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A vertical cycle Z(j) in the case p = 2

The vertical cycle Z(j) in the case p = 2 for the endomorphism j given by
(6A.5.2) in Chapter 6: Appendix. Here the half apartment {[Λ] = [Λr] =
[ [e1, 2re2] ] | mult[Λ](j) > 0} has been marked, and the multiplicities of
components have been indicated.
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Chapter One

Introduction

In this monograph we study the arithmetic geometry of cycles on an arith-
metic surface M associated to a Shimura curve over the field of rational
numbers and the modularity of certain generating series constructed from
them. We consider two types of generating series, one for divisors and one

for 0-cycles, valued in ĈH
1
(M) and ĈH

2
(M), the first and second arith-

metic Chow groups of M, respectively. We prove that the first type is a
nonholomorphic elliptic modular form of weight 3

2 and that the second type
is a nonholomorphic Siegel modular form of genus two and weight 3

2 . In fact
we identify the second type of series with the central derivative of an inco-
herent Siegel-Eisenstein series. We also relate the height pairing of a pair

of ĈH
1
(M)-valued generating series to the ĈH

2
(M)-valued series by an

inner product identity. As an application of these results we define an arith-
metic theta lift from modular forms of weight 3

2 to the Mordell-Weil space
ofM and prove a nonvanishing criterion analogous to that of Waldspurger
for the classical theta lift, involving the central derivative of the L-function.

We now give some background and a more detailed description of these
results.

The modular curve Γ \ H, where H = {z ∈ C | Im z > 0} is the
upper half plane and Γ = SL2(Z), is the first nontrivial example of a locally
symmetric variety, and of a Shimura variety. It is also the host of the space
of modular forms and is the moduli space of elliptic curves. Starting from
this last interpretation, we see that the modular curve comes equipped with a
set of special divisors, which, like the classical Heegner divisors, are the loci
of elliptic curves with extra endomorphisms. More precisely, for t ∈ Z>0

let

(1.0.1) Z(t) = {(E, x) | x ∈ End(E) with tr(x) = 0, x2 = −t · idE},

where E denotes an elliptic curve. The resulting divisor on the modular
curve, which we also denote by Z(t), is the set of points where the corre-
sponding elliptic curve E admits an action of the order Z[x] = Z[

√
−t] in

the imaginary quadratic field kt = Q(
√
−t), i.e., E admits complex multi-

plication by this order. One may also interpret Z(t) as the set of Γ-orbits in
H which contain a fixed point of an element γ ∈ M2(Z) with tr(γ) = 0 and
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det(γ) = t.
It is a classical fact that the degree of Z(t) is given by degZ(t) = H(4t),

where H(n) is the Hurwitz class number. It is also known that the generat-
ing series

(1.0.2)
∑
t>0

degZ(t) qt =
∑
t>0

H(4t) qt

is nearly the q-expansion of a modular form. In fact, Zagier [58] showed
that the complete series, for τ = u+ iv,
(1.0.3)

E(τ,
1
2
) = − 1

12
+
∑
t>0

H(4t) qt+
∑
n∈Z

1
8π

v−
1
2

∫ ∞

1
e−4πn2vr r−

3
2 dr · q−n2

,

is the q-expansion of the value at s = 1
2 of a nonholomorphic Eisenstein

series E(τ, s) of weight 3
2 , and hence is a modular form.

Generating series of this kind have a long and rich history. They are all
modeled on the classical theta series. Recall that if (L,Q) is a positive
definite quadratic Z-module of rank n, one associates to it the generating
series

(1.0.4) θL(τ) =
∑
x∈L

qQ(x) = 1 +
∞∑
t=1

rL(t) qt.

Here

(1.0.5) rL(t) = |{x ∈ L | Q(x) = t}|,

and we have set, as elsewhere in this book, q = e(τ) = e2πiτ . It is a
classical result going back to the 19th century that θL is the q-expansion of
a holomorphic modular form of weight n2 for some congruence subgroup of
SL2(Z). Similarly, Siegel considered generating series of the form

(1.0.6) θr(τ, L) =
∑
x∈Lr

qQ(x) =
∑

T∈Symr(Z)∨

rL(T ) qT ,

where τ ∈ Hr, and qT = e(tr(Tτ)), and

(1.0.7) rL(τ) = |{ x ∈ Lr | Q(x) =
1
2
((xi, xj)) = T }|.

He showed that they define Siegel modular forms of genus r and weight n2 .
Generalizations to indefinite quadratic forms were considered by Hecke and
Siegel, and the resulting generating series can be nonholomorphic modu-
lar forms. Hirzebruch and Zagier [20] constructed generating series whose
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coefficients are given by cohomology classes of special curves on Hilbert-
Blumenthal surfaces. They prove that the image under any linear functional
of this generating series is an elliptic modular form. For example, they iden-
tify the modular form arising via the cup product with the Kähler class as
an explicitly given Eisenstein series. One can also define special 0-cycles
on Hilbert-Blumenthal surfaces and make generating functions for their de-
grees [25] . These can be shown to be Siegel modular forms of genus two
and weight 2.

We now turn to the generating series associated to arithmetic cycles on
Shimura curves. We exclude the modular curve to avoid problems caused by
its noncompactness. It should be pointed out, however, that all our results
should have suitable analogues for the modular curve, cf. [57]. We pay,
however, a price for assuming compactness. New difficulties arise due to
bad reduction and to the absence of natural modular forms.

Let B be an indefinite quaternion division algebra over Q, so that

(1.0.8) B ⊗Q R 'M2(R) and D(B) =
def.

∏
B⊗QQp
division

p > 1.

Let

(1.0.9) V = {x ∈ B | tr(x) = 0},

with quadratic form Q(x) = Nm(x) = −x2, where tr and Nm denote the
reduced trace and norm onB respectively. Then V is a quadratic space over
Q of signature type (1, 2). Let

(1.0.10) D = {w ∈ V (C) | (w,w) = 0, (w, w̄) < 0}/C×,

where (x, y) = Q(x+y)−Q(x)−Q(y) is the bilinear form associated to the
quadratic formQ. ThenD is an open subset of a quadric in P(V (C)) ' P2,
and (B ⊗Q R)× acts on V (R) and D by conjugation. We fix a maximal
order OB in B. Since all these maximal orders are conjugate, this is not
really an additional datum. Set Γ = O×B . The Shimura curve associated to
B is the quotient

(1.0.11) [Γ\D].

Since Γ does not act freely, the quotient here is to be interpreted as an orbi-
fold.

Let us fix an isomorphism B ⊗Q R = M2(R). Then we can also identify
(B ⊗Q R)× = GL2(R) and (B ⊗Q R)× acts on H± = C \ R by fractional
linear transformations. We obtain an identification

(1.0.12) D = C \ R, via
(
z −z2

1 −z

)
7−→ z,
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equivariant for the action of (B ⊗Q R)× = GL2(R).
The Shimura curve associated toB has a modular interpretation. Namely,

consider the moduli problemMwhich associates to a scheme S over SpecZ
the category of pairs (A, ι) where

• A is an abelian scheme over S

• ι : OB → End(A) is an action of OB on A with characteristic poly-
nomial

charpol(x | Lie A) = (T − x)(T − xι) ∈ OS [T ],

for the induced OB-action on the Lie algebra.

Here x 7→ xι denotes the main involution on B. If S is a scheme in charac-
teristic zero, then the last condition simply says thatA has dimension 2, i.e.,
that (A, ι) is a fake elliptic curve in the sense of Serre. This moduli problem
is representable by an algebraic stack in the sense of Deligne-Mumford, and
we denote the representing stack by the same symbolM. We therefore have
an isomorphism of orbifolds,

(1.0.13) M(C) = [Γ \D].

Since B is a division quaternion algebra, M is proper over Spec Z and
M(C) is a compact Riemann surface (when we neglect the orbifold as-
pect). By its very definition, the stackM is an integral model of the orbifold
[Γ \ D]. It turns out that M is smooth over Spec Z[D(B)−1] but has bad
reduction at the prime divisors ofD(B). At the primes p with p | D(B), the
stackM has semistable reduction and, in fact, admits a p-adic uniformiza-
tion by the Drinfeld upper half plane Ω̂. In particular, the special fiberMp

is connected but in general not irreducible.
In analogy with the case of the modular curve, we can define special

divisors on the Shimura curve by considering complex multiplication points.
More precisely, let t ∈ Z>0 and introduce a relative DM-stackZ(t) overM
by posing the following moduli problem. To a scheme S the moduli problem
Z(t) associates the category of triples (A, ι, x), where

• (A, ι) is an object ofM(S)

• x ∈ End(A, ι) is an endomorphism such that tr(x) = 0, x2 = −t·idA.

An endomorphism as above is called a special endomorphism of (A, ι).
The space V (A, ι) of special endomorphisms is equipped with the degree
form Q(x) = xιx. Note that for x ∈ V (A, ι) we have Q(x) = −x2. We
denote by the same symbol the image of Z(t) as a cycle inM and use the
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notation Z(t) = Z(t)C for its complex fiber. Note that Z(t) is a finite set
of points on the Shimura curve, corresponding to those fake elliptic curves
which admit complex multiplication by the order Z[

√
−t]. We form the

generating series

(1.0.14) φ1(τ) = −vol(M(C)) +
∑
t>0

deg(Z(t)) qt ∈ C[[q]].

Here the motivation for the constant term is as follows. Purely formally
Z(0) is equal to M with associated cohomology class in degree zero; to
obtain a cohomology class in the correct degree, one forms the cup product
with the natural Kähler class — which comes down to taking (up to sign)
the volume ofM(C) with respect to the hyperbolic volume element.

Proposition 1.0.1. The series φ1(τ) is the q-expansion of a holomorphic
modular form of weight 3/2 and level Γ0(4D(B)o), whereD(B)o = D(B)
if D(B) is odd and D(B)o = D(B)/2 if D(B) is even.

Just as with the theorem of Hirzebruch and Zagier, this is not proved
by checking the functional equations that a modular form has to satisfy.
Rather, the theorem is proved by identifying the series φ1(τ) with a specific
Eisenstein series1. More precisely, for τ = u+ iv ∈ H, set
(1.0.15)
E1(τ, s, B) = v

1
2
(s− 1

2
) ·

∑
γ∈Γ′∞\Γ′

(cτ + d)−
3
2 |cτ + d|−(s− 1

2
)ΦB(γ, s),

where γ =
(
a b
c d

)
∈ Γ′ = SL2(Z), and ΦB(γ, s) is a certain function de-

pending on B. The Eisenstein series E1(τ, s, B) is the analogue for the
Shimura curve of Zagier’s Eisenstein series (1.0.3). It has a functional equa-
tion of the form

(1.0.16) E1(τ, s, B) = E1(τ,−s,B).

Its value at s = 1
2 is a modular form of weight 3

2 and we may consider its q-
expansion. Proposition 1.0.1 now follows from the following more precise
result.

Proposition 1.0.2.

φ1(τ) = E1(τ,
1
2
, B),

i.e., φ1 is the q-expansion of E1(τ, 1
2 , B).

1Alternatively, φ1(τ) can be obtained by calculating the integral overM(C) of a theta
function valued in (1, 1) forms; this amounts to a very special case of the results of [33].
The analogous computation in the case of modular curves was done by Funke [11].
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Proposition 1.0.2 is proved in [38] by calculating the coefficients of both
power series explicitly and comparing them term by term. These coefficients
turn out to be generalized class numbers. More precisely, for t > 0, the
coefficient of qt on either side is equal to

(1.0.17) deg Z(t) = 2δ(d;D(B))H0(t;D(B)),

where

(1.0.18) δ(d;D) =
∏
`|D

(1− χd(`))

and

(1.0.19) H0(t;D) =
h(d)
w(d)

∑
c|n

(c,D)=1

c
∏
`|c

(1− χd(`)`−1).

Here d denotes the fundamental discriminant of the imaginary quadratic
field kt = Q(

√
−t) and we have written 4t = n2d; also, h(d) denotes

the class number of kt and w(d) the number of roots of unity contained in
kt. By χd we denote the quadratic residue character mod d. For t = 0,
the identity in Proposition 1.0.2 reduces to the well-known formula for the
volume

(1.0.20) vol(M(C)) = ζD(B)(−1),

where in ζD(B)(s) the index means that the Euler factors for p | D(B) have
been omitted in the Riemann zeta function. Note that the fact that the gen-
erating series φ1(τ) is a modular form reveals some surprising and highly
nonobvious coherence among the degrees of the various special cycles Z(t).
In this book we will establish arithmetic analogues of Propositions 1.0.1

and 1.0.2. In contrast to the above propositions, which are statements about
generating series valued in cohomology (just as was the case with the results
of Hirzebruch-Zagier), our generating series will have coefficients in the
arithmetic Chow groups of Gillet-Soulé [14], [48], (see also [3]). Let us
recall briefly their definition in our case.
A divisor onM is an element of the free abelian group generated by the

closed irreducible reduced substacks which are, locally for the étale topol-
ogy, Cartier divisors. A Green function for the divisor Z is a function g on
M(C) with logarithmic growth along the complex points of Z = ZC and
which satisfies the Green equation of currents onM(C),

(1.0.21) ddcg + δZ = [η],
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where η is a smooth (1, 1)-form. Let ẐZ(M) be the group of pairs (Z, g),
where g is a Green function for the divisor Z . The first arithmetic Chow

group ĈH
1

Z(M) is the factor group of ẐZ(M) by the subgroup generated by
the Arakelov principal divisors d̂iv f associated to rational functions onM.
For us it will be more convenient to work instead with the R-linear version
ĈH

1
(M). In its definition one replaces Z-linear combinations of divisors by

R-linear combinations and divides out by the R-subspace generated by the
Arakelov principal divisors. Such groups were introduced by Gillet-Soulé
[15]; for the case relevant to us, see [3]. Note that restriction to the generic
fiber defines the degree map

(1.0.22) degQ : ĈH
1
(M) −→ CH1(MC)⊗ R ∼−→ R.

The group ĈH
2
(M) is defined in an analogous way, starting with 0-cycles

onM. Since the fibers ofM over Spec Z are geometrically connected of
dimension 1, the arithmetic degree map yields an isomorphism

(1.0.23) d̂eg : ĈH
2
(M) ∼−→ R.

Finally we mention the Gillet-Soulé arithmetic intersection pairing,

(1.0.24) 〈 , 〉 : ĈH
1
(M)× ĈH

1
(M) −→ ĈH

2
(M) = R.

It will play the role of the cup product in cohomology in this context.

We now define a generating series with coefficients in ĈH
1
(M) using the

divisors Z(t). For t > 0, we equip the divisor Z(t) with the Green function
Ξ(t, v) depending on a parameter v ∈ R>0, constructed in [24]. Let Ẑ(t, v)
be the corresponding class in ĈH

1
(M). For t < 0 note that Z(t) = ∅.

However, the function Ξ(t, v) is still defined and is smooth for t < 0, hence
it is a Green function for the trivial divisor, and we may define again Ẑ(t, v)
to be the class of (Z(t),Ξ(t, v)) = (0,Ξ(t, v)). To define Ẑ(0, v), we take
our lead from the justification of the absolute term in the generating series
(1.0.14).

Let ω be the Hodge line bundle onM, i.e., the determinant bundle of the
dual of the relative Lie algebra of the universal family (A, ι) overM,

(1.0.25) ω = ∧2(Lie A)∗.

The complex fiber of this line bundle comes equipped with a natural metric.
This metric is well defined up to scaling.2 We denote by ω̂ the class of this

2The normalization of the metric we use differs from the standard normalization.
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metrized line bundle under the natural map from P̂ic(M) to ĈH
1
(M) and

set

(1.0.26) Ẑ(0, v) = −ω̂ − (0, log(v) + c),

where c is a suitable constant.
The DM-stack Z(t) is finite and unramified overM. It is finite and flat,

i.e., a relative divisor, over Spec Z[D(B)−1] but may contain irreducible
components of the special fiber Mp when p | D(B). This integral exten-
sion of the 0-cyclesZ(t) is therefore sometimes different from the extension
obtained by flat closure in M. Its nonflatness depends in a subtle way on
the p-adic valuation of t. Our definition of Z(t) is a consequence of our
insistence on a thoroughly modular treatment of our special cycles, which is
essential to our method. We strongly suspect that in fact the closure defini-
tion does not lead to (variants of) our main theorems and that therefore our
definition is the ‘right one’. We do not know this for sure since the closure
definition is hard to work with.
We form the generating series,

(1.0.27) φ̂1 =
∑
t∈Z

Ẑ(t, v) qt ∈ ĈH
1
(M)[[q±1]],

where the coefficients depend on the parameter v ∈ R>0 via the Green
function Ξ(t, v). The first main result of this book, proved in Chapter 4,
may now be formulated as follows:

Theorem A. For τ = u + iv, φ̂1(τ) is a (nonholomorphic) modular form
of weight 3

2 and level Γ0(4D(B)o) with values in ĈH
1
(M).

To explain the meaning of the statement of the theorem, recall that the

R-version ĈH
1
(M) of the arithmetic Chow group splits canonically into a

direct sum of a finite-dimensional C-vector space ĈH
1
(M, µ), the classical

Arakelov Chow group with respect to the hyperbolic metric, and the vector
space C∞(M(C))0 of smooth functions on M(C) orthogonal to the con-
stant functions. Correspondingly, the series φ̂1 is the sum of a series φ̂0

1 in

q with coefficients in ĈH
1
(M, µ) and a series φ̂∞1 in q with coefficients in

C∞(M(C))0. The assertion of the theorem should be interpreted as fol-
lows. There is a smooth function on H with values in the finite-dimensional
vector space ĈH

1
(M, µ) which satisfies the usual transformation law for a

modular form of weight 3
2 and of level Γ0(4D(B)o) whose q-expansion is

equal to φ̂0
1, and there is a smooth function on H ×M(C) which satisfies

the usual transformation law for a modular form of weight 3
2 and of level
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Γ0(4D(B)o) in the first variable and whose q-expansion in the first variable
is equal to φ̂∞1 . Obviously, the series φ̂0

1 satisfies the above condition if for

any linear form ` : ĈH
1
(M, µ) → C the series `(φ̂1) with coefficients in

C is a nonholomorphic modular form of weight 3
2 and level Γ0(4D(B)o) in

the usual sense.
Let us explain briefly what is involved in the proof of Theorem A. The

structure of ĈH
1
(M, µ) is encapsulated in the following direct sum decom-

position

(1.0.28) ĈH
1
(M, µ) = M̃W⊕ R ω̂ ⊕Vert.

Here

(1.0.29) M̃W ' MW(MQ) := Pic0(MQ)(Q)⊗ R

is the orthogonal complement to (R ω̂ ⊕ Vert), and the subspace Vert is
spanned by the elements (Y, 0), where Y is an irreducible component of a
fiberMp for some p. Also, MW(MQ) is the Mordell-Weil group ofMQ,
tensored with R. By the above remark, we have to prove the modularity of
`(φ̂0

1) for linear functionals ` on each of the summands of (1.0.28).
For the summand M̃W, this is done by comparing the restriction to the

generic fiber of our generating series φ̂1 with the generating series consid-
ered by Borcherds [2], for which he proved modularity. Proposition 1.0.1
is used to produce divisors of degree 0 in the generic fiber from our special
divisors.

For the summandR ω̂, the modularity follows from the following theorem
which is the main result of [38]. Note that this theorem not only gives
modularity but even identifies the modular form explicitly. We form the
generating series with coefficients in C obtained by cupping with ω̂,

(1.0.30) 〈 ω̂, φ1 〉 =
∑
t

〈 ω̂, Ẑ(t, v) 〉 qt.

Theorem 1.0.3. The series above coincides with the q-expansion of the
derivative at s = 1

2 of the Eisenstein series (1.0.15),

〈 ω̂, φ̂1 〉 = E ′1(τ,
1
2
, B).

Next, consider the pairings of the generating series φ̂1 with the classes
(Y, 0) ∈ Vert, where Y is an irreducible component of a fiber with bad
reduction Mp, i.e., p | D(B). The corresponding series can be identified
with classical theta functions for the positive definite ternary lattice associ-
ated to the definite quaternion algebra B(p) with D(B(p)) = D(B)/p. This
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is based on the theory of p-adic uniformization and uses the analysis of the
special cycles at primes of bad reduction [36].
Finally, for the series φ̂∞1 , we show that the coefficients of the spectral

expansion of φ̂1 are Maass forms. More precisely, if fλ is an eigenfunction
of the Laplacian with eigenvalue λ, then the coefficient of fλ in φ̂1 is up to
an explicit scalar the classical theta lift θ(fλ) to a Maass form of weight 3

2
and level Γ0(4D(B)o).
To formulate the second main result of this book, Theorem B, we form a

generating series for 0-cycles onM instead of divisors onM. The idea is
to impose a pair of special endomorphisms, i.e., ‘twice as much CM’. Let
Sym2(Z)∨ denote the set of half-integral symmetric matrices of size 2, and
let T ∈ Sym2(Z)∨. We define a relative DM-stack Z(T ) overM by posing
the following moduli problem. To a scheme S the moduli problem Z(T )
associates the category of triples (A, ι,x) where

• (A, ι) is an object ofM(S)

• x = [x1, x2] ∈ End(A, ι)2 is a pair of endomorphisms with tr(x1) =
tr(x2) = 0, and 1

2(x,x) = T .

Here (x,x) = ((xi, xj))i,j . It is then clear that Z(T ) has empty generic
fiber when T is positive definite, since in characteristic 0 a fake elliptic
curve cannot support linearly independent complex multiplications. How-
ever, perhaps somewhat surprisingly, Z(T ) is not always a 0-divisor onM.
To explain the situation, recall from [24] that any T ∈ Sym2(Z)∨ with

det(T ) 6= 0 determines a set of primes Diff(T,B) of odd cardinality. More
precisely, let C = (Cp) be the (incoherent) collection of local quadratic
spaces where Cp = Vp for p < ∞ and where C∞ is the positive def-
inite quadratic space of dimension 3. If T ∈ Sym2(Q) is nonsingular,
we let VT be the unique ternary quadratic space over Q with discriminant
−1 = discr(V ) which represents T . We denote by BT the unique quater-
nion algebra over Q such that its trace zero subspace is isometric to VT and
define

(1.0.31) Diff(T,B) = { p ≤ ∞ | invp(BT ) 6= inv(Cp) }.

Note that∞ ∈ Diff(T,B) if and only if T is not positive definite.
If |(Diff(T,B))| > 1 or Diff(T,B) = {∞}, then Z(T ) = ∅. Assume

now that Diff(T,B) = {p} with p < ∞. If p - D(B), then Z(T ) is a
0-cycle onM with support in the fiberMp, as desired. In fact, the cycle is
concentrated in the supersingular locus ofMp. If, however, p | D(B), then
Z(T ) is (almost always) a vertical divisor concentrated inMp.
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Our goal now is to form a generating series with coefficients in ĈH
2
(M),

(1.0.32) φ̂2 =
∑

T∈Sym2(Z)∨

Ẑ(T, v)qT .

Here the coefficients Ẑ(T, v) ∈ ĈH
2
(M) will in general depend on v ∈

Sym2(R)>0. How to define them is evident from the above only in the case
when T is positive definite and Diff(T,B) = {p} with p - D(B). In this
case we set

(1.0.33) Ẑ(T, v) = (Z(T ), 0) ∈ ĈH
2
(M),

independent of v. Then Ẑ(T, v) has image log |Z(T )| ∈ R under the
arithmetic degree map (1.0.23). If T ∈ Sym2(Z)∨ is nonsingular with
|Diff(T,B)| > 1, we set Ẑ(T, v) = 0. In the remaining cases, the definition
we give of the coefficients of (1.0.32) is more subtle. If Diff(T,B) = {∞},
then Ẑ(T, v) does depend on v; its definition is purely archimedean and
depends on the rotational invariance of the ∗-product of two of the Green
functions in [24], one of the main results of that paper. If Diff(T,B) = {p}
with p | D(B), then the definition of Ẑ(T, v) (which is independent of v)
relies on the GL2(Zp)-invariance of the degenerate intersection numbers on
the Drinfeld upper half plane, one of the main results of [36]. Finally, for
singular matrices T ∈ Sym2(Z)∨≥0 we are, in effect, imposing only a ‘single
CM’, and the naive cycle is a divisor, so that its class lies in the wrong de-
gree; we again use the heuristic principle that was used in the definition of
the constant term of (1.0.14) and in the definition of Ẑ(0, v) in (1.0.26). In
these cases we are guided in our definitions by the desire to give a construc-
tion that is on the one hand as natural as possible, and on the other hand to
obtain the modularity of the generating series. We refer to Chapter 6 for the
details.
Our second main theorem identifies the generating series (1.0.32) with an

explicit (nonholomorphic) Siegel modular form of genus two. Recall that
such a modular form admits a q-expansion as a Laurent series in

(1.0.34) qT = e(tr(Tτ)), T ∈ Sym2(Z)∨,

and that the coefficients may depend on the imaginary part v ∈ Sym2(R)>0

of τ = u + iv ∈ H2. We introduce a Siegel Eisenstein series E2(τ, s, B)
which is incoherent in the sense of [24]. In particular, 0 is the center of
symmetry for the functional equation, and E2(τ, 0, B) = 0. The derivative
at s = 0 is a nonholomorphic Siegel modular form of weight 3

2 .
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Theorem B. The generating function φ̂2 is a Siegel modular form of genus
two and weight 3

2 of level Γ0(4D(B)o) ⊂ Sp2(Z). More precisely,

φ̂2(τ) = E ′2(τ, 0, B),

i.e., the q-expansion of the Siegel modular form on the right-hand side coin-
cides with the generating series φ̂2.

Here we are identifying implicitly ĈH
2
(M) with R via d̂eg, cf. (1.0.23).

Theorem B is proved in Chapter 6 by explicitly comparing the coefficients of
the q-expansion of E ′2(τ, 0, B) with the coefficients Ẑ(T, v). This amounts
to a series of highly nontrivial identities, one for each T in Sym2(Z)∨. Let
us explain what is involved.
First let T be positive definite with Diff(T,B) = {p} for p - D(B). The

calculation of the coefficient of E ′2(τ, 0, B) corresponding to T comes down
to the determination of derivatives of Whittaker functions or of certain rep-
resentation densities. This determination is based on the explicit formulas
for such densities due to Kitaoka [22] for p 6= 2. For p = 2, correspond-
ing results are given in [55]. The determination of the arithmetic degree of
Z(T ) boils down to the problem of determining the length of the formal de-
formation ring of a 1-dimensional formal group of height 2 with two special
endomorphisms. This is a special case of the theorem of Gross and Keat-
ing [17]. We point out that for both sides the prime number 2 (‘the number
theorist’s nightmare’) complicates matters considerably.
Next let T be positive definite with Diff(T,B) = {p} for p | D(B).

In this case, the corresponding derivatives of representation densities are
determined in [54] for p 6= 2 and in [55] for p = 2. The determination
of the corresponding coefficient of φ̂2 depends on the calculation of the
intersection product of special cycles on the Drinfeld upper half space. This
is done in [36] for p 6= 2. These calculations are completed here for p = 2.
Now let T be nonsingular with Diff(T,B) = ∞. Then the calculation

of the corresponding coefficients of E ′2(τ, 0, B) and of φ̂2 is given in [24] in
the case where the signature of T is (1, 1). The remaining case, where the
signature is (0, 2), is given here, using the method of [24].
Next, we consider the coefficients corresponding to singular matrices T

of rank 1. For such a matrix

(1.0.35) T =
(
t1 m
m t2

)
∈ Sym2(Z)∨,

with det(T ) = 0 and T 6= 0, we may write t1 = n2
1t, t2 = n2

2t, and
m = n1n2t for the relatively prime integers n1 and n2 and t ∈ Z6=0. The
pair n1, n2 is unique up to simultaneous change in sign, and t is uniquely
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determined. Also, note that, if t1 = 0, then n1 = 0, n2 = 1, and t = t2,
while if t2 = 0, then n1 = 1, n2 = 0, and t = t1. Then the comparison
between the corresponding singular coefficients of φ̂2 and E ′2(τ, 0, B) in
this case is based on the following result, proved in Chapter 5. It relates the
singular Fourier coefficients of the derivative of the genus two Eisenstein
series occurring in Theorem B with the Fourier coefficients of the genus
one Eisenstein series occurring in Theorem A.

Theorem 1.0.4. (i) Let T ∈ Sym2(Z)∨, with associated t ∈ Z6=0 as above.
Then

E ′2,T (τ, 0, B) = −E ′1,t(t−1tr(Tτ),
1
2
, B)

− 1
2
· E1,t(t−1tr(Tτ),

1
2
, B) ·

(
log(

det v
t−1tr(Tv)

) + log(D(B))
)
.

(ii) For the constant term

E ′2,0(τ, 0, B) = −E ′1,0(idet v,
1
2
, B)− 1

2
E1,0(idet(v),

1
2
, B) · logD(B).

It is this theorem that motivated our definition of the singular coefficients
of the generating series φ̂2. Just as for Proposition 1.0.1, we see that the
modularity of the generating function φ̂2 is not proved directly but rather by
identifying it with an explicit modular form.

The coherence in our definitions of the generating series φ̂1 and φ̂2 is
displayed by the following arithmetic inner product formula, which relates
the inner product of the generating series φ̂1 with itself under the Gillet-
Soulé pairing with the generating series φ̂2. Let

(1.0.36) H× H −→ H2 (τ1, τ2) 7−→ diag(τ1, τ2) =
(
τ1 0
0 τ2

)
be the natural embedding into the Siegel space of genus two.

Theorem C. For τ1, τ2 ∈ H

〈φ̂1(τ1), φ̂1(τ2)〉 = φ̂2(diag(τ1, τ2)).

Explicitly, for any t1, t2 ∈ Z and v1, v2 ∈ R>0,

〈Ẑ(t1, v1), Ẑ(t2, v2)〉 =
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Ẑ(T, diag(v1, v2)).
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Theorem C, which is proved in Chapter 7, is the third main result of this
book and provides the arithmetic analogue of Theorem 6.2 in [23], which re-
lates to the cup product of two generating series with values in cohomology.
Let us explain what is involved here, first assuming that t1t2 6= 0.
The proof distinguishes two cases. In the first case t1t2 6∈ Q×,2. In

this case all matrices T occurring in the sum on the right-hand side are
automatically nonsingular; at the same time the divisors Z(t1) and Z(t2)
have empty intersection in the generic fiber, so that the Gillet-Soulé pairing
decomposes into a sum of local pairings, one for each prime of Q. Consider
the case when ti > 0 for i = 1, 2. Then the key to the formula above is the
decomposition of the intersection (fiber product) of the special cycles Z(ti)
according to ‘fundamental matrices’,

(1.0.37) Z(t1)×M Z(t2) =
∐
T

diag(T )=(t1,t2)

Z(T ).

Here Z(T ) appears as the locus of objects ((A, ι), x1, x2) in the fiber prod-
uct where x = [x1, x2] satisfies 1

2(x,x) = T . Note that, by the remarks pre-
ceding the statement of Theorem B, the intersection of the Z(ti) need not
be proper since these divisors can have common components in the fibers of
bad reductionMp for p | D(B). Of course, all matrices T occurring in the
disjoint sum in (1.0.37) are positive definite. The occurrence in the sum of
Theorem C of summands corresponding to matrices T which are not posi-
tive definite is due to the Green functions component of the Ẑ(t, v). Similar
archimedean contributions occur in the cases where one of the ti is negative.
In the second case t1t2 ∈ Q×,2. In this case, Z(t1) and Z(t2) intersect in

the generic fiber. In addition to the contribution of the nonsingular T to the
sum in Theorem C, there is also a contribution of the two singular matrices
T , where T is given by (1.0.35) with m = ±

√
t1t2. In this case the Gillet-

Soulé pairing does not localize. Instead we use the arithmetic adjunction
formula from Arakelov theory [10], [40]. To calculate the various terms
in this formula we must, among other things, go back to the proof of the
Gross-Keating formula and use the fine structure of the deformation locus
of a special endomorphism of a p-divisible group of dimension 1 and height
2.
We stress that the proof of Theorem C sketched so far has nothing to do

with Eisenstein series. However, the modularity of both sides of the identity
in Theorem C allows us to deduce from the truth of the statement for all
t1t2 6= 0 first the value of the constant c in (1.0.26) and then the truth of the
statement for all (t1, t2). In this way we can also prove our conjecture [38]
on the self-intersection of the Hodge line bundle.



PUP.master.W.rev January 25, 2006

INTRODUCTION 15

Theorem 1.0.5. Let ω̂0 be the Hodge line bundle onM metrized with the
normalization of Bost [3]. Then

〈ω̂0, ω̂0〉 = 2 · ζD(B)(−1)

ζ ′(−1)
ζ(−1)

+
1
2
− 1

4

∑
p|D(B)

p+ 1
p− 1

log p

 .
Formally, this result specializes for D(B) = 1 to the formula of Bost [4]

and Kühn [39] in the case of the modular curve (note that due to the stacks
aspect our quantity is half of theirs). In their case they use the section ∆
of ω⊗6 to compute the self-intersection of ω̂0 explicitly from its definition.
For Shimura curves there is no such natural modular form and our result
comes about only indirectly. We note that the general form of this formula
is related to formulas given by Maillot and Roessler [42].

The above three theorems are the main results in this book. As an appli-
cation of these results, we introduce an arithmetic version of the Shimura-
Waldspurger correspondence and obtain analogues of results ofWaldspurger
[53] and of Gross-Kohnen-Zagier [18].

If f is a cusp form of weight 3
2 for Γ0(4D(B)o), we can define the arith-

metic theta lift of f by

(1.0.38) θ̂(f) := C ·
∫
Γ0(4D(B)o)\H

f(τ) φ̂1(τ) v−
1
2 du dv ∈ ĈH

1
(MB),

for a constant C given in section 3 of Chapter 9. Of course, this is the ana-
logue of the classical theta lift from modular forms of weight 3

2 to modular

forms of weight 2, but with φ̂1(τ) replacing the classical theta kernel of
Niwa [43] and Shintani [47]. By the results discussed above, it follows that

〈 θ̂(f), 11 〉 = 〈 f, E1(τ,
1
2
;B) 〉Pet = 0,(1.0.39)

〈 θ̂(f), ω̂ 〉 = 〈 f, E ′1(τ,
1
2
;B) 〉Pet = 0,(1.0.40)

and

〈 θ̂(f), a(φ) 〉 = 〈 f, θ(φ) 〉Pet = 0, for all φ ∈ C∞(M(C))0,(1.0.41)

since f is a holomorphic cusp form. Here, for φ ∈ C∞(M(C))0, we denote
by a(φ) the corresponding class in ĈH

1
(M) and by θ(φ) the corresponding

Maass cusp form of weight 3
2 . Thus θ̂(f) lies in the space of M̃W ⊕ Vert0,

where Vert0 is the subspace of Vert orthogonal to ω̂.
In order to obtain information about the nonvanishing of θ̂(f), we con-
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sider the height pairing 〈 φ̂1(τ1), θ̂(f) 〉. Using Theorems B and C, we obtain

〈 φ̂1(τ1), θ̂(f) 〉 = 〈 f, 〈 φ̂1(τ1), φ̂1 〉 〉

= 〈 f, φ̂2(diag(τ1, ·)) 〉(1.0.42)

= 〈 f, E ′2(diag(τ1, ·), 0;B) 〉

=
∂

∂s

{
〈 f, E2(diag(τ1, ·), s;B) 〉

}∣∣∣∣
s=0

.

We then consider the integral 〈 f, E2(diag(τ1, ·), s;B) 〉 occurring in the last
expression. This integral is essentially the doubling integral of Piatetski-
Shapiro and Rallis [45] (see also [41]), except that we only integrate against
one cusp form.

Theorem 1.0.6. Let F be a normalized newform of weight 2 on Γ0(D(B))
and let f be the good newvector, in the sense defined in section 3 of Chap-
ter 8, corresponding to F under the Shimura-Waldspurger correspondence.
Then

〈 f, E2(diag(τ1, ·), s;B) 〉 = C(s) · L(s+ 1, F ) · f(τ1),

where

C(s) =
3

2π2

∏
p|D(B)

(p+ 1)−1 ·
(
D(B)

2π

)s
Γ(s+ 1) ·

∏
p|D(B)

Cp(s),

with

Cp(s) = (1− εp(F ) p−s)− p− 1
p+ 1

(1 + εp(F ) p−s)Bp(s).

Here L(s, F ) is the standard Hecke L-function of F , εp(F ) is the Atkin-
Lehner sign of F ,

F |Wp = εp(F )F,

and Bp(s) is a rational function of p−s with

Bp(0) = 0 and B′p(0) =
1
2
· p+ 1
p− 1

log(p).

Note that Cp(0) = 2 if εp(F ) = −1 and Cp(0) = C′p(0) = 0 if εp(F ) = 1.
As a consequence, we have the following analogue of Rallis’s inner product
formula [46], which characterizes the nonvanishing of the arithmetic theta
lift.
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Corollary 1.0.7. For F with associated f as in Theorem 1.0.6,

〈 φ̂1(τ1), θ̂(f) 〉 = C(0) · L′(1, F ) · f(τ1).

In particular,

〈 θ̂(f), θ̂(f) 〉 = C(0) · L′(1, F ) · 〈 f, f 〉,

and hence

θ̂(f) 6= 0 ⇐⇒

 εp(F ) = −1 for all p | D(B), and

L′(1, F ) 6= 0.

Let Snew
2 (D(B))(−) be the space of normalized newforms of weight 2 for

Γ0(D(B)) for which all Atkin-Lehner signs are −1. Note that, for F ∈
Snew

2 (D(B))(−), the root number of L(s, F ) is given by

ε(1, F ) = −
∏

p|D(B)

εp(F ) = −1.

Since the vertical part of φ̂1(τ) is a linear combination of theta functions for
the anisotropic ternary spaces V (p), for p | D(B), and since the classical
theta lift of a form F with ε(1, F ) = −1 to such a space vanishes by Wald-
spurger’s result [50], [53], it follows that θ̂(f) ∈ M̃W. Recall from (1.0.29)
that this space is isomorphic to MW(MQ) via the restriction map resQ.

Corollary 1.0.8. For each F ∈ Snew
2 (D(B))(−), let f be the corresponding

good newvector of weight 3
2 . Then

resQ
(
φ̂B1 (τ)

)
= E1(τ,

1
2
;B) · ωQ

degωQ
+

∑
F∈Snew

2 (D(B))(−)

L′(1,F ) 6=0

f(τ) · resQ θ̂(f)
〈 f, f 〉

,

where ωQ is the restriction of the Hodge bundle toMQ.

Next, for each t ∈ Z>0, write Z(t)(F ) for the component3 of the cycle
Z(t) = Z(t)Q in the F -isotypic part CH1(MQ)(F ) of the Chow group
CH1(MQ). Note that Z(t)(F ) has zero image in H2(MC) and hence de-
fines a class in MW(MQ).

3Here we transfer F to a system of Hecke eigenvalues for the quaternion algebra B via
the Jacquet-Langlands correspondence.
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Theorem 1.0.9. The F -isotypic component of the generating function

resQ
(
φ̂B1 (τ)

)
=
∑
t≥0

Z(t) qt,

is

resQ
(
φ̂B1 (τ)

)
(F ) =

∑
t≥0

Z(t)(F ) qt =
f(τ) · resQθ̂(f)

〈 f, f 〉
.

In particular,

Z(t)(F ) =
at(f) · resQ θ̂(f)

〈 f, f 〉
,

where

f(τ) =
∑
t>0

at(f) qt

is the Fourier expansion of f . Moreover, for t1 and t2 ∈ Z>0, the height
pairing of the F -components of Z(t1) and Z(t2) is given by

〈Z(t1)(F ), Z(t2)(F ) 〉 = C(0) · L′(1, F ) · at1(f) · at2(f)
〈 f, f 〉

.

This result is the analogue in our case of the result of Gross-Kohnen-
Zagier [18], Theorem C, p.503. The restriction to newforms in Snew

2 (D(B))
with all Atkin-Lehner signs equal to−1 is due to the fact that our cycles are
invariant under all Atkin-Lehner involutions. To remove this restriction, one
should use ‘weighted’ cycles, see section 4 of Chapter 3.
In fact, we construct an arithmetic theta lift of automorphic representa-

tions σ in the space A00(G′) on the metaplectic extension G′A of SL2(A).
This theta lift, which is only defined for representations corresponding to
holomorphic cusp forms of weight 3

2 , is the analogue of the classical theta
lift considered by Waldspurger [50], [51], [53]. We formulate a conjectural
analogue of Waldspurger’s nonvanishing criterion and prove it in certain
cases as an application of Theorem 1.0.6 and Corollary 1.0.7. For forms
F with ε(1, F ) = +1, Waldspurger proved that the classical theta lift is
nonzero if and only if (i) certain local conditions (theta dichotomy) are sat-
isfied at every place, and (ii) L(1, F ) 6= 0. In the arithmetic case, we show
that for (certain) forms F of weight 2 with ε(1, F ) = −1, the arithmetic
theta lift is nonzero if and only if (i) the local theta dichotomy conditions are
satisfied, and (ii) L′(1, F ) 6= 0. A more detailed discussion can be found in
section 1 of Chapter 9 as well as in [29]. Our construction is similar in spirit
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to that of [16], where Gross formulates an arithmetic analogue of another
result of Waldspurger [52] and shows that, in certain cases, this analogue
can be proved using the results of Gross-Zagier [19] and their extension by
Zhang [60].

We now mention some previous work on such geometric and arithmetic-
geometric generating functions. The classic work of Hirzebruch-Zagier
mentioned above inspired much work on modular generating functions val-
ued in cohomology. Kudla and Millson considered modular generating
functions for totally geodesic cycles in Riemannian locally symmetric spaces
for the classical groups O(p, q), U(p, q), and Sp(p, q) [31], [32], [33]. Such
cycles were also considered by Oda [44] and Tong-Wang [49]. In the case
of symmetric spaces for O(n, 2), the generating function of Kudla-Millson
[33] and Kudla [23] for the cohomology classes of algebraic cycles of codi-
mension r is a Siegel modular form of weight n2 +1 and genus r. In the case
r = n, i.e., for 0-cycles, the generating function was identified in [23] as a
special value of an Eisenstein series via the Siegel-Weil formula. A similar
relation to Eisenstein series occurs in the work of Gross and Keating [17] for
the generating series associated to the graphs of modular correspondences
in a product of two modular curves. Borcherds [2] used Borcherds products
to construct modular generating series with coefficients in CH1 for divisors
on locally symmetric varieties associated to O(n, 2) and proved that they
are holomorphic modular forms. We also mention recent related work of
Bruinier [5], [6], Bruinier-Funke [8], Funke [11], and Funke-Millson [12],
[13].

The results in the arithmetic context are all inspired by the theorem of
Gross and Zagier [19]. Part of a generating series for triple arithmetic in-
tersections of curves on the product of two modular curves was implicitly
considered in the paper by Gross and Keating [17], where the ‘good non-
singular’ coefficients are determined explicitly, cf. also [1]. For Shimura
curves, Kudla [24] considered the generating series obtained from the Gillet-
Soulé height pairing of special divisors. It was proved that this generating
series coincided for ‘good’ nonsingular coefficients with the diagonal pull-
back of the central derivative of a Siegel Eisenstein series of genus two.
The ‘bad’ nonsingular coefficients were determined in [36]. However, the
singular coefficients were left out of this comparison. In [37] we consid-
ered the 0-dimensional case, where the ambient space is the moduli space
of elliptic curves with complex multiplication. In this case we were able
to determine the generating series completely and to identify it with the
derivative of a special value of an Eisenstein series. Another generating se-
ries is obtained in [38] by pairing special divisors on arithmetic models of
Shimura curves, equipped with Green functions, with the metrized dualizing
line bundle. Again this can be determined completely and identified with a
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special value of a derivative of an Eisenstein series. A generating series in a
higher-dimensional case is constructed by Bruinier, Burgos, and Kühn [7].
They consider special divisors on arithmetic models of Hilbert-Blumenthal
surfaces whose generic fibers are Hirzebruch-Zagier curves, equip them
with (generalized) Green functions [9], and obtain a generating series by
taking the pairing with the square of the metrized dualizing line bundle.
They identify this series with a special value of an Eisenstein series. Finally
we mention partial results in higher-dimensional cases (Hilbert-Blumenthal
surfaces, Siegel threefolds) in [34], [35].
This monograph is not self-contained. Rather, we make essential use

of our previous papers. We especially need the results in [24] about the
particular Green functions we use, as well as the results on Eisenstein series
developed there. We also use the results on representation densities from
[54], [55]. Furthermore, for the analysis of the situation at the fibers of
bad reduction we use the results contained in [36]. These are completed
in [38], which is also essential for our arguments in other ways. Finally,
we need some facts from [27] in order to apply the results of Borcherds.
These papers are not reproduced here. Still, we have given here all the
definitions necessary for following our development and have made an effort
to direct the reader to the precise reference where he can find the proof
of the statement in question. We also have filled in some details in the
proof of other results in the literature. Most notable here are our exposition
in section 6 of Chapter 3 of the special case of the theorem of Gross and
Keating [17] that we use, and the exposition in Chapter 8 of the doubling
method of Piatetski-Shapiro and Rallis [45] in the special case relevant to
us. In the first instance, we were aided by a project with a similar objective,
namely to give an exposition of the general result of Gross and Keating,
undertaken by the ARGOS seminar in Bonn [1]. In the second instance, we
use precise results about nonarchimedean local Howe duality for the dual
pair (SL2,O(3)) from [30].
We have structured this monograph in the following manner. In Chapter

2 we provide the necessary background from Arakelov geometry. The key
point here is to show that the theory of Gillet-Soulé [14], [3] continues to
hold for the DM-stacks of the kind we encounter. We also give a version
of the arithmetic adjunction formula. It turns out that among the various
versions of it the most naive form, as presented in Lang’s book [40], is
just what we need for our application of it in Chapter 7. In Chapter 3 we
define the special cycles on Shimura curves and review the known facts
about them. Here we also give a proof of the special case of the Gross-
Keating formula which we need. In Chapter 4 we prove Theorem A, along
the lines sketched above. In Chapter 5 we introduce the Eisenstein series
of genus one and two which are relevant to us and calculate their Fourier
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expansion. In particular, we prove Theorem 1.0.4. In Chapter 6 we define
the generating series φ̂2 and prove Theorem B by comparing term by term
this series with the Fourier coefficients of the Siegel Eisenstein series of
genus two determined in the previous chapter. For the ‘bad nonsingular’
coefficients of φ̂2, the calculation in the case p = 2 had been left out in
[36]. In the appendix to Chapter 6 we complete the calculations for p = 2.
Chapter 7 is devoted to the proof of the inner product formula, Theorem C.
In Chapter 8 we give an exposition of the doubling method in our case. The
point is to determine explicitly all local zeta integrals for the kind of good
test functions that we use. The case p = 2 again requires additional efforts.
In Chapter 9 we give applications of our results to the arithmetic theta lift
and to L-functions and prove Theorems 1.0.6 and 1.0.9 and Corollaries 1.0.7
and 1.0.8 above.

This book is the result of a collaboration over many years. The general
idea of forming the arithmetic generating series and relating them to mod-
ular forms arising from derivatives of Eisenstein series is due to the first
author. The other two authors joined the project, each one contributing a
different expertise to the undertaking. In the end, we can honestly say that
no proper subset of this set of authors would have been able to bring this
project to fruition. While the book is thus the product of a joint enterprise,
some chapters have a set of principal authors which are as follows:

Chapter 2: SK, MR
Chapter 4: SK
Chapter 5: SK, TY
Appendix to Chapter 6: SK, MR
Chapter 7: SK, MR
Chapter 8: SK, TY
The material of this book, as well as its background, has been the subject

of several survey papers by us individually: [25], [26], [28], [29], [56], [57].
It should be pointed out, however, that in the intervening time we made
progress and that quite a number of question marks which still decorate the
announcements of our results in these papers have been removed.
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Chapter Two

Arithmetic intersection theory on stacks

The aim of the present chapter is to outline the (arithmetic) intersection
theory on Deligne-Mumford (DM) stacks that will be relevant to us. The
stacksM we consider will satisfy the following conditions:

• M is regular of dimension 2 and is proper and flat over S = SpecZ,
and is a relative complete intersection over SpecZ. Also we assume
M to be connected (and later even geometrically connected).

• LetM = MC = M×SpecZ SpecC be the complex fiber ofM. Then
M is given by an orbifold presentation,

M = [Γ \X],

where X is a compact Riemann surface (not necessarily connected)
and Γ is a finite group acting on X .

2.1 THE ONE-DIMENSIONAL CASE

As a preparation for later developments we start with the one-dimensional
case.

First we consider a DM-stack Z which is reduced and proper of relative
dimension 1 over an algebraically closed field k. LetL be an invertible sheaf
on Z . Before defining the degree of L we recall [10] that if R is an integral
domain of dimension 1, with fraction fieldK, we put for f = a

b ∈ K
× with

a, b ∈ R,

(2.1.1) ordR(f) = lg(R/a)− lg(R/b).

This is extended in the obvious way to define ordL(s) for an element s ∈
L⊗R K of a free R-module L of rank one.

Now let s be a rational section of L. If x is a closed geometric point of Z
and ÕZ,x is the strictly local henselian ring of Z in x, we get a direct sum
decomposition into integral domains according to the formal branches of Z
through x,

(2.1.2) ÕZ,x =
⊕
i

Oi.
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We put

(2.1.3) degx s = ΣiordOi(si),

where si is the image of s in L ⊗OZ,x Oi.
As in [3], VI, 4.3, we put

(2.1.4) deg(L) = deg(Z,L) =
∑

x∈Z(k)

1
|Aut(x)|

· degx(s).

If k is not algebraically closed, one defines the degree after extension of
scalars to k̄. This definition is independent of the choice of s and coincides
with the usual definition when Z is a scheme. It satisfies
(i) additivity in L: deg(L ⊗ L′) = deg(L) + deg(L′)
(ii) coverings: If f : Z ′ → Z is a finite flat morphism of constant degree,

then

(2.1.5) deg(f∗L) = deg(f) · deg(L).

In particular, let π : Z̃ → Z be the normalization of Z . This is the
relatively representable morphism such that for any étale presentationX →
Z , the resulting morphism X ×Z Z̃ → X is the normalization of X . Then

(2.1.6) deg(Z,L) = deg(Z̃, π∗(L)).

The calculation of the RHS is somewhat easier since if Z = Z̃ is normal,
for a rational section s of L we have

(2.1.7) degx(s) = ordx(s).

(If Z is normal, then ÕZ,x is a discrete valuation ring and ordx(s) is the
valuation of s.)
In Arakelov theory it is more convenient to use the Arakelov degreewhich

is defined as

(2.1.8) d̂eg(Z,L) = deg(Z,L) · log p,

when Z is of finite type over Fp. Here Z is considered as a stack over Fp. If
Γ(Z,O) = Fq and Z is considered as a stack over Fq, then the RHS equals
deg(Z,L) · log q.
Next we consider the case where Z is a reduced irreducible DM-stack of

dimension 1 which is proper and flat over SpecZ. In this case we want to
consider metrized line bundles. There are two ways to define the concept of
a metrized line bundle on Z . First, one can define a metrized line bundle
to be a rule which associates, functorially, to any S-valued point S → Z a


