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Famous trails to Paul Erdős, R. de Castro and J. W. Grossman 155

Chapter 3. Empirical Studies 167

Diameter of the world-wide web, R. Albert, H. Jeong, and A.-L. Barabási 182

Graph structure in the web, A. Broder et al. 183

On power-law relationships of the internet topology, M. Faloutsos, P. Faloutsos,
and C. Faloutsos 195

Classes of small-world networks, L.A.N. Amaral, A. Scala, M. Barthélémy, and
H. E. Stanley 207

The large-scale organization of metabolic networks, H. Jeong et al. 211

The small world of metabolism, A. Wagner and D. Fell 215

Network motifs: Simple building blocks of complex networks, R. Milo et al. 217

The structure of scientific collaboration networks, M. E. J. Newman 221

The web of human sexual contacts, F. Liljeros et al. 227

Chapter 4. Models of networks 229

4.1 Random graph models 229

A critical point for random graphs with a given degree sequence, M.
Molloy and B. Reed 240

A random graph model for massive graphs, W. Aiello, F. Chung, and L. Lu 259



9vi t CONTENTS
8

Random graphs with arbitrary degree distributions and their applica-
tions, M.E.J. Newman, S. H. Strogatz, and D. J. Watts 269

4.2 The small-world model 286

Collective dynamics of ‘small-world’ networks, D. J. Watts and S. H.
Strogatz 301

Small-world networks: Evidence for a crossover picture, M.Barthélémy
and L.A.N. Amaral 304

Comment on ‘Small-world networks: Evidence for crossover picture,’
A. Barrat, 1999 308

Scaling and percolation in the small-world network model, M.E.J. New-
man and D. J. Watts 310

On the properties of small-world networks, A. Barrat and M. Weigt, 2000 321

4.3 Models of scale-free networks 335

Emergence of scaling in random networks, A.-L. Barabási and R. Albert 349

Structure of growing networks with preferential linking, S. N. Dorogov-
tsev, J. F. F. Mendes, and A. N. Samukhin 353

Connectivity of growing random networks, P. L. Krapivsky, S. Redner,
and F. Leyvraz 357

Competition and multiscaling in evolving networks, G. Bianconi and
A.-L. Barabási 361

Universal behavior of load distribution in scale-free networks, K.-I.Goh,
B. Kahng, and D. Kim 368

Spectra of “real-world” graphs: Beyond the semicircle law, I. J. Farkas,
I. Derényi, A.-L. Barabási, and T. Vicsek 372

The degree sequence of a scale-free random graph process, B. Bol-
lobás, O. Riordan, J. Spencer, and G. Tusnády 384

A model of large-scale proteome evolution, R.V.Solé, R.Pastor-Satorras,
E. Smith, and T. B. Kepler 396

Modeling of protein interaction networks, A. Vázquez, A. Flammini,
A. Maritan, and A. Vespignani 408

Chapter 5. Applications 415

5.1 Epidemics and rumors 415

5.2 Robustness of networks 424

5.3 Searching networks 428

Epidemics with two levels of mixing, F. Ball, D. Mollison, and G. Scalia-
Tomba 436

The effects of local spatial structure on epidemiological invasions, M.
J. Keeling 480

Small world effect in an epidemiological model, M. Kuperman and G.
Abramson 489

Epidemic spreading in scale-free networks, R. Pastor-Satorras and
A. Vespignani 493



9CONTENTS t vii
8

A simple model of global cascades on random networks, D. J. Watts 497

Error and attack tolerance of complex networks, R. Albert, H. Jeong,
and A.-L. Barabási 503

Resilience of the Internet to random breakdowns, R. Cohen, K. Erez,
D. ben-Avraham, and S. Havlin 507

Network robustness and fragility: Percolation on random graphs, D. S.
Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts 510

Authoritative sources in a hyperlinked environment, J. M. Kleinberg 514

Search in power-law networks, L. A. Adamic, R. M. Lukose, A. R.
Puniyani, and B. A. Huberman 543

Navigation in a small world, J. M. Kleinberg 551

Chapter 6. Outlook 553

References 559

Index 575





Preface

Networks such as the Internet, the World Wide Web, and social and biological
networks of various kinds have been the subject of intense study in recent years.
From physics and computer science to biology and the social sciences, researchers
have found that a great variety of systems can be represented as networks, and that
there is much to be learned by studying those networks. The study of the web,
for instance, has led to the creation of new and powerful web search engines that
greatly outperform their predecessors. The study of social networks has led to new
insights about the spread of diseases and techniques for controlling them. The study
of metabolic networks has taught us about the fundamental building blocks of life
and provided new tools for the analysis of the huge volumes of biochemical data
that are being produced by gene sequencing, microarray experiments, and other
techniques.

In this book we have gathered together a selection of research papers covering
what we believe are the most important aspects of this new branch of science. The
papers are drawn from a variety of fields, from many different journals, and cover
both empirical and theoretical aspects of the study of networks. Along with the
papers themselves we have included some commentary on their contents, in which
we have tried to highlight what we believe to be the most important findings of
each of the papers and offer pointers to other related literature. (Note that within
the text of our commentary we have for convenience marked in bold text citations
to papers that themselves are reproduced within this book; we hope this will save
the reader some unnecessary trips to the library.)

After a short introduction (Chapter 1), the book opens with a collection of his-
torical papers (Chapter 2) that predate the current burst of interest in networks, but
that lay important foundations for the later work. Chapter 3 reproduces a selection
of papers on empirical studies of networks in various fields, the raw experimental
data on which many theoretical developments build. Then in Chapter 4, which
occupies the largest portion of the book, we look at models of networks, focusing
particularly on random graph models, small-world models, and models of scale-free
networks. Chapter 5 deals with applications of network ideas to particular real-
world problems, such as epidemiology, network robustness, and search algorithms.
Finally, in Chapter 6 we give a short discussion of the most recent developments
and where we see the field going in the next few years. There will of course be
many developments that we cannot anticipate at present, and we look forward with
excitement to the new ideas researchers come up with as we move into the 21st
century.
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This field is growing at a tremendous pace, with many new papers appearing
every day, so there is no hope of making a compilation such as this exhaustive;
inevitably many important and deserving papers have been left out. Nonetheless,
we hope that by collecting a representative selection of papers together in one
volume, this book will prove useful to students and researchers alike in the field of
networks.

A number of people deserve our thanks for their help with the creation of
this book. First, our thanks must go to our editor Vickie Kearn and everyone else
at Princeton University Press for taking on this project and helping to make it a
success. Many thanks also to Ádám Makkai, who translated from the original
Hungarian the remarkable short story Chains that forms the first article reproduced
in the book. And of course we have benefited enormously from conversations with
our many erudite colleagues in the field. It is their work that forms the bulk of the
material in this volume, and we are delighted to be a part of such an active and
inspiring community of scientists.

Mark Newman
Albert-László Barabási
Duncan Watts



Chapter One
Introduction

Networks are everywhere. From the Internet and its close cousin the World Wide
Web to networks in economics, networks of disease transmission, and even terrorist
networks, the imagery of the network pervades modern culture.

What exactly do we mean by a network? What different kinds of networks
are there? And how does their presence affect the way that events play out? In the
past few years, a diverse group of scientists, including mathematicians, physicists,
computer scientists, sociologists, and biologists, have been actively pursuing these
questions and building in the process the new research field of network theory, or
the “science of networks” (Barabási 2002; Buchanan 2002; Watts 2003).

Although it is still in a period of rapid development and papers are appearing
daily, a significant literature has already accumulated in this new field, and it there-
fore seems appropriate to summarize it in a way that is accessible to researchers
unfamiliar with the topic. That is the purpose of this book. We begin by sketching
in this introductory chapter a brief history of the study of networks, whose begin-
nings lie in mathematics and more recently sociology. We then place the “new”
science of networks in context by describing a number of features that distinguish
it from what has gone before, and explain why these features are important. At the
end of the chapter we give a short outline of the remainder of the book.

1.1 A BRIEF HISTORY OF THE STUDY OF NETWORKS

The study of networks has had a long history in mathematics and the sciences. In
1736, the great mathematician Leonard Euler became interested in a mathematical
riddle called the Königsberg Bridge Problem. The city of Königsberg was built on
the banks of the Pregel River in what was then Prussia,1 and on two islands that lie
in midstream. Seven bridges connected the land masses, as shown in Figure 1.1.
(There are many more than that today.) A popular brain-teaser of the time asked,
“Does there exist any single path that crosses all seven bridges exactly once each?”
Legend has it that the people of Königsberg spent many fruitless hours trying to
find such a path before Euler proved the impossibility of its existence. The proof,
which perhaps seems rather trivial to us now, but which apparently wasn’t obvious
in 1736, makes use of a graph—a mathematical object consisting of points, also
called vertices or nodes, and lines, also called edges or links, which abstracts away

1Today Königsberg lies in Russia and is called Kaliningrad.
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Figure 1.1 A map of eighteenth century Königsberg, with its seven bridges
highlighted.

all the details of the original problem except for its connectivity. In this graph there
are four vertices representing the four land masses and seven edges joining them
in the pattern of the Königsberg bridges (Figure 1.2). Then the bridge problem can
be rephrased in mathematical language as the question of whether there exists any
Eulerian path on the network. An Eulerian path is precisely a path that traverses
each edge exactly once. Euler proved that there is not, by observing that, since
any such path must both enter and leave every vertex it passes through, except the
first and last, there can at most be two vertices in the network with an odd number
of edges attached. In the language of graph theory, we say that there can at most
be two vertices with odd degree, the degree of a vertex being the number of edges
attached to it.2 Since all four vertices in the Königsberg graph have odd degree,
the bridge problem necessarily has no solution. The problem of the existence of
Eulerian paths on networks, as well as the related problem of Hamiltonian paths
(paths that visit each vertex exactly once), is still of great interest to mathematicians,
with new results being discovered all the time.

Many consider Euler’s proof to be the first theorem in the now highly de-
veloped field of discrete mathematics known as graph theory, which in the past
three centuries has become the principal mathematical language for describing the
properties of networks (Harary 1995; West 1996). In its simplest form, a network is
nothing more than a set of discrete elements (the vertices), and a set of connections
(the edges) that link the elements, typically in a pairwise fashion. The elements

2Within physics some authors have referred to this quantity as the “connectivity” of a vertex, and the reader
will see this usage in some of the papers reproduced in this book. As the word connectivity already has another
meaning in graph theory, however, this choice of nomenclature has given rise to some confusion. To avoid such
confusion, we will stick to standard usage in this book and refer to the degree of a vertex.
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Figure 1.2 Left: a simplified depiction of the pattern of the rivers and bridges
in the Königsberg bridge problem. Right: the corresponding network of vertices
and edges.

and their connections can be almost anything—people and friendships (Rapoport
and Horvath 1961), computers and communication lines (Faloutsos et al. 1999),
chemicals and reactions (Jeong et al. 2000; Wagner and Fell 2001), scientific
papers and citations (Price 1965; Redner 1998)3—causing some to wonder how so
broad a definition could generate anything of substantive interest. But its breadth
is precisely why graph theory is so powerful. By abstracting away the details of
a problem, graph theory is capable of describing the important topological fea-
tures with a clarity that would be impossible were all the details retained. As a
consequence, graph theory has spread well beyond its original domain of pure
mathematics, especially in the past few decades, to applications in engineering
(Ahuja et al. 1993), operations research (Nagurney 1993), and computer science
(Lynch 1996). Nowhere, however, has graph theory found a more welcome home
than in sociology.

Starting in the 1950s, in response to a growing interest in quantitative meth-
ods in sociology and anthropology, the mathematical language of graph theory
was coopted by social scientists to help understand data from ethnographic studies
(Wasserman and Faust 1994; Degenne and Forsé 1999; Scott 2000). Much of the
terminology of social network analysis—actor centrality, path lengths, cliques, con-
nected components, and so forth—was either borrowed directly from graph theory
or else adapted from it, to address questions of status, influence, cohesiveness, social
roles, and identities in social networks. Thus, in addition to its role as a language
for describing abstract models, graph theory became a practical tool for the analy-
sis of empirical data. Also starting in the 1950s, mathematicians began to think of
graphs as the medium through which various modes of influence—information and
disease in particular—could propagate (Solomonoff and Rapoport 1951; Erdős
and Rényi 1960). Thus the structural properties of networks, especially their con-
nectedness, became linked with behavioral characteristics like the expected size
of an epidemic or the possibility of global information transmission. Associated

3Throughout this book citations highlighted in bold text refer to papers that are reproduced within this book.
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with this trend was the notion that graphs are properly regarded as stochastic ob-
jects (Erdős and Rényi 1960; Rapoport 1963), rather than purely deterministic
ones, and therefore that graph properties can be thought of in terms of probability
distributions—an approach that has been developed a great deal in recent years.

1.2 THE “NEW” SCIENCE OF NETWORKS

So what is there to add? If graph theory is such a powerful and general language
and if so much beautiful and elegant work has already been done, what room is
there for a new science of networks? We argue that the science of networks that has
been taking shape over the last few years is distinguished from preceding work on
networks in three important ways: (1) by focusing on the properties of real-world
networks, it is concerned with empirical as well as theoretical questions; (2) it
frequently takes the view that networks are not static, but evolve in time according to
various dynamical rules; and (3) it aims, ultimately at least, to understand networks
not just as topological objects, but also as the framework upon which distributed
dynamical systems are built. As we will see in Chapter 3, elements of all these
themes predate the recent explosion of interest in networks, but their synthesis into
a coherent research agenda is new.

Modeling real-world networks

The first difference between the old science of networks and the new is that, social
network analysis aside, traditional theories of networks have not been much con-
cerned with the structure of naturally occurring networks. Much of graph theory
qualifies as pure mathematics, and as such is concerned principally with the com-
binatorial properties of artificial constructs. Pure graph theory is elegant and deep,
but it is not especially relevant to networks arising in the real world. Applied graph
theory, as its name suggests, is more concerned with real-world network problems,
but its approach is oriented toward design and engineering. By contrast, the recent
work that is the topic of this book is focused on networks as they arise naturally,
evolving in a manner that is typically unplanned and decentralized. Social net-
works and biological networks are naturally occurring networks of this kind, as are
networks of information like citation networks and the World Wide Web. But the
category is even broader, including networks—like transportation networks, power
grids, and the physical Internet—-that are intended to serve a single, coordinated
purpose (transportation, power delivery, communications), but which are built over
long periods of time by many independent agents and authorities. Social network
analysis, for its part, is strongly empirical, but tends to be descriptive rather than
constructive in nature. With the possible exception of certain types of random
graph models (Holland and Leinhardt 1981; Strauss 1986; Anderson et al. 1999),
network analysis in the social sciences has largely avoided modeling, preferring
simply to describe the properties of networks as observed in collected data.
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In contrast to traditional graph theory on the one hand, and social network
analysis on the other, the work described in this book takes a view that is both
theoretical and empirical. In order to develop new graph-theoretic models that
can account for the structural features of real-world networks, we must first be
able to say what those features are and hence empirical data are essential. But
adequate theoretical models are equally essential if the significance of any particular
empirical finding is to be correctly understood. Just as in traditional science, where
theory and experiment continually stimulate one another, the science of networks
is being built on the twin foundations of empirical observation and modeling.

That such an obvious requirement for scientific validity should have made its
first appearance in the field so recently seems surprising at first, but is understand-
able given the historical difficulty of obtaining high quality, large-scale network
data. For most of the past fifty years, the collection of network data has been
confined to the field of social network analysis, in which data have to be collected
through survey instruments that not only are onerous to administer, but also suffer
from the inaccurate or subjective responses of subjects. People, it turns out, are
not good at remembering who their friends are, and the definition of a “friend” is
often quite ambiguous in the first place.

For example, the General Social Survey4 requests respondents to name up to
six individuals with whom they discuss “important matters.” The assumption is that
people discuss matters that are important to them with people who are important to
them, and hence that questions of this kind—so-called “name generators”—are a
reliable means of identifying strong social ties. However, a recent study by Bearman
and Parigi (2004) shows that when people are asked about the so-called “important
matters” they are discussing, they respond with just about every topic imaginable,
including many that most of us wouldn’t consider important at all. Even worse,
some topics are discussed with family members, some with close friends, some with
coworkers, and others with complete strangers. Thus, very little can be inferred
about the network ties of respondents simply by looking at the names generated by
the questions in the General Social Survey. Bearman and Parigi also find that some
20% of respondents name no one at all. One might assume that these individuals are
“social isolates”—people with no one to talk to—yet nearly 40% of these isolates
are married! It is possible that these findings reveal significant patterns of behavior
in contemporary social life—perhaps many people, even married people, really do
not have anyone to talk to, or anything important to talk about. But apparently
the respondent data are so contaminated by diverse interpretations of the survey
instrument, along with variable recollection and even laziness, that any inferences
about the corresponding social network must be regarded with skepticism.

The example of the General Social Survey is instructive because it typifies
the uncertainties associated with traditional, survey-based collection of network
data. If people have difficulty identifying even their closest confidants, how can
one expect to extract reliable information concerning more subtle relations? And
if, in response to this obstacle, survey instruments become more elaborate and spe-

4See http://www.norc.uchicago.edu/projects/gensoc.asp.
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cific, then as the size of the surveyed population increases, the work required of
the researcher to analyze and understand the resulting volume of raw data becomes
prohibitive. A better approach would be to record the activities and interactions of
subjects directly, thus avoiding recall problems and allowing us to apply consistent
criteria to define relationships. In the absence of accurate recording technologies,
however, such direct observation methods are even more onerous than the admin-
istration of surveys.

Because of the effort involved in compiling them, social network datasets
rarely document populations of more than a hundred people and almost never
more than a thousand. And although other kinds of (nonsocial) networks have
not suffered from the same difficulties, empirical examples prior to the last decade
have been few—probably because other network-oriented disciplines have lacked
the empirical focus of sociology. The lack of high quality, large-scale network data
has, in turn, delayed the development of the kind of statistical models with which
much of the work in this book is concerned. Such models, as we will see, can be
very successful and informative when applied to large networks, but tend to break
down, or simply don’t address the right questions, when applied to small ones. As
an example, networks of contacts between terrorists have been studied recently by,
for instance, Krebs (2002), but they are poor candidates for statistical modeling
because the questions of interest in these networks are not statistical in nature,
focusing more on the roles of individuals and small groups within the network
as a whole. The traditional tools of social network analysis—centrality indices,
structural measures, and measures of social capital—are more useful in such cases.

Recent years, however, have witnessed a dramatic increase in the availability
of network datasets that comprise many thousands and sometimes even millions
of vertices—a consequence of the widespread availability of electronic databases
and, even more important, the Internet. Not only has the Internet focused popular
and scientific attention alike on the topic of networks and networked systems, but
it has led to data collection methods for social and other networks that avoid many
of the difficulties of traditional sociometry. Networks of scientific collaborations,
for example, can now be recorded in real time through electronic databases like
Medline and the Science Citation Index (Newman 2001a; Barabási et al. 2002),
and even more promising sources of network data, such as email logs (Ebel et al.
2002; Guimerà et al. 2003; Tyler et al. 2003) and instant messaging services (Smith
2002; Holme et al. 2004), await further exploration. Being far larger than the
datasets of traditional social network analysis, these networks are more amenable
to the kinds of statistical techniques with which physicists and mathematicians are
familiar. As the papers in Chapter 3 of this volume demonstrate, real networks, from
citation networks and the World Wide Web to networks of biochemical reactions,
display properties—like local clustering and skewed degree distributions—that
were not anticipated by the idealized models of graph theory, and that have forced
the development of new modeling approaches, some of which are introduced in
Chapter 4.
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Networks as evolving structures

A second distinguishing feature of the work described in this book is that, whereas
in the past both graph theory and social network analysis have tended to treat
networks as static structures, recent work has recognized that networks evolve over
time (Barabási and Albert 1999; Watts 1999). Many networks are the product of
dynamical processes that add or remove vertices or edges. For instance, a social
network of friendships changes as individuals make and break ties with others. An
individual with many acquaintances might, by virtue of being better connected or
better known, be more likely to make new friends than someone else who is less
well connected. Or individuals seeking friends might be more likely to meet people
with whom they share a common acquaintance. The ties people make affect the
form of the network, and the form of the network affects the ties people make.
Social network structure therefore evolves in a historically dependent manner, in
which the role of the participants and the patterns of behavior they follow cannot
be ignored.

Similar statements apply to other kinds of networks as well: processes oper-
ating at the local level both constrain and are constrained by the network structure.
A principal objective of the new science of networks (as dealt with by a number
of papers in Chapter 4), is an understanding of how structure at the global scale
(say, the connectivity of the network as a whole) depends on dynamical processes
that operate at the local scale (for example, rules governing the appearance and
connections of new vertices).

Networks as dynamical systems

The final feature that distinguishes the research described in this book from pre-
vious work is that traditional approaches to networks have tended to overlook or
oversimplify the relationship between the structural properties of a networked sys-
tem and its behavior. A lot of the recent work on networks, by contrast, takes a
dynamical systems view according to which the vertices of a graph represent dis-
crete dynamical entities, with their own rules of behavior, and the edges represent
couplings between the entities. Thus a network of interacting individuals, or a com-
puter network in which a virus is spreading, not only has topological properties,
but has dynamical properties as well. Interacting individuals, for instance, might
affect one another’s opinions in reaching some collective decision (voting in a gen-
eral election, for example), while an outbreak of a computer virus may or may not
become an epidemic depending on the patterns of connections between machines.
Which outcomes occur, how frequently they occur, and with what consequences,
are all questions that can only be resolved by thinking jointly about structure and
dynamics, and the relationship between the two.

Questions of this nature are not easily tackled, however; dynamical prob-
lems lie at the forefront of network research, where there are many unanswered
questions. One class of problems on which some progress has been made, and
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which is addressed in Section 5.1, is that of contagion dynamics. Whether we are
interested in the spread of a disease or the diffusion of a technological innovation,
it is frequently the case that contagion occurs over a network. Not only physical
but also social contacts can significantly influence the probability that a particular
disease or piece of information will be transmitted, and also what effect it will have.
In traditional mathematical epidemiology, as well as research on the diffusion of
information, it is usually assumed that all members of the population have equal
likelihood of interaction with all others. Clearly this assumption requires modifi-
cation once we take network structure into account. As the papers in Section 5.1
demonstrate, the particular structure of the network through which a contagious
agent is transmitted can have a dramatic impact on outcomes at the level of entire
populations.

1.3 OVERVIEW OF THE VOLUME

Mirroring the themes introduced above, this volume is divided into a number of
parts, each of which is preceded by an introduction that outlines the general theme
and summarizes the contributions of the papers in that part. Chapter 2 sets the stage
by presenting a selection of papers that we feel are important historical antecedents
to contemporary research. Although recent work on networks takes a distinctly
different approach from traditional network studies, a careful reading of Chapter 2
reveals that many of the basic themes were anticipated by mathematicians and
social scientists years or even decades earlier. Given their age, some of these
contributions seem remarkably familiar and modern, occasionally to the extent that
recent papers almost exactly replicate previous results. Power-law distributions,
random networks with local clustering, the notion of long-range shortcuts, and
the small-world phenomenon were all explored and analyzed well before the new
science of networks reconstituted the same ideas in the language of mathematical
physics.

Chapter 3 emphasizes the empirical side of the new science of networks, and
Chapter 4 presents some of the foundational modeling ideas that have generated
a great deal of subsequent interest and activity. By exploring some tentative ap-
plications of the ideas introduced in Chapters 3 and 4, Chapter 5 takes the reader
to the cutting edge of network science, the relationship between network structure
and system dynamics. From disease spreading and network robustness to search
algorithms, Chapter 5 is a potpourri of topics at this poorly understood but rapidly
expanding frontier. Finally, Chapter 6 provides a short discussion of what we see
as some of the most interesting directions for future research. We hope the reader
will be encouraged to strike out from where the papers in this volume leave off,
adding his or her own ideas and results to this exciting and fast-developing field.



Chapter Two
Historical developments

The study of networks has had a long history in mathematics and the sciences,
stretching back at least as far as Leonhard Euler’s 1736 solution of the Königsberg
Bridge Problem discussed in Chapter 1. In this chapter we present a selection of
historical publications on the subject of networks of various kinds. Of particular
interest to us are papers from mathematical graph theory and from the literature
on social networks. For example, the classic model of a network that we know
of as the random graph, and which is discussed in greater detail in Section 4.1,
was first described by the Russian mathematician and biologist Anatol Rapoport
in the early 1950s, before being rediscovered and analyzed extensively by Paul
Erdős and Alfréd Rényi in a series of papers in the late 1950s and early 1960s.
Around the same time, a social scientist and a mathematician, Ithiel de Sola Pool
and Manfred Kochen, in collaboration gave a beautiful and influential discussion
of the “small-world effect” in an early preprint on social networks.

Thus, while much of this book is devoted to recent work on networks in the
physics and applied mathematics communities, many of the crucial ideas that have
motivated that work were well known, at least to some, many decades earlier. The
articles reproduced in this chapter provide an overview of some of the original
work on these topics and set the scene for the material that appears in the following
chapters.

Karinthy (1929)

The first publication reproduced in this chapter is in fact not a scientific paper at all,
but a translation of a short story, a work of fiction, originally published in Hungarian
in 1929. Certainly this is an unusual way to start a volume of scientific reprints,
but, as the reader will see, this brief story, published more than seventy years ago,
describes beautifully one of the fundamental truths about network structure that has
driven scientific research in the field for the last few decades, the concept known
today as the “small-world effect,” or “six degrees of separation.”

The writer Frigyes Karinthy (1887–1938) became an overnight sensation in
Hungary following the publication in 1912 of his first book, a volume of literary
caricature, which is required reading in Hungarian schools even today. Karinthy’s
1929 volume of short stories, entitled Everything is Different, did not receive the
same warm welcome from the literary establishment. Friends and critics alike
believed the book to be little more than a scheme for making some quick money
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by stringing together a set of short pieces with scant respect for coherence or
flow. Among the pieces in this collection, however, is one gem of a story, entitled
“Chains,” in which the writer raised in a fictional context some of the questions
that network theory would be struggling with for much of the rest of the century.
Without any pretensions to scientific rigor or proof, Karinthy tackled and suggested
answers to one of the deep problems in the theory of networks.

In “Chains” Karinthy argues, as Jules Verne did fifty years earlier, that the
world is getting smaller. Unlike Verne in “Around the World in Eighty Days,”
however, Karinthy proposes to demonstrate his thesis not by physical means—
circumnavigating the globe—but by a social argument. He claims that people are
increasingly connected to each other via their acquaintances, and that the dense web
of friendship surrounding each person leads to an interconnected world in which
everyone on Earth is at most five acquaintances away from anyone else.

To back up this remarkable claim, Karinthy demonstrates that it is possible
to connect a Nobel prize winner to himself via a chain of just five acquaintances.
He also points out, however, that this may not be an entirely fair example, because
famous people with many social connections can be more easily connected to others,
an insight whose relevance in the study of networks has only been fully appreciated
quite recently. To show that his “five degrees of separation” claim also applies to
less prominent people than Nobel laureates, he connects a worker in a Ford factory
to himself, again via five acquaintances. Finally, he argues that the changing nature
of human acquaintance patterns is a consequence of human exploration, of the
demolition of geographical boundaries, and of new technologies that allow us to
stay in touch even when we are thousands of miles apart.

The idea of chains of acquaintances linking distant individuals has been
revisited many times in the decades since Karinthy’s story. Jane Jacobs in her
influential 1961 book The Death and Life of Great American Cities recalls:

When my sister and I first came to New York from a small city,
we used to amuse ourselves with a game we called Messages. The
idea was to pick two wildly dissimilar individuals—say a head hunter
in the Solomon Islands and a cobbler in Rock Island, Illinois—and
assume that one had to get a message to the other by word of mouth;
then we would each silently figure out a plausible, or at least possible,
chain of persons through which the message could go. The one who
could make the shortest plausible chain of messengers won. The head
hunter would speak to the head man of his village, who would speak to
the trader who came to buy cobra, who would speak to the Australian
patrol officer when he came through, who would tell the man who was
next slated to go to Melbourne on leave, etc. Down at the other end
the cobbler would hear from his priest, who got it from the mayor,
who got it from a state senator, who got it from the governor, etc. We
soon had these close-to-home messengers down to a routine for almost
everybody we could conjure up.

— Jacobs (1961), pp. 134–135



9HISTORICAL DEVELOPMENTS t 11
8

Jacobs settles on an unusually long chain, however; the path in her example is at
least nine links long, not counting the links that are presumably missing between
the man heading to Melbourne and the governor.

Solomonoff and Rapoport (1951)

Scientific interest in the structure of networks began to develop in earnest in the
1940s and 1950s. Perhaps the most profound thinker in the field during this period
was Anatol Rapoport, a Russian immigrant to the United States who worked not
in sociology but in mathematical biology. Trained first as a pianist in Vienna,
Rapoport turned to mathematics after realizing that a successful career as a concert
performer would require the support of a wealthy patron, which he didn’t have
(Spencer 2002). He was unusual in developing an interest for mathematical biology
at a time when mathematicians and biologists hardly spoke to each other, and he
developed startling and prescient views about many topics that fall into the area
we now call complex systems. In particular, he was decades ahead of his time in
his views on the properties and importance of networks, developing methods that
concentrated, as we often do today, on general statistical properties of networks,
rather than individual properties of network nodes or edges. In a 1961 paper with
William H. Horvath, he wrote,

The theoretician’s interest, however, is seldom focused on a partic-
ular large sociogram [i.e., network]. Rather, the interesting features of
large sociograms are revealed in their gross, typical properties. Thus
one seeks to define classes of sociograms, or else describe them by
a few well-chosen parameters. It is perhaps natural to consider sta-
tistical parameters, since one is interested in trends or averages, or
distributions rather than particulars.

— Rapoport and Horvath (1961)

This remarkable statement could easily serve as a manifesto for the revolution in the
study of networks that has recently taken place, four decades later, in the physics
and mathematics communities.

In this chapter, we reproduce the important 1951 paper by Rapoport and Ray
Solomonoff which presents the first systematic study of what we would now call a
random graph. The paper is important both because it introduces the random graph
for the first time and because it demonstrates one of the most crucial properties of the
model: as the ratio of the number of edges to vertices in the graph is increased, the
network reaches a point at which it undergoes an abrupt change from a collection of
disconnected vertices to a connected state in which, in modern parlance, the graph
contains a giant component.

The paper starts by considering a graph composed of a collection of vertices
randomly connected to one another by edges (or axons, to use the paper’s neurolog-
ically inspired terminology). The authors discuss three natural systems in which
such networks might appear: neural networks, the social networks of physical con-
tacts that are responsible for the spread of epidemic disease, and a network problem
rooted in genetics.
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Solomonoff and Rapoport define a quantity called the weak connectivity,
which is the expected number of vertices reachable through the network from a
randomly chosen vertex. In the modern terminology of networks, the weak con-
nectivity is the average component size in the network. Solomonoff and Rapoport
then derive an iteration relation for the weak connectivity by reasoning about the
behavior of a simple component-finding algorithm which is equivalent to what we
would today call a burning algorithm or breadth-first search. This result leads them
to conclude that the average component size depends crucially on the mean de-
gree a, where the degree again is the number of edges connected to a vertex. They
show that for a < 1 the network is broken into many small isolated islands, but
that when the mean degree exceeds a = 1 a giant component forms that contains
a finite fraction of all the vertices in the network. Thus, although they did not
use this language, Solomonoff and Rapoport predicted1 in 1951 the existence of a
phase transition from a fragmented network for a < 1 to one dominated by a giant
component for a > 1.

Erdős and Rényi (1960)

Despite the early contributions of Solomonoff and Rapoport, random graph theory
did not really take off until the late 1950s and early 1960s, when several important
papers on the subject appeared almost simultaneously (Ford and Uhlenbeck 1957;
Erdős and Rényi 1959, 1960; Gilbert 1959). Among these, the most influential,
and the most relevant to current work, were the papers by Paul Erdős and Alfréd
Rényi, who are considered the fathers of the modern theory of random graphs.
Between 1959 and 1968 Erdős and Rényi published eight papers on random graphs
that set the tone for network research for many decades to come. The next paper
reproduced in this section (Erdős and Rényi 1960) is probably the most important
of these. It deals with the evolution of the structure of random graphs as the mean
degree is increased.

In this paper, the authors showed that many properties of random graphs
emerge not gradually but suddenly, when enough edges are added to the graph.
They made use of the following definition: if the probability of a graph having
property Q approaches 1 as the size of the graph N → ∞, then we say that almost
every graph of N vertices has the property Q. They studied the behavior of a
variety of different properties as a function of the probability p of the existence of
an edge between any two vertices, and showed that for many properties there is
a critical probability pc(N) such that if p(N) grows more slowly than pc(N) as
N → ∞ then almost every graph with connection probability p(N) fails to have
the property Q. Conversely, if p(N) grows faster than pc(N) then almost every
graph has the property Q. Thus the probability that a graph with N nodes and

1This result, and indeed the invention of the random graph itself, is usually attributed to Erdős and Rényi (1959),
but it is clear that Solomonoff and Rapoport had many of the crucial results almost a decade earlier. Erdős
and Rényi appear not to have been aware of Solomonoff and Rapoport’s work, and rediscovered their results
independently. Erdős and Rényi’s work also went much farther than that of Solomonoff and Rapoport and
maintained a substantially higher level of rigor.
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exponent −∞ −2 −3
2 −4

3 −1 −2
3 −1

2

subgraph

Table 2.1 The threshold probabilities at which different subgraphs appear in a random graph. For
pN3/2 → 0 the graph consists only of isolated nodes or pairs connected by edges. When p ∼ N−3/2

trees with 3 edges appear and at p ∼ N−4/3 trees with 4. If p ∼ N−1 trees of all sizes are present, as
well as cycles of all lengths. When p ∼ N−2/3 the graph contains complete subgraphs of 4 vertices
and for p ∼ N−1/2 there are complete subgraphs of 5 vertices. As the exponent approaches 0, the
graph contains complete subgraphs of increasing order.

connection probability p = p(N) has property Q satisfies

lim
N→∞ PN,p(Q) =

{
0 if p(N)/pc(N) → 0,
1 if p(N)/pc(N) → ∞.

(2.1)

As an example, let us consider one of the first cases discussed by Erdős and
Rényi, namely the appearance of a given subgraph within a random graph. For
low values of the edge probability p, the graph is very sparse and the likelihood of
finding, for example, a single vertex connected to two others is very low. One might
imagine that in general the probability of there being such a structure somewhere on
the graph would increase slowly with increasing p, but Erdős and Rényi prove that
this is not the case. Instead, the probability of finding a connected trio of vertices is
negligible if p < cN−1/2 for some constant c, but tends to 1 as N becomes large if
p > cN−1/2. In other words, almost all graphs contain a connected trio of vertices
if the number of links is greater than a constant times N1/2, but almost none of
them do if the number of links is less than this.

Erdős and Rényi generalized this result further to show that the probability
of occurrence of a tree of k vertices in the graph (i.e., a connected set of k vertices
containing no loops) tends to 1 on large graphs with more than a constant times
N(k−2)/(k−1) edges. They also extended their method to cycles, that is, closed
loops of vertices in which every two consecutive vertices, and only these, are
joined by an edge. Cycles also show a threshold behavior—they are present with
probability 1 above some critical value of p as the graph becomes large. In Table 2.1
we summarize some of the thresholds found in the evolution of random graphs.

An area of study closely related to random graphs is percolation theory (Stauf-
fer and Aharony 1992; Bunde and Havlin 1994, 1996), which has been the object
of attention within the physics community for many years, since the introduc-
tion in the 1950s of the original percolation model by Hammersley and others
(Broadbent and Hammersley 1957; Hammersley 1957). In bond percolation mod-
els, one studies the properties of the system in which the bonds on a lattice or
network are either occupied or not with some occupation probability p, asking
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questions such as what the mean sizes are of the clusters of lattice sites connected
together by occupied bonds, and whether or not there exists a “spanning cluster”
in the limit of large system size (i.e., a cluster that connects opposite sides of the
lattice via a path of occupied bonds). It is clear that the random graph model is
equivalent to bond percolation on a complete graph (i.e., a graph in which every
vertex is connected to every other), and hence the methods developed for studying
percolation can be applied to random graphs also. In particular, there has been
much effort devoted to the study of the behavior of percolation models close to the
phase transition at which a spanning cluster forms, which in random graph language
is the point at which a giant component appears. It is known, for example, that
many properties display universal behavior close to the phase transition, behavior
that is dependent on the system dimension but not on the details of the lattice.
And even the dimension dependence vanishes above the so-called upper critical
dimension, giving way to generic behavior that can be extracted using simple mean-
field theories. Since a complete graph is a formally infinite-dimensional object in
the limit of large system size, the behavior of the random graph near the phase
transition therefore falls into this mean-field universality class, and many results
for the random graph, such as values for critical exponents can then be extracted
from mean-field theory.

Pool and Kochen (1978)

In the late 1950s, around the same time that Erdős and Rényi were beginning
their work on random graphs, the sociological community started developing an
interest in applications of graph theory. The next paper reproduced in this section
is the influential article on patterns of social contacts by the political scientist
Ithiel de Sola Pool and the mathematician Manfred Kochen (Pool and Kochen
1978). This paper was actually written in 1958, and circulated for many years
in preprint form. In it Pool and Kochen addressed for the first time many of the
questions that the field would be struggling with for the next few decades, and yet
they felt that they had not dealt satisfactorily with the issues and so didn’t submit
their work for publication in a journal. It was not until twenty years after its first
appearance that the authors consented to the publication of this important work
in the new journal Social Networks, on page 1 of volume 1. Pool and Kochen’s
work provided the inspiration for, among other things, the famous “small-world”
experiments conducted in the 1960s by Stanley Milgram (Milgram 1967; Travers
and Milgram 1969), which are the subject of the following paper in this book.
Hence it is appropriate that we here reproduce Pool and Kochen’s work ahead of
Milgram’s, even though Milgram’s bears the earlier date of publication.

In the introduction to their paper, Pool and Kochen formulate some of the
questions that have come to define the field of social networks:

i) How many other people does each individual in a network know? In other
words what is the person’s degree in the network? (Pool and Kochen refer
to this quantity as the “acquaintance volume.”)
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ii) What is the distribution of the degrees? What are their mean and their largest
and smallest values?

iii) What kinds of people have large numbers of contacts? Are these the most
influential people in the network?

iv) How exactly are the contacts organized? What is the structure of the network?

In addition to these general questions about individuals and about the network as
a whole, Pool and Kochen looked also at questions about paths between pairs of
individuals:

i) What is the probability that two people chosen at random from the population
will know each other?

ii) What is the chance that they have a friend in common?

iii) What is the chance that the shortest chain between them requires two inter-
mediates? Or more than two?

Pool and Kochen start by discussing the difficulty of determining the number
of social contacts people have. There are two primary problems: ambiguity about
what exactly constitutes a social contact, and the fact that people are not very
good at estimating the number of their acquaintances even if the definition of an
acquaintance is clear. Typically most people underestimate their acquaintance
volume.

Given the limited and unreliable nature of network data, Pool and Kochen
resort to mathematical models. Inspired by Rapoport’s work (Solomonoff and
Rapoport 1951), they base their work on the random graph, using this simple
model to make conjectures about the characteristics of social networks.

This paper discusses for the first time in scientific terms the phenomenon we
now call the small-world effect. Starting with the assumption that each person has
about 1,000 acquaintances, they predict that most pairs of people on Earth can be
connected via a path that goes through just two intermediate acquaintances. They
give arguments reminiscent of those found in Karinthy’s 1929 short story, repro-
duced in this chapter, to make this counterintuitive claim more plausible. They also
consider the possibility that community groupings and social stratification within
the network would affect their conclusions. But, after some laborious calculation,
they conclude, apparently somewhat to their own surprise, that social strata have
only a small effect on the average distance between individuals.

Travers and Milgram (1969)

Although network ideas were already becoming popular among sociologists in
the 1950s and 1960s, it was an experimentalist, Stanley Milgram, who propelled
the field into the public consciousness in the late 1960s with his famous small-
world experiment. Milgram, at that time working at Harvard and influenced by the
thinking of Harrison White and Ithiel Pool, both also in the Boston area, was inspired
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to devise an experiment that could test Pool and Kochen’s surprising conjectures
about path lengths between individuals in social networks.

Milgram published several papers about his small-world experiments. The
earliest and best known is a 1967 piece that he wrote for the popular newsstand
magazine Psychology Today (Milgram 1967). Although entertaining and thought
provoking, this is not a rigorous piece of scientific writing, and many of the details
of his work are left out of the discussion. After the first set of experiments, Mil-
gram started collaborating with Jeffrey Travers, and repeated the experiments with
new subjects and more detailed quantitative analyses. The 1969 article Milgram
coauthored with Travers contains a clear and thorough explanation of these new
experiments, and it is this second paper that we reproduce here.

Milgram’s experiments started by selecting a target individual and a group of
starting individuals. Apackage was mailed to each of the starters containing a small
booklet or “passport” in which participants were asked to record some information
about themselves. Then the participants were to try and get their passport to the
specified target person by passing it on to someone they knew on a first-name basis
who they believed either would know the target, or might know somebody who did.
These acquaintances were then asked to do the same, repeating the process until,
with luck, the passport reached the designated target. At each step participants were
also asked to send a postcard to Travers and Milgram, allowing the researchers to
reconstruct the path taken by the passport, should it get lost before it reached the
target. Travers and Milgram recruited 296 starting individuals, 196 from Omaha,
Nebraska and the other 100 from Boston. The target was a stockbroker who lived
in Sharon, Massachusetts, a small town outside Boston.

In the end, 64 of the 296 chains reached the target, 29% of those that started
out. The number of intermediate acquaintances between source and target varied
from 1 to 11, the median being 5.2. Five intermediate acquaintances means that
there were six steps along the chain, a result that has passed into popular myth in
the phrase “six degrees of separation,” which was the title of a 1990 Broadway play
by John Guare in which one of the characters discusses the small-world effect.

To what degree can we trust the results of Milgram’s experiments? Are we
indeed just six steps from anyone else on average, or could the real result be closer
to three as predicted by Pool and Kochen? Or perhaps the average separation is
larger than six? This question is discussed in some detail by Travers and Milgram.
The letters were more likely to get lost if they took a longer path from source to
target, and hence the completed chains that Travers and Milgram used to estimate
the average chain length are probably biased toward the shorter lengths. As Travers
and Milgram describe in a footnote, however, White (1970) calculated a correction
to the raw results to allow for this effect and found that the change in the figures
was not large: the correction increases the average separation from 6 to 8. But
there are other effects acting in the opposite direction also, potentially making the
mean separation shorter than six. In particular, there is no guarantee that Travers
and Milgram’s subjects would have found the shortest path through the network
to the target person. They forwarded the letter to the person of their acquaintance
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who they thought was closest to the target person, but they could easily have had
another acquaintance who—unknown to them—was acquainted directly with the
target. Thus the real separation between participants could be much shorter than
that recorded by the experiment.

Price (1965)

At about the same time that Milgram was developing his first small-world experi-
ment, the empirical study of networks was being taken up in another very different
branch of the scientific community, information science. Derek de Solla Price’s
1965 article “Networks of Scientific Papers,” which appeared in the journal Sci-
ence, is a hidden treasure, largely unknown within the mathematics and physics
communities. In this paper, Price studies one of the oldest of information networks,
the network of citations between scientific papers, in which each vertex represents
a paper and a directed edge from one paper to another indicates that the first paper
cites the second in its bibliography. Price indeed appears to have been one of the
first to suggest that we view the pattern of citations as a network at all, and to
present detailed statistical analyses of this network, for which he made use of the
databases of citations that were just starting to become available, thanks to the work
of Eugene Garfield and others.

Since citation networks are directed, each paper in such a network has both
an out-degree (the numbers of papers that it cites) and an in-degree (the number
of papers in which it is cited). Price studied the distributions of both in- and
out-degrees and found that both have power-law tails, with exponents of about
−2 and −3, respectively. Networks with power-law degree distributions are now
known to occur in a number of different settings and are often called “scale-free
networks” (see Chapter 3 and Section 4.3).

The quality of citation data has improved markedly in the years since Price’s
pioneering work, and particularly since the advent of computer tabulation of data,
and a number of more recent studies have improved upon Price’s results. Of
particular interest is the paper by Redner (1998), in which the author independently
discovered Price’s power law using two large databases of citations of physics
papers. Redner investigated the citation frequency of 783 339 papers published in
1981 and cited over 6 million times between 1981 and 1997, using data collected by
the Institute for Scientific Information, the commercial enterprise that grew out of
Garfield’s early work on citation. The careful analysis presented in the paper shows
that the in-degree of the citation network does indeed have a power-law tail, with an
exponent roughly equal to −3. A second data set compiled from the bibliographies
of 24 296 papers published in the journal Physical Review D between 1975 and
1994 shows similar results.

The paper reproduced here is not Derek Price’s only contribution to the
study of citation networks. A decade later he published a second remarkable pa-
per in which he proposed a possible mechanism for the generation of the power
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laws seen in the citation distribution (Price 1976). Building on previous work by
Simon (1955), he proposed that papers that have many citations receive further
citations in proportion to the number they already have. He called this process
“cumulative advantage,” and gave a mathematical model of it, which he solved to
demonstrate that it does indeed give rise to power-law distributions as observed
in the data. The cumulative advantage process is more commonly known today
under the name “preferential attachment,” and is widely accepted as the explanation
for the occurrence of power-law degree distributions in networks as diverse as the
World Wide Web, social networks, and biological networks.

De Castro and Grossman (1999)

Our final paper in this chapter deals with another network formed by the patterns of
scientific publication, and while it is a relatively recent work, having been published
in 1999, we feel it belongs here in this historical section, as it summarizes an idea
that has been current in the mathematics community for some decades but has rarely
been studied formally.

Paul Erdős was a stunningly prolific mathematician who lived from 1913
to 1996. During his long life, he authored over 1500 papers with more than 500
coauthors, including his papers on random graphs with fellow Hungarian Alfréd
Rényi, which are discussed earlier in this section. His staggering output, together
with his pivotal role in the development of the theory of networks, prompted some of
his colleagues to see him as a central node of the worldwide collaboration network
of mathematicians and other scientific researchers.

Consider the network whose vertices are mathematicians and scientists, with
an edge between any two vertices if the researchers they represent have coauthored
one or more papers together. For each vertex we define the Erdős number to be
the length of the shortest path from that vertex to Paul Erdős along the edges of the
network. As de Castro and Grossman describe it,

Paul Erdős himself has Erdős number 0, and his co-authors have
Erdős number 1. People not having Erdős number 0 or 1 who have
published with someone with Erdős number 1 have Erdős number 2,
and so on. Those who are not linked in this way to Paul Erdős have
Erdős number ∞.

For many years now, it has been a popular cocktail-party pursuit among mathe-
maticians to calculate their Erdős number, or more strictly an upper bound on their
Erdős number, since it is rarely possible to be certain one has considered all possi-
ble paths through the network. Most mathematicians, and many in other subjects
as well, have no difficulty establishing a fairly low upper bound on their Erdős
number. As de Castro and Grossman conjecture, “Most mathematical researchers
of the twentieth century have a finite (and rather small) Erdős number.”

In the paper, de Castro and Grossman argue in favor of this conjecture by
charting paths through the collaboration network to Erdős from a wide variety
of starting individuals. As well as mathematicians, they derive upper bounds on



9HISTORICAL DEVELOPMENTS t 19
8

the Erdős numbers of Nobel Prize winners in physics, economics, biology, and
chemistry. And since it seems likely that most scientists in those fields could be
connected to the corresponding Nobel laureates in a small number of steps, it is
reasonable to suppose that most scientists have small Erdős numbers.

This exercise of course constitutes another demonstration of the small-world
effect, this time in the context of the scientific community. With the recent increase
in interest in networks, the Erdős number has been elevated from mathematical
anecdote to the subject of serious (if playful) scientific inquiry. Newman (2001a,
2001b, 2001c), for instance, has studied in detail collaboration networks from
a variety of subjects, including networks of biologists, physicists, and computer
scientists, while Barabási and coworkers (2002) have focused on understanding the
time evolution of collaboration networks, using data for publications in mathematics
and neuroscience.
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