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Welcome!

This book is designed to help you learn the major concepts of single-variable
calculus, while also concentrating on problem-solving techniques. Whether
this is your first exposure to calculus, or you are studying for a test, or you’ve
already taken calculus and want to refresh your memory, I hope that this book
will be a useful resource.

The inspiration for this book came from my students at Princeton Univer-
sity. Over the past few years, they have found early drafts to be helpful as a
study guide in conjunction with lectures, review sessions and their textbook.
Here are some of the questions that they’ve asked along the way, which you
might also be inclined to ask:

• Why is this book so long? I assume that you, the reader, are moti-
vated to the extent that you’d like to master the subject. Not wanting
to get by with the bare minimum, you’re prepared to put in some time
and effort reading—and understanding—these detailed explanations.

• What do I need to know before I start reading? You need to
know some basic algebra and how to solve simple equations. Most of
the precalculus you need is covered in the first two chapters.

• Help! The final is in one week, and I don’t know anything!
Where do I start? The next three pages describe how to use this
book to study for an exam.

• Where are all the worked solutions to examples? All I see is
lots of words with a few equations. Looking at a worked solution
doesn’t tell you how to think of it in the first place. So, I usually try to
give a sort of “inner monologue”—what should be going through your
head as you try to solve the problem. You end up with all the pieces of
the solution, but you still need to write it up properly. My advice is to
read the solution, then come back later and try to work it out again by
yourself.

• Where are the proofs of the theorems? Most of the theorems in
this book are justified in some way. More formal proofs can be found in
Appendix A.

• The topics are out of order! What do I do? There’s no standard
order for learning calculus. The order I have chosen works, but you might
have to search the table of contents to find the topics you need and ignore
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the rest for now. I may also have missed out some topics too—why not
try emailing me at adrian@calclifesaver.com and you never know, I just
might write an extra section or chapter for you (and for the next edition,
if there is one!).

• Some of the methods you use are different from the methods
I learned. Who is right—my instructor or you? Hopefully we’re
both right! If in doubt, ask your instructor what’s acceptable.

• Where’s all the calculus history and fun facts in the margins?
Look, there’s a little bit of history in this book, but let’s not get too
distracted here. After you get this stuff down, read a book on the
history of calculus. It’s interesting stuff, and deserves more attention
than a couple of sentences here and there.

• Could my school use this book as a textbook? Paired with a
good collection of exercises, this book could function as a textbook, as
well as being a study guide. Your instructor might also find the book
useful to help prepare lectures, particularly in regard to problem-solving
techniques.

• What’s with these videos? You can find videos of a year’s supply of
my review sessions, which reference a lot (but not all!) of the sections
and examples from this book, at this website:

www.calclifesaver.com

How to Use This Book to Study for an Exam

There’s a good chance you have a test or exam coming up soon. I am sympa-
thetic to your plight: you don’t have time to read the whole book! There’s a
table on the next page that identifies the main sections that will help you to
review for the exam. Also, throughout the book, the following icons appear
in the margin to allow you quickly to identify what’s relevant:

• A worked-out example begins on this line.

• Here’s something really important.

• You should try this yourself.

• Beware: this part of the text is mostly for interest. If time is limited,
skip to the next section.

Also, some important formulas or theorems
have boxes around them: learn these well.
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Two all-purpose study tips

• Write out your own summary of all the important points and formulas to
memorize. Math isn’t about memorization, but there are some key formulas
and methods that you should have at your fingertips. The act of making the
summary is often enough to solidify your understanding. This is the main
reason why I don’t summarize the important points at the end of a chapter:
it’s much more valuable if you do it yourself.

• Try to get your hands on similar exams—maybe your school makes previous
years’ finals available, for example—and take these exams under proper con-
ditions. That means no breaks, no food, no books, no phone calls, no emails,
no messaging, and so on. Then see if you can get a solution key and grade it,
or ask someone (nicely!) to grade it for you.

You’ll be on your way to that A if you do both of these things.

Key sections for exam review (by topic)

Topic Subtopic Section(s)

Precalculus Lines 1.5
Other common graphs 1.6
Trig basics 2.1
Trig with angles outside [0, π/2] 2.2
Trig graphs 2.3
Trig identities 2.4
Exponentials and logs 9.1

Limits Sandwich principle 3.6
Polynomial limits all of Chapter 4
Derivatives in disguise 6.5
Trig limits 7.1 (skip 7.1.5)
Exponential and log limits 9.4
L’Hôpital’s Rule 14.1
Overview of limit problems 14.2

Continuity Definition 5.1
Intermediate Value Theorem 5.1.4

Differentiation Definition 6.1
Rules (e.g., product/quotient/chain rule) 6.2
Finding tangent lines 6.3
Derivatives of piecewise-defined functions 6.6
Sketching the derivative 6.7
Trig functions 7.2, 7.2.1
Implicit differentiation 8.1
Exponentials and logs 9.3
Logarithmic differentiation 9.5
Hyperbolic functions 9.7
Inverse functions in general 10.1
Inverse trig functions 10.2
Inverse hyperbolic functions 10.3
Differentiating definite integrals 17.5
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Topic Subtopic Section(s)

Applications of Related rates 8.2
differentiation Exponential growth and decay 9.6

Finding global maxima and minima 11.1.3
Rolle’s Theorem/Mean Value Theorem 11.2, 11.3
Classifying critical points 11.5, 12.1.1
Finding inflection points 11.4, 12.1.2
Sketching graphs 12.2, 12.3
Optimization 13.1
Linearization/differentials 13.2
Newton’s method 13.3

Integration Definition 16.2 (skip 16.2.1)
Basic properties 16.3
Finding areas 16.4
Estimating definite integrals 16.5, Appendix B
Average values/Mean Value Theorem 16.6
Basic examples 17.4, 17.6
Substitution 18.1
Integration by parts 18.2
Partial fractions 18.3
Trig integrals 19.1, 19.2
Trig substitutions 19.3 (skip 19.3.6)
Overview of integration techniques 19.4

Motion Velocity and acceleration 6.4
Constant acceleration 6.4.1
Simple harmonic motion 7.2.2
Finding displacements 16.1.1

Improper Basics 20.1, 20.2
integrals Problem-solving techniques all of Chapter 21

Infinite series Basics 22.1.2, 22.2
Problem-solving techniques all of Chapter 23

Taylor series and Estimation and error estimates all of Chapter 25
power series Power/Taylor series problems all of Chapter 26

Differential Separable first-order 30.2
equations First-order linear 30.3

Constant coefficients 30.4
Modeling 30.5

Miscellaneous Parametric equations 27.1
topics Polar coordinates 27.2

Complex numbers 28.1–28.5
Volumes 29.1, 29.2
Arc lengths 29.3
Surface areas 29.4

Unless specified otherwise, the Section(s) column includes all subsections; for example,
6.2 includes 6.2.1 through 6.2.7.
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Chapter 1

Functions, Graphs, and Lines

Trying to do calculus without using functions would be one of the most point-
less things you could do. If calculus had an ingredients list, functions would
be first on it, and by some margin too. So, the first two chapters of this book
are designed to jog your memory about the main features of functions. This
chapter contains a review of the following topics:

• functions: their domain, codomain, and range, and the vertical line test;

• inverse functions and the horizontal line test;

• composition of functions;

• odd and even functions;

• graphs of linear functions and polynomials in general, as well as a brief
survey of graphs of rational functions, exponentials, and logarithms; and

• how to deal with absolute values.

Trigonometric functions, or trig functions for short, are dealt with in the next
chapter. So, let’s kick off with a review of what a function actually is.

1.1 Functions

A function is a rule for transforming an object into another object. The
object you start with is called the input , and comes from some set called the
domain. What you get back is called the output ; it comes from some set
called the codomain.

Here are some examples of functions:

• Suppose you write f(x) = x2. You have just defined a function f which
transforms any number into its square. Since you didn’t say what the
domain or codomain are, it’s assumed that they are both R, the set of all
real numbers. So you can square any real number, and get a real number
back. For example, f transforms 2 into 4; it transforms −1/2 into 1/4;
and it transforms 1 into 1. This last one isn’t much of a change at all, but
that’s no problem: the transformed object doesn’t have to be different
from the original one. When you write f(2) = 4, what you really mean
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is that f transforms 2 into 4. By the way, f is the transformation
rule, while f(x) is the result of applying the transformation rule to the
variable x. So it’s technically not correct to say “f(x) is a function”; it
should be “f is a function.”

• Now, let g(x) = x2 with domain consisting only of numbers greater than
or equal to 0. (Such numbers are called nonnegative.) This seems like
the same function as f , but it’s not: the domains are different. For
example, f(−1/2) = 1/4, but g(−1/2) isn’t defined. The function g just
chokes on anything not in the domain, refusing even to touch it. Since
g and f have the same rule, but the domain of g is smaller than the
domain of f , we say that g is formed by restricting the domain of f .

• Still letting f(x) = x2, what do you make of f(horse)? Obviously this is
undefined, since you can’t square a horse. On the other hand, let’s set

h(x) = number of legs x has,

where the domain of h is the set of all animals. So h(horse) = 4, while
h(ant) = 6 and h(salmon) = 0. The codomain could be the set of
all nonnegative integers, since animals don’t have negative or fractional
numbers of legs. By the way, what is h(2)? This isn’t defined, of course,
since 2 isn’t in the domain. How many legs does a “2” have, after
all? The question doesn’t really make sense. You might also think that
h(chair) = 4, since most chairs have four legs, but that doesn’t work
either, since a chair isn’t an animal, and so “chair” is not in the domain
of h. That is, h(chair) is undefined.

• Suppose you have a dog called Junkster. Unfortunately, poor Junkster
has indigestion. He eats something, then chews on it for a while and
tries to digest it, fails, and hurls. Junkster has transformed the food
into . . . something else altogether. We could let

j(x) = color of barf when Junkster eats x,

where the domain of j is the set of foods that Junkster will eat. The
codomain is the set of all colors. For this to work, we have to be confident
that whenever Junkster eats a taco, his barf is always the same color
(say, red). If it’s sometimes red and sometimes green, that’s no good: a
function must assign a unique output for each valid input.

Now we have to look at the concept of the range of a function. The range is
the set of all outputs that could possibly occur. You can think of the function
working on transforming everything in the domain, one object at a time; the
collection of transformed objects is the range. You might get duplicates, but
that’s OK.

So why isn’t the range the same thing as the codomain? Well, the range
is actually a subset of the codomain. The codomain is a set of possible
outputs, while the range is the set of actual outputs. Here are the ranges of
the functions we looked at above:
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• If f(x) = x2 with domain R and codomain R, the range is the set of
nonnegative numbers. After all, when you square a number, the result
cannot be negative. How do you know the range is all the nonnegative
numbers? Well, if you square every number, you definitely cover all
nonnegative numbers. For example, you get 2 by squaring

√
2 (or −

√
2).

• If g(x) = x2, where the domain of g is only the nonnegative numbers
but the codomain is still all of R, the range will again be the set of
nonnegative numbers. When you square every nonnegative number, you
still cover all the nonnegative numbers.

• If h(x) is the number of legs the animal x has, then the range is all
the possible numbers of legs that any animal can have. I can think of
animals that have 0, 2, 4, 6, and 8 legs, as well as some creepy-crawlies
with more legs. If you include individual animals which have lost one or
more legs, you can also include 1, 3, 5, and 7 in the mix, as well as other
possibilities. In any case, the range of this function isn’t so clear-cut;
you probably have to be a biologist to know the real answer.

• Finally, if j(x) is the color of Junkster’s barf when he eats x, then the
range consists of all possible barf-colors. I dread to think what these
are, but probably bright blue isn’t among them.

1.1.1 Interval notation

In the rest of this book, our functions will always have codomain R, and the
domain will always be as much of R as possible (unless stated otherwise).
So we’ll often be dealing with subsets of the real line, especially connected
intervals such as {x : 2 ≤ x < 5}. It’s a bit of a pain to write out the full set
notation like this, but it sure beats having to say “all the numbers between 2
and 5, including 2 but not 5.” We can do even better using interval notation.

We’ll write [a, b] to mean the set of all numbers between a and b, including
a and b themselves. So [a, b] means the set of all x such that a ≤ x ≤ b. For
example, [2, 5] is the set of all real numbers between 2 and 5, including 2 and
5. (It’s not just the set consisting of 2, 3, 4, and 5: don’t forget that there are
loads of fractions and irrational numbers between 2 and 5, such as 5/2,

√
7,

and π.) An interval such as [a, b] is called closed.
If you don’t want the endpoints, change the square brackets to parentheses.

In particular, (a, b) is the set of all numbers between a and b, not including a
or b. So if x is in the interval (a, b), we know that a < x < b. The set (2, 5)
includes all real numbers between 2 and 5, but not 2 or 5. An interval of the
form (a, b) is called open.

You can mix and match: [a, b) consists of all numbers between a and b,
including a but not b. And (a, b] includes b but not a. These intervals are
closed at one end and open at the other. Sometimes such intervals are called
half-open. An example is the set {x : 2 ≤ x < 5} from above, which can also
be written as [2, 5).

There’s also the useful notation (a,∞) for all the numbers greater than a
not including a; [a,∞) is the same thing but with a included. There are three
other possibilities which involve −∞; all in all, the situation looks like this:
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1.1.2 Finding the domain

Sometimes the definition of a function will include the domain. (This was
the case, for example, with our function g from Section 1.1 above.) Most of
the time, however, the domain is not provided. The basic convention is that
the domain consists of as much of the set of real numbers as possible. For
example, if k(x) =

√
x, the domain can’t be all of R, since you can’t take the

square root of a negative number. The domain must be [0,∞), which is just
the set of all numbers greater than or equal to 0.

OK, so square roots of negative numbers are bad. What else can cause a
screw-up? Here’s a list of the three most common possibilities:
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a
b 1. The denominator of a fraction can’t be zero.

2. You can’t take the square root (or fourth root, sixth root, and so on) of
a negative number.

3. You can’t take the logarithm of a negative number or of 0. (Remember
logs? If not, see Chapter 9!)

You might recall that tan(90◦) is also a problem, but this is really a special
case of the first item above. You see,

tan(90◦) =
sin(90◦)

cos(90◦)
=

1

0
,

so the reason tan(90◦) is undefined is really that a hidden denominator is zero.
Here’s another example: if we try to define
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f(x) =
log10(x + 8)

√
26− 2x

(x− 2)(x + 19)
,

then what is the domain of f? Well, for f(x) to make sense, here’s what needs
to happen:

• We need to take the square root of (26−2x), so this quantity had better
be nonnegative. That is, 26− 2x ≥ 0. This can be rewritten as x ≤ 13.
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• We also need to take the logarithm of (x + 8), so this quantity needs to
be positive. (Notice the difference between logs and square roots: you
can take the square root of 0, but you can’t take the log of 0.) Anyway,
we need x + 8 > 0, so x > −8. So far, we know that −8 < x ≤ 13, so
the domain is at most (−8, 13].

• The denominator can’t be 0; this means that (x−2) 6= 0 and (x+19) 6= 0.
In other words, x 6= 2 and x 6= −19. This last one isn’t a problem, since
we already know that x lies in (−8, 13], so x can’t possibly be −19. We
do have to exclude 2, though.

So we have found that the domain is the set (−8, 13] except for the number
2. This set could be written as (−8, 13]\{2}. Here the backslash means “not
including.”

1.1.3 Finding the range using the graph

Let’s define a new function F by specifying that its domain is [−2, 1] and that
F (x) = x2 on this domain. (Remember, the codomain of any function we
look at will always be the set of all real numbers.) Is F the same function as
f , where f(x) = x2 for all real numbers x? The answer is no, since the two
functions have different domains (even though they have the same rule). As
in the case of the function g from Section 1.1 above, the function F is formed
by restricting the domain of f .

Now, what is the range of F ? Well, what happens if you square every
number between −2 and 1 inclusive? You should be able to work this out
directly, but this is a good opportunity to see how to use a graph to find the
range of a function. The idea is to sketch the graph of the function, then
imagine two rows of lights shining from the far left and far right of the graph
horizontally toward the y-axis. The curve will cast two shadows, one on the
left side and one on the right side of the y-axis. The range is the union of
both shadows: that is, if any point on the y-axis lies in either the left-hand or
the right-hand shadow, it is in the range of the function. Let’s see how this
works with our function F :
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The left-hand shadow covers all the points on the y-axis between 0 and 4
inclusive, which is [0, 4]; on the other hand, the right-hand shadow covers
the points between 0 and 1 inclusive, which is [0, 1]. The right-hand shadow
doesn’t contribute anything extra: the total coverage is still [0, 4]. This is the
range of F .

1.1.4 The vertical line test

In the last section, we used the graph of a function to find its range. The graph
of a function is very important: it really shows you what the function “looks
like.” We’ll be looking at techniques for sketching graphs in Chapter 12, but
for now I’d like to remind you about the vertical line test.

You can draw any figure you like on a coordinate plane, but the result
may not be the graph of a function. So what’s special about the graph of a
function? What is the graph of a function f , anyway? Well, it’s the collection
of all points with coordinates (x, f(x)), where x is in the domain of f . Here’s
another way of looking at this: start with some number x. If x is in the
domain, you plot the point (x, f(x)), which of course is at a height of f(x)
units above the point x on the x-axis. If x isn’t in the domain, you don’t plot
anything. Now repeat for every real number x to build up the graph.

Here’s the key idea: you can’t have two points with the same x-coordinate.
In other words, no two points on the graph can lie on the same vertical line.
Otherwise, how would you know which of the two or more heights above the
point x on the x-axis corresponds to the value of f(x)? So, this leads us to
the vertical line test : if you have some graph and you want to know whether
it’s the graph of a function, see whether any vertical line intersects the graph
more than once. If so, it’s not the graph of a function; but if no vertical line
intersects the graph more than once, you are indeed dealing with the graph
of a function. For example, the circle of radius 3 units centered at the origin
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−2 has a graph like this:
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Such a commonplace object should be a function, right? No, check the vertical
lines that are shown in the diagram. Sure, to the left of −3 or to the right
of 3, there’s no problem—the vertical lines don’t even hit the graph, which is
fine. Even at −3 or 3, the vertical lines only intersect the curve in one point
each, which is also fine. The problem is when x is in the interval (−3, 3). For
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any of these values of x, the vertical line through (x, 0) intersects the circle
twice, which screws up the circle’s potential function-status. You just don’t
know whether f(x) is the top point or the bottom point.

The best way to salvage the situation is to chop the circle in half hori-
zontally and choose only the top or the bottom half. The equation for the
whole circle is x2 + y2 = 9, whereas the equation for the top semicircle is
y =
√

9− x2. The bottom semicircle has equation y = −
√

9− x2. These last
two are functions, both with domain [−3, 3]. If you felt like chopping in a
different way, you wouldn’t actually have to take semicircles—you could chop
and change between the upper and lower semicircles, as long as you don’t vi-
olate the vertical line test. For example, here’s the graph of a function which
also has domain [−3, 3]:
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The vertical line test checks out, so this is indeed the graph of a function.

1.2 Inverse Functions

Let’s say you have a function f . You present it with an input x; provided that
x is in the domain of f , you get back an output, which we call f(x). Now we
try to do things all backward and ask this question: if you pick a number y,
what input can you give to f in order to get back y as your output?

Here’s how to state the problem in math-speak: given a number y, what
x in the domain of f satisfies f(x) = y? The first thing to notice is that y
has to be in the range of f . Otherwise, by definition there are no values of
x such that f(x) = y. There would be nothing in the domain that f would
transform into y, since the range is all the possible outputs.

On the other hand, if y is in the range, there might be many values that
work. For example, if f(x) = x2 (with domain R), and we ask what value
of x transforms into 64, there are obviously two values of x: 8 and −8. On
the other hand, if g(x) = x3, and we ask the same question, there’s only one
value of x, which is 4. The same would be true for any number we give to g
to transform, because any number has only one (real) cube root.

So, here’s the situation: we’re given a function f , and we pick y in the range
of f . Ideally, there will be exactly one value of x which satisfies f(x) = y.
If this is true for every value of y in the range, then we can define a new
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function which reverses the transformation. Starting with the output y, the
new function finds the one and only input x which leads to the output. The
new function is called the inverse function of f , and is written as f−1. Here’s
a summary of the situation in mathematical language:

1. Start with a function f such that for any y in the range of f , there is
exactly one number x such that f(x) = y. That is, different inputs give
different outputs. Now we will define the inverse function f−1.

2. The domain of f−1 is the same as the range of f .

3. The range of f−1 is the same as the domain of f .

4. The value of f−1(y) is the number x such that f(x) = y. So,

if f(x) = y, then f−1(y) = x.

The transformation f−1 acts like an undo button for f : if you start with x
and transform it into y using the function f , then you can undo the effect of
the transformation by using the inverse function f−1 on y to get x back.

This raises some questions: how do you see if there’s only one value of x
that satisfies the equation f(x) = y? If so, how do you find the inverse, and
what does its graph look like? If not, how do you salvage the situation? We’ll
answer these questions in the next three sections.

1.2.1 The horizontal line test

For the first question—how to see that there’s only one value of x that works
for any y in the range—perhaps the best way is to look at the graph of your
function. We want to pick y in the range of f and hopefully only have one value
of x such that f(x) = y. What this means is that the horizontal line through
the point (0, y) should intersect the graph exactly once, at some point (x, y).
That x is the one we want. If the horizontal line intersects the curve more
than once, there would be multiple potential inverses x, which is bad. In that
case, the only way to get an inverse function is to restrict the domain; we’ll
come back to this very shortly. What if the horizontal line doesn’t intersect
the curve at all? Then y isn’t in the range after all, which is OK.

So, we have just described the horizontal line test : if every horizontal line
intersects the graph of a function at most once, the function has an inverse.
If even one horizontal line intersects the graph more than once, there isn’t an
inverse function. For example, look at the graphs of f(x) = x3 and g(x) = x2:
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g(x) = x2f(x) = x3
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No horizontal line hits y = f(x) more than once, so f has an inverse. On the
other hand, some of the horizontal lines hit the curve y = g(x) twice, so g
has no inverse. Here’s the problem: if you want to solve y = x2 for x, where
y is positive, then there are two solutions, x =

√
y and x = −√y. You don’t

know which one to take!

1.2.2 Finding the inverse

Now let’s move on to the second of our questions: how do you find the inverse
of a function f? Well, you write down y = f(x) and try to solve for x. In
our example of f(x) = x3, we have y = x3, so x = 3

√
y. This means that

f−1(y) = 3
√

y. If the variable y here offends you, by all means switch it to
x: you can write f−1(x) = 3

√
x if you prefer. Of course, solving for x is not

always easy and in fact is often impossible. On the other hand, if you know
what the graph of your function looks like, the graph of the inverse function
is easy to find. The idea is to draw the line y = x on the graph, then pretend
that this line is a two-sided mirror. The inverse function is the reflection of
the original function in this mirror. When f(x) = x3, here’s what f−1 looks
like:
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f−1(x) = 3
√

x

The original function f is reflected in the mirror y = x to get the inverse
function. Note that the domain and range of both f and f−1 are the whole
real line.

1.2.3 Restricting the domain

Finally, we’ll address our third question: if the horizontal line test fails and
there’s no inverse, what can be done? Our problem is that there are multiple
values of x that give the same y. The only way to get around the problem
is to throw away all but one of these values of x. That is, we have to decide
which one of our values of x we want to keep, and throw the rest away. As we
saw in Section 1.1 above, this is called restricting the domain of our function.
Effectively, we ghost out part of the curve so that what’s left no longer fails
the horizontal line test. For example, if g(x) = x2, we can ghost out the left
half of the graph like this:
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The new (unghosted) curve has the reduced domain [0,∞) and satisfies the
horizontal line test, so there is an inverse function. More precisely, the function
h, which has domain [0,∞) and is defined by h(x) = x2 on this domain, has
an inverse. Let’s play the reflection game to see what it looks like:
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To find the equation of the inverse, we have to solve for x in the equation
y = x2. Clearly the solution is x =

√
y or x = −√y, but which one do we

need? We know that the range of the inverse function is the same as the
domain of the original function, which we have restricted to be [0,∞). So
we need a nonnegative number as our answer, and that has to be x =

√
y.

That is, h−1(y) =
√

y. Of course, we could have ghosted out the right half of
the original graph to restrict the domain to (−∞, 0]. In that case, we’d get a
function j which has domain (−∞, 0] and again satisfies j(x) = x2, but only
on this domain. This function also has an inverse, but the inverse is now the
negative square root: j−1(y) = −√y.

By the way, if you take the original function g given by g(x) = x2 with
domain (−∞,∞), which fails the horizontal line test, and try to reflect it in
the mirror y = x, you get the following picture:
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Notice that the graph fails the vertical line test, so it’s not the graph of a
function. This illustrates the connection between the vertical and horizontal
line tests—when horizontal lines are reflected in the mirror y = x, they become
vertical lines.

1.2.4 Inverses of inverse functions

One more thing about inverse functions: if f has an inverse, it’s true that
f−1(f(x)) = x for all x in the domain of f , and also that f(f−1(y)) = y for
all y in the range of f . (Remember, the range of f is the same as the domain
of f−1, so you can indeed take f−1(y) for y in the range of f without causing
any screwups.)

For example, if f(x) = x3, then f has an inverse given by f−1(x) = 3
√

x,
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y = h−1(x) and so f−1(f(x)) =

3
√

x3 = x for any x. Remember, the inverse function is
like an undo button. We use x as an input to f , and then give the output to
f−1; this undoes the transformation and gives us back x, the original number.
Similarly, f(f−1(y)) = ( 3

√
y)3 = y. So f−1 is the inverse function of f , and

f is the inverse function of f−1. In other words, the inverse of the inverse is
the original function.

Now, you have to be careful in the case where you restrict the domain. Let
g(x) = x2; we’ve seen that you need to restrict the domain to get an inverse.
Let’s say we restrict the domain to [0,∞) and carelessly continue to refer to
the function as g instead of h, as in the previous section. We would then say
that g−1(x) =

√
x. If you calculate g(g−1(x)), you find that this is (

√
x)2,

which equals x, provided that x ≥ 0. (Otherwise you can’t take the square
root in the first place.)

On the other hand, if you work out g−1(g(x)), you get
√

x2, which is not
always the same thing as x. For example, if x = −2, then x2 = 4 and so√

x2 =
√

4 = 2. So it’s not true in general that g−1(g(x)) = x. The problem
is that −2 isn’t in the restricted-domain version of g. Technically, you can’t
even compute g(−2), since −2 is no longer in the domain of g. We really
should be working with h, not g, so that we remember to be more careful.
Nevertheless, in practice, mathematicians will often restrict the domain with-
out changing letters! So it will be useful to summarize the situation as follows:

If the domain of a function f can be restricted so that f has an inverse
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y = h−1(x) f−1, then

• f(f−1(y)) = y for all y in the range of f ; but

• f−1(f(x)) may not equal x; in fact, f−1(f(x)) = x only when x is in
the restricted domain.

We’ll be revisiting these important points in the context of inverse trig func-
tions in Section 10.2.6 of Chapter 10.

1.3 Composition of Functions

Let’s say we have a function g given by g(x) = x2. You can replace x by
anything you like, as long as it makes sense. For example, you can write
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g(y) = y2, or g(x + 5) = (x + 5)2. This last example shows that you need to
be very careful with parentheses. It would be wrong to write g(x+5) = x+52,
since this is just x + 25, which is not the same thing as (x + 5)2. If in doubt,
use parentheses. That is, if you need to write out f(something), replace every
instance of x by (something), making sure to include the parentheses. Just
about the only time you don’t need to use parentheses is when the function is
an exponential function—for example, if h(x) = 3x, then you can just write

h(x2 + 6) = 3x2+6. You don’t need parentheses since you’re already writing
the x2 + 6 as a superscript.

Now consider the function f defined by f(x) = cos(x2). If I give you a
number x, how do you compute f(x)? Well, first you square it, then you take
the cosine of the result. Since we can decompose the action of f(x) into these
two separate actions which are performed one after the other, we might as
well describe those actions as functions themselves. So, let g(x) = x2 and
h(x) = cos(x). To simulate what f does when you use x as an input, you
could first give x to g to square it, and then instead of taking the result back
you could ask g to give its result to h instead. Then h spits out a number,
which is the final answer. The answer will, of course, be the cosine of what
came out of g, which was the square of the original x. This behavior exactly
mimics f , so we can write f(x) = h(g(x)). Another way of expressing this is
to write f = h ◦ g; here the circle means “composed with.” That is, f is h
composed with g, or in other words, f is the composition of h and g. What’s
tricky is that you write h before g (reading from left to right as usual!) but
you apply g first. I agree that it’s confusing, but what can I say—you just
have to deal with it.

It’s useful to practice composing two or more functions together. For
example, if g(x) = 2x, h(x) = 5x4, and j(x) = 2x − 1, what is a formula for
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y = h−1(x) the function f = g ◦ h ◦ j? Well, just replace one thing at a time, starting

with j, then h, then g. So:

f(x) = g(h(j(x))) = g(h(2x− 1)) = g(5(2x− 1)4) = 25(2x−1)4 .

You should also practice reversing the process. For example, suppose you
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y = h−1(x) start off with

f(x) =
1

tan(5 log2(x + 3))
.

How would you decompose f into simpler functions? Zoom in to where you
see the quantity x. The first thing you do is add 3, so let g(x) = x + 3.
Then you have to take the base 2 logarithm of the resulting quantity, so set
h(x) = log2(x). Next, multiply by 5, so set j(x) = 5x. Then take the tangent,
so put k(x) = tan(x). Finally, take reciprocals, so let m(x) = 1/x. With all
these definitions, you should check that

f(x) = m(k(j(h(g(x))))).

Using the composition notation, you can write

f = m ◦ k ◦ j ◦ h ◦ g.
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This isn’t the only way to break down f . For example, we could have combined
h and j into another function n, where n(x) = 5 log2(x). Then you should
check that n = j ◦ h, and

f = m ◦ k ◦ n ◦ g.

Perhaps the original decomposition (involving j and h) is better because it
breaks down f into more elementary steps, but the second one (involving n)
isn’t wrong. After all, n(x) = 5 log2(x) is still a pretty simple function of x.

Beware: composition of functions isn’t the same thing as multiplying them
together. For example, if f(x) = x2 sin(x), then f is not the composition of
two functions. To calculate f(x) for any given x, you actually have to find
both x2 and sin(x) (it doesn’t matter which one you find first, unlike with
composition) and then multiply these two things together. If g(x) = x2 and
h(x) = sin(x), then we’d write f(x) = g(x)h(x), or f = gh. Compare this to
the composition of the two functions, j = g ◦ h, which is given by

j(x) = g(h(x)) = g(sin(x)) = (sin(x))2

or simply j(x) = sin2(x). The function j is a completely different function
from the product x2 sin(x). It’s also different from the function k = h ◦ g,
which is also a composition of g and h but in the other order:

k(x) = h(g(x)) = h(x2) = sin(x2).

This is yet another completely different function. The moral of the story is
that products and compositions are not the same thing, and furthermore, the
order of the functions matters when you compose them, but not when you
multiply them together.

One simple but important example of composition of functions occurs
when you compose some function f with g(x) = x − a, where a is some
constant number. You end up with a new function h given by h(x) = f(x−a).
A useful point to note is that the graph of y = h(x) is the same as the graph
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y = h−1(x) of y = f(x), except that it’s shifted over a units to the right. If a is negative,

then the shift is to the left. (The way to think of this, for example, is that a
shift of −3 units to the right is the same as a shift of 3 units to the left.) So,
how would you sketch the graph of y = (x− 1)2? This is the same as y = x2,
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y = h−1(x) but with x replaced by x − 1. So the graph of y = x2 needs to be shifted to

the right by 1 unit, and looks like this:
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Similarly, the graph of y = (x + 2)2 is the graph of y = x2 shifted to the left
by 2 units, since you can interpret (x + 2) as (x− (−2)).

1.4 Odd and Even Functions

Some functions have some symmetry properties that make them easier to deal
with. Consider the function f given by f(x) = x2. Pick any positive number
you like (I’ll choose 3) and hit it with f (I get 9). Now take the negative of
that number, −3 in my case, and hit that with f (I get 9 again). You should
get the same answer both times, as I did, regardless of which number you
chose. You can express this phenomenon by writing f(−x) = f(x) for all x.
That is, if you give x to f as an input, you get back the same answer as if
you used the input −x instead. Notice that g(x) = x4 and h(x) = x6 also
have this property—in fact, j(x) = xn, where n is any even number (n could
in fact be negative), has the same property. Inspired by this, we say that a
function f is even if f(−x) = f(x) for all x in the domain of f . It’s not good
enough for this equation to be true for some values of x; it has to be true for
all x in the domain of f .

Now, let’s say we play the same game with f(x) = x3. Take your favorite
positive number (I’ll stick with 3) and hit that with f (I get 27). Now try
again with the negative of your number, −3 in my case; I get −27, and you
should also get the negative of what you got before. You can express this
mathematically as f(−x) = −f(x). Once again, the same property holds for
j(x) = xn when n is any odd number (and once again, n could be negative).
So, we say that a function f is odd if f(−x) = −f(x) for all x in the domain
of f .

In general, a function might be odd, it might be even, or it might be
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−1 neither odd nor even. Don’t forget this last point! Most functions are neither
odd nor even. On the other hand, there’s only one function that’s both odd
and even, which is the rather boring function given by f(x) = 0 for all x (we’ll
call this the “zero function”). Why is this the only odd and even function?
Let’s convince ourselves. If the function f is even, then f(−x) = f(x) for
all x. But if it’s also odd, then f(−x) = −f(x) for all x. Take the first of
these equations and subtract the second from it. You should get 0 = 2f(x),
which means that f(x) = 0. This is true for all x, so the function f must
just be the zero function. One other nice observation is that if a function
f is odd, and the number 0 is in its domain, then f(0) = 0. Why is it so?
Because f(−x) = −f(x) is true for all x in the domain of f , so let’s try it for
x = 0. You get f(−0) = −f(0). But −0 is the same thing as 0, so we have
f(0) = −f(0). This simplifies to 2f(0) = 0, or f(0) = 0 as claimed.

Anyway, starting with a function f , how can you tell if it is odd, even, or
neither? And so what if it is odd or even anyway? Let’s look at this second
question before coming back to the first one. One nice thing about knowing
that a function is odd or even is that it’s easier to graph the function. In fact,
if you can graph the right-hand half of the function, the left-hand half is a
piece of cake! Let’s say that f is an even function. Then since f(x) = f(−x),
the graph of y = f(x) is at the same height above the x-coordinates x and
−x. This is true for all x, so the situation looks something like this:
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We can conclude that the graph of an even function has mirror sym-
metry about the y-axis. So, if you graph the right half of a function which
you know is even, you can get the left half by reflecting the right half about
the y-axis. Check the graph of y = x2 to make sure that it has this mirror
symmetry.

On the other hand, let’s say that f is an odd function. Since we have
f(−x) = −f(x), the graph of y = f(x) is at the same height above the
x-coordinate x as it is below the x-coordinate −x. (Of course, if f(x) is
negative, then you have to switch the words “above” and “below.”) In any
case, the picture looks like this:

swq
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The symmetry is now a point symmetry about the origin. That is, the graph
of an odd function has 180◦ point symmetry about the origin. This
means that if you only have the right half of a function which you know is
odd, you can get the left half as follows. Pretend that the curve is sitting
on top of the paper, so you can pick it up if you like but you can’t change
its shape. Instead of picking it up, put a pin through the curve at the origin
(remember, odd functions must pass through the origin if they are defined at
0) and then spin the whole curve around half a revolution. This is what the
left-hand half of the graph looks like. (This doesn’t work so well if the curve
isn’t continuous, that is, if the curve isn’t all in one piece!) Check to see that
the above graph and also the graph of y = x3 have this symmetry.

Now, suppose f is defined by the equation f(x) = log5(2x6−6x2+3). How

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs do you tell if f is odd, even, or neither? The technique is to calculate f(−x)
by replacing every instance of x with (−x), making sure not to forget the
parentheses around −x, and then simplifying the result. If you end up with
the original expression f(x), then f is even; if you end up with the negative of
the original expression f(−x), then f is odd; if you end up with a mess that
isn’t either f(x) or −f(x), then f is neither (or you didn’t simplify enough!).
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In the example above, you’d write

f(−x) = log5(2(−x)6 − 6(−x)2 + 3) = log5(2x6 − 6x2 + 3),

which is actually equal to the original f(x). So the function f is even. How
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g(x) =
2x3 + x

3x2 + 5
and h(x) =

2x3 + x− 1

3x2 + 5
?

Well, for g, we have

g(−x) =
2(−x)3 + (−x)

3(−x)2 + 5
=
−2x3 − x

3x2 + 5
.

Now you have to observe that you can take the minus sign out front and write

g(−x) = −2x3 + x

3x2 + 5
,

which, you notice, is equal to −g(x). That is, apart from the minus sign, we
get the original function back. So, g is an odd function. How about h? We
have

h(−x) =
2(−x)3 + (−x)− 1

3(−x)2 + 5
=
−2x3 − x− 1

3x2 + 5
.

Once again, we take out the minus sign to get

h(−x) = −2x3 + x + 1

3x2 + 5
.

Hmm, this doesn’t appear to be the negative of the original function, because
of the +1 term in the numerator. It’s not the original function either, so the
function h is neither odd nor even.

Let’s look at one more example. Suppose you want to prove that the
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opposite signs product of two odd functions is always an even function. How would you go
about doing this? Well, it helps to have names for things, so let’s say we have
two odd functions f and g. We need to look at the product of these functions,
so let’s call the product h. That is, we define h(x) = f(x)g(x). So, our task is
to show that h is even. We’ll do this by showing that h(−x) = h(x), as usual.
It will be helpful to note that f(−x) = −f(x) and g(−x) = −g(x), since f
and g are odd. Let’s start with h(−x). Since h is the product of f and g, we
have h(−x) = f(−x)g(−x). Now we use the oddness of f and g to express
this last term as (−f(x)) (−g(x)). The minus signs now come out front and
cancel out, so this is the same thing as f(x)g(x) which of course equals h(x).
We could (and should) express all this text mathematically like this:

h(−x) = f(−x)g(−x) = (−f(x)) (−g(x)) = f(x)g(x) = h(x).

Anyway, since h(−x) = h(x), the function h is even. Now you should try to
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opposite signs prove that the product of two even functions is always even, and also that the
product of an odd and an even function must be odd. Go on, do it now!
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1.5 Graphs of Linear Functions

Functions of the form f(x) = mx + b are called linear. There’s a good reason
for this: the graphs of these functions are lines. (As far as we’re concerned,
the word “line” always means “straight line.”) The slope of the line is given
by m. Imagine for a moment that you are in the page, climbing the line as
if it were a mountain. You start at the left side of the page and head to the
right, like this:
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If the slope m is positive, as it is in the above picture, then you are heading
uphill. The bigger m is, the steeper the climb. On the other hand, if the
slope is negative, then you are heading downhill. The more negative the
slope, the steeper the downhill grade. If the slope is zero, then the line is flat,
or horizontal—you’re going neither uphill nor downhill, just trudging along a
flat line.

To sketch the graph of a linear function, you only need to identify two
points on the graph. This is because there’s only one line that goes through
two different points. You just put your ruler on the points and draw the line.
One point is easy to find, namely, the y-intercept. Set x = 0 in the equation
y = mx + b, and you see that y = m × 0 + b = b. That is, the y-intercept is
equal to b, so the line goes through (0, b). To find another point, you could
find the x-intercept by setting y = 0 and finding what x is. This works pretty
well except in two cases. The first case is when b = 0, in which case we are
just dealing with y = mx. This goes through the origin, so the x-intercept
and the y-intercept are both zero. To get another point, you’ll just have to
substitute in x = 1 and see that y = m. So, the line y = mx goes through
the origin and (1, m). For example, the line y = −2x goes through the origin
and also through (1,−2), so it looks like this:
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The other bad case is when m = 0. But then we just have y = b, which is a
horizontal line through (0, b).

For a more interesting example, consider y = 1
2x − 1. The y-intercept is
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1 −1, and the slope is 1
2 . To sketch the line, find the x-intercept by setting

y = 0. We get 0 = 1
2x − 1, which simplifies to x = 2. So, the line looks like

this:
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Now, let’s suppose you know that you have a line in the plane, but you don’t
know its equation. If you know it goes through a certain point, and you know
what its slope is, then you can find the equation of the line. You really, really,
really need to know how to do this, since it comes up a lot. This formula,
called the point-slope form of a linear function, is what you need to know:

If a line goes through (x0, y0) and has slope m,
then its equation is y − y0 = m(x− x0).

For example, what is the equation of the line through (−2, 5) which has slope
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−1 −3? It is y − 5 = −3(x− (−2)), which you can expand and simplify down to

y = −3x− 1.
Sometimes you don’t know the slope of the line, but you do know two

points that it goes through. How do you find the equation? The technique
is to find the slope, then use the previous idea with one of the points (your
choice) to find the equation. First, you need to know this:

If a line goes through (x1, y1) and (x2, y2), its slope is equal to
y2 − y1

x2 − x1
.

So, what is the equation of the line through (−3, 4) and (2,−6)? Let’s find
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slope =
−6− 4

2− (−3)
=
−10

5
= −2.

We now know that the line goes through (−3, 4) and has slope −2, so its
equation is y− 4 = −2(x− (−3)), or after simplifying, y = −2x− 2. Alterna-
tively, we could have used the other point (2,−6) with slope −2 to see that the
equation of the line is y− (−6) = −2(x− 2), which simplifies to y = −2x− 2.
Thankfully this is the same equation as before—it doesn’t matter which point
you pick, as long as you have used both points to find the slope.
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1.6 Common Functions and Graphs

Here are the most important functions you should know about.

1. Polynomials: these are functions built out of nonnegative integer powers
of x. You start with the building blocks 1, x, x2, x3, and so on, and you are
allowed to multiply these basic functions by numbers and add a finite number
of them together. For example, the polynomial f(x) = 5x4−4x3+10 is formed
by taking 5 times the building block x4, and −4 times the building block x3,
and 10 times the building block 1, and adding them together. You might
also want to include the intermediate building blocks x2 and x, but since they
don’t appear, you need to take 0 times of each. The amount that you multiply
the building block xn by is called the coefficient of xn. For example, in the
polynomial f above, the coefficient of x4 is 5, the coefficient of x3 is −4, the
coefficients of x2 and x are both 0, and the coefficient of 1 is 10. (Why allow
x and 1, by the way? They seem different from the other blocks, but they’re
not really: x = x1 and 1 = x0.) The highest number n such that xn has a
nonzero coefficient is called the degree of the polynomial. For example, the
degree of the above polynomial f is 4, since no power of x greater than 4 is
present. The mathematical way to write a general polynomial of degree n is

p(x) = anxn + an−1x
n−1 + · · ·+ a2x

2 + a1x + a0,

where an is the coefficient of xn, an−1 is the coefficient of xn−1, and so on
down to a0, which is the coefficient of 1.

Since the functions xn are the building blocks of all polynomials, you
should know what their graphs look like. The even powers mostly look similar
to each other, and the same can be said for the odd powers. Here’s what the
graphs look like, from x0 up to x7:
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Sketching the graphs of more general polynomials is more difficult. Even find-
ing the x-intercepts is often impossible unless the polynomial is very simple.
There is one aspect of the graph that is fairly straightforward, which is what
happens at the far left and right sides of the graph. This is determined by
the so-called leading coefficient, which is the coefficient of the highest-degree
term. This is basically the number an defined above. For example, in our
polynomial f(x) = 5x4 − 4x3 + 10 from above, the leading coefficient is 5. In
fact, it only matters whether the leading coefficient is positive or negative. It
also matters whether the degree of the polynomial is odd or even; so there are
four possibilities for what the edges of the graph can look like:
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n even, an > 0 n odd, an > 0 n even, an < 0 n odd, an < 0

The wiggles in the center of these diagrams aren’t relevant—they depend
on the other terms of the polynomial. The diagram is just supposed to show
what the graphs look like near the left and right edges. In this sense, the
graph of our polynomial f(x) = 5x4− 4x3 +10 looks like the leftmost picture
above, since n = 4 is even and an = 5 is positive.

Let’s spend a little time on degree 2 polynomials, which are called quadrat-

ics. Instead of writing p(x) = a2x
2+a1x+a0, it’s easier to write the coefficients

as a, b, and c, so we have p(x) = ax2 + bx + c. Quadratics have two, one,
or zero (real) roots, depending on the sign of the discriminant. The discrimi-
nant, which is often written as ∆, is given by ∆ = b2 − 4ac. There are three
possibilities. If ∆ > 0, then there are two roots; if ∆ = 0, there is one root,
which is called a double root ; and if ∆ < 0, then there are no roots. In the
first two cases, the roots are given by

−b±
√

b2 − 4ac

2a
.

Notice that the expression in the square root is just the discriminant. An im-
portant technique for dealing with quadratics is completing the square. Here’s
how it works. We’ll use the example of the quadratic 2x2 − 3x + 10. The
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2
−1 first step is to take out the leading coefficient as a factor. So our quadratic

becomes 2(x2 − 3
2x + 5). This reduces the situation to dealing with a monic

quadratic, which is a quadratic with leading coefficient equal to 1. So, let’s
worry about x2 − 3

2x + 5. The main technique now is to take the coefficient
of x, which in our example is − 3

2 , divide it by 2 to get − 3
4 , and square it. We

get 9
16 . We wish that the constant term were 9

16 instead of 5, so let’s do some
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mental gymnastics:

x2 − 3

2
x + 5 = x2 − 3

2
x +

9

16
+ 5− 9

16
.

Why on earth would we want to add and subtract 9
16? Because the first three

terms combine to form (x− 3
4 )2. So, we have

x2 − 3

2
x + 5 =

(
x2 − 3

2
x +

9

16

)
+ 5− 9

16
=

(
x− 3

4

)2
+ 5− 9

16
.

Now we just have to work out the last little bit, which is just arithmetic:
5− 9

16 = 71
16 . Putting it all together, and restoring the factor of 2, we have

2x2 − 3x + 10 = 2

(
x2 − 3

2
x + 5

)
= 2

((
x− 3

4

)2
+

71

16

)

= 2

(
x− 3

4

)2
+

71

8
.

It turns out that this is a much nicer form to deal with in a number of situa-
tions. Make sure you know how to complete the square, since we’ll be using
this technique a lot in Chapters 18 and 19.

2. Rational functions: these are functions of the form

p(x)

q(x)
,

where p and q are polynomials. Rational functions will pop up in many
different contexts, and the graphs can look very different depending on the
polynomials p and q. The simplest examples of rational functions are poly-
nomials themselves, which arise when q(x) is the constant polynomial 1. The
next simplest examples are the functions 1/xn, where n is a positive integer.
Let’s look at some of the graphs of these functions:
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The odd powers look similar to each other, and the even powers look
similar to each other. It’s worth knowing what these graphs look like.
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3. Exponentials and logarithms: you need to know what graphs of expo-
nentials look like. For example, here is y = 2x:
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The graph of y = bx for any other base b > 1 looks similar to this. Things
to notice are that the domain is the whole real line, the y-intercept is 1, the
range is (0,∞), and there is a horizontal asymptote on the left at y = 0.
In particular, the curve y = bx does not, I repeat, not touch the x-axis, no
matter what it looks like on your graphing calculator! (We’ll be looking at
asymptotes again in Chapter 3.) The graph of y = 2−x is just the reflection
of y = 2x in the y-axis:
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How about when the base is less than 1? For example, consider the graph of
y = ( 1

2 )x. Notice that ( 1
2 )x = 1/2x = 2−x, so the above graph of y = 2−x is

also the graph of y = ( 1
2 )x, since 2−x and ( 1

2 )x are equal for any x. The same
sort of thing happens for y = bx for any 0 < b < 1, not just b = 1

2 .

Now, notice that the graph of y = 2x satisfies the horizontal line test,
so there is an inverse function. This is in fact the base 2 logarithm, which is
written y = log2(x). Using the line y = x as a mirror, the graph of y = log2(x)
looks like this:
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The domain is (0,∞); note that this backs up what I said earlier about not
being able to take logarithms of a negative number or of 0. The range is all of
(−∞,∞), and there’s a vertical asymptote at x = 0. The graphs of log10(x),
and indeed logb(x) for any b > 1, are very similar to this one. The log func-
tion is very important in calculus, so you should really know how to draw the
above graph. We’ll look at other properties of logarithms in Chapter 9.

4. Trig functions: these are so important that the entire next chapter is
devoted to them.

5. Functions involving absolute values: let’s take a close look at the
absolute value function f given by f(x) = |x|. Here’s the definition of |x|:

|x| =
{

x if x ≥ 0,

−x if x < 0.

Another way of looking at |x| is that it is the distance between x and 0 on
the number line. More generally, you should learn this nice fact:

|x− y| is the distance between x and y on the number line.

For example, suppose that you need to identify the region |x− 1| ≤ 3 on the
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y = log2(x) number line. You can interpret the inequality as “the distance between x and
1 is less than or equal to 3.” That is, we are looking for all the points that
are no more than 3 units away from the number 1. So, let’s take a number
line and mark in the number 1 as follows:
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The points which are no more than 3 units away extend to −2 on the left and
4 on the right, so the region we want looks like this:
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So, the region |x− 1| ≤ 3 can also be described as [−2, 4].
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It’s also true that |x| =
√

x2. To check this, suppose that x ≥ 0; then√
x2 = x, no problem. If instead x < 0, then it can’t be true that

√
x2 = x,

since the left-hand side is positive but the right-hand side is negative. The
correct equation is

√
x2 = −x; now the right-hand side is positive, since it’s

minus a negative number. If you look back at the definition of |x|, you’ll see

that we have just proved that |x| =
√

x2. Even so, to deal with |x|, it’s much

better to use the piecewise definition than to write it as
√

x2.
Finally, let’s take a look at some graphs. If you know what the graph of a

function looks like, you can get the graph of the absolute value of that function
by reflecting everything below the x-axis up to above the x-axis, using the
x-axis as your mirror. For example, here’s the graph of y = |x|, which comes
from reflecting the bottom portion of y = x in the x-axis:
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How about the graph of y = |log2(x)|? Using the reflection of the graph of
y = log2(x) above, this is what the absolute value version looks like:
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Anyway, that’s all I have to say about functions, apart from trig functions
which are the subject of the next chapter. Hopefully you’ve seen a lot of the
stuff in this chapter before. Most of the material in this chapter is used over
and over again in calculus, so make sure you really get on top of it all as soon
as you can!



Chapter 2

Review of Trigonometry

To do calculus, you really need to know trigonometry. Truth be told, we won’t
see much trig at first, but when it comes, it doesn’t let up. So we might as
well do a thorough review of the most important aspects of trig:

• angles in radians and the basics of the trig functions;

• trig functions on the real line (not just angles between 0◦ and 90◦);

• graphs of trig functions; and

• trig identities.

Time to refresh your memory. . . .

2.1 The Basics

The first thing I want to remind you about is the notion of radians. Instead of
saying that there are 360 degrees in a full revolution, we’ll say that there are 2π
radians. This may seem a bit wacky, but there is a reason: the circumference
of a circle of radius 1 unit is 2π units. In fact, the arc length of a wedge of
this circle is exactly the angle of the wedge:
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θ radians

θ units

This picture is pretty and all, but the main thing is to be comfortable with
the most common angles in both degree and radian form. First, you should
become absolutely comfortable with the idea that 90◦ is the same as π/2
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radians, and similarly that 180◦ is the same as π radians and 270◦ is the same
as 3π/2 radians. Once you have that in mind, try to be comfortable converting
all the angles in the following picture back and forth between degrees and
radians:
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More generally, you can also use the formula

angle in radians =
π

180
× angle in degrees

if you need to. For example, to see what 5π/12 radians is in degrees, solve
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to see that 5π/12 radians is the same as (180/π) × (5π/12) = 75◦. In fact,
you can think of this conversion from radians to degrees as a sort of change
of units, like changing from miles to kilometers. The conversion factor is that
π radians is the same as 180 degrees.

We have only looked at angles so far, so let’s move on to trig functions.
Obviously you have to know how the trig functions are defined in terms of
triangles. Suppose you have a right-angled triangle and one of the angles,
other than the right angle, is labeled θ, like this:
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Then the basic formulas are

sin(θ) =
opposite

hypotenuse
, cos(θ) =

adjacent

hypotenuse
, and tan(θ) =

opposite

adjacent
.
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Of course, if the angle θ is moved, then the opposite and adjacent have to be
moved as well:
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The opposite is, unsurprisingly, opposite the angle θ and the adjacent is next
to it. The hypotenuse never changes, though: it is the longest side and is
always across from the right angle.

We’ll also be using the reciprocal functions csc, sec, and cot, which are
defined as follows:

csc(x) =
1

sin(x)
, sec(x) =

1

cos(x)
, and cot(x) =

1

tan(x)
.

Now, a piece of advice if you ever plan to take a calculus exam (or even
if you don’t!): learn the values of the trig functions at the common angles
0, π/6, π/4, π/3, and π/2. For example, without thinking, can you simplify
sin(π/3)? How about tan(π/4)? If you can’t, then at best you’re wasting
time trying to use a triangle to find the answer, and at worst you’re throwing
away easy points by not simplifying your answer all the way. The solution is
to memorize the following table:
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The star means that tan(π/2) is undefined. In fact, the tan function has a
vertical asymptote at π/2 (this will be clear from the graph, which we’ll look
at in Section 2.3 below). Anyway, you need to be able to quote any of the
entries in this table, both forward and backward! What this means is that
you have to be able to answer two types of questions. Here are examples of
each of these types:

1. What is sin(π/3)? (Using the table, the answer is
√

3/2.)

2. What angle between 0 and π/2 has a sine equal to
√

3/2? (The answer
is obviously π/3.)
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Of course, you have to be able to answer these two types of questions for each
entry in the table. Please, please, I beg of you, learn this table! Math isn’t
about memorization, but there are a few things that are worth memorizing
and this table is definitely on the list. So make flash cards, get your friends
to quiz you, spend one minute a day, whatever works for you, but learn the
table.

2.2 Extending the Domain of Trig Functions

The above table (did you learn it yet?) only covers some angles ranging from
0 to π/2. It’s possible to take sin or cos of any angle at all, even a negative
one. For tan, we have to be a little more careful—for example, we saw above
that tan(π/2) is undefined. Still, we’ll be able to take tan of just about every
angle, even most negative ones.

Let’s first look at angles between 0 and 2π (remember that 2π is the same
as 360◦). Suppose you want to calculate sin(θ) (or cos(θ), or tan(θ)), where
θ is between 0 and 2π. To see what this even means, start by drawing a
coordinate plane with some slightly weird labels:
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Notice that the axes divide the plane into four quadrants, which are creatively
labeled from 1 to 4 (in Roman numerals), and that the labeling goes coun-
terclockwise. These quadrants are called the first, second, third, and fourth
quadrants, respectively. The next step is to draw a ray (that’s half a line)
starting at the origin. Which ray? It depends on θ. Just imagine yourself
standing at the origin, looking to the right along the positive x-axis. Now
turn counterclockwise an angle of θ, then march forward in a straight line.
Your trail is the ray you’re looking for.

Now the other labels on the above picture (and the one on page 26) make
a lot of sense. Indeed, if you turn an angle of π/2, you are facing up the page
and you trace out the positive y-axis as you walk along. If you had instead
turned an angle of π, you’d get the negative x-axis; and if you had turned
3π/2, you’d get the negative y-axis. Finally, if you had turned 2π, that would
put you back to where you started, facing along the positive x-axis. It’s the
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same as if you hadn’t turned at all! That’s why the picture says 0 ≡ 2π. As
far as angles are concerned, 0 and 2π are equivalent.

OK, let’s take some angle θ and draw in the appropriate ray. Perhaps it
might be somewhere in the third quadrant, like this:
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θ

Notice that we label the ray as θ, not the angle itself. Anyway, now we pick
some point on the ray and drop a perpendicular from that point to the x-axis:
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We’re interested in three quantities: the x- and y-coordinates of the point
(which are called x and y, of course!) and also the distance from the point
to the origin, which is called r. Note that x and y could both potentially
be negative—in fact, they both are negative in the above picture—but r is
always positive, since it’s a distance. In fact, by Pythagoras’ Theorem, we
have r =

√
x2 + y2, regardless of the signs of x and y. (The squares kill off

any minus signs around.)
Armed with these three quantities, we can define the three trig functions

as follows:

sin(θ) =
y

r
, cos(θ) =

x

r
, and tan(θ) =

y

x
.
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These are just the regular formulas from Section 2.1 above, with the quantities
x, y, and r interpreted as the adjacent, opposite, and hypotenuse, respectively.
But wait, you say—what happens if you choose a different point on the ray?
It doesn’t matter, because your new triangle will be similar to the old one
and the above ratios are unaffected. In fact, it is often convenient to assume
that r = 1, so that the point (x, y) lies on the so-called unit circle (that’s the
circle of radius 1 centered at the origin).

Now let’s look at an example. Suppose we want to find sin(7π/6). Which
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r quadrant is 7π/6 in? We need to decide where 7π/6 fits in the list 0, π/2, π,
3π/2, 2π. In fact, 7/6 is greater than 1 but less than 3/2, so 7π/6 fits between
π and 3π/2. In fact, the picture looks pretty much like the above example:
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So the angle 7π/6 is in the third quadrant. We’ve chosen the point on the
ray which has distance r = 1 from the origin, then dropped a perpendicular.
We know from the above formulas that sin(θ) = y/r = y (since r = 1), so we
really need to find y. Well, that little angle between our ray at 7π/6 and the
negative x-axis—which itself is at π—must be the difference between these
two angles, π/6. The little angle is called the reference angle. In general, the
reference angle for θ is the smallest angle between the ray which represents θ
and the x-axis. It must be between 0 and π/2. In our example, the closest
route to the x-axis is up, so the reference angle looks like this:

relang=foo
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So in the little triangle, we know that r = 1 and the angle is π/6. It looks
like y = sin(π/6) = 1/2, except that can’t be right! Since we’re below the
x-axis, the quantity y must be negative. That is, y = −1/2. Since sin(θ) = y,
we have shown that sin(7π/6) = −1/2. We can also repeat this with cosine
instead of sine to see that x = − cos(π/6) = −

√
3/2. After all, x has to be

negative, since the point (x, y) is to the left of the y-axis. This shows that
cos(7π/6) = −

√
3/2 and we have identified our point (x, y) as (−

√
3/2,−1/2).

2.2.1 The ASTC method

The key in the previous example is that sin(7π/6) is related to sin(π/6), where
π/6 is the reference angle for 7π/6. In fact, it’s not hard to see that the sine
of any angle is plus or minus the sine of the reference angle! This narrows
it down to just two possibilities, and there’s no need to mess around with x,
y, or r. So in our example, we just needed to find that the reference angle
for 7π/6 is π/6; this immediately told us that sin(7π/6) is equal to either
sin(π/6) or − sin(π/6) and we just had to make sure we got the correct one.
We saw that it was the negative one because y was negative.

Actually, the sine of anything in the third or fourth quadrant must be
negative because y is negative there. Similarly, the cosine of anything in the
second or third quadrant must be negative, since x is negative there. The
tangent is the ratio y/x, which is negative in the second and fourth quadrants
(since one, but not both, of x and y is then negative) but positive in the first
and third quadrants.

Let’s summarize these findings in words as well as with a picture. First, all
three functions are positive in the first quadrant (I). In the second quadrant
(II), only sin is positive; the other two functions are negative. In the third
quadrant (III), only tan is positive; the other two functions are negative.
And finally, in the fourth quadrant (IV), only cos is positive; the other two
functions are negative. Here’s what it all looks like:
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In fact, the letters ASTC on the diagram are all you need to remember. They
show you which of the functions are positive in that quadrant. “A” stands for
“All,” meaning all the functions are positive in the first quadrant; the other
letters obviously stand for sin, tan, and cos, respectively. In our example,
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7π/6 is in the third quadrant, so only tan is positive there. In particular, sin
is negative, so since we had narrowed the value of sin(7π/6) down to 1/2 or
−1/2, it must be the negative possibility: indeed, sin(7π/6) = −1/2.

The only problem with the ASTC diagram is that it doesn’t really tell
you how to handle the angles 0, π/2, π, or 3π/2, since they lie on the axes.
In this case, it’s best to forget all about the ASTC stuff and draw a graph
of y = sin(x) (or cos(x) or tan(x), as appropriate) and read the value off the
graph. We’ll discuss this in Section 2.3 below.

Meanwhile, here’s a summary of the ASTC method for finding trig func-
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C tions of angles between 0 and 2π:

1. Draw the quadrant diagram, decide where in the picture the angle you
care about is, and then mark that angle in the diagram.

2. If the angle you want is on the x- or y-axis (that is, not within any
quadrant), draw a graph of the trig function and read the value off the
graph (there are some examples in Section 2.3 below).

3. Otherwise, find the smallest angle between the one we want and the
x-axis; this is called the reference angle.

4. If you can, use the important table to work out the value of the trig
function of the reference angle. That’s the answer you need, except that
you might need a minus sign in front.

5. Use the ASTC diagram to decide whether or not you need a minus sign.

Let’s look at a couple of examples. How would you find cos(7π/4) and
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7/4 is between 3/2 and 2, so the angle must be in the fourth quadrant:
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To work out the reference angle, notice that we have to go up to 2π (not
down to 0, beware!) so the reference angle is the difference between 2π and
7π/4, which is (2π − 7π/4) or simply π/4. So, cos(7π/4) is plus or minus
cos(π/4), which is 1/

√
2 according to our table. Is it plus or minus? The

ASTC picture says that cos is positive in the fourth quadrant, so it’s plus:
cos(7π/4) = 1/

√
2.
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Now let’s look at tan(9π/13). We see that 9/13 is between 1/2 and 1, so
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4 the angle 9π/13 is in the second quadrant:
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This time we have to go up to π to get to the x-axis, so the reference angle
is the difference between π and 9π/13, which is π − 9π/13 or simply 4π/13.
So, we know that tan(9π/13) is plus or minus tan(4π/13). Alas, the number
4π/13 isn’t in our table, so we can’t simplify tan(4π/13). We also need to
work out whether it’s plus or minus. Well, the ASTC diagram shows that
only sin is positive in the second quadrant, so tan must be negative there and
we see that tan(9π/13) = − tan(4π/13). That’s as simplified as we can get
without approximating. When solving calculus problems, I don’t recommend
approximating the answer unless you are explicitly asked to. A common
misconception is that the number that comes out on the calculator when you
calculate something like − tan(4π/13) is the actual answer. On the contrary,
it’s just an approximation! So you shouldn’t write

− tan(4π/13) = −0.768438861,

since it’s just not true. Instead, just leave it as − tan(4π/13) unless you are
specifically asked for an approximation. In that case, use the approximately-
equal symbol and fewer decimal places, rounding appropriately (unless you
are asked for more):

− tan(4π/13) ∼= −0.768.

By the way, you should rarely need to use a calculator—in fact, some colleges
don’t even allow them in exams! So you should try to avoid the temptation
ever to use one.

2.2.2 Trig functions outside [0, 2π]
There’s still the question of how to take trig functions of angles bigger than
2π or less than 0. In fact this isn’t so bad: simply add or subtract multiples
of 2π until you get between 0 and 2π. You see, it doesn’t just stop at 2π. It
just keeps on wrapping around. For example, if I asked you to stand on the
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spot facing due east and then turn around counterclockwise an angle of 450
degrees, it would be reasonable to assume that you’d turn a full revolution
and then an extra 90 degrees. You’d be facing due north. Sure, you’d be
a little dizzier than if you just did a 90-degree counterclockwise turn, but
you’d be facing the same way. So 450 degrees is an equivalent angle to 90
degrees, and of course the same sort of thing is true in radians: in this case,
5π/2 radians is an equivalent angle to π/2 radians. But why stop at one
revolution? How about 9π/2 radians? That’s the same as going around 2π
twice (which gets us up to 4π) and then an extra π/2, so we’ve done 2 useless
revolutions before our final π/2 twist. The revolutions don’t matter, so once
again 9π/2 is equivalent to π/2. This procedure can be extended indefinitely
to get a whole family of angles which are equivalent to π/2:

π

2
,
5π

2
,
9π

2
,
13π

2
,
17π

2
, . . . .

Of course, each angle is a full revolution, or 2π, more than the first one.
Still, that’s not the full story: if I’m going to insist that you do all these
counterclockwise revolutions and get that dizzy, you might as well ask to be
allowed to do a clockwise revolution or two to recover. This corresponds to a
negative angle. In particular, if you were facing east and I asked you to turn
−270 degrees counterclockwise, the only sane interpretation of my bizarre
request is to turn 270 degrees (or 3π/2) clockwise. Evidently you’ll still end
up facing due north, so−270 degrees must be equivalent to 90 degrees. Indeed,
adding 360 degrees to −270 degrees just gives us 90 degrees. In radians, we
see that −3π/2 is an equivalent angle to π/2. In addition, we could insist on
more negative (clockwise) full revolutions. In the end, here is the complete
set of angles which are equivalent to π/2:

. . . ,−15π

2
,−11π

2
,−7π

2
,−3π

2
,
π

2
,
5π

2
,
9π

2
,
13π

2
,
17π

2
, . . . .

The sequence has no beginning or end; when I say it’s “complete,” I’m glossing
over the fact that there are infinitely many angles included in the dots at the
beginning and the end. We can avoid the dots by writing the collection in set
notation as {π/2 + 2πn}, where n runs over all the integers.

Let’s see if we can apply this. How would you find sec(15π/4)? The first
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13 thing to note is that if we can find cos(15π/4), all we need to do is take the
reciprocal in order to get sec(15π/4). So let’s find cos(15π/4) first. Since 15/4
is more than 2, let’s try lopping off 2 from it. Hmm, 15/4− 2 = 7/4, which is
now between 0 and 2, so that looks promising. Restoring the π, we see that
cos(15π/4) is the same as cos(7π/4) which we already saw is equal to 1/

√
2.

So, cos(15π/4) = 1/
√

2. Taking reciprocals, we see that sec(15π/4) is just√
2.

Finally, how about sin(−5π/6)? There are several ways of doing this
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13 problem, but the way suggested above is to try to add multiples of 2π to
−5π/6 until we are between 0 and 2π. In fact, adding 2π to −5π/6 gives
7π/6, so sin(−5π/6) = sin(7π/6), which we already saw is equal to −1/2.
Alternatively, we could have drawn a diagram directly:
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Now you have to work out the reference angle from the diagram, and it’s not
too hard to see that it is π/6 and continue as before.

2.3 The Graphs of Trig Functions

It’s really useful to remember what the graphs of the sin, cos, and tan func-
tions look like. These functions are all periodic, meaning that they repeat
themselves over and over again from left to right. For example, consider
y = sin(x). The graph from 0 to 2π looks like this:
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You should be able to produce this graph without thinking, including the
positions of 0, π/2, π, 3π/2, and 2π. Since sin(x) repeats every 2π units (we
say that sin(x) is periodic in x with period 2π), we can extend the graph by
repeating the pattern:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs
y = −2x

−2

1
y = 1

2x− 1

2
−1

y = 2x

y = 10x

y = 2−x

y = log2(x)

4
3 units

mirror (x-axis)
y = |x|

y = |log2(x)|
θ radians

θ units
30◦ =

π

6
45◦ =

π

4
60◦ =

π

3

120◦ =
2π

3

135◦ =
3π

4

150◦ =
5π

6
90◦ =

π

2
180◦ = π

210◦ =
7π

6

225◦ =
5π

4

240◦ =
4π

3

270◦ =
3π

2

300◦ =
5π

3

315◦ =
7π

4

330◦ =
11π

6
0◦ = 0 radians

θ

hy
pote

nu
se

opposite
adjacent

0 (≡ 2π)
π

2

π
3π

2

I
II

III
IV

θ
(x, y)

x
y

r
7π

6
reference angle

reference angle =
π

6
sin +
sin−
cos +
cos−
tan+
tan−

A
S
T
C
7π

4
9π

13
5π

6

(this angle is
5π

6
clockwise)

1

2

1

2

3

4

5

6

0

−1

−2

−3

−4

−5

−6

−3π
− 5π

2

−2π
− 3π

2

−π
−π

2

3π

3π
5π
2

2π
3π
2

π
π
2

y = sin(x)

1

0
−1

−3π − 5π
2

−2π − 3π
2
−π −π

2 3π5π
2

2π

2π3π
2

ππ
2

y = sin(x)

Just reading values off the graph, we can see that sin(3π/2) = −1 and
sin(−π) = 0. As noted earlier, this is how you should deal with multiples
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y = sin(x) of π/2; no need to mess around with reference angles. Another thing to note
is that the graph has 180◦ point symmetry about the origin, which means
that sin(x) is an odd function of x. (We looked at odd and even functions in
Section 1.4 of the previous chapter.)
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The graph of y = cos(x) is similar to that of y = sin(x). When x ranges
from 0 to 2π, it looks like this:
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Now extend the graph using the fact that cos(x) is periodic with period 2π:
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For example, if you want to find cos(π), you can see that it is −1 just by
reading it off the graph. Furthermore, notice that this time the graph has
mirror symmetry in the y-axis. This means that cos(x) is an even function of
x.

Now y = tan(x) is a little different. It’s best to graph it for x between
−π/2 and π/2 first:
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The tan function has vertical asymptotes, unlike the sin and cos functions.
Also, its period is actually π, not 2π, so the above pattern can be repeated to
obtain the full graph of y = tan(x):
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It’s clear that y = tan(x) has vertical asymptotes (and is consequently unde-
fined) when x is any odd multiple of π/2. Also, the symmetry of the graph
indicates that tan(x) is an odd function of x.

It’s also worthwhile learning the graphs of y = sec(x), y = csc(x), and
y = cot(x):
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From their graphs, we can get the following symmetry properties of all six
basic trig functions, which are worth learning:

sin(x), tan(x), cot(x), and csc(x) are odd functions of x.
cos(x) and sec(x) are even functions of x.

So sin(−x) = − sin(x), tan(−x) = − tan(x), and cos(−x) = cos(x) for all real
numbers x.
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2.4 Trig Identities

There are relations between trig functions which will come in handy. First,
note that tan and cot may be expressed in terms of sin and cos as follows:

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
.

(Sometimes it’s helpful to replace every instance of tan or cot by sin and cos
using these identities, but you shouldn’t really do this unless you’re stuck.)

The most important of all the trig identities is Pythagoras’ Theorem (writ-
ten in trig form),

cos2(x) + sin2(x) = 1.

This is true for any x. (Why is this Pythagoras’ Theorem? If the hypotenuse
of a right-angled triangle is 1 and one of the angles is x, convince yourself
that the other two sides of the triangle have lengths cos(x) and sin(x).)

Now divide this equation by cos2(x). I want you to check that you end up
with
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y = cot(x) 1 + tan2(x) = sec2(x).

This also comes up a lot in calculus. Alternatively, you could have divided
the Pythagorean equation above by sin2(x) to get

cot2(x) + 1 = csc2(x).

This equation seems to come up less frequently than the others.
There are some more relationships between trig functions. Have you no-

ticed that some of the names begin with the syllable “co”? This is short for
the word “complementary.” To say that two angles are complementary means
that they add up to π/2 (or 90 degrees). It does not mean that they are nice
to each other. All puns aside, the fact is that we have the following general
relationship:

trig function(x) = co-trig function
(π

2
− x
)

.

So in particular, we have

sin(x) = cos
(π

2
− x
)

, tan(x) = cot
(π

2
− x
)

, and sec(x) = csc
(π

2
− x
)

.

It even works when the trig function is already a “co”; you just have to realize
that the complement of a complement is the original angle! For example, co-
co-sine is really just sine, and co-co-tan is just tan. Basically this means that
we can also say that

cos(x) = sin
(π

2
− x
)

, cot(x) = tan
(π

2
− x
)

, and csc(x) = sec
(π

2
− x
)

.

Finally, there’s another group of identities which are worth learning. These
are the identities involving sums of angles and the double-angle formulas.
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Specifically, you should remember that

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)

cos(A + B) = cos(A) cos(B) − sin(A) sin(B).

It’s also useful to remember that you can switch all the pluses and minuses
to get some related formulas:

sin(A−B) = sin(A) cos(B)− cos(A) sin(B)

cos(A−B) = cos(A) cos(B) + sin(A) sin(B).

A nice consequence of the sin(A + B) and cos(A + B) formulas in the box
above is obtained by letting A = B = x. It’s clear that the sine formula is
sin(2x) = 2 sin(x) cos(x), but let’s take a closer look at the cosine formula.
This becomes cos(2x) = cos2(x) − sin2(x); true as this is, it is more useful to
use the Pythagorean identity cos2(x)+sin2(x) = 1 to express cos(2x) as either
2 cos2(x)− 1 or 1− 2 sin2(x) (convince yourself that these are both valid!). In
summary, the double-angle formulas are

sin(2x) = 2 sin(x) cos(x)

cos(2x) = 2 cos2(x)− 1 = 1− 2 sin2(x).

So, how would you write sin(4x) in terms of sin(x) and cos(x)? Well, think of
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y = cot(x) 4x as double 2x and use the sine identity to write sin(4x) = 2 sin(2x) cos(2x).
Then use both identities to get

sin(4x) = 2(2 sin(x) cos(x))(2 cos2(x)− 1) = 8 sin(x) cos3(x) − 4 sin(x) cos(x).

Similarly,

cos(4x) = 2 cos2(2x)− 1 = 2(2 cos2(x)− 1)2 − 1 = 8 cos4(x)− 8 cos2(x) + 1.

You shouldn’t memorize these last two formulas; instead, make sure you un-
derstand how to derive them using the double-angle formulas.

Now, if you can master all the trig in this chapter, you will be in very
good shape indeed for the rest of the book. So don’t leave it till too late—get
cracking on a bunch of examples and make sure you learn the table and all
the boxed formulas!



Chapter 3

Introduction to Limits

Calculus wouldn’t exist without the concept of limits. This means that we
are going to spend a lot of time looking at them. It turns out that it’s pretty
tricky to define a limit properly, but you can get an intuitive understanding of
limits even without going into the gory details. This will be enough to tackle
differentiation and integration. So, this chapter contains only the intuitive
version; check out Appendix A for the formal version. All in all, here’s what
we’ll look at in this chapter:

• an intuitive idea of what a limit is;

• left-hand, right-hand, and two-sided limits, and limits at ∞ and −∞;

• when limits fail to exist; and

• the sandwich principle (also known as the “squeeze principle”).

3.1 Limits: The Basic Idea

Let’s dive in. We start with some function f and a point on the x-axis,
which we’ll call a. Here is what we’d like to understand: what does f(x) look
like when x is really really close to a, but not equal to a? This is a pretty
strange question to ask, which is probably why it took until relatively recently
for humankind to develop calculus.

Here’s an example showing why we might want to ask this question. Let
f have domain R\{2} (all real numbers except for 2), and set f(x) = x − 1
on this domain. Formally, you might write:

f(x) = x− 1 when x 6= 2.

This seems like a weird sort of function: after all, why on earth would we
want to exclude 2 from the domain? Actually, in the next chapter, we’ll see
that f arises quite naturally as a rational function (see the second example
in Section 4.1). In the meantime, let’s just take f for what it is and sketch a
graph of it:
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What is f(2)? Perhaps you’d like to say that f(2) = 1, but that would be
a load of bull since 2 isn’t even in the domain of f . The best you can do is
to say that f(2) is undefined. On the other hand, we can find the value of
f(x) when x is really really close to 2 and see what happens. For example,
f(2.01) = 1.01, and f(1.999) = 0.999. If you think about it, you can see that
when x is really really close to 2, the value of f(x) is really really close to 1.

What’s more, you can get as close as you want to 1, without actually
getting to 1, by letting x be close enough to 2. For example, if you want f(x)
to be within 0.0001 of 1, you could take any x between 1.9999 and 2.0001
(except of course for x = 2, which is forbidden). If you instead wanted f(x)
to be within 0.000007 of 1, then you’d have to be a little more picky about your
choice of x—this time you’d need to take x between 1.999993 and 2.000007
(except for x = 2, once again).

Anyway, these ideas are described in much greater detail in Section A.1 of
Appendix A. Without getting bogged down, let’s cut to the chase and just
write

lim
x→2

f(x) = 1.

If you read this out loud, it should sound like “the limit, as x goes to 2, of
f(x) is equal to 1.” Again, this means that when x is near 2 (but not equal
to it), the value of f(x) is near 1. How near? As near as your heart desires.
Another way of writing the above statement is

f(x)→ 1 as x→ 2.

This is harder to do computations with, but its meaning is quite clear: as x
journeys along the number line from the left or the right toward the number
2, the value of f(x) gets very very close to 1 (and stays close!).

Now, let’s take the above function f and modify it slightly. Indeed, suppose
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2 that a new function g has the following graph:
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The domain of g is all real numbers, and g(x) can be defined in piecewise
fashion as

g(x) =

{
x− 1 if x 6= 2,

3 if x = 2.

What is lim
x→2

g(x)? The trick here is that the value of g(2) is irrelevant! It’s
only the values of g(x) where x is close to 2, not actually at 2, which matter.
Ignoring x = 2, the function g is identical to the function f we looked at
earlier. So, lim

x→2
g(x) = 1 as before, even though g(2) = 3.

Here’s an important point: when you write something like

lim
x→2

f(x) = 1,

the left-hand side isn’t actually a function of x! Remember, the equation
means that f(x) is close to 1 when x is close to 2. We could actually replace
x by any other letter and this would still be true. For example, f(q) is close
to 1 when q is close to 2, so we have

lim
q→2

f(q) = 1.

We can go nuts with this and also write

lim
b→2

f(b) = 1, lim
z→2

f(z) = 1, lim
α→2

f(α) = 1,

and so on until we run out of letters and symbols! The point is that in the
limit

lim
x→2

f(x) = 1,

the variable x is just a dummy variable. It is a temporary label for some
quantity that is (in this case) getting very close to 2. It can be replaced by
any other letter, as long as you swap it out wherever else it appears; also, when
you work out the value of the limit, the answer cannot include the dummy
variable. So be smart about your dummy variables.

3.2 Left-Hand and Right-Hand Limits

We’ve seen that limits describe the behavior of a function near a certain point.
Think about how you would describe the behavior of h(x) near x = 3:
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Of course, the fact that h(3) = 2 is irrelevant as far as the limiting behavior
is concerned. Now, what happens when you approach x = 3 from the left?
Imagine that you’re the hiker in the picture, climbing up and down the hill.
The value of h(x) tells you how high up you are when your horizontal position
is at x. So, if you walk rightward from the left of the picture, then when your
horizontal position is close to 3, your height is close to 1. Sure, there’s a sheer
drop when you get to x = 3 (not to mention a weird little ledge floating in
space above you!), but we don’t care about this for the moment. Everything
to the right of x = 3, including x = 3 itself, is irrelevant. So we’ve just seen
that the left-hand limit of h(x) at x = 3 is equal to 1.

On the other hand, if you are walking leftward from the right-hand side
of the picture, your height becomes close to −2 as your horizontal position
gets close to x = 3. This means that the right-hand limit of h(x) at x = 3 is
equal to −2. Now everything to the left of x = 3 (including x = 3 itself) is
irrelevant!

We can summarize our findings from above by writing

lim
x→3−

h(x) = 1 and lim
x→3+

h(x) = −2.

The little minus sign after the 3 in the first limit above means that the limit
is a left-hand limit, and the little plus sign in the second limit means that it’s
a right-hand limit. It’s important to write the minus or plus sign after the 3,
not before it! For example, if you write

lim
x→−3

h(x),

then you are referring to the regular two-sided limit of h(x) at x = −3, not
the left-hand limit at x = 3. These are two very different animals indeed.
By the way, the reason that you write x → 3− under the limit sign for the
left-hand limit is that this limit only involves values of x less than 3. That is,
you need to take a little bit away from 3 to see what’s going on. In a similar
manner, when you write x→ 3+ for the right-hand limit, this means that you
only need to consider what happens when you add a little bit onto 3.

Now, limits don’t always exist, as we’ll see in the next section. But here’s
something important: the regular two-sided limit at x = a exists exactly
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5
−2 when both left-hand and right-hand limits at x = a exist and are equal to

each other! In that case, all three limits—two-sided, left-hand, and right-
hand—are the same. In math-speak, I’m saying that

lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

is the same thing as
lim
x→a

f(x) = L.

If the left-hand and right-hand limits are not equal, as in the case of our
function h from above, then the two-sided limit does not exist. We’d just
write

lim
x→3

h(x) does not exist

or you could even write “DNE” instead of “does not exist.”
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3.3 When the Limit Does Not Exist

We just saw that a two-sided limit doesn’t exist when the corresponding left-
hand and right-hand limits are different. Here’s an even more dramatic ex-
ample of this. Consider the graph of f(x) = 1/x:
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f(x) =
1

x

What is lim
x→0

f(x)? It may be a bit much to expect the two-sided limit to
exist here, so let’s first try to find the right-hand limit, lim

x→0+
f(x). Looking at

the graph, it seems as though f(x) is very large when x is positive and close
to 0. It doesn’t really get close to any number in particular as x slides down
to 0 from the right; it just gets larger and larger. How large? Larger than
anything you can imagine! We say that the limit is infinity, and write

lim
x→0+

1

x
=∞.

Similarly, the left-hand limit here is −∞, since f(x) gets arbitrarily more and
more negative as x slides upward to 0. That is,

lim
x→0−

1

x
= −∞.

The two-sided limit certainly doesn’t exist, since the left-hand and right-hand
limits are different. On the other hand, consider the function g defined by
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Both the left-hand and right-hand limits at x = 0 are ∞, so you can say that
lim
x→0

1/x2 = ∞ as well. By the way, we now have a formal definition of the
term “vertical asymptote”:

“f has a vertical asymptote at x = a” means that at least one
of lim

x→a+f(x) and lim
x→a−

f(x) is equal to ∞ or −∞.

Now, is it possible that even a left-hand or right-hand limit fails to exist?
The answer is yes! For example, let’s meet the funky function g defined by
g(x) = sin(1/x). What does the graph of this function look like? Let’s worry
about the positive values of x first. Since sin(x) has zeroes at the values
x = π, 2π, 3π, . . . , then sin(1/x) will have zeroes when 1/x = π, 2π, 3π, . . . .
Taking reciprocals, we see that sin(1/x) has zeroes when x = 1

π , 1
2π , 1

3π , . . . .
These numbers are the x-intercepts of sin(1/x). On the number line, this is
what they look like:
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As you see, they really bunch up as you get close to 0. Now, sin(x) goes up to
1 or down to −1 between every x-intercept, so sin(1/x) does the same. Let’s
graph what we know so far:
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So what is lim
x→0+

sin(1/x)? The above graph is a real mess near x = 0. It
oscillates infinitely often between 1 and −1, faster and faster as you move
from the right toward x = 0. There is no vertical asymptote, but there’s still
no limit.∗ The function doesn’t tend toward any one number as x goes to 0
from the right. So, we say that lim

x→0+
sin(1/x) does not exist (DNE). We’ll

finish the graph of y = sin(1/x) in the next section.

∗See Section A.3.4 of Appendix A for a real proof of this.
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3.4 Limits at∞ and −∞
There is one more type of limit that we need to investigate. We’ve concen-
trated on the behavior of a function near a point x = a. However sometimes it
is important to understand how a function behaves when x gets really huge.
Another way of saying this is that we are interested in the behavior of a
function as its argument x goes to ∞. We’d like to write something like

lim
x→∞

f(x) = L

and mean that f(x) gets really close, and stays close, to the value L when x
is large. (More details can be found in Section A.3.3 of Appendix A.) The
important thing to realize is that writing “lim

x→∞f(x) = L” indicates that the
graph of f has a right-hand horizontal asymptote at y = L. There is a similar
notion for when x heads toward −∞: we write

lim
x→−∞

f(x) = L,

which means that f(x) gets extremely close, and stays close, to L when x gets
more and more negative (or more precisely, −x gets larger and larger). This
of course corresponds to the graph of y = f(x) having a left-hand horizontal
asymptote. You can turn these definitions around if you like and say:

“f has a right-hand horizontal asymptote at y = L”
means that lim

x→∞ f(x) = L.

“f has a left-hand horizontal asymptote at y = M”
means that lim

x→−∞f(x) = M .

Of course, something like y = x2 doesn’t have any horizontal asymptotes: the
values of y just go up and up as x gets larger. In symbols, we can write this
as lim

x→∞x2 = ∞. Alternatively, the limit may not even exist. For example,
what is lim

x→∞sin(x)? Well, what value is sin(x) getting closer and closer to
(and staying close)? It’s just oscillating back and forth between −1 and 1, so
it never really gets anywhere. There’s no horizontal asymptote, nor does the
function wander off to∞ or −∞; the best you can do is to say that lim

x→∞sin(x)
does not exist (DNE). Again, see Section A.3.4 of Appendix A for a proof of
this.

Let’s return to the function f given by f(x) = sin(1/x) that we looked at
in the previous section. What happens when x gets very large? Well, when
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0
−1 x is large, 1/x is very close to 0. Since sin(0) = 0, it should be true that

sin(1/x) is also very close to 0. The larger x gets, the closer sin(1/x) is to 0.
My argument has been a little sketchy but hopefully you’re convinced that∗

lim
x→∞

sin(1/x) = 0.

So sin(1/x) has a horizontal asymptote at y = 0. This allows us to extend the
graph of y = sin(1/x) that we drew above, at least to the right. We should

∗If not, see Section A.4.1 of Appendix A!
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still worry about what happens when x < 0. This isn’t too bad, since f is an
odd function. Here’s why:

f(−x) = sin

(
1

−x

)
= sin

(
− 1

x

)
= − sin

(
1

x

)
= −f(x).

Note that we used the fact that sin(x) is an odd function of x to get from
sin(−1/x) to − sin(1/x). So, since odd functions have that nice symmetry
about the origin (see Section 1.4 in Chapter 1), we can complete the graph of
y = sin(1/x) as follows:
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Again, it’s hard to draw what happens for x near 0. The closer x is to 0, the
more wildly the function oscillates, and of course the function is undefined at
x = 0. In the above picture, I chose to avoid the black smudge in the middle
and just leave the oscillations up to your imagination.

3.4.1 Large numbers and small numbers

I hope we can all agree that 1,000,000,000,000 is a large number. So how about
−1,000,000,000,000? Perhaps controversially, I want you to think of this as
a large negative number rather than a small number. An example of a small
number would be 0.000000001, while −0.000000001 is a small number too—
more precisely, a small negative number. Funnily enough, we’re not going to
think of 0 itself as being small: it’s just zero. So our informal definition of
large numbers and small numbers looks like this:

• A number is large if its absolute value is a really big number.

• A number is small if it is really close to 0 (but not actually equal to 0).

Although the above definition will serve us well in practice, it’s a really
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lame definition. What do I mean by “really big” and “really close to 0”? Well,
consider the limit equation

lim
x→∞

f(x) = L.

As we saw above, this means that when x is a large enough number, the value
of f(x) is almost L. The question is, how large is “large enough”? It depends
on how close to L you want f(x) to be! Still, from a practical point of view,
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a number x is large enough if the graph of y = f(x) starts looking like it’s
getting serious about snuggling up to the horizontal asymptote at y = L. Of
course, everything depends on what the function f is, as you can see from the
following picture:
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In both cases, f(10) is nowhere near L. In the left-hand picture, it looks
like f(x) is pretty close to L when x is at least 100, so any number above 100
would be large. In the right-hand picture, f(100) is far away from L, so now
100 isn’t large enough. You probably need to go up to about 200 in this case.
So can’t you just pick a number like 1,000,000,000,000 and say that it’s always
large? Nope—a function might wander around until 5,000,000,000,000 before
it starts getting close to its horizontal asymptote. The point is that the term
“large” has to be taken in context, relative to some function or limit. Luckily,
there’s plenty of room up above—even a number like 1,000,000,000,000 is
pretty puny compared to 10100 (a googol), which itself is chicken feed in
comparison with 101000000, and so on. By the way, we’ll often use the term
“near ∞” in place of “large and positive.” (A number can’t really be near ∞
in the literal sense, since ∞ is so far away from everything. The term “near
∞” makes sense, though, in the context of limits as x→∞.)

Of course, all this also applies to limits as x→ −∞, except that you just
stick a minus sign in front of all the large positive numbers above. In this case
we’ll sometimes say “near −∞” to emphasize that we are referring to large
negative numbers.

On the other hand, we’ll often be looking at limit equations of the form

lim
x→0

f(x) = L, lim
x→0+

f(x) = L or lim
x→0−

f(x) = L.

In all three of these cases, we know that when x is close enough to 0, the
value of f(x) is almost L. (For the right-hand limit, x also has to be positive,
while for the left-hand limit, x has to be negative.) Again, how close does x
have to be to 0? It depends on the function f . So, when we say a number is
“small” (or “near 0”), we’ll have to take this in the context of some function
or limit, just as in the case of “large.”

Although this discussion really tightens up the above lame definition, it’s
still not perfect. If you want to learn more, you should really check out
Sections A.1 and A.3.3 in Appendix A.



50 • Introduction to Limits

3.5 Two Common Misconceptions about Asymptotes

Now seems like a good time to correct a couple of common misconceptions
about horizontal asymptotes. First, a function doesn’t have to have the same
horizontal asymptote on the left as on the right. In the graph of f(x) = 1/x
on page 45 above, there is a horizontal asymptote at y = 0 on both the
right-hand side and the left-hand side—which means that

lim
x→∞

1

x
= 0 and lim

x→∞
− 1

x
= 0.

However, consider the graph of y = tan−1(x) (or if you prefer, y = arctan(x)—
this is the inverse tangent function and you can write it either way):
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This function has a right-hand horizontal asymptote at y = π/2 and a left-
hand horizontal asymptote at y = −π/2; these are not the same. We can also
express this in terms of limits:

lim
x→∞

tan−1(x) =
π

2
and lim

x→−∞
tan−1(x) = −π

2

So a function can indeed have different right- and left-hand horizontal asymp-
totes, but there can be at most two horizontal asymptotes—one on the right
and one on the left. It might have none or one: for example, y = 2x has a
left-hand horizontal asymptote but not a right-hand one (see the graph on
page 22). This is in contrast to vertical asymptotes: a function can have as
many of those as it feels like (for example, y = tan(x) has infinitely many).

Another common misconception is that a function can’t cross its asymp-
tote. Perhaps you have learned that an asymptote is a line that a function
gets closer and closer to without ever crossing. This just isn’t true, at least
when you’re talking about horizontal asymptotes. For example, consider the
function f given by f(x) = sin(x)/x, where for the moment we only care
about what happens when x is positive and large. The value of sin(x) oscil-
lates between −1 and 1, so the value of sin(x)/x oscillates between the curves
y = −1/x and y = 1/x. Also, sin(x)/x has the same zeroes as sin(x) does,
namely π, 2π, 3π, . . . . Putting it all together, the graph looks like this:
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The curves y = 1/x and y = −1/x, which are drawn as dotted curves in the
graph, form what’s called the envelope of the sine wave. In any event, as you
can see from the graph, if there’s any justice in the world, then it should be
true that

lim
x→∞

sin(x)

x
= 0.

This means that the x-axis is a horizontal asymptote for f , even though the
graph of y = f(x) crosses the axis over and over again. Now, to justify the
above limit, we’ll need to apply something called the sandwich principle. The
justification is at the end of the next section.

3.6 The Sandwich Principle

The sandwich principle, also known as the squeeze principle, says that if a

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs
y = −2x

−2

1
y = 1

2x− 1

2
−1

y = 2x

y = 10x

y = 2−x

y = log2(x)

4
3 units

mirror (x-axis)
y = |x|

y = |log2(x)|
θ radians

θ units
30◦ =

π

6
45◦ =

π

4
60◦ =

π

3

120◦ =
2π

3

135◦ =
3π

4

150◦ =
5π

6
90◦ =

π

2
180◦ = π

210◦ =
7π

6

225◦ =
5π

4

240◦ =
4π

3

270◦ =
3π

2

300◦ =
5π

3

315◦ =
7π

4

330◦ =
11π

6
0◦ = 0 radians

θ

hy
pote

nu
se

opposite
adjacent

0 (≡ 2π)
π

2

π
3π

2

I
II

III
IV

θ
(x, y)

x
y

r
7π

6
reference angle

reference angle =
π

6
sin +
sin−
cos +
cos−
tan +
tan−

A
S
T
C
7π

4
9π

13
5π

6

(this angle is
5π

6
clockwise)

1

2

1

2

3

4

5

6

0

−1

−2

−3

−4

−5

−6

−3π
− 5π

2

−2π
− 3π

2

−π
−π

2

3π

3π
5π
2

2π
3π
2

π
π
2

y = sin(x)

1
0
−1
−3π
− 5π

2

−2π
− 3π

2

−π
−π

2

3π
5π
2

2π
2π
3π
2

π
π
2

y = sin(x)
y = cos(x)

−π
2
π
2

y = tan(x),−π
2

< x < π
2

0
−π

2
π
2

y = tan(x)

−2π

−3π
− 5π

2

− 3π
2

−π
−π

2
π
2

3π

3π
5π
2

2π
3π
2

π
y = sec(x)

y = csc(x)

y = cot(x)

y = f(x)

−1

1
2

y = g(x)

3
y = h(x)

4
5
−2

f(x) =
1

x

g(x) =
1

x2

etc.
0
1
π
1
2π
1
3π
1
4π
1
5π
1
6π
1
7π

g(x) = sin
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y = π
2

y = −π
2

y = tan−1(x)

π

2π

y =
sin(x)

x
, x > 3

0

1
−1 function f is sandwiched between two functions g and h that converge to the

same limit L as x→ a, then f also converges to L as x→ a.

Here’s a more precise statement of the principle. Suppose that for all
x near a, we have g(x) ≤ f(x) ≤ h(x). That is, f(x) is sandwiched (or
squeezed) between g(x) and h(x). Also, let’s suppose that lim

x→a
g(x) = L and

lim
x→a

h(x) = L. Then we can conclude that lim
x→a

f(x) = L; that is, all three
functions have the same limit as x→ a. As usual, the picture tells the story:


