Erdésand Rényi 1960) is probably the most important
of these. It deals with the evolution of the structure of random graphs as the mean
degree is increased.

In this paper, the authors showed that many properties of random graphs
emerge not gradually but suddenly, when enough edges are added to the graph.
They made use of the following definition: if the probability of a graph having
property Q approaches 1 as the size of the graph N — oo, then we say that almost
every graph of N vertices has the property Q. They studied the behavior of a
variety of different properties as a function of the probability p of the existence of
an edge between any two vertices, and showed that for many properties there is
a critical probability p.(N) such that if p(N) grows more slowly than p.(N) as
N — oo then almost every graph with connection probability p(N) fails to have
the property Q. Conversely, if p(N) grows faster than p.(N) then almost every
graph has the property Q. Thus the probability that a graph with N nodes and

1This result, and indeed the invention of the random graphitself, is usually attributed to Erdés and Rényi (1959),
but it is clear that Solomonoff and Rapoport had many of the crucial results almost a decade earlier. Erd6s
and Rényi appear not to have been aware of Solomonoff and Rapoport’s work, and rediscovered their results
independently. Erd@s and Rényi’s work also went much farther than that of Solomonoff and Rapoport and
maintained a substantially higher level of rigor.
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TABLE 2.1 The threshold probabilities at which different subgraphs appear in a random graph. For
pN3/2 5 0the graph consists only of isolated nodes or pairs connected by edges. When p ~ N—3/2
trees with 3 edges appearand at p ~ N~4/3 trees with 4. If p ~ N~ Ltrees of all sizes are present, as
well as cycles of all lengths. When p ~ N—2/3 the graph contains complete subgraphs of 4 vertices
and for p ~ N~1/2 there are complete subgraphs of 5 vertices. As the exponent approaches 0, the
graph contains complete subgraphs of increasing order.
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As an example, let us consider one of the first cases discussed by Erdés and
Rényi, namely the appearance of a given subgraph within a random graph. For
low values of the edge probability p, the graph is very sparse and the likelihood of
finding, for example, a single vertex connected to two others is very low. One might
imagine that in general the probability of there being such a structure somewhere on
the graph would increase slowly with increasing p, but Erd6s and Rényi prove that
this is not the case. Instead, the probability of finding a connected trio of vertices is
negligible if p < ¢N—1/2 for some constant ¢, but tends to 1 as N' becomes large if
p > ¢N~Y2_ In other words, almost all graphs contain a connected trio of vertices
if the number of links is greater than a constant times N1/2, but almost none of
them do if the number of links is less than this.

Erd@s and Rényi generalized this result further to show that the probability
of occurrence of a tree of k vertices in the graph (i.e., a connected set of k vertices
containing no loops) tends to 1 on large graphs with more than a constant times
N*=2/k=1) edges. They also extended their method to cycles, that is, closed
loops of vertices in which every two consecutive vertices, and only these, are
joined by an edge. Cycles also show a threshold behavior—they are present with
probability 1 above some critical value of p as the graph becomes large. InTable 2.1
we summarize some of the thresholds found in the evolution of random graphs.

Anarea of study closely related to random graphs is percolation theory (Stauf-
fer and Aharony 1992; Bunde and Havlin 1994, 1996), which has been the object
of attention within the physics community for many years, since the introduc-
tion in the 1950s of the original percolation model by Hammersley and others
(Broadbent and Hammersley 1957; Hammersley 1957). In bond percolation mod-
els, one studies the properties of the system in which the bonds on a lattice or
network are either occupied or not with some occupation probability p, asking
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questions such as what the mean sizes are of the clusters of lattice sites connected
together by occupied bonds, and whether or not there exists a “spanning cluster”
in the limit of large system size (i.e., a cluster that connects opposite sides of the
lattice via a path of occupied bonds). It is clear that the random graph model is
equivalent to bond percolation on a complete graph (i.e., a graph in which every
vertex is connected to every other), and hence the methods developed for studying
percolation can be applied to random graphs also. In particular, there has been
much effort devoted to the study of the behavior of percolation models close to the
phase transition at which a spanning cluster forms, which in random graph language
is the point at which a giant component appears. It is known, for example, that
many properties display universal behavior close to the phase transition, behavior
that is dependent on the system dimension but not on the details of the lattice.
And even the dimension dependence vanishes above the so-called upper critical
dimension, giving way to generic behavior that can be extracted using simple mean-
field theories. Since a complete graph is a formally infinite-dimensional object in
the limit of large system size, the behavior of the random graph near the phase
transition therefore falls into this mean-field universality class, and many results
for the random graph, such as values for critical exponents can then be extracted
from mean-field theory.

Pool and Kochen (1978)

In the late 1950s, around the same time that Erd6s and Rényi were beginning
their work on random graphs, the sociological community started developing an
interest in applications of graph theory. The next paper reproduced in this section
is the influential article on patterns of social contacts by the political scientist
Ithiel de Sola Pool and the mathematician Manfred Kochen (Pool and Kochen
1978). This paper was actually written in 1958, and circulated for many years
in preprint form. In it Pool and Kochen addressed for the first time many of the
questions that the field would be struggling with for the next few decades, and yet
they felt that they had not dealt satisfactorily with the issues and so didn’t submit
their work for publication in a journal. It was not until twenty years after its first
appearance that the authors consented to the publication of this important work
in the new journal Social Networks, on page 1 of volume 1. Pool and Kochen’s
work provided the inspiration for, among other things, the famous “small-world”
experiments conducted in the 1960s by Stanley Milgram (Milgram 1967; Travers
and Milgram 1969), which are the subject of the following paper in this book.
Hence it is appropriate that we here reproduce Pool and Kochen’s work ahead of
Milgram’s, even though Milgram’s bears the earlier date of publication.

In the introduction to their paper, Pool and Kochen formulate some of the
guestions that have come to define the field of social networks:

i) How many other people does each individual in a network know? In other
words what is the person’s degree in the network? (Pool and Kochen refer
to this quantity as the “acquaintance volume.”)
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ii) What is the distribution of the degrees? What are their mean and their largest
and smallest values?

iii) What kinds of people have large numbers of contacts? Are these the most
influential people in the network?

iv) How exactly are the contacts organized? What is the structure of the network?

In addition to these general questions about individuals and about the network as
a whole, Pool and Kochen looked also at questions about paths between pairs of
individuals:

i) What is the probability that two people chosen at random from the population
will know each other?

ii) What is the chance that they have a friend in common?

iii) What is the chance that the shortest chain between them requires two inter-
mediates? Or more than two?

Pool and Kochen start by discussing the difficulty of determining the number
of social contacts people have. There are two primary problems: ambiguity about
what exactly constitutes a social contact, and the fact that people are not very
good at estimating the number of their acquaintances even if the definition of an
acquaintance is clear. Typically most people underestimate their acquaintance
volume.

Given the limited and unreliable nature of network data, Pool and Kochen
resort to mathematical models. Inspired by Rapoport’s work (Solomonoff and
Rapoport 1951), they base their work on the random graph, using this simple
model to make conjectures about the characteristics of social networks.

This paper discusses for the first time in scientific terms the phenomenon we
now call the small-world effect. Starting with the assumption that each person has
about 1,000 acquaintances, they predict that most pairs of people on Earth can be
connected via a path that goes through just two intermediate acquaintances. They
give arguments reminiscent of those found in Karinthy’s 1929 short story, repro-
duced in this chapter, to make this counterintuitive claim more plausible. They also
consider the possibility that community groupings and social stratification within
the network would affect their conclusions. But, after some laborious calculation,
they conclude, apparently somewhat to their own surprise, that social strata have
only a small effect on the average distance between individuals.

Travers and Milgram (1969)

Although network ideas were already becoming popular among sociologists in
the 1950s and 1960s, it was an experimentalist, Stanley Milgram, who propelled
the field into the public consciousness in the late 1960s with his famous small-
world experiment. Milgram, at that time working at Harvard and influenced by the
thinking of Harrison White and Ithiel Pool, both also in the Boston area, was inspired
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to devise an experiment that could test Pool and Kochen’s surprising conjectures
about path lengths between individuals in social networks.

Milgram published several papers about his small-world experiments. The
earliest and best known is a 1967 piece that he wrote for the popular newsstand
magazine Psychology Today (Milgram 1967). Although entertaining and thought
provoking, this is not a rigorous piece of scientific writing, and many of the details
of his work are left out of the discussion. After the first set of experiments, Mil-
gram started collaborating with Jeffrey Travers, and repeated the experiments with
new subjects and more detailed quantitative analyses. The 1969 article Milgram
coauthored with Travers contains a clear and thorough explanation of these new
experiments, and it is this second paper that we reproduce here.

Milgram’s experiments started by selecting a target individual and a group of
starting individuals. A package was mailed to each of the starters containing a small
booklet or “passport” in which participants were asked to record some information
about themselves. Then the participants were to try and get their passport to the
specified target person by passing it on to someone they knew on a first-name basis
who they believed either would know the target, or might know somebody who did.
These acquaintances were then asked to do the same, repeating the process until,
with luck, the passport reached the designated target. At each step participants were
also asked to send a postcard to Travers and Milgram, allowing the researchers to
reconstruct the path taken by the passport, should it get lost before it reached the
target. Travers and Milgram recruited 296 starting individuals, 196 from Omaha,
Nebraska and the other 100 from Boston. The target was a stockbroker who lived
in Sharon, Massachusetts, a small town outside Boston.

In the end, 64 of the 296 chains reached the target, 29% of those that started
out. The number of intermediate acquaintances between source and target varied
from 1 to 11, the median being 5.2. Five intermediate acquaintances means that
there were six steps along the chain, a result that has passed into popular myth in
the phrase “six degrees of separation,” which was the title of a 1990 Broadway play
by John Guare in which one of the characters discusses the small-world effect.

To what degree can we trust the results of Milgram’s experiments? Are we
indeed just six steps from anyone else on average, or could the real result be closer
to three as predicted by Pool and Kochen? Or perhaps the average separation is
larger than six? This question is discussed in some detail by Travers and Milgram.
The letters were more likely to get lost if they took a longer path from source to
target, and hence the completed chains that Travers and Milgram used to estimate
the average chain length are probably biased toward the shorter lengths. As Travers
and Milgram describe in a footnote, however, White (1970) calculated a correction
to the raw results to allow for this effect and found that the change in the figures
was not large: the correction increases the average separation from 6 to 8. But
there are other effects acting in the opposite direction also, potentially making the
mean separation shorter than six. In particular, there is no guarantee that Travers
and Milgram’s subjects would have found the shortest path through the network
to the target person. They forwarded the letter to the person of their acquaintance
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who they thought was closest to the target person, but they could easily have had
another acquaintance who—unknown to them—uwas acquainted directly with the
target. Thus the real separation between participants could be much shorter than
that recorded by the experiment.

Price (1965)

At about the same time that Milgram was developing his first small-world experi-
ment, the empirical study of networks was being taken up in another very different
branch of the scientific community, information science. Derek de Solla Price’s
1965 article “Networks of Scientific Papers,” which appeared in the journal Sci-
ence, is a hidden treasure, largely unknown within the mathematics and physics
communities. In this paper, Price studies one of the oldest of information networks,
the network of citations between scientific papers, in which each vertex represents
a paper and a directed edge from one paper to another indicates that the first paper
cites the second in its bibliography. Price indeed appears to have been one of the
first to suggest that we view the pattern of citations as a network at all, and to
present detailed statistical analyses of this network, for which he made use of the
databases of citations that were just starting to become available, thanks to the work
of Eugene Garfield and others.

Since citation networks are directed, each paper in such a network has both
an out-degree (the numbers of papers that it cites) and an in-degree (the number
of papers in which it is cited). Price studied the distributions of both in- and
out-degrees and found that both have power-law tails, with exponents of about
—2 and —3, respectively. Networks with power-law degree distributions are now
known to occur in a number of different settings and are often called “scale-free
networks” (see Chapter 3 and Section 4.3).

The quality of citation data has improved markedly in the years since Price’s
pioneering work, and particularly since the advent of computer tabulation of data,
and a number of more recent studies have improved upon Price’s results. Of
particular interest is the paper by Redner (1998), in which the author independently
discovered Price’s power law using two large databases of citations of physics
papers. Redner investigated the citation frequency of 783 339 papers published in
1981 and cited over 6 million times between 1981 and 1997, using data collected by
the Institute for Scientific Information, the commercial enterprise that grew out of
Garfield’s early work on citation. The careful analysis presented in the paper shows
that the in-degree of the citation network does indeed have a power-law tail, with an
exponent roughly equal to —3. A second data set compiled from the bibliographies
of 24296 papers published in the journal Physical Review D between 1975 and
1994 shows similar results.

The paper reproduced here is not Derek Price’s only contribution to the
study of citation networks. A decade later he published a second remarkable pa-
per in which he proposed a possible mechanism for the generation of the power
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laws seen in the citation distribution (Price 1976). Building on previous work by
Simon (1955), he proposed that papers that have many citations receive further
citations in proportion to the number they already have. He called this process
“cumulative advantage,” and gave a mathematical model of it, which he solved to
demonstrate that it does indeed give rise to power-law distributions as observed
in the data. The cumulative advantage process is more commonly known today
under the name “preferential attachment,” and is widely accepted as the explanation
for the occurrence of power-law degree distributions in networks as diverse as the
World Wide Web, social networks, and biological networks.

De Castro and Grossman (1999)

Our final paper in this chapter deals with another network formed by the patterns of
scientific publication, and while itis a relatively recent work, having been published
in 1999, we feel it belongs here in this historical section, as it summarizes an idea
that has been current in the mathematics community for some decades but has rarely
been studied formally.

Paul Erd6s was a stunningly prolific mathematician who lived from 1913
to 1996. During his long life, he authored over 1500 papers with more than 500
coauthors, including his papers on random graphs with fellow Hungarian Alfréd
Rényi, which are discussed earlier in this section. His staggering output, together
with his pivotal role in the development of the theory of networks, prompted some of
his colleagues to see him as a central node of the worldwide collaboration network
of mathematicians and other scientific researchers.

Consider the network whose vertices are mathematicians and scientists, with
an edge between any two vertices if the researchers they represent have coauthored
one or more papers together. For each vertex we define the Erds number to be
the length of the shortest path from that vertex to Paul Erd&s along the edges of the
network. As de Castro and Grossman describe it,

Paul Erd6és himself has Erdés number 0, and his co-authors have
Erd6s number 1. People not having Erdés number 0 or 1 who have
published with someone with Erdés number 1 have Erdés number 2,
and so on. Those who are not linked in this way to Paul Erd6s have
Erdds number oo.

For many years now, it has been a popular cocktail-party pursuit among mathe-
maticians to calculate their Erd6s number, or more strictly an upper bound on their
Erd8s number, since it is rarely possible to be certain one has considered all possi-
ble paths through the network. Most mathematicians, and many in other subjects
as well, have no difficulty establishing a fairly low upper bound on their Erd&s
number. As de Castro and Grossman conjecture, “Most mathematical researchers
of the twentieth century have a finite (and rather small) Erds number.”

In the paper, de Castro and Grossman argue in favor of this conjecture by
charting paths through the collaboration network to Erd6s from a wide variety
of starting individuals. As well as mathematicians, they derive upper bounds on
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the Erd6s numbers of Nobel Prize winners in physics, economics, biology, and
chemistry. And since it seems likely that most scientists in those fields could be
connected to the corresponding Nobel laureates in a small number of steps, it is
reasonable to suppose that most scientists have small Erdés humbers.

This exercise of course constitutes another demonstration of the small-world
effect, this time in the context of the scientific community. With the recent increase
in interest in networks, the Erd6s number has been elevated from mathematical
anecdote to the subject of serious (if playful) scientific inquiry. Newman (2001a,
2001b, 2001c), for instance, has studied in detail collaboration networks from
a variety of subjects, including networks of biologists, physicists, and computer
scientists, while Barabasi and coworkers (2002) have focused on understanding the
time evolution of collaboration networks, using data for publications in mathematics
and neuroscience.
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CHAIN-LINKS

by
Frigyes Karinthy

We were arguing energetically about whether the world is
actually evolving, headed in a particular direction, or whether the
entire universe is just a returning rhythm’s game, a renewal of
eternity. “There has to be something of crucial importance,” I
said in the middle of debate. “I just don’t quite know how to
express it in a new way; I hate repeating myself.”

Let me put it this way: Planet Earth has never been as tiny as it is
now. It shrunk — relatively speaking of course — due to the
quickening pulse of both physical and verbal communication.
This topic has come up before, but we had never framed it quite
this way. We never talked about the fact that anyone on Earth, at
my or anyone’s will, can now learn in just a few minutes what I
think or do, and what I want or what I would like to do. If I
wanted to convince myself of the above fact: in couple of days I
could be — Hocus pocus! — where I want to be.

Now we live in fairyland. The only slightly disappointing thing
about this land is that it is smaller than the real world has ever
been.
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Chesterton praised a tiny and intimate, small universe and found
it obtuse to portray the Cosmos as something very big. I think
this idea is peculiar to our age of transportation. While
Chesterton rejected technology and evolution, he was finally
forced to admit that the fairyland he dreamed of could only come
about through the scientific revolution he so vehemently
opposed.

Everything returns and renews itself. The difference now is that
the rate of these returns has increased, in both space and time, in
an unheard-of fashion. Now my thoughts can circle the globe in
minutes. Entire passages of world history are played out in a
couple of years.

Something must result from this chain of thoughts. If only I knew
what! (I feel as if I knew the answer to all this, but I’ve forgotten
what it was or was overcome with doubt. Maybe I was foo close
to the truth. Near the North Pole, they say, the needle of a
compass goes haywire, turning around in circles. It seems as if
the same thing happens to our beliefs when we get too close to

God.)

A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that the
population of the Earth is closer together now than they have
ever been before. We should select any person from the 1.5
billion inhabitants of the Earth — anyone, anywhere at all. He bet
us that, using no more than five individuals, one of whom is a
personal acquaintance, he could contact the selected individual
using nothing except the network of personal acquaintances. For
example, “Look, you know Mr. X.Y., please ask him to contact
his friend Mr. Q.Z., whom he knows, and so forth.”

“An interesting idea!” — someone said — “Let’s give it a try.
How would you contact Selma Lagerlsf?”'

' Swedish novelist Selma Lagerlof (1858-1940), who received the Nobel
Prize for literature in 1909, was a champion of the return of Swedish
romanticism with a mystical overtone. She also wrote novels for children.
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“Well now, Selma Lagerl6f,” the proponent of the game replied,
“Nothing could be easier.” And he reeled off a solution in two
seconds: “Selma Lagerlof just won the Nobel Prize for
Literature, so she’s bound to know King Gustav of Sweden,
since, by rule, he’s the one who would have handed her the Prize.
And it’s well known that King Gustav loves to play tennis and
participates in international tennis tournaments. He has played
Mr. Kehrling,2 so they must be acquainted. And as it happens I
myself also know Mr. Kehrling quite well.” (The proponent was
himself a good tennis player.) “All we needed this time was two
out of five links. That’s not surprising since it’s always easier to
find someone who knows a famous or popular figure than some
run-of-the-mill, insignificant person. Come on, give me a harder
one to solve!”

I proposed a more difficult problem: to find a chain of contacts
linking myself with an anonymous riveter at the Ford Motor
Company — and I accomplished it in four steps. The worker
knows his foreman, who knows Mr. Ford himself, who, in turn,
is on good terms with the director general of the Hearst
publishing empire. I had a close friend, Mr. Arpad Pasztor, who
had recently struck up an acquaintance with the director of
Hearst publishing. It would take but one word to my friend to
send a cable to the general director of Hearst asking him to
contact Ford who could in turn contact the foreman, who could
then contact the riveter, who could then assemble a new
automobile for me, should I need one.

And so the game went on. Our friend was absolutely correct:
nobody from the group needed more than five links in the chain
to reach, just by using the method of acquaintance, any inhabitant
of our Planet.

2 Béla Kehrling, (1891-1937) was a noted Hungarian sportsman, soccer,

ping-pong and tennis player. In tennis, he emerged victorious in 1923 in
Gothenberg, Sweden, both indoors and in the open; he placed third in the
Wimbledon doubles. He also played soccer and ice hockey.
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And this leads us to another question: Was there ever a time in
human history when this would have been impossible? Julius
Caesar, for instance, was a popular man, but if he had got it into
his head to try and contact a priest from one of the Mayan or
Aztec tribes that lived in the Americas at that time, he could not
have succeeded — not in five steps, not even in three hundred.
Europeans in those days knew less about America and its
inhabitants than we now know about Mars and its inhabitants.

So something is going on here, a process of contraction and
expansion which is beyond rhythms and waves. Something
coalesces, shrinks in size, while something else flows outward
and grows. How is it possible that all this expansion and material
growth can have started with a tiny, glittering speck that flared
up millions of years ago in the mass of nerves in a primitive
human’s head? And how is it possible that by now, this
continuous growth has the inundating ability to reduce the entire
physical world to ashes? Is it possible that power can conquer
matter, that the soul makes a mightier truth than the body, that
life has a meaning that survives life itself, that good survives evil
as life survives death, that God, after all, is more powerful than
the Devil?

I am embarrassed to admit — since it would look foolish — that
I often catch myself playing our well-connected game not only
with human beings, but with objects as well. I have become very
good at it. It’s a useless game, of course, but I think I’m addicted
to it, like a gambler who, having lost all of his money, plays for
dried beans without any hope of real gain — just to see the four
colors of the cards. The strange mind-game that clatters in me all
the time goes like this: how can I link, with three, four, or at most
five links of the chain, trivial, everyday things of life. How can I
link one phenomenon to another? How can I join the relative and
the ephemeral with steady, permanent things — how can I tie up
the part with the whole?

It would be nice to just live, have fun, and take notice only of the
utility of things: how much pleasure or pain they cause me. Alas,
it’s not possible. I hope that this game will help me find
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something else in the eyes that smile at me or the fist that strikes
me, something beyond the urge to draw near to the former and
shy away from the latter. One person loves me, another hates me.
Why? Why the love and the hatred?

There are two people who do not understand one another, but I’'m
supposed to understand both. How? Someone is selling grapes in
the street while my young son is crying in the other room. An
acquaintance’s wife has cheated on him while a crowd of
hundred and fifty thousand watches the Dempsey match, Romain
Roland’s’ last novel bombed while my friend Q changes his
mind about Mr. Y. Ring-a-ring o’ roses, a pocketful of posies.
How can one possibly construct any chain of connections
between these random things, without filling thirty volumes of
philosophy, making only reasonable suppositions. The chain
starts with the matter, and its last link leads to me, as the source
of everything.

Well, just like this gentleman, who stepped up to my table in the
café where I am now writing. He walked up to me and
interrupted my thoughts with some trifling, insignificant problem
and made me forget what I was going to say. Why did he come
here and disturb me? The first link: he doesn’t think much of
people he finds scribbling. The second link: this world doesn’t
value scribbling nearly as much as it used to just a quarter of a
century ago. The famous worldviews and thoughts that marked
the end of the 19" century are to no avail today. Now we disdain
the intellect. The third link: this disdain is the source of the
hysteria of fear and terror that grips Europe today. And so to the
fourth link: the order of the world has been destroyed.

Well, then, let a New World Order appear! Let the new Messiah
of the world come! Let the God of the universe show himself
once more through the burning rosehip-bush! Let there be peace,
let there be war, let there be revolutions, so that — and here is

3 Romain Roland, the noted French novelist, lived from 1866 until 1944, He
was awarded the Nobel Prize for literature in 1915. Nearly all of his works
were translated into Hungarian, just as in the case of Selma Lagerl6f.
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the fifth link — it cannot happen again that someone should dare
disturb me when I am at play, when I set free the phantoms of
my imagination, when I think!

Translated from Hungarian and annotated by
Adam Makkai
Edited by Eniké Janké
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The weak connectivity ¥ of a random net is defined and computed
by an approximation method as a function of a, the axone density. It
is shown that Y rises rapidly with a, attaining 0.8 of its asymptotic
value (unity) for @ — 2, where the number of neurons in the net is
arbitrarily large. The significance of this parameter is interpreted also
in t:iail;:r_ns of the maximum expected spread of an epidemic under certain
conditions.

Numerous problems in various branches of mathematical biology
lead to the consideration of certain structures which we shall call
“random nets.” Consider an aggregate of points, from each of which
issues some number of outwardly directed lines (axones). Each
axone terminates upon some point of the aggregate, and the prob-
ability that an axone from one point terminates on another point is
the same for every pair of points in the aggregate. The resulting
configuration constitutes a random net.

The existence of a path in a random net from a point A to
a point B implies the possibility of tracing directed lines from A
through any number of intermediate points, on which these lines
terminate, to B .

We shall say that B is ¢ axones removed from A, if ¢ is the
smallest number of axones contained in any of the paths from A to
B. Point A itself is zero axones removed from A . All the other
points upon which the axones of A terminate are one axone removed.
The points upon which the axones from these latter points terminate,
and which are not one or zero axones removed, are two axones re-
moved, ete.

The notion of a random net may be generalized, if it is not
assumed that the probability of direct connection between every pair
of points in the net is the same. In that case it is necessary to define
this probability for every pair of points. This can be done, for ex-
ample, in terms of the distance between them or in some other way.

107
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If the connections are not equiprobable, we shall speak of a net with
a bias.

The following examples illustrate problems in which the con-
cept of a net, defined by the probability of the connections among
its points, seems useful.

1. A problem in the theory of neural nets. Suppose the points
of a net are neurons. What is the probability that there exists a path
between an arbitrary pair of neurons in the net? If the net has bias,
what is the probability that there exists a path between a specified
pair? In particular, what is the probability that a neuron is a mem-
ber of a cycle (i.e., there exists a path from the neuron to itself
through any positive number of internuncials) ? Or, one may ask,
what is the probability that there exists a path from a given neuron
to every other neuron in the net?

2. A problem in the theory of epidemics. Suppose a number
of individuals in a closed population contract a contagious disease,
which lasts a finite time and then either kills them or makes them
immune. If the probability of transmission is defined for each pair
of individuals, what is the expected number of individuals which will
contract the disease at a specified time? In particular, what is the

FIGURE 1. The probability tree for the number of ancestors of a single
individual.
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expected number of individuals which will eventually (after an in-
finite time) contract the disease? Or else, what is the probability
that the entire population will succumb? Note that if the probability
of transmission is the same for each pair of individuals, we are deal-
ing with a random net.

3. A problem in mathematical genetics. Given the probability
of mating between each pair of individuals in a population (as a
function of their distance, or kinship, or the like), what is the ex-
pected number of ancestors of a given order for each individual?
Clearly, the less the expected number of ancestors, the greater the
genetic homogeneity of the population.

Each of these problems can be formalized by constructing a
“probability tree.” As an example, a tree for the genetic problem
is illustrated in Figure 1.

We note that the tree consists of “nodes” connected by lines.
The nodes can be designated by “first order,” ‘“‘second order,” etc.,
depending on their distance from the “root.” The number at the node
indicates a possible number of ancestors of a given order. The lines
connecting the nodes are labeled with the corresponding probabilities.
Thus p,(2) = 1, since it is certain that an individual has exactly
two ancestors’ of the first order (parents). However, the parents
may have been siblings or half-siblings. Therefore it is possible that
the number of grandparents is 2, 3, or 4. The corresponding prob-
abilities are p.(2), p.(8), and p.(4). The probability of having a
certain number of great-grandparents depends on how many grand-
parents one has had. Consequently, those probabilities must be des-
ignated by p;(4,7) wherei=2,...-4and =2, ...- 8. In general,
the probability of having a certain number of ancestors of order k&
will depend on how many ancestors of each of the smaller orders one
has had. If, however, we simplify the problem by supposing that the
probability of having a certain number of ancestors of the kth order
depends only on how many ancestors of the (¥ — 1)th order one has,
then the probability that an individual has exactly » ancestors of
the mth order will be given by

ki 8 4
Py (n) ='§’§ 2002 D (GF) - Pul(rm). (1)

The expected number of ancestors of the mth order will then be

E(m) =z= nP(n). (2)
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Clearly, a similar tree can be constructed for the neural net
problem. Here the numbers at the nodes of the kth order would des-
ignate the possible number of neurons % axones removed from a given
neuron. The p’s would designate the corresponding transition prob-
abilities from a certain number of neurons (k¥ — 1) axones removed
to a certain number k axones removed, etc. If N is the number of
neurons in the aggregate, clearly, a neuron B is at most N axones
removed from a neuron A4 , or else there exists no path from A to B.
Hence E (N) represents the expected number of neurons in the aggre-
gate to which there exist paths from an arbitrary neuron, if the
neurons are not.in any way distinguished from each other. This
expected number we shall call the weak connectivity of a random net
and will designate it by » .

‘The . contagion problem could be formulated in similar terms.
Here weak connectivity would represent the expected number of in-
dividuals which will contract the disease eventually. If we define I,
the strong comnectivity as the probability that from an arbitrary
point in a random net there exist paths to every- other point, then I’
will represent the probability that the entire population will suc-
cumb in the epidemic described above. In this case, the number of
“axones” represents the number of individuals infected by a carrier
before he recovers or dies.

The weak connectivity of a random net. We shall compute the
weak connectivity of a neural net in terms of certain approximations
whose justification will be given in subsequent papers. It will be
assumed that:

1. The number of axones per neuron @ is constant throughout
the net. This constant (the axone density) need not be an integer,
since it may equally well be taken as the average number of axones
per: neuron.

2. Connections are equiprobable, i.e., an axone synapses upon
one or another neuron in the aggregate with equal probability.

A. Shimbel (1950) has formulated the problem in terms of the
following differential-difference equation

de/dt =[N —z(t)][z(t) —2(t—7)]. (3)

Here 2 (%) is a function related to the expected number of neurons ¢
axones removed from an arbitrary neuron, and r is related to the
axone density. Then the problem of finding y is equivalent to the
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problem of finding (). A somewhat generalized form of equation
(3) is given also by M. Puma (1939). The solution of the equation
is, however, not given.

An approximate expression for y where N is large was derived
by one of the authors (Rapoport, 1948) where the number of axones
per neuron is exactly one. This case will be generalized here to a
axones per neuron, which are supposed constant through out the
aggregate.

The axone-tracing procedure. Let us start with an arbitrarily
selected neuron A4 and consider the set of all neurons removed by
not more than ¢ axones from A . Let 2 be the expected number of
these neurons. Then evidently 2 = (N, a, ) depends on the total
number of neurons in the net, on the axone density, and on ¢ . More-
over, the weak connectivity of the net can be expressed as-

y(N,a) =2z(N,a,N)/N. (4)

Since N and a are fixed, we shall refer to the expected number of
points removed from A by not more than ¢ axones by z(t). Note
that ¢ is a positive integer. .

We seek a recursion formula for z(¢) which will give us an ap-
proximate determination of that function. To give a rigorous treat-
ment of the problem, one would need to deal with distribution funec-
tions instead of expected values. For example, p(%,t), denoting the
probability that there are exactly i neurons not more than ¢ axones
removed from A, would determine the distribution for ¢. Succes-
sive distributions (for ¢ + 1, etc.) would then depend on previous
distributions, instead of merely upon the first moments of these dis-
tributions (expected values). The “probability tree” method does
take these relations into account. An “exact” approach to the prob-
lem will be given in a subsequent paper. Meanwhile, however,
we shall develop an approximation method in which it will be as-
sumed that the expected value 2 (f) depends only upon previous ex-
pected values, and, of course, upon the parameters of the net.

The recursion formula. We now seek an expression for z(¢ + 1)
— 2(t). This is evidently the expected number of neurons exactly
(¢ + 1) axones removed from A . We shall make use of the follow-
ing formula, which may be readily verified. Let s marbles be placed
independently and at random into N boxes. Then the expected num-
ber of boxes occupied by one or more marbles will be given by

Nl1—(1—1/N)*1. (5)
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In our axone-tracing procedure there are a[z({) — z(t — 1)]
axones of the newly contacted neurons to be traced on each step.
Then the total number of neurons contacted on the (¢ + 1)th tracing
will be, according to formula (5),

N[1— (1—1/N)ste@~=e-1] (6)

But of these neurons the fraction 2 (£) /N has already been contacted.
Hence the expected number of newly contacted neurons will be given
by

z(t+1) —2(() =[N—2z()][1— (1L—1/N)sew)wc-01] . (7)
which is our desired recursion formula.

Determination of y. Let us set

y(t) =N—z(t). (8)
Then equation (7) may be written as
y(t+ 1) =y (t) (1 —1/N)ew-n-uv®1, (9)
or
y(E+1) (1—1/N)*® =y({) (1—1/N)*¢D, (10)
Hence
y(E+1)(1—1/N)w® =constant =K . (11)
We proceed to evaluate K. We have
y(t+1) =K(1—1/N)-®, (12)

But y(t) represents the expected number of uncontacted points in
the tth step. Since before the tracing began one point constituted
the set of contacted points, therefore we have

y(0)=N-—1, (13)
and using formula (5),
y(1) = (N —1)*1 N-2, (14)
Letting ¢ = 0 in (12), we obtain
K =N-¥(N — 1)+, (15)

Furthermore, since (1) = y(0) and (1 — 1/N)-= > 1, we have
¥(2) = y(1), ete., so that y(f) is a non-increasing function of £
(this is also intuitively evident from the definition of y). Sincey = 0
for all ¢, y () must approach a limit as ¢ grows without bound. Hence
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Lim y(t + 1) =Limy(¢) =Y. (16)
=00 -0

Note that y = «(N) may also be considered as Lim z(¢) /N . This is

t—0

so since contacting no new neurons on any tracing implies that no
new neurons will be contacted on any subsequent tracings. If we
continue to carry out tracings “symbolically,” it is evident that at
some tracing not greater than the Nth no new neurons will be con-
tacted, and all subsequent tracings will be “dummy” tracings.

Using equations (12) and (15), we see that Y satisfies the tran-
scendental equation

Y=(N—1)(1—1/N)e@-n, (17)
For large N, this can be approximated by

Y~NExp{a(Y/N—1)}. (18)
Hence, for large N,

Y/N~Exp{a(Y/N—1)}. (19)

But y=2(w)/N =1—Y/N . Substituting this value into (19),
we obtain the transcendental equation which defines y implicitly as
a function of a , namely,

y=1—e, (20)

We note that for y = 0, every a is a solution of (20). If y # 0,
then equation (20) can be solved explicitly for a giving

G=M, (21)

=l

FI1GURE 2. Weak connectivity as a function of axone densitv.
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The right side of (21) is analytic in every neighborhood of the
origin and tends to unity as y approaches 0. Expanding that func-
tion in powers of y, we have

a=1+p/2+ /3 -, (22)

which allows us to plot a against y (cf. Fig. 2). This graph consists
of two branches, namely, the entire a-axis and the function (21).
Negative values of y, being physically meaningless, must be dis-
carded. Thus in the region 0 = a =1, we have y =0, as is intuitively
evident. We must show, however, that for ¢ > 1, y follows the non-
zero branch of the graph, otherwise we get the unlikely result that
for sufficiently large N the fraction of individuals eventually infected
in an epidemic will be negligible, regardless of the number of indi-
viduals infected by each carrier of the disease. Actually, the solu-
tion y = 0 is extraneous for ¢ > 1 and appears in our equation be-
cause we have let N increase without bound before determining the
relation between @ and y . In any physical situation N is finite. Hence
a physically meaningful procedure is to determine y» as a function
of @ and N and then allow N to increase without bound. Such a func-
tion is given by equation (17). Proceeding from that equation we
obtain

Y/(N—1)=(1—1/N)e#-n, (23)

log Y —log(N—1) =a(N—Y) ldg(l—l/N), (24)
_ log Y —log(N—1)

“= (N—7Y) [log(N —1) —log(N)1

Let us write Y = N — ¢(N) = N[1—¢(N)/N]. Then equa-
tion (25) may be written as

log N —log(N —1) + log[1—¢(N)/N]

=a ¢(N)[log(N—1) —logN].

Since ¢ (N) < N for all N, we may expand the last term of the left
side of (26) and obtain

log N —log(N —1) —¢(N)/N —}[¢(N)/N]*

—1/8[$(N)/N]*----=a ¢ (N) [log (N —1) —log N] .

We now expand log(N — 1) — log N which appears in the right side
of (27) and after rearrangements obtain

(25)

(26)

(27
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log N—log(N —1)
_$@) [1—a+“N’_“"+ [6(N)1*—a

+ } (28)
2N 3N?

< [1—a+ (1—¢(N)/N)-1] .

Now if a is fixed and greater than unity, the limit of ¢ (N)/N can-
not be zero as N increases without bound, because otherwise for N
sufficiently large the right side of (28) becomes negative, while the
left side is always positive, a contradiction of inequality (28). There-
fore, the limit of ¥/N, as N increases without bound, cannot be
unity for ¢ > 1. But this means that y # 0 if ¢ > 1. Hence, for
@ > 1, the non-zero branch of our curve is the only meaningful one.

An examination of the meaningful part of the graph of equa-
tion (20) shows that as long as the axone density does not exceed
one axone per neuron, y = 0, i.e., for very large N, the number of
neurons to which there exist paths from an arbitrary neuron is neg-
ligible compared with the total number of neurons in the net. On
the other hand, as the axone density increases from unity, y increases
rather rapidly, starting with slope 2. Already for a = 2, y reaches
about 0.8 of its asymptotic value (unity) and is within a fraction
of one per cent of unity for quite moderate a (say > 6). This means
that no matter hew large the net is, it is practically certain that there
will exist a path between two neurons picked at random, provided
only the axone density is a few times greater than unity. The in-
terpretation in terms of an epidemic with equiprobable contacts is
entirely analogous.

The case a — 1. This case was treated by one of the authors
(Rapoport, 1948) by a different method. It was shown that for large
N, the probability that a neuron was member of a cycle was given
by \/n/2N. This gives the probability of the existence of a path
from a neuron over any number of internuncials greater than one to
itself. But under the assumption of equiprobable connections, this
may well represent the probability of the existence of a path from the
given neuron to any other neuron in the net. Therefore we should
have for large N, in the casea =1,

y~Va/2N. (29)

For N = « , y reduces to zero, as it should according to equation
(20). We shall, however, examine the asymptotic behavior of y for
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large N deduced from our approximate method, in order to compare
it with the asymptotic behavior (29) deduced from an exact treat-
ment of the special case, Dividing both sides of (17) by N, we may
write fora=1

Y/N=[(N—1)/N}*¥*, (30)
whence, since Y/N =1 —y,
1—y=[(N—1)/N}=
=Exp{ln(1—1/N) + NyIn(1—1/N)}.

We let 2z = N-* and examine the behavior of y for small values
of z. Expanding the right side of (81) by power series and retain-
ing only terms of the second order (note that z and y vanish to-
gether), we obtain

(31)

1—y=1+4+[—2—22/2-...] + [—y—yz/2—-..]
" (32)
+ 22/2°F p2/2 + yz + oeee.
Hence,

0=—2+92/2+ y2/2+-..-. (83)

Differentiating with respect to y, we get
dz/dy=y + y/2.dz/dy + 2/2 + ----, (34)
dz/dy ~ (y +2/2) /(1 — y/2). (35)

Therefore dz/dy vanishes at z = 0, y = 0. Differentiating once
again with respect to y, we obtain

d‘z’

—_ 36
= (36)

#=0 e
=0

Hence the power series representing z as a function of y begins
as follows:

2=9%/2 +-ee, (37)

Thus
y*~2z=2/N, (38)
y~V2/N=141VN. (39)

The “exact” result as expressed by (22) gives .
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y~12/VN.

Thus the approximate method applied to the case ¢ = 1 implies an
asymptotic behavior of y for large N which does not depart too
sharply from that deduced by the exact method. The limiting value
for y is zero in both cases. The question of how well the limiting
values of y are approached by the approximate method for @ > 1
remains open.

This investigation is part of the work done under Contract No.
AF 19(122)-161 between the U. S. Air Force Cambridge Research
Laboratories and The University of Chicago.
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ON THE EVOLUTION OF RANDOM GRAPHS
by .
P. ERDOS and A. RENYI
Dedicated to Professor P. Turdn at
his 50th birthday.
Introduction

Our aim is to study the probable structure of a random graph I’
which has n given labelled vertices P,, P,, ..., P, and N edges; we suppose

that these N edges are chosen at random among the {:' possible edges,

n

so that all(;

if G,y denotes any one of the 0, 5 graphs formed from 7 given labelled points
and having N edges, the probability that the random graph I, n is identical

With Gn.N is 1
On,N
we denote by P,y (4) the probability that the random graph I,y possesses

= C), n possible choices are supposed to be equiprobable. Thus

. If 4 is a property which a graph may or may not possess,

the property 4, i. e. we put P,y (4) =? where A4, ) denotes the
nN
number of those G, which have the property A.
An other equivalent formulation is the following: Let us suppose that
n labelled vertices Py, Py, ..., P, are given. Let us choose at random an edge

among the l:] possible edges, so that all these edges are equiprobable. After

:‘ — 1 edges, and
continue this process so that if already k edges are fixed, any of the remaining

this let us choose an other edge among the remaining

[:) — k edges have equal probabilities to be chosen as the next one. We shall

study the “evolution” of such a random graph if N is increased. In this investi-
gation we endeavour to find what is the “typical” structure at a given stage
of evolution (i. e. if N is equal, or asymptotically equal, to a given function
N(n) of n). By a typical” structure we mean such a structure the probability
of which tends to 1 if n— 4 c© when N = N(n). If A4 is such a property
that lim P,y (4) =1, we shall say that ,almost all” graphs G, n

R—++4+® .

possess this property.

17

2 A Matematikai Kutaté Intézet Ebdzleményei V. Af1-2,
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The study of the evolution of graphs leads to rather surprising results.
For a number of fundamental structural properties 4 there exists a function
A(n) tending monotonically to + oo for »— + oo such that

]0 if lim M:o

; o n—-<+w A(n,
1) lim P,y (4) = -
et ' ' 1 if lim —(i] =2
n—-+w A(n)

If such a function A4(n) exists we shall call it a “threshold function’’ of the
property A.

In many cases besides (1) it is also true that there exists a probability
distribution function F(z) so that if 0 < 2 < 4 oo and z is a point of conti--
nuity of F(z) then ;

(2 lim P, noo(d)= F(z) if lim il .
n++= 3 ne+x A(n}

If (2) holds we shall say that A(n) is a ,,regular threshold function” for the
property A and call the function F(z) the threshold distribution function of the
property A.

For certain properties A there exist two functions A4,(n) and A4,(n)

both tending monotonically to + oo for n—- o, and satisfying lim ﬁi:—?% =0,
n++« 1 n

-suph that
0 if Jim ﬂ"%?ﬁﬂﬁl —_
n—-+ n
(3) ) hfl Pn-N(nJ(A) = B N;'- : 4 '
e 1 if lim. A — A8 _ + co.
ne+wo - As(n)

Clearly (3) implies that

0 if Ilim sup i <1
, ? n-+e A,(n)
(4) ' nllfl P.ny(4) = e
N i # Gmined® g

i ‘n-+o A, (n)
If (3) holds we call the pair(4,(n), Ay(n))a pair of “sharp threshold” -functions-
of the property 4. It follows from (4) that if(4,(n), Ay(n)) is a pair of sharp
threshold functions.for the property A then A,(n) is an (ordinary) threshold
function' for the property 4 and the threshold distribution function figuring-
in,(2) is the degenerated distribution function

_ |0 for 2<1

F (z
1) |1 for 2>1
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and convergence in (2) takes place for every « = 1. In some cases besides
(3) it is also true that there exists a probability distribution function G(y)
defined for —o°o < y < -+ oo such that if y is a point of continuity of G(y) then

(5) i Poyp(A)=0) i lim XM —A40 .
n-—-+wo N+ A2(n}

If (5) holds we shall say that we have a regular sharp threshold and shall call

G(y) the sharp-threshold distribution function of the property A.

One of our chief aims will be to determine the threshold respectively
sharp threshold functions, and the corresponding distribution functions for
the most obvious structural-properties, e. g. the presence in I', y of subgraphs
of a given type (trees, cycles of given order, complete subgraphs etc.) further
for certain global properties of the graph (connectedness, total number of
connected components, etc.).

In a previous paper [7] we have considered a special problem of this
type; we have shown that denoting by C the property that the graph is con-

nected, the pair C,(n) =%nlog n, Cy(n) =n is a pair of strong threshold

functions for the property C, and the corresponding sharp-threshold distri-
bution function is e—¢*; thus we have proved! that putting

N(n) = %n log # + y n+ o(r) We have
(6) ,.liin Pone)(C) = e (—o<y<+oo).

In the present paper we consider the evolution of a random graph in a
more systematic manner and try to describe the gradual development and
step-by-step unravelling of the complex structure of the graph I, 5 when
N increases while n is a given large number.

We succeeded in revealing the emergence of certain structural properties
of I', y. However a great deal remains to be done in this field. We shall call in
§ 10. the attention of the reader to certain unsolved problems. It seems to us
further thatit would be worth while to consider besides graphs also more
complex structures from the same point of view, i. e. to investigate the laws
governing their evolution in a similar spirit. This may be interesting not only
from a purely mathematical point of view. In fact, the evolution of graphs
may be considered as a rather simplified model of the evolution of certain
communication nets (railway, road or electric network systems, etc.) of a country
ur some other unit. (Of course, if one aims at describing such a real situation,
one should replace the hypothesis of equiprobability of all connections by
some more realistic hypothesis.) It seems plausible that by considering the
random growth of more complicated structures (e. g. structures consisting
of different sorts of points” and connections of different types) one could
obtain fairly reasonable models of more complex real growth processes (e. g.

1 Partial result on this problem has been obtained already in 1939 by P. Erp&s
and H. WHITNEY but their results have not been published.

2%
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the growth of a complex communication net consisting of different types of
connections, and even of organic structures of living matter, ete.).

§§ 1—3. contain the discussion of the presence of certain components
in a random graph, while §§ 4—9. investigate certain global properties of a
random graph. Most of our investigations deal with the case when N(n) ~c¢n
with ¢ > 0. In fact our results give a clear picture of the evolution of I,y

when ¢ =N—::L) (which plays in a certain sense the role of time) increases.

In § 10. we make some further remarks and mention some unsolved problems.

Our investigation belongs to the combinatorical theory of graphs,
which has a fairly large literature. The first who enumerated the number
of possible graphs with a given structure was A. CayLEY [1]. Next the impor-
tant paper [2] of G. PoLya has to be mentioned, the starting point of which
were some chemical problems. Among more recent results we mention the
papers of G. E. UnLEnBECK and G. W. Forp [5] and E. N. GiLBERT [6].
A fairly complete bibliography will be given in a paper of F. HarArY [8].
In these papers the probabilistic point of view was not explicitly emphasized.
This has been done in the paper [9] of one of the authors, but the aim of the
probabilistic treatment was there different: the existence of certain types
of graphs has been shown by proving that their probability is positive. Random
trees have been considered in [14].

In a recent paper [10] T. L. Austiv, R. E. Fagex, W. F. PENNEY and
J. RiorDAN deal with random .graphs from a point of view similar to ours.
The difference between the definition of a random graph in [10] and in the
present paper consists in that in [10] it is admitted that two points should
be connected by more than one edge (”parallel” edges). Thus in [10] it is
supposed that after a certain number of edges have already been selected,

the next edge to be selected may be any of the possible |:] edges between

the n given points (including the edges already selected). Let us denote such
a random graph by I'f . The difference between the probable properties
of I', y resp.T#*, are in most (but not in all) cases negligible. The correspond-
ing probabilities are in general (if the number NV of edges is not too large)
asymptotically equal. There is a third possible point of view which is in most
cases almost equivalent with these two; we may suppose that for each pair
of n given points it is determined by a chance process whether the edge
connecting the two points should be selected or not, the probability for select-
ing any given edge being equal to the same number p > 0, and the decisions
concerning the different edges being completely independent. In this case of
course the number of edges is a random variable, having the expectation

(n
2
the mean NV edges we have to choose the value of p equal to % . We shall
| [ 2 ]

denote such a random graph by I'*%. In many (though not all) of the problems

treated in the present paper it does not cause any essential difference if we
consider instead of I', \; the random graph I'¥¥%.

p; thusif we want to obtain by this method a random graph having in
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Comparing the method of the present paper with that of [10] it should
be pointed out that our aim is to obtain threshold functions resp. distributions,
and thus we are interested in asymptotic formulae for the probabilities con-
sidered. Exact formulae are of interest to us only so far as they help in determi-
ning the asymptotic behaviour of the probabilities considered (which is
rarely the case in this field, as the exact formulae are in most cases too compli-
cated). On the other hand in [10] the emphasis is on exact formulae resp.
on generating functions. The only exception is the average number of connected
components, for the asymptotic evaluation of which a way is indicated in
§ 5. of [10]; this question is however more fully discussed in the present paper
and our results go beyond that of [10]. Moreover, we consider not only the
number but also the character of the components. Thus for instance we

point out the remarkable change occuring at N mg. If N ~nc with ¢ < 1/2

then with probability tending to 1 for » — + oo all points except a bounded
number of points of I,y belong to components which are trees, while for

N ~mnc with ¢ > —;- this is no longer the case. Further for a fixed value of

n the average number of components of I', 5 decrecases asymptotically in a

linear manner with N, when N < g, while for N > % the formula giving

the average number of components is not linear in V.
In what follows we shall make use of the sysmbols O and o. As usually

a(n) = o (b(n)) (where b(n) > 0 for » =1, 2, ...) means that lim la(n)] =0

n—-+w b(ﬂ) ’

while a(r) =0 (b(r)) means that |;1((_“))] is bounded. The parameters on
n

which the bound of lam] may depend will be indicated if it is necessary;
b(n Yy dep

sometimes we will indicate it by an index. Thus a(n) = O, (b(n)) means that

%’%Ig K(e) where K(¢) is a positive constant depending on e. We write
n
a(n) ~b(n) to denote that lim o 1
_ n-+o b(n)

We shall use the following definitions from the theory of graphs. (For
the general theory see [3] and [4].) )

‘A finite non-empty set V of labelled points Py, P,, ..., P, and a set
E of different unordered pairs (P;, P;) with P, ¢V, P;cV, i5£7 is called
a graph; we denote it sometimes by G ={V, E}; the number = is called
the order (or size) of the graph; the points P}, P,, ..., P, are called the vertices
and the pairs (P, P;) the edges of the graph. Thus we consider non-oriented
finite graphs without parallel edges and without slings. The set E may be empty,
thus a collection of points (especially a single point) is also a graph.

A graph G, ={V,, E,} is called a subgraph of a graph G, ={V,, E,}
if the set of vertices V, of G, is a subset of the set of vertices V, of G, and the
set E, of edges of G, is a subset of the set E, of edges of G,.
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A sequence of k edges of a graph such that every two consecutive edges
and only these have a vertex in common is called a path of order k.

A cyclic sequence of k¥ edges of a- graph such that every two
consecutive edges and only these have a common vertex is called a cycle of
order k.

A graph G is called connected if any two of its points belong to a path
which is a subgraph of G.

A graph is called a tree of order (or size) k if it has k vertices, is connected

and if none of its subgraphs is a cycle. A tree of order k has evxdently k—1
edges.

A graph is called a complete graph of order [}; if it has k vertices and

[};] edges. Thus in a complete graph of order ¥ any two points are connected

by an edge.

A subgraph G’ of a graph G will be called an isolated subgraph if all
edges of G one or both endpoints of whieh belong to &', belong to G'. A con-
nected isolated subgraph G’ of a graph G is called a component of G. The
number of points belonging toa component G’ of a graph G will be called the
size of G'. .

Two graphs shall be called isomorphic, if theré exists a one-to-one ma.pp-
ing of the vertices carrying over these graphs into another. .

The graph G shall be called complementary graph of G if G consists
of the same vertices P,, P,, ..., P, as G and of those and only those edges
(P;, P;) which do not occur in G :

The.number of edges starting from the pomt P of a graph G will be called
the degree of P in G.

A graph G is called a saturated even graph of type (a, b) if it consmts of
a + b points and its points can be split in two subsets V, and ¥, consisting
of @ resp. b points, such that G contains any edge (P, @) with P ¢V, and
@ € V, and no other edge.

A graph is called planar, if it can be drawn on the plane so that no two
of its edges intersect.

We introduce further the:following definitions: If a graph G has n

vertices and N edges, we call the number i the “degree” of the graph.
\ . n

(As a matter of fact 2N is the average degree of the vertices of G.) If a graph

n
G has the property that G has no subgraph having a larger degree than G
itself, we call G a balanced graph. '

We denote by P (...) the probability of the event in the brackets, by
M(£) resp. D?(%) the mean value resp. variance of the random variable &.
In cases when it is not clear from the context in which probability space the
probabilities or respectively the mean values and variances are to be under-
stood, this will be explicitly indicated. Especially M,, 5 resp. D} y will denote
the mean value resp. variance calculated with respect to the probabilities
P.n-
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We shall .often use the following elementary asymptotic formula:
k* K .

n) nke W &

k

Our thanks are due to T. Garrax for his valuable remarks.

(7) valid for k = o(n’h) .

§ 1. Thresholds for subgraphs of given type

If N is very small compared with n, namely if N =o (J/n) then it is
very probable that I,y is a collection of isolated points and isolated edges,
i. e. that no two edges of I', ; have a point in common. As a matter of fact
the probability that at least two edges of I', y shall have a point in common
isby (7) clearly

‘"’ 2N)!
20 5’5].

e
=

If however N ~ ¢ }/n where ¢ > 0 is a constant not depending on =, then the
appearance of trees of order 3 will have a probability which tends to a posi-
tive limit for n — + oo, but the appearance of a connected component consist-
ing of more than 3 points will be still very improbable. If N is increased while n
is fixed, the situation will change only if N reaches the order of magnitude
of n23, Then trees of order 4 (but not of higher order) will appear with a pro-
bability not tending to 0. In general, the threshold function for the presence
: k=2

of trees of order kis k=1 (k = 3,4, ...). This result is contained in the
following

Theorem 1. Letk = 2andl |k —1<I<.

Z)I be positive integers. Let

B, denote an arbitrary not empty class of connected balanced graphs consisting
of k points and I edges. The threshold function for the property that the random

graph considered should contain at least one subgraph isomorphic with some ele-
k

ment of B, isn L. °
The following special cases are worth mentioning

Corollary 1. The threshold function for the property that the random graph
: k—2
contains a subgraph which is a tree of order k is nk=1(k =3, 4, ...).

Corollary 2. The threshold furiction for the property that a graph contains
a connected subgraph consisting of k = 3 points and k edges (i."e. containing
exactly one cycle) is n, for each value of k.

Corollary 3. The threshold function for the property that a graph contains
a cycle of order k is p, for each value of k = 3.
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Corollary 4. The threshold function for the property that a graph contains
1

a complete subgraph of order k = 3 is ﬁz(‘ - 1) :
Corollary 5. The threshold function for the property that a graph contains
a saturated even subgraph of type (a, b) (i. e. a subgraph consisting of a + b

a+b

points Py, ..., P, @, ... @, and of the ab edges (P, Q)) is n e

To deduce these Corollaries one has only to verify that all 5 types of
graphs figuring in Corollaries 1—5. are balanced, which is easily seen.

Proof of Theorem 1. Let B,, = 1 denote the number of graphs belong-
ing to the class ., which can be formed from k given labelled points. Clearly
if P, n (%y.) denotes the probability that the random graph I, contains
at least one subgraph isomorphic with some element of the class .%,,;, then

:)B,‘,,.(E?——;_:) -0
%)

As a matter of fact if we select & points (which can be done in ‘:

N!
n2l—k

(1.1) Pan(Br) <

different

ways) and form from them-a graph isomorphic with some element of the class
By, (which can be done in B, different ways) then the number of graphs
G,~ which contain the selected graph as a subgraph is equal to the number

of ways the remaining N —1 edges can be selected from the |: — 1 other

possible edges. (Of course those graphs, which contain more subgraphs iso-
morphic with some element of &%, ; are counted more than once.)

k
Now clearly if N = o(nz-T) then by

P..n(B),) = o(1)

which proves the first part of the assertion of Theorem 1. To prove the second
part of the theorem let &) denote the set of all subgraphs of the complete
graph consisting of » points, isomorphic with some element of &, ,. To any
Se ) let us associate a random variable £(8) such that ¢(8)=1 or &8)=0
according to whether § is a subgraph of I, v or not. Then clearly (we write
in what follows for the sake of brevity M instead of M, y) '

o

(N—L
By,

-1

(2 N)!
nil—k

(1.2) M(Z s(S)] =y M(s(S))=[: N_in.r

ses ' senl”)
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On the other hand if 8; and 8, are two elements of £ and if 8, and
8, do not contain a common edge then
2
N —21

i

If 8, and S, contain exactly s common points and 7 common edges (1<7<7—1)
we have

n

( [2) 21+ r)
N—-2l+4+r)
- =
i
N,

On the other hand the intersection of S, and 8, being a subgraph of §; (and 8,)

by our supposition that each § is balanced, we obtain 15% i.e. 82 %
8

and thus the number of such pairs of subgraphs 8, and 8, does not exceed

- {k L_g] 0[ 2"_?]'

(S «o)-

seol)

M(e(8)) &(Sp)) =

Na-r l

M(e(‘gl) 3(82)) =

nél=2r l f

Thus we obtain

(1.3)
' ]—23
n! B} 20 * < k

_ n! By, — 0 N

2 M(G(S)Hk!z(n—zk)! i ("’”'] ""-*( ]
sem() ( 2]

N
Now clearly

e,
T

R
A
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If we suppose that

it follows that we have

sen()
w

| (2 ME®)
(1.4) Dx( D) &(8)) =0 ( J

se,g(,:}

It follows by the inequality of Chebysheff that

Po| 1S o) — 3 M) >*w > M(s(S})] - & ]

sen() ses() 2 sen'r)

and thus

(1.5) P,F [ > s(S}S— 2 M(a(S))] o[ ]

sen "’ se.e ()

As clearly by (1.2) if w — + oo then 3 M(e(8)) - + <= it follows not only
ses()
that the probability that I', , contains at least one subgraph isomorphic
with an element of %, tends to 1, but also that with probability tending
to 1 the number of suBgraphs of I, v isomorphic to some element of %,
will ténd to 4o with the same order of magnitude as w'.

Thus Theorem 1 is proved.

It is interesting to compare the thresholds for the appearance of a sub--
graph of a certain type in the above sense with probability near to 1, with
the number of edges which is needed in order that the graph should have
necessarily a subgraph of the given type. Such ‘“compulsory” thresholds
have been considered by P. TuRAN [11] (see also [12]) and later by P. Erpés
and A. H. STonE [17]). For instance for a tree of order  clearly the compulsory

n(k — )
threshold is 2
pulsory threshold is » while according to a theorem of P. TurAN [11] for

complete subgraphs of order k the compulsory threshold is 2(:1 ) — ) +

+ 1; for the presence of at least one cycle the com-

+' ) where r =n — (k — l)l};—l—] In the paper [13] of T. KO&vAri,

V. T. S6s and P. TurAN it has been shown that the compulsory threshold

for the presence of a saturated even subgraph of type (a, a) is of order of magni-
1

tude not greater than n 7. In all cases the “compulsory” thresholds in
TurAN’s sense are of greater order of magnitude as our “probable” thresholds.
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§ 2. Trees

Now let us turn to the determination of threshold distribution functions

for trees of a given order. We shall prove somewhat more, namely that if
k=2 :

N ~ g nk=1 where o > 0, then the number of trees of order %k contained
in I', ; has in the limit for n — 4 oo a Poisson distribution with mean value

(2 p)k—1 k<2 - ; fopeaE
A 2 This implies that the threshold distribution function for

trees of order k is 1 — e~
In proving this we shall count only ¢solafed trees of order k in I', y, i. e.
trees of order k& which are isolated subgraphs of I', 5. According to Theorem 1.
this makes no essential difference, because if there would be a tree of order
k which is a subgraph but not an isolated subgraph of I', y, then I, ) *would
have a connected subgraph consisting of k£ + 1 points and the probability
k—1

of this is tending to 0 if N =o{n k ] which condition is fulfilled in our
k=2
case as we suppose N ~ pnk=1.
Thus we prove

Theorem 2a. If lim NEL = p>0 and v, denotes the number of isolated

n—+ o

Rt
trees of order k in I, n, then
s . Ae-?
(2°1) lim Pn-N(n)(rI(=?) = -
n—+a 1
or j=0,1, ..., where

k—1 Lk—2
(2.2) T 2oy k-2 .

k!
For the proof we need the following _
Lemma 1. Let ¢, &,,..., &y, be sets of random variables on some pro-
bability space; suppose that e, (1 < i < 1,) takes on only the values 1 and 0. If

. r
(2.3) lim > M(eni, ni, - - - Eni) = —
Aot © 1S s e s irSha r!

uniformly in r for r =1, 2, ..., where A > 0 and the summation is extended
over all combinations (iy, %, ..., %,) of order*r of the integers 1, 2, ..., l,, then

(2.4) " lim Pl Sen=i|=
i=1

Alg—?
n—+eo !

7

In %
i. e. the distribution of the sum > &,; tends for n— 4 oo to the Poisson-distri-
i=1 %

bution with mean value A.
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Proof of Lemma 1. Let us put

In
(2.5) -am=P2%=J
. =1
Clearly '
(2.6) - MmeSM—Z(Pm
1SHh<i,<...<irSls j=r _
thus it follows from (2.3) that
T ) +e il A
@) im 2,6 (1) =5 r=132,...)
n++o j=r r ri .
umforml in 7.
ollows that for any z with | 2| < 1
@ Az r
(2.8) lim 2{2&,@){. =3 Y e,
n-+e o1 = =1 7! .
But
® + =
(39) > S ]]z'=2‘Pn<f)u +2y — 1.
: =1 J-r j=0

Thus choosing z =2 — 1 with 0 <z <1 it follows that

(2.10) lim 21’,,(3) xf = eMx-1 foro<az<1.

-+ [=0
It follows ea.sﬂy that (2.10) holds for # =0 too. As a ma.t.ter of fact

putting G,(z) = Z‘Pﬂ(y):v-' we have for 0 <2< L
j=0

IPH(O) - erllé |Gn(x) - e"‘(x_l)] + | Gn(w) _Pn(o)l + | eMx=1) — emll-

As however

p—
|Gn@ —P0)| <2 ZP,() <=
and similarly _ '
| |ec-D —e-3| < &
it follows that .
| Pn(0) — e~ | < | Gp(@) — XD | + 2.
Thus we have
lim+sup |P,(0) —e | < 22,
n—++ew

as however z > 0 may be chosen arbitrarily small it follows that

lim P,(0) =e~* -

n-+=+ o



