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P. Cvitanović and A. D. Kennedy

13.1 SU(n) = SU(−n) 152
13.2 SO(n) = Sp(−n) 153

Chapter 14. Spinors’ symplectic sisters 155
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Highlands, and Kostrena. I am grateful to T. Dorrian-Smith, R. de la Torre, BDC, N.-R. Nils-
son, U. Selmer, E. Høsøinen, A. Wad, families Cvitanović, and family Herlin for their kind
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Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semisimple Lie algebras through a
classification of “primitive invariants.” Using somewhat unconventional notation inspired by the Feynman
diagrams of quantum field theory, the invariant tensors are represented by diagrams; severe limits on
what simple groups could possibly exist are deduced by requiring that irreducible representations be of
integer dimension. The method provides the full Killing-Cartan list of all possible simple Lie algebras,
but fails to prove the existence of F4, E6, E7 and E8.

One simple quantum field theory question started this project; what is the group-theoretic factor for
the following Quantum Chromodynamics gluon self-energy diagram

= ? (1.1)

I first computed the answer for SU(n). There was a hard way of doing it, using Gell-Mann fijk and dijk

coefficients. There was also an easy way, where one could doodle oneself to the answer in a few lines.
This is the “birdtracks” method that will be developed here. It works nicely for SO(n) and Sp(n) as well.
Out of curiosity, I wanted the answer for the remaining five exceptional groups. This engendered further
thought, and that which I learned can be better understood as the answer to a different question. Suppose
someone came into your office and asked, “On planet Z , mesons consist of quarks and antiquarks, but
baryons contain three quarks in a symmetric color combination. What is the color group?” The answer
is neither trivial nor without some beauty (planet Z quarks can come in 27 colors, and the color group
can be E6).

Once you know how to answer such group-theoretical questions, you can answer many others. This
monograph tells you how. Like the brain, it is divided into two halves: the plodding half and the interesting
half.

The plodding half describes how group-theoretic calculations are carried out for unitary, orthogonal,
and symplectic groups (chapters 3–15). Except for the “negative dimensions” of chapter 13 and the
“spinsters” of chapter 14, none of that is new, but the methods are helpful in carrying out daily chores,
such as evaluating Quantum Chromodynamics group-theoretic weights, evaluating lattice gauge theory
group integrals, computing 1/N corrections, evaluating spinor traces, evaluating casimirs, implementing
evaluation algorithms on computers, and so on.

The interesting half, chapters 16–21, describes the “exceptional magic” (a new construction of excep-
tional Lie algebras), the “negative dimensions” (relations between bosonic and fermionic dimensions).
Open problems, links to literature, software and other resources, and personal confessions are relegated
to the epilogue, monograph’s Web page birdtracks.eu. The methods used are applicable to field-
theoretic model building. Regardless of their potential applications, the results are sufficiently
intriguing to justify this entire undertaking. In what follows we shall forget about quarks and
quantum field theory, and offer instead a somewhat unorthodox introduction to the theory of
Lie algebras. If the style is not Bourbaki [29], it is not so by accident.

There are two complementary approaches to group theory. In the canonical approach one
chooses the basis, or the Clebsch-Gordan coefficients, as simply as possible. This is the method
which Killing [189] and Cartan [43] used to obtain the complete classification of semisimple
Lie algebras, and which has been brought to perfection by Coxeter [67] and Dynkin [105].
There exist many excellent reviews of applications of Dynkin diagram methods to physics,
such as refs. [312, 126].

In the tensorial approach pursued here, the bases are arbitrary, and every statement is
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invariant under change of basis. Tensor calculus deals directly with the invariant blocks of
the theory and gives the explicit forms of the invariants, Clebsch-Gordan series, evaluation
algorithms for group-theoretic weights, etc.

The canonical approach is often impractical for computational purposes, as a choice of
basis requires a specific coordinatization of the representation space. Usually, nothing that
we want to compute depends on such a coordinatization; physical predictions are pure scalar
numbers (“color singlets”), with all tensorial indices summed over. However, the canoni-
cal approach can be very useful in determining chains of subgroup embeddings. We refer
the reader to refs. [312, 126] for such applications. Here we shall concentrate on tensorial
methods, borrowing from Cartan and Dynkin only the nomenclature for identifying irre-
ducible representations. Extensive listings of these are given by McKay and Patera [234] and
Slansky [312].

To appreciate the sense in which canonical methods are impractical, let us consider using
them to evaluate the group-theoretic factor associated with diagram (1.1) for the exceptional
group E8. This would involve summations over 8 structure constants. The Cartan-Dynkin
construction enables us to construct them explicitly; an E8 structure constant has about
2483/6 elements, and the direct evaluation of the group-theoretic factor for diagram (1.1) is
tedious even on a computer. An evaluation in terms of a canonical basis would be equally
tedious for SU(16); however, the tensorial approach illustrated by the example of section 2.2
yields the answer for all SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial approach
to exceptional groups. The other is the desire to understand their geometrical significance.
The Killing-Cartan classification is based on a mapping of Lie algebras onto a Diophan-
tine problem on the Cartan root lattice. This yields an exhaustive classification of simple
Lie algebras, but gives no insight into the associated geometries. In the 19th century, the
geometries or the invariant theory were the central question, and Cartan, in his 1894 thesis,
made an attempt to identify the primitive invariants. Most of the entries in his classifica-
tion were the classical groups SU(n), SO(n), and Sp(n). Of the five exceptional algebras,
Cartan [44] identified G2 as the group of octonion isomorphisms and noted already in his
thesis that E7 has a skew-symmetric quadratic and a symmetric quartic invariant. Dickson
characterized E6 as a 27-dimensional group with a cubic invariant. The fact that the orthog-
onal, unitary and symplectic groups were invariance groups of real, complex, and quaternion
norms suggested that the exceptional groups were associated with octonions, but it took
more than 50 years to establish this connection. The remaining four exceptional Lie algebras
emerged as rather complicated constructions from octonions and Jordan algebras, known as
the Freudenthal-Tits construction. A mathematician’s history of this subject is given in a
delightful review by Freudenthal [130]. The problem has been taken up by physicists twice,
first by Jordan, von Neumann, and Wigner [173], and then in the 1970s by Gürsey and col-
laborators [149, 151, 152]. Jordan et al.’s effort was a failed attempt at formulating a new
quantum mechanics that would explain the neutron, discovered in 1932. However, it gave
rise to the Jordan algebras, which became a mathematics field in itself. Gürsey et al. took
up the subject again in the hope of formulating a quantum mechanics of quark confinement;
however, the main applications so far have been in building models of grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical for the evaluation
of group-theoretic weights. The reason is this: the construction involves [3×3] octonionic
matrices with octonion coefficients, and the 248-dimensional defining space of E8 is written as
a direct sum of various subspaces. This is convenient for studying subgroup embeddings [291],
but awkward for group-theoretical computations.

The inspiration for the primitive invariants construction came from the axiomatic approach
of Springer [314, 315] and Brown [34]: one treats the defining representation as a single
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vector space, and characterizes the primitive invariants by algebraic identities. This approach
solves the problem of formulating efficient tensorial algorithms for evaluating group-theoretic
weights, and it yields some intuition about the geometrical significance of the exceptional Lie
groups. Such intuition might be of use to quark-model builders. For example, because SU(3)
has a cubic invariant εabcqaqbqc, Quantum Chromodynamics, based on this color group,
can accommodate 3-quark baryons. Are there any other groups that could accommodate 3-
quark singlets? As we shall see, G2, F4, and E6 are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construction of
exceptional groups yields several unexpected results. First, it generates in a somewhat magical
fashion a triangular array of Lie algebras, depicted in figure 1.1. This is a classification of
Lie algebras different from Cartan’s classification; in this new classification, all exceptional
Lie groups appear in the same series (the bottom line of figure 1.1). The second unexpected
result is that many groups and group representations are mutually related by interchanges of
symmetrizations and antisymmetrizations and replacement of the dimension parameter n by
−n. I call this phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of all the magic and the strange diagram-
matic notation, the resulting manuscript is in essence not very different from Wigner’s [345]
1931 classic. Regardless of whether one is doing atomic, nuclear, or particle physics, all phys-
ical predictions (“spectroscopic levels”) are expressed in terms of Wigner’s 3n-j coefficients,
which can be evaluated by means of recursive or combinatorial algorithms.

Parenthetically, this book is not a book about diagrammatic methods in group theory. If
you master a traditional notation that covers all topics in this book in a uniform way, more
elegantly than birdtracks, more power to you. I would love to learn it.
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Chapter Two

A preview

The theory of Lie groups presented here had mutated greatly throughout its genesis. It arose
from concrete calculations motivated by physical problems; but as it was written, the gener-
alities were collected into introductory chapters, and the applications receded later and later
into the text.

As a result, the first seven chapters are largely a compilation of definitions and general
results that might appear unmotivated on first reading. The reader is advised to work through
the examples, section 2.2 and section 2.3 in this chapter, jump to the topic of possible interest
(such as the unitary groups, chapter 9, or the E8 family, chapter 17), and birdtrack if able or
backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-theoretic tools.
They are not particularly sophisticated, and they rest on a few simple ideas. The text is long,
because various notational conventions, examples, special cases, and applications have been
laid out in detail, but the basic concepts can be stated in a few lines. We shall briefly state
them in this chapter, together with several illustrative examples. This preview presumes that
the reader has considerable prior exposure to group theory; if a concept is unfamiliar, the
reader is referred to the appropriate section for a detailed discussion.

2.1 BASIC CONCEPTS

A typical quantum theory is constructed from a few building blocks, which we shall refer
to as the defining space V . They form the defining multiplet of the theory — for example,
the “quark wave functions” qa. The group-theoretical problem consists of determining the
symmetry group, i.e., the group of all linear transformations

q′a = Ga
bqb a, b = 1, 2, . . . , n ,

which leaves invariant the predictions of the theory. The [n×n] matrices G form the defining
representation (or “rep” for short) of the invariance group G. The conjugate multiplet q
(“antiquarks”) transforms as

q′a = Ga
bq

b .

Combinations of quarks and antiquarks transform as tensors, such as

p′
aq′br

′c =Gab
c, d

efpfqer
d ,

Gab
c, d

ef =Ga
fGb

eGd
c

(distinction between Ga
b and Ga

b as well as other notational details are explained in sec-
tion 3.2). Tensor reps are plagued by a proliferation of indices. These indices can either be
replaced by a few collective indices:

α =

{
c

ab

}
, β =

{
ef

d

}
,
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q′α = Gα
βqβ , (2.1)

or represented diagrammatically:

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

f

��
��
��
��

a
b
c d

G e =

��
��
��

��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
�� e

��
��
��

��
��
��

c d

fa
b .

(Diagrammatic notation is explained in section 4.1.) Collective indices are convenient for
stating general theorems; diagrammatic notation speeds up explicit calculations.

A polynomial

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

is an invariant if (and only if) for any transformation G ∈ G and for any set of vectors
q, r, s, . . . (see section 3.4)

H(Gq, Gr, . . . Gs) = H(q, r, . . . , s) . (2.2)

An invariance group is defined by its primitive invariants, i.e., by a list of the elementary
“singlets” of the theory. For example, the orthogonal group O(n) is defined as the group of all
transformations that leaves the length of a vector invariant (see chapter 10). Another example
is the color SU(3) of QCD that leaves invariant the mesons (qq̄) and the baryons (qqq) (see
section 15.2). A complete list of primitive invariants defines the invariance group via the
invariance conditions (2.2); only those transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant tensors in order
to define them. For example, the O(n) group is defined by the requirement that it leaves
invariant a symmetric and invertible tensor gab = gba, det(g) �= 0. Such definition is basis
independent, while a component definition g11 = 1, g12 = 0, g22 = 1, . . . relies on a specific
basis choice. We shall define all simple Lie groups in this manner, specifying the primitive
invariants only by their symmetry and by the basis-independent algebraic relations that they
must satisfy.

These algebraic relations (which I shall call primitiveness conditions) are hard to describe
without first giving some examples. In their essence they are statements of irreducibility;
for example, if the primitive invariant tensors are δa

b , habc and habc, then habch
cbe must be

proportional to δe
a, as otherwise the defining rep would be reducible. (Reducibility is discussed

in section 3.5, section 3.6, and chapter 5.)
The objective of physicists’ group-theoretic calculations is a description of the spec-

troscopy of a given theory. This entails identifying the levels (irreducible multiplets), the
degeneracy of a given level (dimension of the multiplet) and the level splittings (eigenvalues
of various casimirs). The basic idea that enables us to carry this program through is extremely
simple: a hermitian matrix can be diagonalized. This fact has many names: Schur’s lemma,
Wigner-Eckart theorem, full reducibility of unitary reps, and so on (see section 3.5 and sec-
tion 5.3). We exploit it by constructing invariant hermitian matrices M from the primitive
invariant tensors. The M ’s have collective indices (2.1) and act on tensors. Being hermitian,
they can be diagonalized

CMC† =

⎛⎜⎜⎜⎜⎝
λ1 0 0 . . .
0 λ1 0
0 0 λ1

λ2

...
. . .

⎞⎟⎟⎟⎟⎠ ,
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and their eigenvalues can be used to construct projection operators that reduce multiparticle
states into direct sums of lower-dimensional reps (see section 3.5):

Pi =
∏
j �=i

M − λj1

λi − λj
= C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . . 0
. . . 0

...

1 0 . . . 0
0 1
...

. . .
...

0 . . . 1

...

0 . . .
0 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (2.3)

An explicit expression for the diagonalizing matrix C (Clebsch-Gordan coefficients or cleb-
sches, section 4.2) is unnecessary — it is in fact often more of an impediment than an aid, as
it obscures the combinatorial nature of group-theoretic computations (see section 4.8).

All that is needed in practice is knowledge of the characteristic equation for the invariant
matrix M (see section 3.5). The characteristic equation is usually a simple consequence
of the algebraic relations satisfied by the primitive invariants, and the eigenvalues λi are
easily determined. The λi’ s determine the projection operators Pi, which in turn contain
all relevant spectroscopic information: the rep dimension is given by trPi, and the casimirs,
6-j’s, crossing matrices, and recoupling coefficients (see chapter 5) are traces of various
combinations of Pi’s. All these numbers are combinatoric; they can often be interpreted as
the number of different colorings of a graph, the number of singlets, and so on.

The invariance group is determined by considering infinitesimal transformations

Ga
b � δa

b + iεi(Ti)
b
a .

The generators Ti are themselves clebsches, elements of the diagonalizing matrix C for the
tensor product of the defining rep and its conjugate. They project out the adjoint rep and are
constrained to satisfy the invariance conditions (2.2) for infinitesimal transformations (see
section 4.4 and section 4.5):

(Ti)
a′

a h c...
a′b... + (Ti)

b′

b h c...
ab′... − (Ti)

c
c′h

c′...
ab... + . . .=0

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��
�� +

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��
�� −

. . ..

��
��
��
��

���
���
���
���

���
���
���
���

b

a

c

+ . . .=0 . (2.4)

As the corresponding projector operators are already known, we have an explicit construction
of the symmetry group (at least infinitesimally — we will not consider discrete transforma-
tions).

If the primitive invariants are bilinear, the above procedure leads to the familiar tensor reps
of classical groups. However, for trilinear or higher invariants the results are more surprising.
In particular, all exceptional Lie groups emerge in a pattern of solutions which I will refer to
as a Magic Triangle. The flow of the argument (see chapter 16) is schematically indicated in
figure 2.1, with the arrows pointing to the primitive invariants that characterize a particular
group. For example, E7 primitives are a sesquilinear invariant qq̄, a skew symmetric qp
invariant, and a symmetric qqqq (see chapter 20).



8 CHAPTER 2
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Figure 2.1 Additional primitive invariants induce chains of invariance subgroups.

The strategy is to introduce the invariants one by one, and study the way in which they split
up previously irreducible reps. The first invariant might be realizable in many dimensions.
When the next invariant is added (section 3.6), the group of invariance transformations of the
first invariant splits into two subsets; those transformations that preserve the new invariant,
and those that do not. Such decompositions yield Diophantine conditions on rep dimensions.
These conditions are so constraining that they limit the possibilities to a few that can be easily
identified.

To summarize: in the primitive invariants approach, all simple Lie groups, classical as well
as exceptional, are constructed by (see chapter 21)

1. defining a symmetry group by specifying a list of primitive invariants;

2. using primitiveness and invariance conditions to obtain algebraic relations between
primitive invariants;

3. constructing invariant matrices acting on tensor product spaces;

4. constructing projection operators for reduced rep from characteristic equations for
invariant matrices.

Once the projection operators are known, all interesting spectroscopic numbers can be eval-
uated.

The foregoing run through the basic concepts was inevitably obscure. Perhaps working
through the next two examples will make things clearer. The first example illustrates com-
putations with classical groups. The second example is more interesting; it is a sketch of
construction of irreducible reps of E6.

2.2 FIRST EXAMPLE: SU(n)

How do we describe the invariance group that preserves the norm of a complex vector? The
list of primitives consists of a single primitive invariant,

m(p, q) = δa
b pbqa =

n∑
a=1

(pa)∗qa .
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The Kronecker δa
b is the only primitive invariant tensor. We can immediately write down the

two invariant matrices on the tensor product of the defining space and its conjugate,

identity : 1a c
d,b = δa

b δc
d =

��
��
��
��

��
��
��
��d

a

c

b

trace : T a c
d,b = δa

dδc
b =

c

a b

d
.

The characteristic equation for T written out in the matrix, tensor, and birdtrack notations is

T 2 =nT

T a f
d,e T e c

f,b =δa
dδf

e δe
fδc

b = n T a c
d,b

= ������������ ������������ = n ������������ .

Here we have used δe
e = n, the dimension of the defining vector space. The roots are λ1 = 0,

λ2 = n, and the corresponding projection operators are

SU(n) adjoint rep: P1 = T−n1

0−n
= 1 − 1

n
T

������������ =
��
��
��

��
��
��

��
��
��
��

− 1
n ������������

U(n) singlet: P2 = T−0·1
n−0

= 1
n
T = 1

n ������������ .

(2.5)

Now we can evaluate any number associated with the SU(n) adjoint rep, such as its dimension
and various casimirs.

The dimensions of the two reps are computed by tracing the corresponding projection
operators (see section 3.5):

SU(n) adjoint: d1 =trP1 =
��
��
��
��

��
��
��
��

= − 1

n
= δb

bδ
a
a − 1

n
δb

aδa
b

=n2 − 1

singlet: d2 =trP2 =
1

n
= 1 .

To evaluate casimirs, we need to fix the overall normalization of the generators Ti of SU(n).
Our convention is to take

δij = tr TiTj =
��
��
��

��
��
��

���
���
���

���
���
���

.

The value of the quadratic casimir for the defining rep is computed by substituting the adjoint
projection operator:

SU(n) : CF δb
a = (TiTi)

b
a =

��
��
��

��
��
��

ba
=

b��
��
��
��

��
��
��
��

a
− 1

n ��
��
��

��
��
��

a b

=
n2 − 1

n ��
��
��

��
��
��

a b
=

n2 − 1

n
δb

a . (2.6)
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In order to evaluate the quadratic casimir for the adjoint rep, we need to replace the structure
constants iCijk by their Lie algebra definition (see section 4.5)

TiTj − TjTi = iCij�T�

��
��
��

��
��
��

��
��
��

��
��
��

−
��
��
��

��
��
��

��
��
��

��
��
��

=
��
��
��
��

.

Tracing with Tk, we can express Cijk in terms of the defining rep traces:

iCijk =tr(TiTjTk) − tr(TjTiTk)

= ��
��
��

��
��
��

− ��
��
��
��

.

The adjoint quadratic casimir CimnCnmj is now evaluated by first eliminating Cijk’s in
favor of the defining rep:

δijCA = ��������

i
m

j

n

= 2 ����
����
����
����
����

���
���
���

���
���
���

������ .

The remaining Cijk can be unwound by the Lie algebra commutator:

����

��
��
��
��

=
��
��
��
��

− ��
��
��

��
��
��

.

We have already evaluated the quadratic casimir (2.6) in the first term. The second term we
evaluate by substituting the adjoint projection operator

��
��
��

��
��
��

d

j

a

i

b c
= ������ ������ − 1

n
��
��
��
��

= − 1

n

tr(TiTkTjTk)=(Ti)
b
a(P1)

a
d, c

b(Tj)
d
c = (Ti)

a
a(Tj)

c
c −

1

n
(Ti)

b
a(Tj)

a
b .

The (Ti)
a
a(Tj)

c
c term vanishes by the tracelessness of Ti’s. This is a consequence of the

orthonormality of the two projection operators P1 and P2 in (2.5) (see (3.50)):

0 = P1P2 = ��
��
��
��

����
����
����
����

��
��
��

��
��
��

⇒ tr Ti = ������ = 0 .

Combining the above expressions we finally obtain

CA = 2

(
n2 − 1

n
+

1

n

)
= 2n .

The problem (1.1) that started all this is evaluated the same way. First we relate the adjoint
quartic casimir to the defining casimirs:
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=
��
��
��
��

−
��
��
��
��

=
��
��
��

��
��
��

−
��
��
��

��
��
��

− …=
����

��
��
��
��

−
����

��
��
��
��

− …

=
��
��
��
��

− ��
��
��
��

− ��
��
��
��

+
��
��
��
��

− …

= n2−1
n

��
��
��
��

− ��
��
��
��

���
���
���
���

+ 2
n

���
���
���

���
���
���

+
���
���
���

���
���
���

��
��
��
��

+ …

and so

on. The result is

SU(n) : = n

{
��
��
��
��

+
��
��
��
��

}
+2

{
+ +

}
.

The diagram (1.1) is now reexpressed in terms of the defining rep casimirs:

=2n2

{
��
��
��
��

��
��
��
��

+ ��
��
��
��

��
��
��
��

}

+2n

{
+ . . .

}
+ 4

{
+ . . .

}
.

The first two terms are evaluated by inserting the adjoint rep projection operators:

SU(n) : ��
��
��
��

= ���
���
���

���
���
���

− 1

n
��
��
��
��

��
��
��
��

=

(
n2 − 1

n

)2

− 1

n
����
����
����

����
����
����

���
���
���

���
���
��� +

1

n2

��
��
��
��

��
��
��
��

=

(
n2 − 2 +

1

n2
− 1

n

(
n − 1

n

)
+

1

n2

)
=

(
n2 − 3 +

3

n2

)
,

and the remaining terms have already been evaluated. Collecting everything together, we
finally obtain

SU(n) : = 2n2(n2 + 12) .

This example was unavoidably lengthy; the main point is that the evaluation is performed by
a substitution algorithm and is easily automated. Any graph, no matter how complicated, is
eventually reduced to a polynomial in traces of δa

a = n, i.e., the dimension of the defining
rep.



12 CHAPTER 2

2.3 SECOND EXAMPLE: E6 FAMILY

What invariance group preserves norms of complex vectors, as well as a symmetric cubic
invariant,

D(p, q, r) = dabcpaqbrc = D(q, p, r) = D(p, r, q) ?

We analyze this case following the steps of the summary of section 2.1:

i) Primitive invariant tensors

δb
a = a b , dabc =

a

b c

, dabc = (dabc)
∗ =

a

b c

.

ii) Primitiveness. daefdefb must be proportional to δa
b , the only primitive 2-index tensor. We

use this to fix the overall normalization of dabc’s:

= .

iii) Invariant hermitian matrices. We shall construct here the adjoint rep projection operator
on the tensor product space of the defining rep and its conjugate. All invariant matrices on
this space are

δa
b δc

d =
a b

d c
, δa

dδc
b =

c

a b

d
, dacedebd = ���

���
���
���

e
d

a

��
��
��
��

b
��
��
��

��
��
��

c
���
���
���
���

���
���
���
���

.

They are hermitian in the sense of being invariant under complex conjugation and transpo-
sition of indices (see (3.21)). The crucial step in constructing this basis is the primitiveness
assumption: 4-leg diagrams containing loops are not primitive (see section 3.3).

The adjoint rep is always contained in the decomposition of V ⊗ V̄ → V ⊗ V̄ into
(ir)reducible reps, so the adjoint projection operator must be expressible in terms of the
4-index invariant tensors listed above:

(Ti)
a
b (Ti)

d
c =A(δa

c δd
b + Bδa

b δd
c + Cdadedbce)

������������ =A

{
+ B ������������ + C ���

���
���
�����

��
��
��

��
��
��

��
��
��

���
���
���
���

������

}
.

iv) Invariance. The cubic invariant tensor satisfies (2.4)

+ + = 0 .

Contracting with dabc, we obtain

+ 2 = 0 .

Contracting next with (Ti)
b
a, we get an invariance condition on the adjoint projection operator,

+ 2 = 0 .
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Substituting the adjoint projection operator yields the first relation between the coefficients
in its expansion:

0=(n + B + C) + 2

{
+ B + C

}

0=B + C +
n + 2

3
.

v) The projection operators should be orthonormal, PµPσ = Pµδµσ . The adjoint projection
operator is orthogonal to (2.5), the singlet projection operator P2. This yields the second
relation on the coefficients:

0=P2PA

0=
1

n
������ ������ ������������ = 1 + nB + C .

Finally, the overall normalization factor A is fixed by PAPA = PA:

������ = ��
��
��

��
��
��

���
���
���
��� = A

{
1 + 0 − C

2

}
������ .

Combining the above three relations, we obtain the adjoint projection operator for the invari-
ance group of a symmetric cubic invariant:

������ ������ =
2

9 + n

{
3 + ������������ − (3 + n) ���

���
���
�����

��
��
��

��
��
��

��
��
��

������

���
���
���
���

}
. (2.7)

The corresponding characteristic equation, mentioned in the point iv) of the summary of
section 2.1, is given in (18.10).

The dimension of the adjoint rep is obtained by tracing the projection operator:

N = δii = =

����������������

= nA(n + B + C) =
4n(n − 1)

n + 9
.

This Diophantine condition is satisfied by a small family of invariance groups, discussed
in chapter 18. The most interesting member of this family is the exceptional Lie group E6,
with n = 27 and N = 78.

The solution to problem (1.1) requires further computation, but for exceptional Lie groups
the answer, given in table 7.4, turns out to be surprisingly simple. The part of the 4-loop that
cannot be simplified by Lie algebra manipulations vanishes identically for all exceptional Lie
groups (chapter 17.


