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Preface

This book explores the interplay among financial economic theory, the
availability of relevant data, and the choice of econometric methodology
in the empirical study of dynamic asset pricing models. Given the central
roles of all of these ingredients, I have had to compromise on the depth of
treatment that could be given to each of them. The end result is a book that
presumes readers have had some Ph.D.-level exposure to basic probability
theory and econometrics, and to discrete- and continuous-time asset pricing
theory.

This book is organized into three blocks of chapters that, to a large
extent, can be treated as separate modules. Chapters 1 to 6 of Part I provide
an in-depth treatment of the econometric theory that is called upon in our
discussions of empirical studies of dynamic asset pricing models. Readers
who are more interested in the analysis of pricing models and wish to skip
over this material may nevertheless find it useful to read Chapters 1 and
5. The former introduces many of the estimators and associated notation
used throughout the book, and the latter introduces affine processes, which
are central to much of the literature covered in the last module. The final
chapter of Part I, Chapter 7, introduces a variety of parametric descriptive
models for asset prices that accommodate stochastic volatility and jumps.
Some of the key properties of the implied conditional distributions of these
models are discussed, with particular attention given to the second through
fourth moments of security returns. This material serves as background for
our discussion of the econometric analysis of dynamic asset pricing models.

Part II begins with a more formal introduction to the concept of a
“pricing kernel” and relates this concept to both preference-based and no-
arbitrage models of asset prices. Chapter 9 examines the linear asset pricing
relations—restrictions on the conditional means of returns—derived by re-
stricting agents’ preferences or imposing distributional assumptions on the
joint distributions of pricing kernels and asset returns. It is in this chapter
that we discuss the vast literature on testing for serial correlation in asset
returns.

xi
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Chapter 10 discusses the econometric analyses of pricing relations based
directly on the first-order conditions associated with agents’ intertempo-
ral consumption and investment decisions. Chapter 11 examines so-called
beta representations of conditional expected excess returns, covering
both their economic foundations and the empirical evidence on their
goodness-of-fit.

Part III covers the literature on no-arbitrage pricing models. Readers
wishing to focus on this material will find Chapter 8 on pricing kernels to
be useful background. Chapters 12 and 13 explore the specification and
goodness-of-fit of dynamic term structure models for default-free bonds.
Defaultable bonds, particularly corporate bonds and credit default swaps,
are taken up in Chapter 14. Chapters 15 and 16 cover the empirical litera-
ture on equity and fixed-income option pricing models.
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1
Introduction

A dynamic asset pricing model is refutable empirically if it restricts the
joint distribution of the observable asset prices or returns under study. A
wide variety of economic and statistical assumptions have been imposed to
arrive at such testable restrictions, depending in part on the objectives and
scope of a modeler’s analysis. For instance, if the goal is to price a given
cash-flow stream based on agents’ optimal consumption and investment
decisions, then a modeler typically needs a fully articulated specification
of agents’ preferences, the available production technologies, and the con-
straints under which agents optimize. On the other hand, if a modeler is
concerned with the derivation of prices as discounted cash flows, subject
only to the constraint that there be no “arbitrage” opportunities in the econ-
omy, then it may be sufficient to specify how the relevant discount factors
depend on the underlying risk factors affecting security prices, along with
the joint distribution of these factors.

An alternative, typically less ambitious, modeling objective is that of test-
ing the restrictions implied by a particular “equilibrium” condition arising
out of an agent’s consumption/investment decision. Such tests can often
proceed by specifying only portions of an agent’s intertemporal portfolio
problem and examining the implied restrictions on moments of subsets of
variables in the model. With this narrower scope often comes some “robust-
ness” to potential misspecification of components of the overall economy
that are not directly of interest.

Yet a third case is one in which we do not have a well-developed theory
for the joint distribution of prices and other variables and are simply at-
tempting to learn about features of their joint behavior. This case arises, for
example, when one finds evidence against a theory, is not sure about how to
formulate a better-fitting, alternative theory, and, hence, is seeking a better
understanding of the historical relations among key economic variables as
guidance for future model construction.

1
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As a practical matter, differences in model formulation and the decision
to focus on a “preference-based” or “arbitrage-free” pricing model may also
be influenced by the availability of data. A convenient feature of financial
data is that it is sampled frequently, often daily and increasingly intraday as
well. On the other hand, macroeconomic time series and other variables
that may be viewed as determinants of asset prices may only be reported
monthly or quarterly. For the purpose of studying the relation between as-
set prices and macroeconomic series, it is therefore necessary to formulate
models and adopt econometric methods that accommodate these data lim-
itations. In contrast, those attempting to understand the day-to-day move-
ments in asset prices—traders or risk managers at financial institutions, for
example—may wish to design models and select econometric methods that
can be implemented with daily or intraday financial data alone.

Another important way in which data availability and model specifica-
tion often interact is in the selection of the decision interval of economic
agents. Though available data are sampled at discrete intervals of time—
daily, weekly, and so on—it need not be the case that economic agents make
their decisions at the same sampling frequency. Yet it is not uncommon for
the available data, including their sampling frequency, to dictate a mod-
eler’s assumption about the decision interval of the economic agents in the
model. Almost exclusively, two cases are considered: discrete-time models typ-
ically match the sampling and decision intervals—monthly sampled data
mean monthly decision intervals, and so on—whereas continuous-time mod-
els assume that agents make decisions continuously in time and then im-
plications are derived for discretely sampled data. There is often no sound
economic justification for either the coincidence of timing in discrete-time
models, or the convenience of continuous decision making in continuous-
time models. As we will see, analytic tractability is often a driving force be-
hind these timing assumptions.

Both of these considerations (the degree to which a complete economic
environment is specified and data limitations), as well as the computational
complexity of solving and estimating a model, may affect the choice of es-
timation strategy and, hence, the econometric properties of the estimator
of a dynamic pricing model. When a model provides a full characterization
of the joint distribution of its variables, a historical sample is available, and
fully exploiting this information in estimation is computationally feasible,
then the resulting estimators are “fully efficient” in the sense of exploit-
ing all of the model-implied restrictions on the joint distribution of asset
prices. On the other hand, when any one of these conditions is not met,
researchers typically resort, by choice or necessity, to making compromises
on the degree of model complexity (the richness of the economic environ-
ment) or the computational complexity of the estimation strategy (which
often means less econometric efficiency in estimation).



Page 3 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1.1. Model Implied Restrictions 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[3], (3)

Lines: 26 to 42

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[3], (3)

With these differences in modelers’ objectives, practical constraints on
model implementation, and computational considerations in mind, this
book: (1) characterizes the nature of the restrictions on the joint distribu-
tions of asset returns and other economic variables implied by dynamic asset
pricing models (DAPMs); (2) discusses the interplay between model formu-
lation and the choice of econometric estimation strategy and analyzes the
large-sample properties of the feasible estimators; and (3) summarizes the
existing, and presents some new, empirical evidence on the fit of various
DAPMs.

We briefly expand on the interplay between model formulation and
econometric analysis to set the stage for the remainder of the book.

1.1. Model Implied Restrictions

Let Ps denote the set of “payoffs” at date s that are to be priced at date t ,
for s > t , by an economic model (e.g., next period’s cum-dividend stock
price, cash flows on bonds, and so on),1 and let πt : Ps → R denote
the pricing function, where Rn denotes the n-dimensional Euclidean space.
Most DAPMs maintain the assumption of no arbitrage opportunities on the
set of securities being studied: for any qt+1 ∈ Pt+1 for which Pr{qt+1 ≥ 0}=1,
Pr({πt (qt+1) ≤ 0} ∩ {qt+1 > 0}) = 0.2 In other words, nonnegative payoffs at
t + 1 that are positive with positive probability have positive prices at date t .
A key insight underlying the construction of DAPMs is that the absence
of arbitrage opportunities on a set of payoffs Ps is essentially equivalent to
the existence of a special payoff, a pricing kernel q∗s , that is strictly positive
(Pr{q∗s > 0} = 1) and represents the pricing function πt as

πt (qs) = E
[
qsq∗s | It

]
, (1.1)

for all qs ∈ Ps , where It denotes the information set upon which expecta-
tions are conditioned in computing prices.3

1 At this introductory level we remain vague about the precise characteristics of the
payoffs investors trade. See Harrison and Kreps (1979), Hansen and Richard (1987), and
subsequent chapters herein for formal definitions of payoff spaces.

2 We let Pr{·} denote the probability of the event in brackets.
3 The existence of a pricing kernel q∗ that prices all payoffs according to (1.1) is equiva-

lent to the assumption of no arbitrage opportunities when uncertainty is generated by discrete
random variables (see, e.g., Duffie, 2001). More generally, when It is generated by contin-
uous random variables, additional structure must be imposed on the payoff space and pricing
function πt for this equivalence (e.g., Harrison and Kreps, 1979, and Hansen and Richard,
1987). For now, we focus on the pricing relation (1.1), treating it as being equivalent to the
absence of arbitrage. A more formal development of pricing kernels and the properties of q∗
is taken up in Chapter 8 using the framework set forth in Hansen and Richard (1987).
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This result by itself does not imply testable restrictions on the prices
of payoffs in Pt+1, since the theorem does not lead directly to an empir-
ically observable counterpart to the benchmark payoff. Rather, overiden-
tifying restrictions are obtained by restricting the functional form of the
pricing kernel q∗s or the joint distribution of the elements of the pricing en-
vironment (Ps , q∗s , It ). It is natural, therefore, to classify DAPMs according to
the types of restrictions they impose on the distributions of the elements of
(Ps , q∗s , It ). We organize our discussions of models and the associated esti-
mation strategies under four headings: preference-based DAPMs, arbitrage-
free pricing models, “beta” representations of excess portfolio returns, and
linear asset pricing relations. This classification of DAPMs is not mutually
exclusive. Therefore, the organization of our subsequent discussions of spe-
cific models is also influenced in part by the choice of econometric methods
typically used to study these models.

1.1.1. Preference-Based DAPMs

The approach to pricing that is most closely linked to an investor’s portfolio
problem is that of the preference-based models that directly parameterize
an agent’s intertemporal consumption and investment decision problem.
Specifically, suppose that the economy being studied is comprised of a finite
number of infinitely lived agents who have identical endowments, informa-
tion, and preferences in an uncertain environment. Moreover, suppose that
At represents the agents’ information set and that the representative con-
sumer ranks consumption sequences using a von Neumann-Morgenstern
utility functional

E

[ ∞∑
t=0

β t U (ct )

∣∣∣∣ A0

]
. (1.2)

In (1.2), preferences are assumed to be time separable with period utility
function U and the subjective discount factor β ∈ (0, 1). If the representa-
tive agent can trade the assets with payoffs Ps and their asset holdings are
interior to the set of admissible portfolios, the prices of these payoffs in
equilibrium are given by (Rubinstein, 1976; Lucas, 1978; Breeden, 1979)

πt (qs) = E
[
ms−t

s qs | At
]
, (1.3)

where ms−t
s = βU ′(cs)/U ′(ct ) is the intertemporal marginal rate of substi-

tution of consumption (MRS) between dates t and s. For a given parame-
terization of the utility function U (ct ), a preference-based DAPM allows the
association of the pricing kernel q∗s with ms−t

s .
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To compute the prices πt (qs) requires a parametric assumption about
the agent’s utility function U (ct ) and sufficient economic structure to deter-
mine the joint, conditional distribution of ms−t

s and qs . Given that prices are
set as part of the determination of an equilibrium in goods and securities
markets, a modeler interested in pricing must specify a variety of features of
an economy outside of securities markets in order to undertake preference-
based pricing. Furthermore, limitations on available data may be such that
some of the theoretical constructs appearing in utility functions or budget
constraints do not have readily available, observable counterparts. Indeed,
data on individual consumption levels are not generally available, and ag-
gregate consumption data are available only for certain categories of goods
and, at best, only at a monthly sampling frequency.

For these reasons, studies of preference-based models have often fo-
cused on the more modest goal of attempting to evaluate whether, for a
particular choice of utility function U (ct ), (1.3) does in fact “price” the
payoffs in Ps . Given observations on a candidate ms−t

s and data on asset
returns Rs ≡ {qs ∈ Ps : πt (qs) = 1}, (1.3) implies testable restrictions
on the joint distribution of Rs , ms−t

t , and elements of At . Namely, for each
s -period return rs , E[ms−t

s rs − 1|At ] = 0, for any rs ∈ Rs (see, e.g., Hansen
and Singleton, 1982). An immediate implication of this moment restriction
is that E[(ms−t

s rs − 1)xt ] = 0, for any xt ∈ At .4 These unconditional mo-
ment restrictions can be used to construct method-of-moments estimators
of the parameters governing ms−t

s and to test whether or not ms−t
s prices the

securities with payoffs in Ps . This illustrates the use of restrictions on the
moments of certain functions of the observed data for estimation and infer-
ence, when complete knowledge of the joint distribution of these variables
is not available.

An important feature of preference-based models of frictionless mar-
kets is that, assuming agents optimize and rationally use their available in-
formation At in computing the expectation (1.3), there will be no arbitrage
opportunities in equilibrium. That is, the absence of arbitrage opportunities
is a consequence of the equilibrium price-setting process.

1.1.2. Arbitrage-Free Pricing Models

An alternative approach to pricing starts with the presumption of no ar-
bitrage opportunities (i.e., this is not derived from equilibrium behavior).
Using the principle of “no arbitrage” to develop pricing relations dates back
at least to the key insights of Black and Scholes (1973), Merton (1973), Ross

4 This is an implication of the “law of iterated expectations,” which states that E[ys ] =
E[E(ys |At )], for any conditioning information set At .
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(1978), and Harrison and Kreps (1979). Central to this approach is the ob-
servation that, under weak regularity conditions, pricing can proceed “as if”
agents are risk neutral. When time is measured continuously and agents can
trade a default-free bond that matures an “instant” in the future and pays the
(continuously compounded) rate of return rt , discounting for risk-neutral
pricing is done by the default-free “roll-over” return e−∫s

t ru du . For example,
if uncertainty about future prices and yields is generated by a continuous-
time Markov process Yt (so, in particular, the conditioning information set
It is generated by Yt ), then the price of the payoff qs is given equivalently by

πt (qs) = E
[
q∗s qs | Yt

] = EQ
[
e−∫

s
t ru du qs | Yt

]
, (1.4)

where EQt denotes expectation with regard to the “risk-neutral” conditional
distribution of Y . The term risk-neutral is applied because prices in (1.4)
are expressed as the expected value of the payoff qs as if agents are neutral
toward financial risks.

As we will see more formally in subsequent chapters, the risk attitudes
of investors are implicit in the exogenous specification of the pricing kernel
q∗ as a function of the state Yt and, hence, in the change of probability mea-
sure underlying the risk-neutral representation (1.4). Leaving preferences
and technology in the “background” and proceeding to parameterize the
distribution of q∗ directly facilitates the computation of security prices. The
parameterization of (Ps , q∗s ,Yt ) is chosen so that the expectation in (1.4) can
be solved, either analytically or through tractable numerical methods, for
πt (qs) as a function of Yt : πt (qs) = P (Yt ). This is facilitated by the adoption
of continuous time (continuous trading), special structure on the condi-
tional distribution of Y , and constraints on the dependence of q∗ on Y so
that the second expectation in (1.4) is easily computed. However, similarly
tractable models are increasingly being developed for economies specified
in discrete time and with discrete decision/trading intervals.

Importantly, though knowledge of the risk-neutral distribution of Yt is
sufficient for pricing through (1.4), this knowledge is typically not sufficient
for econometric estimation. For the purpose of estimation using historical
price or return information associated with the payoffs Ps , we also need
information about the distribution of Y under its data-generating or actual
measure. What lie between the actual and risk-neutral distributions of Y
are adjustments for the “market prices of risk”—terms that capture agents’
attitudes toward risk. It follows that, throughout this book, when discussing
arbitrage-free pricing models, we typically find it necessary to specify the
distributions of the state variables or risk factors under both measures.

If the conditional distribution of Yt given Yt−1 is known (i.e., derivable
from knowledge of the continuous-time specification of Y ), then so typically
is the conditional distribution of the observed market prices πt (qs). The
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completeness of the specification of the pricing relations (both the distri-
bution of Y and the functional form of Ps) in this case implies that one can
in principle use “fully efficient” maximum likelihood methods to estimate
the unknown parameters of interest, say θ0. Moreover, this is feasible using
market price data alone, even though the risk factors Y may be latent (unob-
served) variables. This is a major strength of this modeling approach since,
in terms of data requirements, one is constrained only by the availability of
financial market data.

Key to this strategy for pricing is the presumption that the burden of
computing πt (qs) = Ps(Yt ) is low. For many specifications of the distribution
of the state Yt , the pricing relation Ps(Yt ) must be determined by numerical
methods. In this case, the computational burden of solving for Ps while
simultaneously estimating θ0 can be formidable, especially as the dimension
of Y gets large. Have these considerations steered modelers to simpler data-
generating processes (DGPs) for Yt than they might otherwise have studied?
Surely the answer is yes and one might reasonably be concerned that such
compromises in the interest of computational tractability have introduced
model misspecification.

We will see that, fortunately, in many cases there are alternative esti-
mation strategies for studying arbitrage-free pricing relations that lessen
the need for such compromises. In particular, one can often compute the
moments of prices or returns implied by a pricing model, even though
the model-implied likelihood function is unknown. In such cases, method-
of-moments estimation is feasible. Early implementations of method-of-
moments estimators typically sacrificed some econometric efficiency com-
pared to the maximum likelihood estimator in order to achieve substantial
computational simplification. More recently, however, various approximate
maximum likelihood estimators have been developed that involve little or
no loss in econometric efficiency, while preserving computational tract-
ability.

1.1.3. Beta Representations of Excess Returns

One of the most celebrated and widely applied asset pricing models is the
static capital-asset pricing model (CAPM), which expresses expected excess
returns in terms of a security’s beta with a benchmark portfolio (Sharpe,
1964; Mossin, 1968). The traditional CAPM is static in the sense that agents
are assumed to solve one-period optimization problems instead of multi-
period utility maximization problems. Additionally, the CAPM beta pricing
relation holds only under special assumptions about either the distributions
of asset returns or agents’ preferences.

Nevertheless, the key insights of the CAPM carry over to richer stochas-
tic environments in which agents optimize over multiple periods. There is
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an analogous “single-beta” representation of expected returns based on the
representation (1.1) of prices in terms of a pricing kernel q∗, what we refer
to as an intertemporal CAPM or ICAPM.5 Specifically, setting s = t + 1, the
benchmark return r ∗t+1 = q∗t+1/πt (q∗t+1) satisfies6

E
[
r ∗t+1(rt+1 − r ∗t+1) | It

] = 0, rt+1 ∈ Rt+1. (1.5)

Equation (1.5) has several important implications for the role of r ∗t+1 in asset
return relations, one of which is that r ∗t+1 is a benchmark return for a single-
beta representation of excess returns (see Chapter 11):

E
[
rj,t+1 | It

]− r f
t = βj t

(
E
[
r ∗t+1 | It

]− r f
t

)
, (1.6)

where

βj t = Cov
[
rj,t+1, r ∗t+1 | It

]
Var

[
r ∗t+1 | It

] , (1.7)

and r f
t is the interest rate on one-period riskless loans issued at date t . In

words, the excess return on a security is proportional to the excess return
on the benchmark portfolio, E[r ∗t+1− r f

t | It ], with factor of proportionality
βj t , for all securities j with returns in Rt+1.

It turns out that the beta representation (1.6), together with the rep-
resentation of r f in terms of q∗t+1,7 constitute exactly the same information
as the basic pricing relation (1.1). Given one, we can derive the other, and
vice versa. At first glance, this may seem surprising given that econometric
tests of beta representations of asset returns are often not linked to pricing
kernels. The reason for this is that most econometric tests of expressions
like (1.6) are in fact not tests of the joint restriction that r f

t = 1/E[q∗t+1|It ]
and r ∗t+1 satisfies (1.6). Rather tests of the ICAPM are tests of whether a
proposed candidate benchmark return r βt+1 satisfies (1.6) alone, for a given
information set It . There are an infinite number of returns r β

t that satisfy
(1.6) (see Chapter 11). The return r∗t+1, on the other hand, is the unique

5 By defining a benchmark return that is explicitly linked to the marginal rate of substitu-
tion, Breeden (1979) has shown how to obtain a single-beta representation of security returns
that holds in continuous time. The following discussion is based on the analysis in Hansen and
Richard (1987).

6 Hansen and Richard (1987) show that when the pricing function πt is nontrivial,
Pr{πt (q∗t+1) = 0} = 0, so that r ∗t+1 is a well-defined return. Substituting r ∗ into (1.1) gives
E[r ∗t+1rt+1 | It ] = {E[q∗2

t+1 | It ]}−1, for all rt+1 ∈ Rt+1. Since r ∗t+1 is one such return, (1.5)
follows.

7 The interest rate r f
t can be expressed as 1/E[q∗t+1|It ] by substituting the payoff qt+1 = 1

into (1.1) with s = t + 1.
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return (within a set that is formally defined) satisfying (1.5). Thus, tests of
single-beta ICAPMs are in fact tests of weaker restrictions on return distri-
butions than tests of the pricing relation (1.1).

Focusing on a candidate benchmark return r βt+1 and relation (1.6) (with
r βt+1 in place of r ∗t+1), once again the choices made regarding estimation and
testing strategies typically involve trade-offs between the assumptions about
return distributions and the robustness of the empirical analysis. Taken by
itself, (1.6) is a restriction on the conditional first and second moments of
returns. If one specifies a parametric family for the joint conditional distri-
bution of the returns r j,t+1 and r βt+1 and the state Yt , then estimation can
proceed imposing the restriction (1.6). However, such tests may be com-
promised by misspecification of the higher moments of returns, even if the
first two moments are correctly specified. There are alternative estimation
strategies that exploit less information about the conditional distribution
of returns and, in particular, that are based on the first two conditional mo-
ments for a given information set It , of returns.

1.1.4. Linear Pricing Relations

Historically, much of the econometric analysis of DAPMs has focused on
linear pricing relations. One important example of a linear DAPM is the
version of the ICAPM obtained by assuming that βj t in (1.6) is constant
(not state dependent), say βj . Under this additional assumption, βj is the
familiar “beta” of the j th common stock from the CAPM, extended to allow
both expected returns on stocks and the riskless interest rate to change over
time. The mean of

uj,t+1 ≡
(

rj,t+1 − r f
t

)
− βj

(
r βt+1 − r f

t

)
(1.8)

conditioned on It is zero for all admissible rj . Therefore, the expression in
(1.8) is uncorrelated with any variable in the information set It ; E[uj,t+1xt ]
= 0, xt ∈ It . Estimators of the βj and tests of (1.6) can be constructed based
on these moment restrictions.

This example illustrates how additional assumptions about one feature
of a model can make an analysis more robust to misspecification of other
features. In this case, the assumption that βj is constant permits estimation
of βj and testing of the null hypothesis (1.6) without having to fully specify
the information set It or the functional form of the conditional means of
r j,t+1 and r βt+1. All that is necessary is that the candidate elements xt of It

used to construct moment restrictions are indeed in It .8

8 We will see that this simplification does not obtain when the βj t are state dependent.
Indeed, in the latter case, we might not even have readily identifiable benchmark returns r βt+1.
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Another widely studied linear pricing relation was derived under the
presumption that in a well-functioning—some say informationally efficient—
market, holding-period returns on assets must be unpredictable (see, e.g.,
Fama, 1970). It is now well understood that, in fact, the optimal process-
ing of information by market participants is not sufficient to ensure un-
predictable returns. Rather, we should expect returns to evidence some
predictability, either because agents are risk averse or as a result of the pres-
ence of a wide variety of market frictions.

Absent market frictions, then, one sufficient condition for returns to
be unpredictable is that agents are risk neutral in the sense of having linear
utility functions, U (ct ) = u0 + uc ct . Then the MRS is ms−t

s = βs , where β is
the subjective discount factor, and it follows immediately from (1.3) that

E[rs |It ] = 1/βs , (1.9)

for an admissible return rs . This, in turn, implies that rs is unpredictable
in the sense of having a constant conditional mean. The restrictions on
returns implied by (1.9) are, in principle, easily tested under only minimal
additional auxiliary assumptions about the distributions of returns. One
simply checks to see whether rs − 1/βs is uncorrelated with variables dated
t or earlier that might be useful for forecasting future returns. However, as
we discuss in depth in Chapter 9, there is an enormous literature examining
this hypothesis. In spite of the simplicity of the restriction (1.9), whether or
not it is true in financial markets remains an often debated question.

1.2. Econometric Estimation Strategies

While the specification of a DAPM logically precedes the selection of an esti-
mation strategy for an empirical analysis, we begin Part I with an overview of
econometric methods for analyzing DAPMs. Applications of these methods
are then taken up in the context of the discussions of specific DAPMs. To
set the stage for Part I, we start by viewing the model construction stage as
leading to a family of models or pricing relations describing features of the
distribution of an observed vector of variables zt . This vector may include
asset prices or returns, possibly other economic variables, as well as lagged
values of these variables. Each model is indexed by a K -dimensional vector
of parameters θ in an admissible parameter space � ∈ RK . We introduce �

For instance, if It is taken to be agents’ information set At , then the contents of It may not
be known to the econometrician. In this case the set of returns that satisfy (1.6) may also be
unknown. It is of interest to ask then whether or not there are similar risk-return relations with
moments conditioned on an observable subset of At , say It , for which benchmark returns
satisfying an analogue to (1.6) are observable. This is among the questions addressed in
Chapter 11.
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because, for each of the DAPMs indexed by θ to be well defined, it may be
necessary to constrain certain parameters to be larger than some minimum
value (e.g., variances or risk aversion parameters), or DAPMs may imply
that certain parameters are functionally related. The basic premise of an
econometric analysis of a DAPM is that there is a unique θ0 ∈ � (a unique
pricing relation) consistent with the population distribution of z. A primary
objective of the econometric analysis is to construct an estimator of θ0.

More precisely, we view the selection of an estimation strategy for θ0 as the
choice of:

• A sample of size T on a vector z t of observed variables, �zT ≡ (z T , z T−1,

. . . , z1)
′.

• An admissible parameter space � ⊆ RK that includes θ0.
• A K -vector of functionsD(z t ; θ)with the property that θ0 is the unique

element of � satisfying

E[D(z t ; θ0)] = 0. (1.10)

What ties an estimation strategy to the particular DAPM of interest is the
requirement that θ0 be the unique element of � that satisfies (1.10) for the
chosen function D. Thus, we view (1.10) as summarizing the implications
of the DAPM that are being used directly in estimation. Note that, while the
estimation strategy is premised on the economic theory of interest implying
that (1.10) is satisfied, there is no presumption that this theory implies a
unique D that has mean zero at θ0. In fact, usually, there is an uncountable
infinity of admissible choices of D.

For many of the estimation strategies considered, D can be reinter-
preted as the first-order condition for maximizing a nonstochastic population
estimation objective or criterion function Q 0(θ) : �→ R. That is, at θ0,

∂Q 0

∂θ
(θ0) = E[D(z t ; θ0)] = 0. (1.11)

Thus, we often view a choice of estimation strategy as a choice of criterion
function Q 0. For well-behaved Q 0, there is always a θ∗ that is the global max-
imum (or minimum, depending on the estimation strategy) of the criterion
function Q 0. Therefore, for Q 0 to be a sensible choice for the model at hand
we require that θ∗ be unique and equal to the population parameter vector
of interest, θ0. A necessary step in verifying that θ∗ = θ0 is verifying that D
satisfies (1.10) at θ0.

So far we have focused on constraints on the population moments of z
derived from a DAPM. To construct an estimator of θ0, we work with the sam-
ple counterpart of Q 0(θ), Q T (θ), which is a known function of �zT . (The sub-
script T is henceforth used to indicate dependence on the entire sample.)
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The sample-dependent θT that minimizes Q T (θ) over � is the extremum es-
timator of θ0. When the first-order condition to the population optimum
problem takes the form (1.11), the corresponding first-order condition for
the sample estimation problem is9

∂Q T

∂θ
(θT ) = 1

T

T∑
t=1

D(z t ; θT ) = 0. (1.12)

The sample relation (1.12) is obtained by replacing the population moment
in (1.11) by its sample counterpart and choosing θT to satisfy these sample
moment equations. Since, under regularity, sample means converge to their
population counterparts [in particular, Q T (·) converges to Q 0(·)], we expect
θT to converge to θ0 (the parameter vector of interest and the unique min-
imizer of Q 0) as T →∞.

As noted previously, DAPMs often give rise to moment restrictions of
the form (1.10) for more than one D, in which case there are multiple
feasible estimation strategies. Under regularity, all of these choices of D
have the property that the associated θT converge to θ0 (they are consistent
estimators of θ0). Where they differ is in the variance-covariance matrices
of the implied large-sample distributions of θT . One paradigm, then, for
selecting among the feasible estimation strategies is to choose the D that
gives the most econometrically efficient estimator in the sense of having
the smallest asymptotic variance matrix. Intuitively, the later estimator is
the one that exploits the most information about the distribution of �zT in
estimating θ0.

Once a DAPM has been selected for study and an estimation strategy
has been chosen, one is ready to proceed with an empirical study. At this
stage, the econometrician/modeler is faced with several new challenges,
including:

1. The choice of computational method to find a global optimum to
Q T (θ).

2. The choice of statistics and derivation of their large-sample proper-
ties for testing hypotheses of interest.

3. An assessment of the actual small-sample distributions of the
test statistics and, thus, of the reliability of the chosen inference
procedures.

The computational demands of maximizing Q T can be formidable. When
the methods used by a particular empirical study are known, we occasion-
ally comment on the approach taken. However, an in-depth exploration of

9 In subsequent chapters we often find it convenient to define Q T more generally as
1/T

∑T
t=1 DT (z t ; θT ) = 0, where DT (z t ; θ) is chosen so that it converges (almost surely) to

D(z t ; θ), as T →∞, for all θ ∈ �.
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alternative algorithms for finding the optimum of QT is beyond the scope
of this book.

With regard to points (2) and (3), there are many approaches to testing
hypotheses about the goodness-of-fit of a DAPM or the values of the pa-
rameters θ0. The criteria for selecting a test procedure (within the classical
statistical paradigm) are virtually all based on large-sample considerations.
In practice, however, the actual distributions of estimators in finite samples
may be quite different than their large-sample counterparts. To a limited
degree, Monte Carlo methods have been used to assess the small-sample
properties of estimators θT . We often draw upon this literature, when avail-
able, in discussing the empirical evidence.
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Part I

Econometric Methods
for Analyzing DAPMs
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2
Model Specification and

Estimation Strategies

A dapm may: (1) provide a complete characterization of the joint distribu-
tion of all of the variables being studied; or (2) imply restrictions on some
moments of these variables, but not reveal the form of their joint distri-
bution. A third possibility is that there is not a well-developed theory for
the joint distribution of the variables being studied. Which of these cases
obtains for the particular DAPM being studied determines the feasible es-
timation strategies; that is, the feasible choices of D in the definition of an
estimation strategy. This chapter introduces the maximum likelihood (ML),
generalized method of moments (GMM), and linear least-squares projec-
tion (LLP) estimators and begins our development of the interplay between
model formulation and the choice of an estimation strategy discussed in
Chapter 1.

2.1. Full Information about Distributions

Suppose that a DAPM yields a complete characterization of the joint distri-
bution of a sample of size T on a vector of variables yt , �yT ≡ {y1, . . . , yT }.
Let LT (β) = L( �yT ;β) denote the family of joint density functions of �yT

implied by the DAPM and indexed by the K -dimensional parameter vector
β. Suppose further that the admissible parameter space associated with this
DAPM is � ⊆ RK and that there is a unique β0 ∈ � that describes the true
probability model generating the asset price data.

In this case, we can take LT (β) to be our sample criterion function—
called the likelihood function of the data—and obtain the maximum likelihood
(ML) estimator b ML

T by maximizing LT (β). In ML estimation, we start with
the joint density function of �yT , evaluate the random variable �yT at the real-
ization comprising the observed historical sample, and then maximize the
value of this density over the choice of β ∈ �. This amounts to maximizing,

17
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over all admissible β, the “likelihood” that the realized sample was drawn
from the density LT (β). ML estimation, when feasible, is the most econo-
metrically efficient estimator within a large class of consistent estimators
(Chapter 3).

In practice, it turns out that studying LT is less convenient than working
with a closely related objective function based on the conditional density
function of yt . Many of the DAPMs that we examine in later chapters, for
which ML estimation is feasible, lead directly to knowledge of the density
function of yt conditioned on �yt−1, ft (yt |�yt−1;β) and imply that

ft (yt |�yt−1;β) = f
(
yt
∣∣�y J

t−1;β
)
, (2.1)

where �y J
t ≡ (yt , yt−1, . . . , yt−J+1), a J -history of yt . The right-hand side of

(2.1) is not indexed by t , implying that the conditional density function does
not change with time.1 In such cases, the likelihood function LT becomes

LT (β) =
T∏

t=J+1

f
(
yt
∣∣�y J

t−1;β
)× fm( �yJ ;β), (2.2)

where fm( �yJ ) is the marginal, joint density function of �yJ . Taking logarithms
gives the log-likelihood function l T ≡ T−1 log LT ,

l T (β) = 1
T

T∑
t=J+1

log f
(
yt
∣∣�y J

t−1;β
)+ 1

T
log fm( �yJ ;β). (2.3)

Since the logarithm is a monotonic transformation, maximizing l T gives the
same ML estimator b ML

T as maximizing LT .
The first-order conditions for the sample criterion function (2.3) are

∂ l T

∂β

(
b ML

T

) = 1
T

T∑
t=J+1

∂ log f
∂β

(
yt |�y J

t−1; b ML
T

)+ 1
T
∂ log fm
∂β

( �yJ ; b ML
T

) = 0, (2.4)

where it is presumed that, among all estimators satisfying (2.4), b ML
T is the

one that maximizes l T .2 Choosing z ′t = (y′t , �y J
t−1

′) and

1 A sufficient condition for this to be true is that the time series {yt } is a strictly stationary
process. Stationarity does not preclude time-varying conditional densities, but rather just that
the functional form of these densities does not change over time.

2 It turns out that b ML
T need not be unique for fixed T , even though β0 is the unique

minimizer of the population objective function Q 0. However, this technical complication need
not concern us in this introductory discussion.



Page 19 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

2.1. Full Information about Distributions 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[19], (5)

Lines: 84 to 136

———
4.1193pt PgVar
———
Normal Page
PgEnds: TEX

[19], (5)

D(z t ;β) ≡ ∂ log f
∂β

(
yt
∣∣�y J

t−1;β
)

(2.5)

as the function defining the moment conditions to be used in estimation,
it is seen that (2.4) gives first-order conditions of the form (1.12), except
for the last term in (2.4).3 For the purposes of large-sample arguments
developed more formally in Chapter 3, we can safely ignore the last term
in (2.3) since this term converges to zero as T→∞.4 When the last term is
omitted from (2.3), this objective function is referred to as the approximate
log-likelihood function, whereas (2.3) is the exact log-likelihood function.
Typically, there is no ambiguity as to which likelihood is being discussed
and we refer simply to the log-likelihood function l .

Focusing on the approximate log-likelihood function, fixing β∈�, and
taking the limit as T→∞ gives, under the assumption that sample moments
converge to their population counterparts, the associated population crite-
rion function

Q 0(β) = E
[
log f

(
yt
∣∣�y J

t−1;β
)]
. (2.6)

To see that the β0 generating the observed data is a maximizer of (2.6),
and hence that this choice of Q 0 underlies a sensible estimation strategy, we
observe that since the conditional density integrates to 1,

0 = ∂

∂β

∫ ∞

−∞
f
(
yt
∣∣�y J

t−1;β0
)

dyt

=
∫ ∞

−∞
∂ log f
∂β

(
yt
∣∣�y J

t−1;β0
)
f
(
yt
∣∣�y J

t−1;β0
)

dyt

= E

[
∂ log f
∂β

(yt
∣∣�y J

t−1;β0)

∣∣∣∣ �y J
t−1

]
, (2.7)

which, by the law of iterated expectations, implies that

∂Q 0

∂β
(β0) = E

[
∂ log f
∂β

(yt
∣∣�y J

t−1;β0)

]
= E [D(z t ;β0)] = 0. (2.8)

Thus, for ML estimation, (2.8) is the set of constraints on the joint distri-
bution of �yT used in estimation, the ML version of (1.10). Critical to (2.8)

3 The fact that the sum in (2.4) begins at J+1 is inconsequential, because we are focusing
on the properties of b ML

T (or θT ) for large T , and J is fixed a priori by the asset pricing theory.
4 There are circumstances where the small-sample properties of b ML

T may be substantially
affected by inclusion or omission of the term log fm (�yJ ;β) from the likelihood function. Some
of these are explored in later chapters.
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being satisfied by β0 is the assumption that the conditional density f implied
by the DAPM is in fact the density from which the data are drawn.

An important special case of this estimation problem is where {yt } is
an independently and identically distributed (i.i.d.) process. In this case, if
fm(yt ;β) denotes the density function of the vector yt evaluated at β, then
the log-likelihood function takes the simple form

l T (β) ≡ T−1 log LT (β) = 1
T

T∑
t=1

log fm(yt ;β). (2.9)

This is an immediate implication of the independence assumption, since
the joint density function of �yT factors into the product of the marginal
densities of the yt . The ML estimator of β0 is obtained by maximizing (2.9)
over β ∈ �. The corresponding population criterion function is Q 0(β) =
E[log fm(yt ;β)].

Though the simplicity of (2.9) is convenient, most dynamic asset pricing
theories imply that at least some of the observed variables y are not indepen-
dently distributed over time. Dependence might arise, for example, because
of mean reversion in an asset return or persistence in the volatility of one or
more variables (see the next example). Such time variation in conditional
moments is accommodated in the formulation (2.1) of the conditional den-
sity of yt , but not by (2.9).

Example 2.1. Cox, Ingersoll, and Ross [Cox et al., 1985b] (CIR) developed a
theory of the term structure of interest rates in which the instantaneous short-term
rate of interest, r , follows the mean reverting diffusion

dr = κ(r̄ − r ) dt + σ
√

r dB . (2.10)

An implication of (2.10) is that the conditional density of rt+1 given rt is

f (rt+1|rt ;β0) = ce−ut−vt+1

(
vt+1

ut

)q
2

Iq
(
2(ut vt+1)

1
2
)
, (2.11)

where

c = 2κ
σ 2(1− e−κ)

, (2.12)

ut = 2κ
σ 2(1− e−κ)

e−κ rt , (2.13)

vt+1 = 2κ
σ 2(1− e−κ)

rt+1, (2.14)
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q = 2κ r̄/σ 2 − 1, and Iq is the modified Bessel function of the first kind of order
q. This is the density function of a noncentral χ2 with 2q + 2 degrees of freedom
and noncentrality parameter 2ut . For this example, ML estimation would proceed
by substituting (1.11) into (2.4) and solving for b ML

T . The short-rate process (2.10)
is the continuous time version of an interest-rate process that is mean reverting to
a long-run mean of r̄ and that has a conditional volatility of σ

√
r . This process is

Markovian and, therefore, �y J
t = yt , which explains the single lag in the conditioning

information in (1.11).

Though desirable for its efficiency, ML may not be, and indeed typi-
cally is not, a feasible estimation strategy for DAPMs, as often they do not
provide us with complete knowledge of the relevant conditional distribu-
tions. Moreover, in some cases, even when these distributions are known,
the computational burdens may be so great that one may want to choose
an estimation strategy that uses only a portion of the available information.
This is a consideration in the preceding example given the presence of the
modified Bessel function in the conditional density of r . Later in this chap-
ter we consider the case where only limited information about the condi-
tional distribution is known or, for computational or other reasons, is used
in estimation.

2.2. No Information about the Distribution

At the opposite end of the knowledge spectrum about the distribution of �yT

is the case where we do not have a well-developed DAPM to describe the rela-
tionships among the variables of interest. In such circumstances, we may be
interested in learning something about the joint distribution of the vector
of variables z t (which is presumed to include some asset prices or returns).
For instance, we are often in a situation of wondering whether certain vari-
ables are correlated with each other or if one variable can predict another.
Without knowledge of the joint distribution of the variables of interest, re-
searchers typically proceed by projecting one variable onto another to see if
they are related. The properties of the estimators in such projections are
examined under this case of no information.5 Additionally, there are occa-
sions when we reject a theory and a replacement theory that explains the
rejection has yet to be developed. On such occasions, many have resorted
to projections of one variable onto others with the hope of learning more
about the source of the initial rejection. Following is an example of this
second situation.

5 Projections, and in particular linear projections, are a simple and often informative
first approach to examining statistical dependencies among variables. More complex, non-
linear relations can be explored with nonparametric statistical methods. The applications of
nonparametric methods to asset pricing problems are explored in subsequent chapters.
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Example 2.2. Several scholars writing in the 1970s argued that, if foreign cur-
rency markets are informationally efficient, then the forward price for delivery of for-
eign exchange one period hence (F 1

t ) should equal the market’s best forecast of the spot
exchange rate next period (St+1):

F 1
t = E[St+1|It ], (2.15)

where It denotes the market’s information at date t . This theory of exchange rate
determination was often evaluated by projecting St+1 − F 1

t onto a vector xt and
testing whether the coefficients on xt are zero (e.g., Hansen and Hodrick, 1980).
The evidence suggested that these coefficients are not zero, which was interpreted as
evidence of a time-varying market risk premium λt ≡ E[St+1|It ] − F 1

t (see, e.g.,
Grauer et al., 1976, and Stockman, 1978). Theory has provided limited guidance as
to which variables determine the risk premiums or the functional forms of premiums.
Therefore, researchers have projected the spread St+1 − F 1

t onto a variety of variables
known at date t and thought to potentially explain variation in the risk premium.
The objective of the latter studies was to test for dependence of λt on the explanatory
variables, say xt .

To be more precise about what is meant by a projection, let L2 denote the
set of (scalar) random variables that have finite second moments:

L2 = {random variables x such that Ex2 <∞}. (2.16)

We define an inner product on L2 by

〈 x | y 〉 ≡ E(xy), x, y ∈ L2, (2.17)

and a norm by

‖ x ‖ = [〈 x | x 〉] 1
2 =

√
E(x2). (2.18)

We say that two random variables x and y in L2 are orthogonal to each
other if E(xy) = 0. Note that being orthogonal is not equivalent to being
uncorrelated as the means of the random variables may be nonzero.

Let A be the closed linear subspace of L2 generated by all linear combi-
nations of the K random variables {x1, x2, . . . , xK }. Suppose that we want to
project the random variable y ∈ L2 onto A in order to obtain its best linear
predictor. Letting δ′ ≡ (δ1, . . . , δK ), the best linear predictor is that element
of A that minimizes the distance between y and the linear space A:

min
z∈A

‖ y − z ‖ ⇔ min
δ∈RK

‖ y − δ1x1 − . . .− δK xK ‖ . (2.19)
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The orthogonal projection theorem6 tells us that the unique solution to (2.19) is
given by the δ0 ∈ RK satisfying

E
[
(y − x ′δ0)x

] = 0, x ′ = (x1, . . . , xK ); (2.20)

that is, the forecast error u ≡ (y − x ′δ0) is orthogonal to all linear combina-
tions of x . The solution to the first-order condition (2.20) is

δ0 = E[xx ′]−1E[xy]. (2.21)

In terms of our notation for criterion functions, the population crite-
rion function associated with least-squares projection is

Q 0(δ) = E
[
(yt − x ′t δ)

2], (2.22)

and this choice is equivalent to choosing z ′t = (yt , x ′t ) and the function D as

D(z t ; δ) = (yt − x ′t δ)xt . (2.23)

The interpretation of this choice is a bit different than in most estimation
problems, because our presumption is that one is proceeding with estima-
tion in the absence of a DAPM from which restrictions on the distribution
of (yt , xt ) can be deduced. In the case of a least-squares projection, we view
the moment equation

E
[
D(yt , xt ; δ0)

] = E
[
(yt − x ′t δ0)xt

] = 0 (2.24)

as the moment restriction that defines δ0.
The sample least-squares objective function is

Q T (δ) = 1
T

T∑
t=1

(yt − x ′t δ)
2, (2.25)

with minimizer

δT =
[

1
T

T∑
t=1

xt x ′t

]−1
1
T

T∑
t=1

xt yt . (2.26)

6 The orthogonal projection theorem says that if L is an inner product space, M is a
closed linear subspace of L, and y is an element of L, then z∗ ∈M is the unique solution to

min
z ∈M

‖ y − z ‖

if and only if y − z∗ is orthogonal to all elements of M . See, e.g., Luenberger (1969).
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The estimator δT is also obtained directly by replacing the population mo-
ments in (2.21) by their sample counterparts.

In the context of the pricing model for foreign currency prices, re-
searchers have projected (St+1 − F 1

t ) onto a vector of explanatory variables
xt . The variable being predicted in such analyses, (St+1 − F 1

t ), is not the
risk premium, λt = E[(St+1 − F 1

t )|It ]. Nevertheless, the resulting predictor
in the population, x ′t δ0, is the same regardless of whether λt or (St+1 − F 1

t )

is the variable being forecast. To see this, we digress briefly to discuss the
difference between best linear and best prediction.

The predictor x ′t δ0 is the best linear predictor, which is defined by the
condition that the projection error ut = yt − x ′t δ0 is orthogonal to all linear
combinations of xt . Predicting yt using linear combinations of xt is only
one of many possible approaches to prediction. In particular, we could also
consider prediction based on both linear and nonlinear functions of the
elements of xt . Pursuing this idea, let V denote the closed linear subspace
of L2 generated by all random variables g (xt ) with finite second moments:

V = {g (xt ) : g : RK → R, and g (xt ) ∈ L2}. (2.27)

Consider the new minimization problem minz∈V ‖ yt − z t ‖. By the orthog-
onal projection theorem, the unique solution z∗t to this problem has the
property that (yt − z∗t ) is orthogonal to all z t ∈ V . One representation of z∗
is the conditional expectation E[yt |xt ]. This follows immediately from the
properties of conditional expectations: the error εt = yt − E[yt |xt ] satisfies

E[εt g (xt )] = E
[
(yt − E[yt |xt ])g (xt )

] = 0, (2.28)

for all g (xt ) ∈ V . Clearly, A ⊆ V so the best predictor is at least as good
as the best linear predictor. The precise sense in which best prediction is
better is that, whereas εt is orthogonal to all functions of the conditioning
information xt , ut is orthogonal to only linear combinations of xt .

There are circumstances where best and best linear predictors coincide.
This is true whenever the conditional expectation E[yt |xt ] is linear in xt .
One well-known case where this holds is when (yt , x ′t ) is distributed as a
multivariate normal random vector. However, normality is not necessary
for best and best linear predictors to coincide. For instance, consider again
Example 2.1. The conditional mean E[rt+�|rt ] for positive time interval �
is given by (Cox et al., 1985b)

μrt (�) ≡ E[rt+�|rt ] = rt e−�κ + r̄ (1− e−�κ), (2.29)

which is linear in rt , yet neither the joint distribution of (rt , rt−�) nor the
distribution of rt conditioned on rt−� is normal. (The latter is noncentral
chi-square.)
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With these observations in mind, we can now complete our argument
that the properties of risk premiums can be studied by linearly projecting
(St+1− F 1

t ) onto xt . Letting Proj[·|xt ] denote linear least-squares projection
onto xt , we get

Proj[λt |xt ] = Proj
[(
St+1 − F 1

t

)− εt+1
∣∣xt]

= Proj
[(

St+1 − F 1
t

)∣∣xt
]
, (2.30)

where εt+1 ≡ (St+1 − F 1
t )− λt . The first equality follows from the definition

of the risk premium as E[St+1 − F 1
t |It ] and the second follows from the fact

that εt+1 is orthogonal to all functions of xt including linear functions.

2.3. Limited Information: GMM Estimators

In between the cases of full information and no information about the joint
distribution of �yT are all of the intermediate cases of limited information. Sup-
pose that estimation of a parameter vector θ0 in the admissible parameter
space �⊂RK is to be based on a sample �zT , where z t is a subvector of the
complete set of variables yt appearing in a DAPM.7 The restrictions on the
distribution of �zT to be used in estimating θ0 are summarized as a set of
restrictions on the moments of functions of z t . These moment restrictions
may be either conditional or unconditional.

2.3.1. Unconditional Moment Restrictions

Consider first the case where a DAPM implies that the unconditional mo-
ment restriction

E[h(z t ; θ0)] = 0 (2.31)

is satisfied uniquely by θ0, where h is an M -dimensional vector with M ≥ K .
The function h may define standard central or noncentral moments of asset
returns, the orthogonality of forecast errors to variables in agents’ informa-
tion sets, and so on. Illustrations based on Example 2.1 are presented later
in this section.

To develop an estimator of θ0 based on (2.31), consider first the case
of K =M ; the number of moment restrictions equals the number of para-
meters to be estimated. The function H0 : �→ RM defined by H0(θ) =

7 There is no requirement that the dimension of � be as large as the dimension of the
parameter space � considered in full information estimation; often � is a lower-dimensional
subspace of �, just as z t may be a subvector of yt . However, for notational convenience, we
always set the dimension of the parameter vector of interest to K , whether it is θ0 or β0.
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E[h(zt ; θ)] satisfies H0(θ0) = 0. Therefore, a natural estimation strategy for
θ0 is to replace H0 by its sample counterpart,

HT (θ) = 1
T

T∑
t=1

h(zt ; θ), (2.32)

and choose the estimator θT to set (2.32) to zero. If HT converges to its
population counterpart as T gets large, HT (θ)→ H0(θ), for all θ ∈ �, then
under regularity conditions we should expect that θT → θ0. The estimator
θT is an example of what Hansen (1982b) refers to as a generalized method-
of-moments, or GMM, estimator of θ0.

Next suppose that M > K . Then there is not in general a unique way
of solving for the K unknowns using the M equations HT (θ) = 0, and our
strategy for choosing θT must be modified. We proceed to form K linear
combinations of the M moment equations to end up with K equations in
the K unknown parameters. That is, letting Ā denote the set of K ×M
(constant) matrices of rank K , we select an A ∈ Ā and set

DA(z t ; θ) = Ah(z t ; θ), (2.33)

with this choice ofDA determining the estimation strategy. Different choices
of A∈Ā index (lead to) different estimation strategies. To arrive at a sample
counterpart to (2.33), we select a possibly sample-dependent matrix AT

with the property that AT → A (almost surely) as sample size gets large.
Then the K×1 vector θA

T (the superscript A indicating that the estimator is
A-dependent) is chosen to satisfy the K equations

∑
t DT (z t , θ

A
T ) = 0, where

DT (z t , θ
A
T ) = AT h(z t ; θA

T ). Note that we are now allowing DT to be sample
dependent directly, and not only through its dependence on θA

T . This will
frequently be the case in subsequent applications.

The construction of GMM estimators using this choice of DT can be re-
lated to the approach to estimation involving a criterion function as follows:
Let {aT : T ≥ 1} be a sequence of s ×M matrices of rank s, K ≤ s≤M , and
consider the function

Q T (θ) = |aT HT (θ)|, (2.34)

where | · | denotes the Euclidean norm. Then

argmin
θ

|aT HT (θ)| = argmin
θ

|aT HT (θ)|2= argmin
θ

HT (θ)
′a ′T aT HT (θ), (2.35)

and we can think of our criterion function Q T as being the quadratic form

Q T (θ) = H ′
T (θ)WT HT (θ), (2.36)
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where WT ≡ a ′T aT is often referred to as the distance matrix. This is the GMM
criterion function studied by Hansen (1982b). The first-order conditions for
this minimization problem are

∂HT

∂θ
(θT )

′WT HT (θT ) = 0. (2.37)

By setting

AT = [∂HT (θT )
′/∂θ]WT , (2.38)

we obtain the DT (z t ; θ) associated with Hansen’s GMM estimator.
The population counterpart to Q T in (2.36) is

Q 0(θ) = E[h(zt ; θ)]′W0E[h(zt ; θ)]. (2.39)

The corresponding population D0(z t , θ) is given by

D0(z t , θ) = E
[
∂h
∂θ

(z t ; θ0)
′
]

W0h(z t ; θ) ≡ A0h(z t ; θ), (2.40)

where W0 is the (almost sure) limit of WT as T gets large. Here D0 is not
sample dependent, possibly in contrast to DT .

Whereas the first-order conditions to (2.36) give an estimator in the
class Ā [with A defined by (2.40)], not all GMM estimators in Ā are the first-
order conditions from minimizing an objective function of the form (2.36).
Nevertheless, it turns out that the optimal GMM estimators in Ā , in the sense
of being asymptotically most efficient (see Chapter 3), can be represented
as the solution to (2.36) for appropriate choice of WT . Therefore, the large-
sample properties of GMM estimators are henceforth discussed relative to
the sequence of objective functions {Q T (·) : T ≥ 1} in (2.36).

2.3.2. Conditional Moment Restrictions

In some cases, a DAPM implies the stronger, conditional moment restric-
tions

E[h(zt+n; θ0)|It ] = 0, for given n ≥ 1, (2.41)

where the possibility of n>1 is introduced to allow the conditional moment
restrictions to apply to asset prices or other variables more than one period
in the future. Again, the dimension of h is M , and the information set It

may be generated by variables other than the history of z t .
To construct an estimator of θ0 based on (2.41), we proceed as in the

case of unconditional moment restrictions and choose K sample moment
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equations in the K unknowns θ . However, because h(zt+n; θ0) is orthogo-
nal to any random variable in the information set It , we have much more
flexibility in choosing these moment equations than in the preceding case.
Specifically, we introduce a class of K×M full-rank “instrument” matricesAt

with each At ∈ At having elements in It . For any At ∈ At , (2.41) implies that

E[At h(zt+n; θ0)] = 0 (2.42)

at θ = θ0. Therefore, we can define a family of GMM estimators indexed by
A∈A, θA

T , as the solutions to the corresponding sample moment equations,

1
T

∑
t

At h
(
zt+n; θA

T

) = 0. (2.43)

If the sample mean of At h(zt+n; θ) in (2.43) converges to its population
counterpart in (2.42), for all θ ∈ �, and At and h are chosen so that θ0 is
the unique element of � satisfying (2.42), then we might reasonably expect
θA

T to converge to θ0 as T gets large. The large-sample distribution of θA
T

depends, in general, on the choice of At .8

The GMM estimator, as just defined, is not the extreme value of a
specific criterion function. Rather, (2.42) defines θ0 as the solution to K
moment equations in K unknowns, and θT solves the sample counterpart
of these equations. In this case, D0 is chosen directly as

D0(zt+n,At ; θ) = DT (zt+n,At ; θ) = At h(zt+n; θ). (2.44)

Once we have chosen an At in At , we can view a GMM estimator con-
structed from (2.41) as, trivially, a special case of an estimator based on
unconditional moment restrictions. Expression (2.42) is taken to be the
basic K moment equations that we start with. However, the important dis-
tinguishing feature of the class of estimators At , compared to the class Ā, is
that the former class offers much more flexibility in choosing the weights
on h. We will see in Chapter 3 that the most efficient estimator in the class
A is often more efficient than its counterpart in Ā. That is, (2.41) allows
one to exploit more information about the distribution of z t than (2.31) in
the estimation of θ0.

8 As is discussed more extensively in the context of subsequent applications, this GMM es-
timation strategy is a generalization of the instrumental variables estimators proposed for clas-
sical simultaneous equations models by Amemiya (1974) and Jorgenson and Laffont (1974),
among others.
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2.3.3. Linear Projection as a GMM Estimator

Perhaps the simplest example of a GMM estimator based on the moment
restriction (2.31) is linear least-squares projection. Suppose that we project
yt onto xt . Then the best linear predictor is defined by the moment equation
(2.20). Thus, if we define

h
(
yt , xt ; δ

) = (yt − x ′t δ
)

xt , (2.45)

then by construction δ0 satisfies E[h(yt , xt ; δ0)] = 0.
One might be tempted to view linear projection as special case of a

GMM estimator in At by choosing n = 0,

At = xt and h
(
yt , xt ; δ

) = (yt − x ′t δ
)
. (2.46)

However, importantly, we are not free to select among other choices of
At ∈ At in constructing a GMM estimator of the linear predictor x ′t δ0. There-
fore, least-squares projection is appropriately viewed as a GMM estimator
in Ā.

Circumstances change if a DAPM implies the stronger moment
restriction

E
[(

yt − x ′t δ0
)∣∣xt
] = 0. (2.47)

Now we are no longer in an environment of complete ignorance about the
distribution of (yt , xt ), as it is being assumed that x ′t δ0 is the best, not just the
best linear, predictor of yt . In this case, we are free to choose

At = g (xt ) and h
(
yt , xt ; δ

) = (yt − x ′t δ
)
, (2.48)

for any g : RK →RK . Thus, the assumption that the best predictor is linear
puts us in the case of conditional moment restrictions and opens up the
possibility of selecting estimators in A defined by the functions g .

2.3.4. Quasi-Maximum Likelihood Estimation

Another important example of a limited information estimator that is a
special case of a GMM estimator is the quasi-maximum likelihood (QML)
estimator. Suppose that n = 1 and that It is generated by the J -history �y J

t
of a vector of observed variables yt .9 Further, suppose that the functional

9 We employ the usual, informal notation of letting It or �y J
t denote the σ -algebra (infor-

mation set) used to construct conditional moments and distributions.
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forms of the population mean and variance of yt+1, conditioned on It , are
known and let θ denote the vector of parameters governing these first two
conditional moments. Then ML estimation of θ0 based on the classical
normal conditional likelihood function gives an estimator that converges
to θ0 and is normally distributed in large samples (see, e.g., Bollerslev and
Wooldridge, 1992).

Referring back to the introductory remarks in Chapter 1, we see that
the function D (= D0 = DT ) determining the moments used in estimation
in this case is

D(z t ; θ) = ∂ log fN
∂θ

(
yt
∣∣�y J

t−1; θ
)
, (2.49)

where z ′t = (y′t , �y J
t−1

′) and fN is the normal density function conditioned on
�y J

t−1. Thus, for QML to be an admissible estimation strategy for this DAPM
it must be the case that θ0 satisfies

E
[
∂ log fN

∂θ

(
yt
∣∣�y J

t−1; θ0
)] = 0. (2.50)

The reason that θ0 does in fact satisfy (2.50) is that the first two conditional
moments of yt are correctly specified and the normal distribution is fully
characterized by its first two moments. This intuition is formalized in Chap-
ter 3. The moment equation (2.50) defines a GMM estimator.

2.3.5. Illustrations Based on Interest Rate Models

Consider again the one-factor interest rate model presented in Example 2.1.
Equation (2.29) implies that we can choose

h
( �z1

t+1; θ0
) = [rt+1 − r̄ (1− e−κ)− e−κ rt

]
, (2.51)

where �z2
t+1 = (rt+1, rt )

′. Furthermore, for any 2 × 1 vector function g (rt ) :
R→ R2, we can set At = g (rt ) and

E
[
(rt+1 − r̄ (1− e−κ)− e−κ rt )g (rt )

] = 0. (2.52)

Therefore, a GMM estimator θA′
T =(r̄T , κT ) of θ ′0=(r̄ , κ) can be constructed

from the sample moment equations

1
T

∑
t

[
rt+1 − r̄T (1− e−κT )− e−κT rt

]
g (rt ) = 0. (2.53)
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Each choice of g (rt ) ∈ At gives rise to a different GMM estimator that in
general has a different large-sample distribution. Linear projection of rt

onto rt−1 is obtained as the special case with g (rt−1)
′ = (1, rt−1), M = K = 2,

and θ ′ = (κ, r̄ ).
Turning to the implementation of QML estimation in this example,

the mean of rt+� conditioned on rt is given by (2.29) and the conditional
variance is given by (Cox et al., 1985b)

σ 2
rt (�) ≡ Var [rt+�|rt ] = rt

σ 2

κ
(e−�κ − e−2�κ)+ r̄

σ 2

2κ
(1− e−�κ)2. (2.54)

If we set � = 1, it follows that discretely sampled returns (rt , rt−1, . . .) follow
the model

rt+1 = r̄ (1− e−κ)+ e−κ rt +
√
σ 2

rtεt+1, (2.55)

where the error term εt+1 in (2.55) has (conditional) mean zero and vari-
ance one. For this model, θ0 = (r̄ , κ, σ 2)′ = β0 (the parameter vector that
describes the entire distribution of rt ), though this is often not true in other
applications of QML.

The conditional distribution of rt is a noncentral χ2. However, suppose
we ignore this fact and proceed to construct a likelihood function based
on our knowledge of (2.29) and (2.54), assuming that the return rt is dis-
tributed as a normal conditional on rt−1. Then the log-likelihood function
is (l q to indicate that this is QML)

l q
T (θ) ≡

1
T

T∑
t=2

(
−1

2
log(2π)− 1

2
log
(
σ 2

rt−1

)− 1
2
(rt − μrt−1)

2

σ 2
rt−1

)
. (2.56)

Computing first-order conditions gives

∂ l q
T

∂θj

(
θ

q
T

) = 1
T

T∑
t=2

− 1

2σ̂ 2
rt−1

∂σ̂ 2
rt−1

∂θj
+ 1

2
(rt − μ̂rt−1)

2

σ̂ 4
rt−1

∂σ̂ 2
rt−1

∂θj

+ (rt − μ̂rt−1)

σ̂ 2
rt−1

∂μ̂rt−1

∂θj
= 0, j = 1, 2, 3, (2.57)

where θ q
T denotes the QML estimator and μ̂rt−1 and σ̂ 2

rt−1 are μrt−1 and σ 2
rt−1

evaluated at θ q
T . As suggested in the preceding section, this estimation strat-

egy is admissible because the first two conditional moments are correctly
specified.

Though one might want to pursue GMM or QML estimation for this
interest rate example because of their computational simplicity, this is not
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the best illustration of a limited information problem because the true
likelihood function is known. However, a slight modification of the interest
rate process places us in an environment where GMM is a natural estimation
strategy.

Example 2.3. Suppose we extend the one-factor model introduced in Example 2.1
to the following two-factor model:

dr = κ(r̄ − r ) dt + σr
√

v dBr ,

dv = ν(v̄ − v) dt + σv
√

v dBv . (2.58)

In this two-factor model of the short rate, v plays the role of a stochastic volatility
for r . Similar models have been studied by Anderson and Lund (1997a) and Dai
and Singleton (2000). The volatility shock in this model is unobserved, so estimation
and inference must be based on the sample �r T and rt is no longer a Markov process
conditioned on its own past history.

An implication of the assumptions that r mean reverts to the long-run
value of r̄ and that the conditional mean of r does not depend on v is that
(2.29) is still satisfied in this two-factor model. However, the variance of rt

conditioned on rt−1 is not known in closed form, nor is the form of the
density of rt conditioned on �r J

t−1. Thus, neither ML nor QML estimation
strategies are easily pursued.10 Faced with this limited information, one con-
venient strategy for estimating θ ′0 ≡ (r̄ , κ) is to use the moment equations
(2.52) implied by (2.29).

This GMM estimator of θ0 ignores entirely the known structure of the
volatility process and, indeed, σ 2

r is not an element of θ0. Thus, not only
are we unable to recover any information about the parameters of the vola-
tility equation using (2.52), but knowledge of the functional form of the
volatility equation is ignored. It turns out that substantially more informa-
tion about f (rt |rt−1; θ0) can be used in estimation, but to accomplish this we
have to extend the GMM estimation strategy to allow for unobserved state
variables. This extension is explored in depth in Chapter 6.

2.3.6. GMM Estimation of Pricing Kernels

As a final illustration, suppose that the pricing kernel in a DAPM is a
function of a state vector xt and parameter vector θ0. In preference-based
DAPMs, the pricing kernel can be interpreted as an agent’s intertemporal

10 Asymptotically efficient estimation strategies based on approximations to the true con-
ditional density function of r have been developed for this model. These are described in
Chapter 7.
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Table 2.1. Summary of Population and Sample Objective Functions for Various Estimators

Maximum likelihood GMM Least-squares projection

Population
objective
function

max
β∈� E

[
log f

(
yt

∣∣∣ �y J
t−1;β

)]
min
θ∈� E[h(zt ; θ)]′W0E[h(zt ; θ)] min

δ∈RK
E
[(

yt − x ′t δ
)2]

Sample
objective
function

max
β∈�

1
T

∑T
t=J+1 log f

(
yt

∣∣∣ �y J
t−1;β

)
min
θ∈� HT (θ)

′WT HT (θ) min
δ∈RK

1
T

∑T
t=1

(
yt − x ′t δ

)2
HT (θ) = 1

T

∑T
t=1 h(zt ; θ)

Population
F.O.C.

E
[
∂ log
∂β

f
(

yt

∣∣∣ �y J
t−1;β0

)]
= 0 A0E[h(zt ; θ0)] = 0 E

[(
yt − x ′t δ0

)
xt
] = 0

Sample
F.O.C.

1
T

∑T
t=J+1

∂ log
∂β

f
(

yt

∣∣∣ �y J
t−1; b ML

T

)
= 0 AT

1
T

∑T
t=1 h(zt ; θT ) = 0 1

T

∑T
t=1

(
yt − x ′t δT

)
xt = 0


