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Preface

This book is an introduction to the theory of portfolio choice and asset
pricing in multiperiod settings under uncertainty. An alternate title might
be Arbitrage, Optimality, and Equilibrium, because the book is built around
the three basic constraints on asset prices: absence of arbitrage, single-
agent optimality, and market equilibrium. The most important unifying
principle is that any of these three conditions implies that there are “state
prices,” meaning positive discount factors, one for each state and date,
such that the price of any security is merely the state-price weighted sum of
its future payoffs. This idea can be traced to the invention by Arrow (1953)
of the general equilibrium model of security markets. Identifying the state
prices is the major task at hand. Technicalities are given relatively little
emphasis so as to simplify these concepts and to make plain the similarities
between discrete- and continuous-time models.ricing model.

To someone who came out of graduate school in the mid-eighties, the
decade spanning roughly 1969–79 seems like a golden age of dynamic asset
pricing theory. Robert Merton started continuous-time financial modeling
with his explicit dynamic programming solution for optimal portfolio and
consumption policies. This set the stage for his 1973 general equilibrium
model of security prices, another milestone. His next major contribution
was his arbitrage-based proof of the option pricing formula introduced
by Fisher Black and Myron Scholes in 1973, and his continual develop-
ment of that approach to derivative pricing. The Black-Scholes model
now seems to be, by far, the most important single breakthrough of this
“golden decade,” and ranks alone with the Modigliani and Miller (1958)
Theorem and the Capital Asset Pricing Model (CAPM) of Sharpe (1964)
and Lintner (1965) in its overall importance for financial theory and
practice. A tremendously influential simplification of the Black-Scholes
model appeared in the “binomial” option pricing model of Cox, Ross, and
Rubinstein (1979), who drew on an insight of Bill Sharpe.

xiii
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Working with discrete-time models, LeRoy (1973), Rubinstein (1976),
and Lucas (1978) developed multiperiod extensions of the CAPM. The
“Lucas model” is the “vanilla flavor” of equilibrium asset pricing models.
The simplest multiperiod representation of the CAPM finally appeared in
Doug Breeden’s continuous-time consumption-based CAPM, published in
1979. Although not published until 1985, the Cox-Ingersoll-Ross model of
the term structure of interest rates appeared in the mid-seventies and is
still the premier textbook example of a continuous-time general equilib-
rium asset pricing model with practical applications. It also ranks as one
of the key breakthroughs of that decade. Finally, extending the ideas of
Cox and Ross (1976) and Ross (1978), Harrison and Kreps (1979) gave
an almost definitive conceptual structure to the whole theory of dynamic
security prices.

Theoretical developments in the period since 1979, with relatively few
exceptions, have been a mopping-up operation. Assumptions have been
weakened, there have been noteworthy extensions and illustrative mod-
els, and the various problems have become much more unified under the
umbrella of the Harrison-Kreps model of equivalent martingale measures.
For example, the standard approach to optimal portfolio and consump-
tion choice in continuous-time settings has become the martingale method
of Cox and Huang (1989). An essentially final version of the relationship
between the absence of arbitrage and the existence of equivalent martin-
gale measures was finally obtained by Delbaen and Schachermayer (1999).

On the applied side, markets have experienced an explosion of
new valuation techniques, hedging applications, and security innovation,
much of this based on the Black-Scholes and related arbitrage models.
No major investment bank, for example, lacks the experts or computer
technology required to implement advanced mathematical models of the
term structure. Because of the wealth of new applications, there has been
a significant development of special models to treat stochastic volatility,
jump behavior including default, and the term structure of interest rates,
along with many econometric advances designed to take advantage of the
resulting improvements in richness and tractability.

Although it is difficult to predict where the theory will go next, in
order to promote faster progress by people coming into the field it seems
wise to have some of the basics condensed into a textbook. This book
is designed to be a streamlined course text, not a research monograph.
Much generality is sacrificed for expositional reasons, and there is rela-
tively little emphasis on mathematical rigor or on the existence of general
equilibrium. As its title indicates, I am treating only the theoretical side
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of the story. Although it might be useful to tie the theory to the empirical
side of asset pricing, we have excellent treatments of the econometric
modeling of financial data, such as Campbell, Lo, and MacKinlay (1997)
and Gourieroux and Jasiak (2000). I also leave out some important aspects
of functioning security markets, such as asymmetric information and trans-
actions costs. I have chosen to develop only some of the essential ideas of
dynamic asset pricing, and even these are more than enough to put into
one book or into a one-semester course.

Other books whose treatments overlap with some of the topics treated
here include Avelleneda and Laurence (2000), Björk (1998), Dana and
Jeanblanc (1998), Demange and Rochet (1992), Dewynne and Wilmott
(1994), Dixit and Pindyck (1993), Dothan (1990), Duffie (1988b), Harris
(1987), Huang and Litzenberger (1988), Ingersoll (1987), Jarrow (1988),
Karatzas (1997), Karatzas and Shreve (1998), Lamberton and Lapeyre
(1997), Magill and Quinzii (1994), Merton (1990), Musiela and Rutkowski
(1997), Neftci (2000), Stokey and Lucas (1989), Willmott, Dewynne, and
Howison (1993), and Wilmott, Howison, and Dewynne (1995). Each has
its own aims and themes. I hope that readers will find some advantage in
having yet another perspective.

A reasonable way to teach a shorter course on continuous-time asset
pricing out of this book is to begin with Chapter 1 or 2 as an introduc-
tion to the basic notion of state prices and then to go directly to Chap-
ters 5 through 11. Chapter 12, on numerical methods, could be skipped
at some cost to the student’s ability to implement the results. There is no
direct dependence of any results in Chapters 5 through 12 on the first four
chapters.

For mathematical preparation, little beyond undergraduate analysis,
as in Bartle (1976), and linear algebra is assumed. Some familiarity with
Royden (1968) or a similar text on functional analysis and measure the-
ory, would also be useful. Some background in microeconomics would be
useful, say Kreps (1990) or Luenberger (1995). Familiarity with probabil-
ity theory at the level of Jacod and Protter (2000), for example, would also
speed things along, although measure theory is not used heavily. In any
case, a series of appendices supplies all of the required concepts and def-
initions from probability theory and stochastic calculus. Additional useful
references in this regard are Brémaud (1981), Karatzas and Shreve (1988),
Revuz and Yor (1991), and Protter (1990).

Students seem to learn best by doing problem exercises. Each chap-
ter has exercises and notes to the literature. I have tried to be thorough
in giving sources for results whenever possible and plead that any cases
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in which I have mistaken or missed sources be brought to my attention
for correction. The notation and terminology throughout is fairly stan-
dard. I use � to denote the real line and �� = � ∪ �−��+�� for the
extended real line. For any set Z and positive integer n, I use Zn for the set
of n-tuples of the form �z1� � � � � zn	 with zi in Z for all i. An example is �n.
The conventions used for inequalities in any context are

� x ≥ 0 means that x is nonnegative. For x in �n, this is equivalent to
x ∈ �n+;

� x > 0 means that x is nonnegative and not zero, but not necessarily
strictly positive in all coordinates;

� x � 0 means x is strictly positive in every possible sense. The phrase
“x is strictly positive” means the same thing. For x in �n, this is equiv-
alent to x ∈ �n++ ≡ int��n+	.

Although warnings will be given at appropriate times, it should be
kept in mind that X = Y will be used to mean equality almost every-
where or almost surely, as the case may be. The same caveat applies to
each of the above inequalities. A real-valued function F on an ordered
set (such as �n) is increasing if F �x	 ≥ F �y	 whenever x ≥ y and strictly
increasing if F �x	 > F �y	 whenever x > y. When the domain and range
of a function are implicitly obvious, the notation “x → F �x	” means the
function that maps x to F �x	; for example, x → x2 means the function
F � � → � defined by F �x	 = x2. Also, while warnings appear at appropri-
ate places, it is worth pointing out again here that, for ease of exposition,
a continuous-time “process” will be defined throughout as a jointly (prod-
uct) measurable function on � × �0� T �, where �0� T � is the given time
interval and ���� � P	 is the given underlying probability space.

The first four chapters are in a discrete-time setting with a discrete set
of states. This should ease the development of intuition for the models
to be found in Chapters 5 through 12. The three pillars of the theory,
arbitrage, optimality, and equilibrium, are developed repeatedly in different
settings. Chapter 1 is the basic single-period model. Chapter 2 extends the
results of Chapter 1 to many periods. Chapter 3 specializes Chapter 2 to a
Markov setting and illustrates dynamic programming as an alternate solu-
tion technique. The Ho-and-Lee and Black-Derman-Toy term-structure
models are included as exercises. Chapter 4 is an infinite-horizon counter-
part to Chapter 3 that has become known as the Lucas model.

The focus of the theory is the notion of state prices, which specify the
price of any security as the state-price weighted sum or expectation of the
security’s state-contingent dividends. In a finite-dimensional setting, there
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exist state prices if and only if there is no arbitrage. The same fact is true
in infinite-dimensional settings under mild technical regularity conditions.
Given an agent’s optimal portfolio choice, a state-price vector is given by
that agent’s utility gradient. In an equilibrium with Pareto optimality, a
state-price vector is likewise given by a representative agent’s utility gradi-
ent at the economy’s aggregate consumption process.

Chapters 5 through 11 develop a continuous-time version of the the-
ory in which uncertainty is generated by Brownian motion. In Chapter 11,
there is a transition to discontinuous information, that is, settings in which
the conditional probability of some events does not adjust continuously
with the passage of time. An example is Poisson arrival.

Chapter 5 introduces the continuous-trading model and develops
the Black-Scholes partial differential equation (PDE) for arbitrage-free
prices of derivative securities. The Harrison-Kreps model of equivalent
martingale measures is presented in Chapter 6 in parallel with the the-
ory of state prices in continuous time. Chapter 7 presents models of the
term structure of interest rates, including the Black-Derman-Toy, Vasicek,
Cox-Ingersoll-Ross, and Heath-Jarrow-Morton models, as well as exten-
sions. Chapter 8 presents specific classes of derivative securities, such as
futures, forwards, American options, and lookback options. Chapter 8 also
introduces models of option pricing with stochastic volatility. The notion
of an “affine” state process is used heavily in Chapters 7 and 8 for its
analytical tractability. Chapter 9 is a summary of optimal continuous-time
portfolio choice, using both dynamic programming and an approach
involving equivalent martingale measures or state prices. Chapter 10 is a
summary of security pricing in an equilibrium setting. Included are such
well-known models as Breeden’s consumption-based capital asset pric-
ing model and the general equilibrium version of the Cox-Ingersoll-Ross
model of the term structure of interest rates. Chapter 11 deals with the
valuation of corporate securities, such as debt and equity. The chapter
moves from models based on the capital structure of the corporation, in
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I
Discrete-Time Models

This first part of the book takes place in a discrete-time setting with a dis-
crete set of states. This should ease the development of intuition for the
models to be found in Part II. The three pillars of the theory, arbitrage,
optimality, and equilibrium, are developed repeatedly in different settings.
Chapter 1 is the basic single-period model. Chapter 2 extends the results
of Chapter 1 to many periods. Chapter 3 specializes Chapter 2 to a Markov
setting and illustrates dynamic programming as an alternate solution tech-
nique. The Ho-and-Lee and Black-Derman-Toy term-structure models are
included as exercises. Chapter 4 is an infinite-horizon counterpart to
Chapter 3 that has become known as the Lucas model.

The focus of the theory is the notion of state prices, which specify the
price of any security as the state-price weighted sum or expectation of the
security’s state-contingent dividends. In a finite-dimensional setting, there
exist state prices if and only if there is no arbitrage. The same fact is true
in infinite-dimensional settings under mild technical regularity conditions.
Given an agent’s optimal portfolio choice, a state-price vector is given by
that agent’s utility gradient. In an equilibrium with Pareto optimality, a
state-price vector is likewise given by a representative agent’s utility gradi-
ent at the economy’s aggregate consumption process.
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1
Introduction to State Pricing

This chapter introduces the basic ideas in a finite-state one-period set-
ting. In many basic senses, each subsequent chapter merely repeats this
one from a new perspective. The objective is a characterization of security
prices in terms of “state prices,” one for each state of the world. The price
of a given security is simply the state-price weighted sum of its payoffs in
the different states. One can treat a state price as the “shadow price,” or
Lagrange multiplier, for wealth contingent on a given state of the world.
We obtain a characterization of state prices, first based on the absence of
arbitrage, then based on the first-order conditions for optimal portfolio
choice of a given agent, and finally from the first-order conditions for
Pareto optimality in an equilibrium with complete markets. State prices
are connected with the “beta” model for excess expected returns, a special
case of which is the Capital Asset Pricing Model (CAPM). Many readers
will find this chapter to be a review of standard results. In most cases,
here and throughout, technical conditions are imposed that give up much
generality so as to simplify the exposition.

A. Arbitrage and State Prices

Uncertainty is represented here by a finite set �1� � � � � S� of states, one of
which will be revealed as true. The N securities are given by an N × S
matrix D, with Dij denoting the number of units of account paid by secu-
rity i in state j . The security prices are given by some q in �N . A portfolio
� ∈ �N has market value q · � and payoff D�� in �S . An arbitrage is a port-
folio � in �N with q · � ≤ 0 and D�� > 0, or q · � < 0 and D�� ≥ 0. An
arbitrage is therefore, in effect, a portfolio offering “something for noth-
ing.” Not surprisingly, it will later be shown that an arbitrage is naturally
ruled out, and this gives a characterization of security prices as follows. A

3
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Figure 1.1. Separating a Cone from a Linear Subspace

state-price vector is a vector � in �S++ with q = D�. We can think of �j as
the marginal cost of obtaining an additional unit of account in state j .

Theorem. There is no arbitrage if and only if there is a state-price vector.

Proof: The proof is an application of the Separating Hyperplane
Theorem. Let L = � × �S and M = ��−q · ��D��	 � � ∈ �N �, a linear
subspace of L. Let K = �+ × �S+, which is a cone (meaning that if x is
in K, then "x is in K for each strictly positive scalar "). Both K and M
are closed and convex subsets of L. There is no arbitrage if and only if K
and M intersect precisely at 0, as pictured in Figure 1.1.

Suppose K ∩M = �0�. The Separating Hyperplane Theorem (in a
version for closed cones that is found in Appendix B) implies the existence
of a nonzero linear functional F � L → � such that F �z	 < F �x	 for all
z in M and nonzero x in K. Since M is a linear space, this implies that
F �z	 = 0 for all z in M and that F �x	 > 0 for all nonzero x in K. The
latter fact implies that there is some # > 0 in � and � � 0 in �S such
that F �v� c	 = #v + � · c, for any �v� c	 ∈ L. This in turn implies that
−#q · � + � · �D��	 = 0 for all � in �N . The vector �/# is therefore a
state-price vector.

Conversely, if a state-price vector � exists, then for any �, we have
q · � = ��D��. Thus, when D�� ≥ 0, we have q · � ≥ 0, and when D�� > 0,
we have q · � > 0, so there is no arbitrage.

B. Risk-Neutral Probabilities

We can view any p in �S+ with p1 + · · · + pS = 1 as a vector of probabilities
of the corresponding states. Given a state-price vector � for the dividend-
price pair �D� q	, let �0 = �1 + · · · +�S and, for any state j , let �̂j = �j/�0.
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We now have a vector ��̂1� ( ( ( � �̂S	 of probabilities and can write, for an
arbitrary security i,

qi
�0

= �E�Di	 ≡
S∑
j=1

�̂jDij �

viewing the normalized price of the security as its expected payoff under
specially chosen “risk-neutral” probabilities. If there exists a portfolio �̄
with D��̄ = �1� 1� � � � � 1	, then �0 = �̄ · q is the discount on riskless bor-
rowing and, for any security i, qi = �0

�E�Di	, showing any security’s price
to be its discounted expected payoff in this sense of artificially constructed
probabilities.

C. Optimality and Asset Pricing

Suppose the dividend-price pair �D� q	 is given. An agent is defined by a
strictly increasing utility function U � �S+ → � and an endowment e in �S+.
This leaves the budget-feasible set

X�q� e	 = �e +D�� ∈ �S+ � � ∈ �N � q · � ≤ 0��

and the problem

sup
c∈X�q�e	

U �c	( (1)

We will suppose for this section that there is some portfolio �0 with
payoff D��0 > 0. Because U is strictly increasing, the wealth constraint
q · � ≤ 0 is then binding at an optimum. That is, if c∗ = e + D��∗ solves
(1), then q · �∗ = 0.

Proposition. If there is a solution to �1	, then there is no arbitrage. If U is contin-
uous and there is no arbitrage, then there is a solution to �1	.

Proof is left as an exercise.

Theorem. Suppose that c∗ is a strictly positive solution to �1	, that U is contin-
uously differentiable at c∗, and that the vector ,U�c∗	 of partial derivatives of U
at c∗ is strictly positive. Then there is some scalar " > 0 such that ",U�c∗	 is a
state-price vector.

Proof: The first-order condition for optimality is that for any � with q · � =
0, the marginal utility for buying the portfolio � is zero. This is expressed
more precisely in the following way. The strict positivity of c∗ implies that
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for any portfolio �, there is some scalar k > 0 such that c∗ + #D�� ≥ 0 for
all # in �−k� k�. Let g� � �−k� k�→ � be defined by

g��#	 = U�c∗ + #D��	(

Suppose q · � = 0. The optimality of c∗ implies that g� is maximized at
# = 0. The first-order condition for this is that g′��0	 = ,U�c∗	�D�� = 0.
We can conclude that, for any � in �N , if q · � = 0, then ,U�c∗	�D�� = 0.
From this, there is some scalar / such that ,U�c∗	�D� = /q.

By assumption, there is some portfolio �0 with D��0 > 0. From
the existence of a solution to (1), there is no arbitrage, implying that
q · �0 > 0. We have

/q · �0 = ,U�c∗	�D��0 > 0(

Thus / > 0. We let " = 1//, obtaining

q = "D,U�c∗	� (2)

implying that ",U�c∗	 is a state-price vector.

Although we have assumed that U is strictly increasing, this does not
necessarily mean that ,U�c∗	� 0. If U is concave and strictly increasing,
however, it is always true that ,U�c∗	� 0.

Corollary. Suppose U is concave and differentiable at some c∗ = e +D��∗ � 0,
with q · �∗ = 0. Then c∗ is optimal if and only if ",U�c∗	 is a state-price vector
for some scalar " > 0.

This follows from the sufficiency of the first-order optimality condi-
tions for concave objective functions. The idea is illustrated in Figure 1.2.
In that figure, there are only two states, and a state-price vector is a suit-
ably normalized nonzero positive vector orthogonal to the set B = �D�� �
q · � = 0� of budget-neutral consumption adjustments. The first-order con-
dition for optimality of c∗ is that movement in any feasible direction away
from c∗ has negative or zero marginal utility, which is equivalent to the
statement that the budget-neutral set is tangent at c∗ to the preferred set
�c � U �c	 ≥ U�c∗	�, as shown in the figure. This is equivalent to the state-
ment that ,U�c∗	 is orthogonal to B, consistent with the last corollary.
Figure 1.3 illustrates a strictly suboptimal consumption choice c, at which
the derivative vector ,U�c	 is not co-linear with the state-price vector �.
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Figure 1.2. First-Order Conditions for Optimal Consumption Choice

We consider the special case of an expected utility function U , defined
by a given vector p of probabilities and by some u � �+ → � according to

U�c	 = E�u�c	� ≡
S∑
j=1

pju�cj	( (3)

For c� 0, if u is differentiable, then ,U�c	j = pju′�cj 	. For this expected
utility function, (2) therefore applies if and only if

q = "E�Du′�c∗	�� (4)

with the obvious notational convention. As we saw in Section B, one can
also write (2) or (4), with the “risk-neutral” probability �̂j = u′�c∗j 	pj/
E�u′�c∗	�, in the form

qi
�0

= �E�Di	 ≡
S∑
j=1

Dij�̂j � 1 ≤ i ≤ N( (5)

Figure 1.3. A Strictly Suboptimal Consumption Choice
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D. Efficiency and Complete Markets

Suppose there are m agents, defined as in Section C by strictly increasing
utility functions U1� � � � � Um and by endowments e1� � � � � em. An equilibrium
for the economy ��Ui� e

i	� D� is a collection ��1� � � � � �m� q	 such that, given
the security-price vector q, for each agent i, �i solves sup� Ui�e

i +D��	 sub-
ject to q · � ≤ 0, and such that

∑m
i=1 �

i = 0. The existence of equilibrium
is treated in the exercises and in sources cited in the Notes.

With span�D	 ≡ �D�� � � ∈ �N � denoting the set of possible portfolio
payoffs, markets are complete if span�D	 = �S , and are otherwise incomplete.

Let e = e1 + · · · + em denote the aggregate endowment. A consump-
tion allocation �c1� � � � � cm	 in

(
�S+
)m

is feasible if c1 + · · · + cm ≤ e. A feasible
allocation �c1� � � � � cm	 is Pareto optimal if there is no feasible allocation
�ĉ1� ( ( ( � ĉm	 with Ui�ĉ

i	 ≥ Ui�ci	 for all i and with Ui�ĉ
i	 > Ui�c

i	 for some i.
Complete markets and the Pareto optimality of equilibrium allocations
are almost equivalent properties of any economy.

Proposition. Suppose markets are complete and ��1� � � � � �m� q	 is an equilibrium.
Then the associated equilibrium allocation is Pareto optimal.

This is sometimes known as The First Welfare Theorem. The proof, requir-
ing only the strict monotonicity of utilities, is left as an exercise. We have
established the sufficiency of complete markets for Pareto optimality. The
necessity of complete markets for the Pareto optimality of equilibrium
allocations does not always follow. For example, if the initial endowment
allocation �e1� � � � � em	 happens by chance to be Pareto optimal, then any
equilibrium allocation is also Pareto optimal, regardless of the span of
securities. It would be unusual, however, for the initial endowment to be
Pareto optimal. Although beyond the scope of this book, it can be shown
that with incomplete markets and under natural assumptions on utility, for
almost every endowment, the equilibrium allocation is not Pareto optimal.

E. Optimality and Representative Agents

Aside from its allocational implications, Pareto optimality is also a conve-
nient property for the purpose of security pricing. In order to see this,
consider, for each vector " ∈ �m+ of “agent weights,” the utility function
U" � �

S
+ → � defined by

U"�x	 = sup
�c1� � � � �cm	

m∑
i=1

"i Ui�c
i	 subject to c1 + · · · + cm ≤ x( (6)
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Lemma. Suppose that, for all i, Ui is concave. An allocation �c1� � � � � cm	 that is
feasible is Pareto optimal if and only if there is some nonzero " ∈ �m+ such that
�c1� � � � � cm	 solves �6	 at x = e = c1 + · · · + cm.
Proof: Suppose that �c1� � � � � cm	 is Pareto optimal. For any allocation x,
let U�x	 = �U1�x

1	� � � � � Um�x
m		. Next, let

� = �U �x	− U�c	− z � x ∈ �� z ∈ �m+� ⊂ �m�

where � is the set of feasible allocations. Let J = �y ∈ �m+ � y �= 0�. Since
� is convex (by the concavity of utility functions) and J ∩� is empty (by
Pareto optimality), the Separating Hyperplane Theorem (Appendix B)
implies that there is a nonzero vector " in �m such that " · y ≤ " · z for
each y in � and each z in J . Since 0 ∈ �, we know that " ≥ 0, prov-
ing the first part of the result. The second part is easy to show as an
exercise.

Proposition. Suppose that for all i, Ui is concave. Suppose that markets are com-
plete and that ��1� � � � � �m� q	 is an equilibrium. Then there exists some nonzero
" ∈ �m+ such that �0� q	 is a (no-trade) equilibrium for the single-agent econ-
omy ��U"� e	�D� defined by �6	. Moreover, the equilibrium consumption allocation
�c1� � � � � cm	 solves the allocation problem �6	 at the aggregate endowment. That
is, U"�e	 =

∑
i "iUi�c

i	.

Proof: Since there is an equilibrium, there is no arbitrage, and therefore
there is a state-price vector �. Since markets are complete, this implies
that the problem of any agent i can be reduced to

sup
c∈�S+
Ui�c	 subject to � · c ≤ � · ei(

We can assume that ei is not zero, for otherwise ci = 0 and agent i can
be eliminated from the problem without loss of generality. By the Saddle
Point Theorem of Appendix B, there is a Lagrange multiplier #i ≥ 0 such
that ci solves the problem

sup
c∈�S+
Ui�c	− #i�� · c − � · ei	(

(The Slater condition is satisfied since ei is not zero and � � 0.) Since
Ui is strictly increasing, #i > 0. Let "i = 1/#i. For any feasible allocation
�x1� � � � � xm	, we have

m∑
i=1

"iUi�c
i	 =

m∑
i=1

�"iUi�c
i	− "i#i�� · ci − � · ei	�
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≥
m∑
i=1

"i�Ui�x
i	− #i�� · xi − � · ei	�

=
m∑
i=1

"iUi�x
i	− � ·

m∑
i=1

�xi − ei	

≥
m∑
i=1

"iUi�x
i	(

This shows that �c1� � � � � cm	 solves the allocation problem (6). We
must also show that no trade is optimal for the single agent with utility
function U" and endowment e. If not, there is some x in �S+ such that
U"�x	 > U"�e	 and � · x ≤ � · e. By the definition of U", this would imply
the existence of an allocation �x1� � � � � xm	, not necessarily feasible, such
that

∑
i "iUi�x

i	 >
∑
i "iUi�c

i	 and∑
i

"i#i� · xi = � · x ≤ � · e =
∑
i

"i#i� · ci(

Putting these two inequalities together, we have

m∑
i=1

"i�Ui�x
i	− #i� · �xi − ei	� >

m∑
i=1

"i�Ui�c
i	− #i� · �ci − ei	��

which contradicts the fact that, for each agent i, �ci� #i	 is a saddle point
for that agent’s problem.

Corollary 1. If, moreover, e � 0 and U" is continuously differentiable at e, then
" can be chosen so that ,U"�e	 is a state-price vector, meaning

q = D,U"�e	( (7)

The differentiability of U" at e is implied by the differentiability, for some
agent i, of Ui at c

i. (See Exercise 10(C).)

Corollary 2. Suppose there is a fixed vector p of state probabilities such that, for all
i, Ui�c	 = E�ui�c	� ≡

∑S
j=1 pjui�cj 	, for some ui� · 	. Then U"�c	 = E�u"�c	�,

where, for each y in �+,

u"�y	 = max
x∈�m+

m∑
i=1

"iui�xi	 subject to x1 + · · · + xm ≤ y(

In this case, �7	 is equivalent to q = E�Du′"�e	�.
Extensions of this representative-agent asset pricing formula will crop up
frequently in later chapters.
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F. State-Price Beta Models

We fix a vector p � 0 in �S of probabilities for this section, and for any
x in �S we write E�x	 = p1x1 + · · · + pSxS . For any x and 4 in �S , we take
x4 to be the vector �x141� � � � � xS4S	. The following version of the Riesz
Representation Theorem can be shown as an exercise.

Lemma. Suppose F � �S → � is linear. Then there is a unique 4 in �S such
that, for all x in �S , we have F �x	 = E�4x	. Moreover, F is strictly increasing if
and only if 4 � 0.

Corollary. A dividend-price pair �D� q	 admits no arbitrage if and only if there is
some 4 � 0 in �S such that q = E�D4	.

Proof: Given a state-price vector �, let 4s = �s/ps. Conversely, if 4 has the
assumed property, then �s = ps4s defines a state-price vector �.

Given �D� q	, we refer to any vector 4 given by this result as a state-price
deflator. (The terms state-price density and state-price kernel are often used
synonymously with state-price deflator.) For example, the representative-
agent pricing model of Corollary 2 of Section E shows that we can take
4s = u′"�es	.

For any x and y in �S , the covariance cov�x� y	 ≡ E�xy	 − E�x	E�y	 is
a measure of covariation between x and y that is useful in asset pricing
applications. For any such x and y with var�y	 ≡ cov�y� y	 �= 0, we can
always represent x in the form x = #+ 6y + 7, where 6 = cov�y� x	/var�y	,
where cov�y� 7	 = E�7	 = 0, and where # is a scalar. This linear regression
of x on y is uniquely defined. The coefficient 6 is called the associated
regression coefficient.

Suppose �D� q	 admits no arbitrage. For any portfolio � with q · � �= 0,
the return on � is the vector R� in �S defined by R�s = �D��	s/ q · �. Fixing
a state-price deflator 4, for any such portfolio �, we have E�4R�	 = 1.
Suppose there is a riskless portfolio, meaning some portfolio � with constant
return R0. We then call R0 the riskless return. A bit of algebra shows that
for any portfolio � with a return, we have

E�R�	−R0 = −cov�R�� 4	
E�4	

(

Thus, covariation with 4 has a negative effect on expected return, as one
might expect from the interpretation of state prices as shadow prices for
wealth.
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The correlation between any x and y in �S is zero if either has zero
variance, and is otherwise defined by

corr�x� y	 = cov�x� y	√
var�x	 var�y	

(

There is always a portfolio �∗ solving the problem

sup
�

corr�D��� 4	( (8)

If there is such a portfolio �∗ with a return R∗ having nonzero variance,
then it can be shown as an exercise that, for any return R�,

E�R�	−R0 = 6��E�R∗	−R0�� (9)

where

6� =
cov�R∗�R�	

var�R∗	
(

If markets are complete, then R∗ is of course perfectly correlated with the
state-price deflator.

Formula (9) is a state-price beta model, showing excess expected
returns on portfolios to be proportional to the excess return on a port-
folio having maximal correlation with a state-price deflator, where the
constant of proportionality is the associated regression coefficient. The
formula can be extended to the case in which there is no riskless return.
Another exercise carries this idea, under additional assumptions, to the
Capital Asset Pricing Model, or CAPM.

Exercises

1.1 The dividend-price pair �D� q	 of Section A is defined to be weakly arbitrage-free
if q · � ≥ 0 whenever D�� ≥ 0. Show that �D� q	 is weakly arbitrage-free if and only
if there exist (“weak” state prices) � ∈ �S+ such that q = D�. This fact is known as
Farkas’s Lemma.

1.2 Prove the assertion in Section A that �D� q	 is arbitrage-free if and only if
there exists some � ∈ �S++ such that q = D�. Instead of following the proof
given in Section A, use the following result, sometimes known as the Theorem of the
Alternative.

Stiemke’s Lemma. Suppose A is an m× n matrix. Then one and only one of the following
is true:

(a) There exists x in �n++ with Ax = 0.
(b) There exists y in �m with y�A > 0.
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1.3 Show, for U�c	 ≡ E�u�c	� as defined by (3), that (2) is equivalent to (4).

1.4 Prove the existence of an equilibrium as defined in Section D under these
assumptions: There exists some portfolio � with payoff D�� > 0 and, for all i,
ei � 0 and Ui is continuous, strictly concave, and strictly increasing. This is a
demanding exercise, and calls for the following general result.

Kakutani’s Fixed Point Theorem. Suppose Z is a nonempty convex compact subset of �n,
and for each x in Z, :�x	 is a nonempty convex compact subset of Z. Suppose also that
��x� y	 ∈ Z × Z � x ∈ :�y	� is closed. Then there exists x∗ in Z such that x∗ ∈ :�x∗	.

1.5 Prove Proposition D. Hint: The maintained assumption of strict monotonicity
of Ui�·	 should be used.

1.6 Suppose that the endowment allocation �e1� � � � � em	 is Pareto optimal.

(A) Show, as claimed in Section D, that any equilibrium allocation is Pareto opti-
mal.

(B) Suppose that there is some portfolio � with D�� > 0 and, for all i, that Ui is
concave and ei � 0. Show that �e1� � � � � em	 is itself an equilibrium allocation.

1.7 Prove Proposition C. Hint: A continuous real-valued function on a compact
set has a maximum.

1.8 Prove Corollary 1 of Proposition E.

1.9 Prove Corollary 2 of Proposition E.

1.10 Suppose, in addition to the assumptions of Proposition E, that

(a) e = e1 + · · · + em is in �S++;
(b) for all i, Ui is concave and twice continuously differentiable in �S++;
(c) for all i, ci is in �S++ and the Hessian matrix ,2U�ci	, which is negative

semi-definite by concavity, is in fact negative definite.

Property (c) can be replaced with the assumption of regular preferences, as defined
in a source cited in the Notes.

(A) Show that the assumption that U" is continuously differentiable at e is justified
and, moreover, that for each i there is a scalar ;i > 0 such that ,U"�e	 = ;i,Ui�ci	.
(This co-linearity is known as “equal marginal rates of substitution,” a property of
any Pareto optimal allocation.) Hint: Use the following:

Implicit Function Theorem. Suppose for given m and n that f � �m × �n → �n is Ck

(k times continuously differentiable) for some k ≥ 1. Suppose also that the n × n matrix
,yf �x̄� ȳ	 of partial derivatives of f with respect to its second argument is nonsingular at
some �x̄� ȳ	. If f �x̄� ȳ	 = 0, then there exist scalars 7 > 0 and > > 0 and a Ck function
Z � �m → �n such that if �x − a� < 7, then f �x� Z�x	� = 0 and �Z�x	− b� < >.
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(B) Show that the negative-definite part of condition (c) is satisfied if e � 0 and,
for all i, Ui is an expected utility function of the form Ui�c	 = E�ui�c	�, where ui
is strictly concave with an unbounded derivative on �0��	.
(C) Obtain the result of part (A) without assuming the existence of second deriva-
tives of the utilities. (You would therefore not exploit the Hessian matrix or
Implicit Function Theorem.) As the first (and main) step, show the following.
Given a concave function f � �S+ → �, the superdifferential of f at some x in �S+ is

,f �x	 = �z ∈ �S � f �y	 ≤ f �x	+ z · �y − x	� y ∈ �S+�(

For any feasible allocation �c1� � � � � cm	 and " ∈ �m+ satisfying U"�e	 =
∑
i "iUi�c

i	,

,U"�e	 =
m⋂
i=1

"i,Ui�ci	(

1.11 (Binomial Option Pricing). As an application of the results in Section A,
consider the following two-state �S = 2	 option-pricing problem. There are N = 3
securities:

(a) a stock, with initial price q1 > 0 and dividend D11 = Gq1 in state 1 and
dividend D12 = Bq1 in state 2, where G > B > 0 are the “good” and “bad”
gross returns, respectively;

(b) a riskless bond, with initial price q2 > 0 and dividend D21 = D22 = Rq2
in both states (that is, R is the riskless return and R−1 is the discount);

(c) a call option on the stock, with initial price q3 = C and dividend D3j =
�D1j − K	+ ≡ max�D1j − K� 0	 for both states j = 1 and j = 2, where
K ≥ 0 is the exercise price of the option. (The call option gives its holder
the right, but not the obligation, to pay K for the stock, with dividend,
after the state is revealed.)

(A) Show necessary and sufficient conditions on G, B, and R for the absence of
arbitrage involving only the stock and bond.

(B) Assuming no arbitrage for the three securities, calculate the call-option price
C explicitly in terms of q1, G, R, B, and K. Find the state-price probabilities �̂1 and
�̂2 referred to in Section B in terms of G, B, and R, and show that C = R−1 �E�D3	,
where �E denotes expectation with respect to ��̂1� �̂2	.

1.12 (CAPM). In the setting of Section D, suppose �c1� ( ( ( � cm	 is a strictly posi-
tive equilibrium consumption allocation. For any agent i, suppose utility is of the
expected-utility form Ui�c	 = E�ui�c	�. For any agent i, suppose there are fixed
positive constants c̄ and bi such that, for any state j , we have cij < c̄ and ui�x	 =
x − bix2 for all x ≤ c̄.
(A) In the context of Corollary 2 of Section E, show that u′"�e	 = k−Ke for some
positive constants k and K. From this, derive the CAPM

q = AE�D	− B cov�D� e	� (10)
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for positive constants A and B, where cov�D� e	 ∈ �N is the vector of covariances
between the security dividends and the aggregate endowment.

Suppose for a given portfolio � that each of the following is well defined:

� the return R� ≡ D��/q · �;
� the return RM on a portfolio M with payoff D�M = e;
� the return R0 on a portfolio �0 with cov�D��0� e	 = 0;
� 6� = cov�R��RM	/var�RM	.

The return RM is sometimes called the market return. The return R0 is called the
zero-beta return and is the return on a riskless bond if one exists. Prove the “beta”
form of the CAPM

E�R� −R0	 = 6�E�RM −R0	( (11)

(B) Part (A) relies on the completeness of markets. Without any such assumption,
but assuming that the equilibrium allocation �c1� ( ( ( � cm	 is strictly positive, show
that the same beta form (11) applies, provided we extend the definition of the
market return RM to be the return on any portfolio solving

sup
�∈�N

corr�R�� e	( (12)

For complete markets, corr�RM� e	 = 1, so the result of part (A) is a special case.

(C) The CAPM applies essentially as stated without the quadratic expected-utility
assumption provided that each agent i is strictly variance-averse, in that Ui�x	 > Ui�y	
whenever E�x	 = E�y	 and var�x	 < var�y	. Formalize this statement by providing
a reasonable set of supporting technical conditions.

We remark that a common alternative formulation of the CAPM allows security
portfolios in initial endowments �̂1� � � � � �̂m with

∑m
i=1 �̂

i
j = 1 for all j . In this case,

with the total endowment e redefined by e =∑mi=1�e
i +D��̂i	, the same CAPM (11)

applies. If ei = 0 for all i, then even in incomplete markets, corr�RM� e	 = 1, since
(12) is solved by � = �1� 1� � � � � 1	. The Notes provide references.

1.13 An Arrow-Debreu equilibrium for ��Ui� e
i	� D� is a nonzero vector � in �S+

and a feasible consumption allocation �c1� � � � � cm	 such that for each i� ci solves
supc Ui�c	 subject to � · ci ≤ � · ei. Suppose that markets are complete, in that
span�D	 = �S . Show that �c1� � � � � cm	 is an Arrow-Debreu consumption allocation
if and only if it is an equilibrium consumption allocation in the sense of Section D.

1.14 Suppose �D� q	 admits no arbitrage. Show that there is a unique state-price
vector if and only if markets are complete.

1.15 (Aggregation). For the “representative-agent” problem (6), suppose for all
i that Ui�c	 = E�u�c	�, where u�c	 = c;/; for some nonzero scalar ; < 1.

(A) Show, for any nonzero agent weight vector " ∈ �m+, that U"�c	 = E�kc;/;� for
some scalar k > 0 and that (6) is solved by ci = kix for some scalar ki ≥ 0 that is
nonzero if and only if "i is nonzero.
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(B) With this special utility assumption, show that there exists an equilibrium with
a Pareto efficient allocation, without the assumption that markets are complete,
but with the assumption that ei ∈ span�D	 for all i. Calculate the associated equi-
librium allocation.

1.16 (State-Price Beta Model). This exercise is to prove and extend the state-price
beta model (9) of Section F.

(A) Show problem (8) is solved by any portfolio � such that 4 = D�� + 7, where
cov�7�Dj	 = 0 for any security j , where Dj ∈ �S is the payoff of security j .

(B) Given a solution � to (8) such that R� is well defined with nonzero variance,
prove (9).

(C) Reformulate (9) for the case in which there is no riskless return by redefining
R0 to be the expected return on any portfolio � such that R� is well defined and
cov�R�� 4	 = 0, assuming such a portfolio exists.

1.17 Prove the Riesz representation lemma of Section F. The following hint is
perhaps unnecessary in this simple setting but allows the result to be extended to
a broad variety of spaces called Hilbert spaces. Given a vector space L, a function
�· � ·	 � L × L→ � is called an inner product for L if, for any x� y, and z in L and
any scalar #, we have the five properties:

(a) �x � y	 = �y � x	
(b) �x + y � z	 = �x � z	+ �y � z	
(c) �#x � y	 = #�x � y	
(d) �x � x	 ≥ 0
(e) �x � x	 = 0 if and only if x = 0.

Suppose a finite-dimensional vector space L has an inner product �· � ·	. (This
defines a special case of a Hilbert space.) Two vectors x and y are defined to be
orthogonal if �x � y	 = 0. For any linear subspace H of L and any x in L, it can be
shown that there is a unique y in H such that �x − y � z	 = 0 for all z in H . This
vector y is the orthogonal projection in L of x onto H , and solves the problem
minh∈H �x− h�. Let L = �S . For any x and y in L, let �x � y	 = E�xy	. We must show
that given a linear functional F , there is a unique 4 with F �x	 = �4 � x	 for all x.
Let J = �x � F �x	 = 0�. If J = L, then F is the zero functional, and the unique
representation is 4 = 0. If not, there is some z such that F �z	 = 1 and �z � x	 = 0
for all x in J . Show this using the idea of orthogonal projection. Then show that
4 = z/�z � z	 represents F , using the fact that for any x, we have x − F �x	z ∈ J .

1.18 Suppose there are m = 2 consumers, A and B, with identical utilities for
consumption c1 and c2 in states 1 and 2 given by U�c1� c2	 = 0(2

√
c1 + 0(5 log c2(

There is a total endowment of e1 = 25 units of consumption in state 1.

(A) Suppose that markets are complete and that, in a given equilibrium, consumer
A’s consumption is 9 units in state 1 and 10 units in state 2. What is the total
endowment e2 in state 2?
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(B) Continuing under the assumptions of part (A), suppose there are two securi-
ties. The first is a riskless bond paying 10 units of consumption in each state. The
second is a risky asset paying 5 units of consumption in state 1 and 10 units in
state 2. In equilibrium, what is the ratio of the price of the bond to that of the
risky asset?

1.19 There are two states of the world, labeled 1 and 2, two agents, and two secu-
rities, both paying units of the consumption numeraire good. The risky security
pays a total of 1 unit in state 1 and pays 3 units in state 2. The riskless security pays
1 unit in each state. Each agent is initially endowed with half of the total supply of
the risky security. There are no other endowments. (The riskless security is in zero
net supply.) The two agents assign equal probabilities to the two states. One of the
agents is risk-neutral, with utility function E�c	 for state-contingent consumption
c, and can consume negatively or positively in both states. The other, risk-averse,
agent has utility E�

√
c	 for nonnegative state-contingent consumption. Solve for

the equilibrium allocation of the two securities in a competitive equilibrium.

1.20 Consider a setting with two assets A and B, only, both paying off the same
random variable X, whose value is nonnegative in every state and nonzero with
strictly positive probability. Asset A has price p, while asset B has price q. An
arbitrage is then a portfolio �#� 6	 ∈ �2 of the two assets whose total payoff #X +
6X is nonnegative and whose initial price #p + 6q is strictly negative, or whose
total payoff is nonzero with strictly positive probability and always nonnegative,
and whose initial price is negative or zero.

(A) Assuming no restrictions on portfolios, and no transactions costs or frictions,
state the set of arbitrage-free prices �p� q	. (State precisely the appropriate subset
of �2.)

(B) Assuming no short sales �# ≥ 0 and 6 ≥ 0), state the set of arbitrage-free
prices �p� q	.

(C) Now suppose that A and B can be short sold, but that asset A can be short
sold only by paying an extra fee of D > 0 per unit sold short. There are no other
fees of any kind. Provide the obvious new definition of “no arbitrage” in precise
mathematical terms, and state the set of arbitrage-free prices.

Notes

The basic approach of this chapter follows Arrow (1953), taking a general equilib-
rium perspective originating with Walras (1877). Black (1995) offers a perspective
on the general equilibrium approach and a critique of other approaches.

(A) The state-pricing implications of no arbitrage found in Section A originate
with Ross (1978).

(B) The idea of “risk-neutral probabilities” apparently originates with Arrow
(1970), a revision of Arrow (1953), and appears as well in Drèze (1971).
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(C) This material is standard.

(D) Proposition D is the First Welfare Theorem of Arrow (1951) and Debreu
(1954). The generic inoptimality of incomplete-markets equilibrium allocations
can be gleaned from sources cited by Geanakoplos (1990). Indeed, Geanakoplos
and Polemarchakis (1986) show that even a reasonable notion of constrained
optimality generically fails in certain incomplete-markets settings. See, however,
Kajii (1994) and references cited in the Notes of Chapter 2 for mitigating results.
Mas-Colell (1987) and Werner (1991) also treat constrained optimality.

(E) The “representative-agent” approach goes back, at least, to Negishi (1960).
The existence of a representative agent is no more than an illustrative simpli-
fication in this setting, and should not be confused with the more demanding
notion of aggregation of Gorman (1953) found in Exercise 15. In Chapter 10, the
existence of a representative agent with smooth utility, based on Exercise 1.11, is
important for technical reasons.

(F) The “beta model” for pricing goes back, in the case of mean-variance pre-
ferences, to the capital asset pricing model, or CAPM, of Sharpe (1964) and
Lintner (1965). The version without a riskless asset is due to Black (1972). Alling-
ham (1991), Berk (1992), Nielsen (1990a), and Nielsen (1990b) address the exis-
tence of equilibrium in the CAPM. Characterization of the mean-variance model
and two-fund separation is provided by Bottazzi, Hens, and Löffler (1994), Nielsen
(1993b), and Nielsen (1993a). Löffler (1996) provides sufficient conditions for
variance aversion in terms of mean-variance preferences.

Additional Topics: Ross (1976) introduced the arbitrage pricing theory, a multifac-
tor model of asset returns that, in terms of expected returns, can be thought of
as an extension of the CAPM. In this regard, see also Bray (1994a), Bray (1994b),
and Gilles and LeRoy (1991). Balasko and Cass (1986) and Balasko, Cass, and
Siconolfi (1990) treat equilibrium with constrained participation in security trad-
ing. See also Hara (1994).

Debreu (1972) provides a notion of regular preferences that substitutes for
the existence of a negative-definite Hessian matrix of each agent’s utility function
at the equilibrium allocation. For more on regular preferences and the differen-
tial approach to general equilibrium, see Mas-Colell (1985) and Balasko (1989).
Kreps (1988) reviews the theory of choice and utility representations of prefer-
ences. For Farkas’s and Stiemke’s Lemmas, and other forms of the Theorem of
the Alternative, see Gale (1960).

Arrow and Debreu (1954) and, in a slightly different model, McKenzie
(1954) are responsible for a proof of the existence of complete-markets equilibria.
Debreu (1982) surveys the existence problem. Standard introductory treatments
of general equilibrium theory are given by Debreu (1959) and Hildenbrand
and Kirman (1989). In this setting, with incomplete markets, Polemarchakis and
Siconolfi (1993) address the failure of existence unless one has a portfolio � with
payoff D�� > 0. Geanakoplos (1990) surveys other literature on the existence
of equilibria in incomplete markets, some of which takes the alternative of
defining security payoffs in nominal units of account, while allowing consumption



Notes 19

of multiple commodities. Most of the literature allows for an initial period of
consumption before the realization of the uncertain state. For a survey, see Magill
and Shafer (1991). Additional results on incomplete-markets equilibrium include
those of Araujo and Monteiro (1989), Berk (1997), Boyle and Wang (1999), and
Weil (1992).

For related results in multiperiod settings, references are cited in the Notes
of Chapter 2.

The superdifferentiability result of Exercise 10(C) is due to Skiadas (1995).
Hellwig (1996), Mas-Colell and Monteiro (1996), and Monteiro (1996) have

recently shown existence of equilibrium with a continuum of states. Geanakoplos
and Polemarchakis (1986) and Chae (1988) show existence in a model closely
related to that studied in this chapter. Grodal and Vind (1988) and Yamazaki
(1991) show existence with alternative formulations. With multiple commodities
or multiple periods, existence is not guaranteed under any natural conditions, as
shown by Hart (1975), who gives a counterexample. For these more delicate cases,
the literature on generic existence is cited in the Notes of Chapter 2.

The binomial option-pricing formula of Exercise 1.11 is from an early edi-
tion of Sharpe (1985), and is extended in Chapter 2 to a multiperiod setting.
The hint given for the demonstration of the Riesz representation exercise is con-
densed from the proof given by Luenberger (1969) of the Riesz-Frechet Theorem: For
any Hilbert space H with inner product �· � ·	, any continuous linear functional
F � H → � has a unique 4 in H such that F �x	 = �4 � x	, x ∈ H . The Fixed Point
Theorem of Exercise 1.4 is from Kakutani (1941).

On the role of default and collateralization, see Geanakoplos and Zame
(1999) and Sabarwal (1999). Gottardi and Kajii (1999) study the role and exis-
tence of sunspot equilibria. Pietra (1992) treats indeterminacy. Lobo, Fazel,
Boyd (1999) address portfolio choice with fixed transactions costs.
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2
The Basic Multiperiod Model

This chapter extends the results of Chapter 1 on arbitrage, optimality,
and equilibrium to a multiperiod setting. A connection is drawn between
state prices and martingales for the purpose of representing security
prices. The exercises include the consumption-based capital asset pricing
model and the multiperiod “binomial” option pricing model.

A. Uncertainty

As in Chapter 1, there is some finite set, say �, of states. In order to
handle multiperiod issues, however, we will treat uncertainty a bit more
formally as a probability space (��� � P), with � denoting the tribe of subsets
of � that are events (and can therefore be assigned a probability), and
with P a probability measure assigning to any event B in � its probability
P�B	. Those not familiar with the definition of a probability space can
consult Appendix A. The terms “E -algebra” and “E -field,” among others,
are often used in place of the word “tribe.”

There are T + 1 dates: 0� 1� � � � � T . At each of these, a tribe �t ⊂ �
denotes the set of events corresponding to the information available at
time t. In effect, an event B in �t is known at time t to be true or false. (A
definition of tribes in terms of “partitions” of � is given in Exercise 2.11.)
We adopt the usual convention that �t ⊂ �s whenever t ≤ s, meaning that
events are never “forgotten.” For simplicity, we also take it that every event
in �0 has probability 0 or 1, meaning roughly that there is no information
at time t = 0. Taken altogether, the filtration � = ��0� � � � ��T � represents
how information is revealed through time. For any random variable Y ,
we let Et�Y 	 = E�Y ��t	 denote the conditional expectation of Y given �t .
(Appendix A provides definitions of random variables and of conditional
expectation.) An adapted process is a sequence X = �X0� � � � � XT � such that

21
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for each t, Xt is a random variable with respect to (���t). Informally,
this means that Xt is observable at time t. An adapted process X is a
martingale if, for any times t and s > t, we have Et�Xs	 = Xt . As we shall
see, martingales are useful in the characterization of security prices. In
order to simplify things, for any two random variables Y and Z, we always
write “Y = Z” if the probability that Y �= Z is zero.

B. Security Markets

A security is a claim to an adapted dividend process, say >, with >t denoting
the dividend paid by the security at time t. Each security has an adapted
security-price process S, so that St is the price of the security, ex dividend, at
time t. That is, at each time t, the security pays its dividend >t and is then
available for trade at the price St . This convention implies that >0 plays
no role in determining ex-dividend prices. The cum-dividend security price
at time t is St + >t .

Suppose there are N securities defined by the �N -valued adapted div-
idend process > = �>�1	� � � � � >�N		. These securities have some adapted
price process S = �S�1	� � � � � S�N		. A trading strategy is an adapted process �
in �N . Here, �t = ���1	t � � � � � ��N	t 	 represents the portfolio held after trad-
ing at time t. The dividend process >� generated by a trading strategy � is
defined by

>�t = �t−1 · �St + >t	− �t · St� (1)

with “�−1” taken to be zero by convention.

C. Arbitrage, State Prices, and Martingales

Given a dividend-price pair �>� S	 for N securities, a trading strategy � is
an arbitrage if >� > 0. (The reader should become convinced that this is
the same notion of arbitrage defined in Chapter 1.) Let G denote the
space of trading strategies. For any � and : in G and scalars a and b, we
have a>� + b>: = >a�+b:. Thus the marketed subspace M = �>� � � ∈ G� of
dividend processes generated by trading strategies is a linear subspace of
the space L of adapted processes.

Proposition. There is no arbitrage if and only if there is a strictly increasing linear
function F � L→ � such that F �>�	 = 0 for any trading strategy �.

Proof: The proof is almost identical to that of Theorem 1A. Let L+ =
�c ∈ L � c ≥ 0�. There is no arbitrage if and only if the cone L+ and
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the marketed subspace M intersect precisely at zero. Suppose there is
no arbitrage. The Separating Hyperplane Theorem, in a form given in
Appendix B for cones, implies the existence of a nonzero linear functional
F such that F �x	 < F �y	 for each x in M and each nonzero y in L+. Since
M is a linear subspace, this implies that F �x	 = 0 for each x in M , and
thus that F �y	 > 0 for each nonzero y in L+. This implies that F is strictly
increasing. The converse is immediate.

The following result gives a convenient Riesz representation of a linear
function on the space of adapted processes. Proof is left as an exercise,
extending the single-period Riesz representation lemma of Section 1F.

Lemma. For each linear function F � L → �, there is a unique 4 in L, called
the Riesz representation of F , such that

F �x	 = E
(
T∑
t=0

4txt

)
� x ∈ L(

If F is strictly increasing, then 4 is strictly positive.

For convenience, we call any strictly positive adapted process a deflator.
A deflator 4 is a state-price deflator if, for all t,

St =
1
4t
Et

(
T∑

j=t+1

4j>j

)
( (2)

A state-price deflator is variously known in the literature as a state-price
density, a pricing kernel, and a marginal-rate-of-substitution process.

For t = T , the right-hand side of (2) is zero, so ST = 0 whenever
there is a state-price deflator. The notion here of a state-price deflator is
a natural extension of that of Chapter 1. It can be shown as an exercise
that a deflator 4 is a state-price deflator if and only if, for any trading
strategy �,

�t · St =
1
4t
Et

(
T∑

j=t+1

4j>
�
j

)
� t < T � (3)

meaning roughly that the market value of a trading strategy is, at any
time, the state-price discounted expected future dividends generated by
the strategy. The cum-dividend value process V � of a trading strategy � is
defined by V �t = �t−1 · �St + >t	. If 4 is a state-price deflator, we have

V �t =
1
4t
Et

(
T∑
j=t
4j>

�
j

)
(
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The gain process G for �>� S	 is defined by Gt = St +
∑t
j=1 >j , the price

plus accumulated dividend. Given a deflator ;, the deflated gain process G;

is defined by G;t = ;tSt +
∑t
j=1 ;j>j . We can think of deflation as a change

of numeraire.

Theorem. The dividend-price pair �>� S	 admits no arbitrage if and only if there
is a state-price deflator. A deflator 4 is a state-price deflator if and only if ST = 0
and the state-price-deflated gain process G4 is a martingale.

Proof: It can be shown as an easy exercise that a deflator 4 is a state-price
deflator if and only if ST = 0 and the state-price-deflated gain process G4

is a martingale.
Suppose there is no arbitrage. Then ST = 0, for otherwise the strategy

� is an arbitrage when defined by �t = 0, t < T , �T = −ST . The previous
proposition implies that there is some strictly increasing linear function
F � L→ � such that F �>�	 = 0 for any strategy �. By the previous lemma,
there is some deflator 4 such that F �x	 = E�∑T

t=0 xt4t	 for all x in L. This
implies that E�

∑T
t=0 >

�
t 4t	 = 0 for any strategy �.

We must prove (2), or equivalently, that G4 is a martingale. From
Appendix A, an adapted process X is a martingale if and only if E�XI	 =
X0 for any stopping time I ≤ T . Consider, for an arbitrary security n and
an arbitrary stopping time I ≤ T , the trading strategy � defined by ��k	 = 0
for k �= n and ��n	t = 1� t < I , with ��n	t = 0� t ≥ I . Since E�∑T

t=0 4t>
�
t 	 = 0,

we have

E

(
− S�n	0 40 +

I∑
t=1

4t>
�n	
t + 4IS�n	I

)
= 0�

implying that the deflated gain process Gn4 of security n satisfies Gn�40 =
E�Gn�4I 	. Since I is arbitrary, Gn�4 is a martingale, and since n is arbitrary,
G4 is a martingale.

This shows that absence of arbitrage implies the existence of a state-
price deflator. The converse is easy.

D. Individual Agent Optimality

We introduce an agent, defined by a strictly increasing utility function U
on the set L+ of nonnegative adapted “consumption” processes, and by an
endowment process e in L+. Given a dividend-price process �>� S	, a trading
strategy � leaves the agent with the total consumption process e+ >�. Thus
the agent has the budget-feasible consumption set

X = �e + >� ∈ L+ � � ∈ G��
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and the problem

sup
c∈X
U�c	( (4)

The existence of a solution to (4) implies the absence of arbitrage.
Conversely, it can be shown as an exercise that if U is continuous, then
the absence of arbitrage implies that there exists a solution to (4). For
purposes of checking continuity or the closedness of sets in L, we will say
that cn converges to c if E�

∑T
t=0 �cn�t	− c�t	��→ 0. Then U is continuous

if U�cn	→ U�c	 whenever cn → c.
Suppose that (4) has a strictly positive solution c∗ and that U is con-

tinuously differentiable at c∗. We can use the first-order conditions for
optimality (which can be reviewed in Appendix B) to characterize security
prices in terms of the derivatives of the utility function U at c∗. Specifically,
for any c in L, the derivative of U at c∗ in the direction c is the deriva-
tive g′�0	, where g�#	 = U�c∗ + #c	 for any scalar # sufficiently small in
absolute value. That is, g′�0	 is the marginal rate of improvement of utility
as one moves in the direction c away from c∗. This derivative is denoted
JU�c∗K c	. Because U is continuously differentiable at c∗, the function c →
JU�c∗K c	, on L into �, is linear. Since >� is a budget-feasible direction of
change for any trading strategy �, the first-order conditions for optimality
of c∗ imply that

JU�c∗K >�	 = 0� � ∈ G(

We now have a characterization of a state-price deflator.

Proposition. Suppose that (4) has a strictly positive solution c∗ and that U has
a strictly positive continuous derivative at c∗. Then there is no arbitrage and a
state-price deflator is given by the Riesz representation 4 of JU�c∗	:

JU�c∗K x	 = E
(
T∑
t=0

4txt

)
� x ∈ L(

Despite our standing assumption that U is strictly increasing, JU�c∗K ·	
need not in general be strictly increasing, but is so if U is concave.

As an example, suppose U has the additive form

U�c	 = E
[
T∑
t=0

ut�ct	

]
� c ∈ L+� (5)
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for some ut � �+ → �, t ≥ 0. It is an exercise to show that if JU�c	 exists,
then

JU�cK x	 = E
[
T∑
t=0

u′t�ct	xt

]
( (6)

If, for all t, ut is concave with an unbounded derivative and e is strictly
positive, then any solution c∗ to (4) is strictly positive.

Corollary. Suppose U is defined by (5). Under the conditions of the proposition,
for any times t and I ≥ t,

St =
1

u′t�c∗t 	
Et

[
SIu

′
I �c

∗
I 	+

I∑
j=t+1

>ju
′
j �c

∗
j 	

]
(

For the case I = t+ 1, this result is often called the stochastic Euler equation.
Extending this classical result for additive utility, the exercises include
other utility examples such as habit-formation utility and recursive utility. As
in Chapter 1, we now turn to the multi-agent case.

E. Equilibrium and Pareto Optimality

Suppose there are m agents. Agent i is defined as above by a strictly
increasing utility function Ui � L+ → � and an endowment process e�i	 in
L+. Given a dividend process > for N securities, an equilibrium is a collec-
tion ���1	� � � � � ��m	� S	, where S is a security-price process and, for each i,
��i	 is a trading strategy solving

sup
�∈G
Ui�c	 subject to c = e�i	 + >� ∈ L+� (7)

with
∑m
i=1 �

�i	 = 0.
We define markets to be complete if, for each process x in L, there is

some trading strategy � with >�t = xt , t ≥ 1. Complete markets thus means
that any consumption process x can be obtained by investing some amount
at time 0 in a trading strategy that generates the dividend xt in each future
period t. With the same definition of Pareto optimality, Proposition 1D
carries over to this multiperiod setting. Any equilibrium ���1	� � � � � ��m	� S	
has an associated feasible consumption allocation �c�1	� � � � � c�m		 defined
by letting c�i	 − e�i	 be the dividend process generated by ��i	.

Proposition. Suppose ���1	� � � � � ��m	� S	 is an equilibrium and markets are com-
plete. Then the associated consumption allocation is Pareto optimal.
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The completeness of markets depends on the security-price process S
itself. Indeed, the dependence of the marketed subspace on S makes the
existence of an equilibrium a nontrivial issue. We ignore existence here
and refer to the Notes for some relevant sources.

F. Equilibrium Asset Pricing

Again following the ideas in Chapter 1, we define for each " in �m+ the
utility function U" � L+ → � by

U"�x	 = sup
�c�1	� � � � �c�m		

m∑
i=1

"iUi�c
i	 subject to c�1	 + · · · + c�m	 ≤ x( (8)

Proposition. Suppose for all i that Ui is concave and strictly increasing. Suppose
that ���1	� � � � � ��m	� S	 is an equilibrium and that markets are complete. Then there
exists some nonzero " ∈ �m+ such that �0� S	 is a (no-trade) equilibrium for the
one-agent economy ��U"� e	� >�, where e = e�1	 + · · · + e�m	. With this " and with
x = e = e�1	 + · · · + e�m	, problem (8) is solved by the equilibrium consumption
allocation.

Proof is assigned as an exercise. The result is essentially the same as Propo-
sition 1E. A method of proof, as well as the intuition for this proposition,
is that with complete markets, a state-price deflator 4 represents Lagrange
multipliers for consumption in the various periods and states for all of the
agents simultaneously, as well as for the representative agent �U"� e	.

Corollary 1. If, moreover, U" is differentiable at e, then " can be chosen so that
for any times t and I ≥ t, there is a state-price deflator 4 equal to the Riesz
representation of JU"�e	.

Differentiability of U" at e can be shown by the arguments used in
Exercise 1.10.

Corollary 2. Suppose for each i that Ui is of the additive form

Ui�c	 = E
[
T∑
t=0

uit�ct	

]
(

Then U" is also additive, with

U"�c	 = E
[
T∑
t=0

u"t�ct	

]
�
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where

u"t�y	 = sup
x∈�m+

m∑
i=1

"iuit�xi	 subject to x1 + · · · + xm ≤ y(

In this case, the differentiability of U" at e implies that for any times t and I ≥ t,

St =
1

u′"t�et	
Et

[
u′"I �eI 	SI +

I∑
j=t+1

u′"j �ej 	>j

]
( (9)

G. Arbitrage and Martingale Measures

This section shows the equivalence between the absence of arbitrage and
the existence of a probability measure Q with the property, roughly speak-
ing, that the price of a security is the sum of Q-expected discounted
dividends.

There is short-term riskless borrowing if, for each given time t < T , there
is a security trading strategy � with >�t+1 = 1 and with >�s = 0 for s < t and
s > t + 1. The associated discount is dt = �t · St . If there is no arbitrage, the
discount dt is uniquely defined and strictly positive, and we may define
the associated short rate rt by 1 + rt = 1/dt . This means that at any time
t < T , one may invest one unit of account in order to receive 1+ rt units
of account at time t + 1. We refer to �r0� r1� � � � � rT−1� as the associated
“short-rate process,” even though rT is not defined.

We suppose throughout this section that there is short-term riskless
borrowing at some uniquely defined short-rate process r . We can define,
for any times t and I ≤ T ,

Rt� I = �1+ rt	�1+ rt+1	 · · · �1+ rI−1	�

the payback at time I of one unit of account borrowed risklessly at time t
and “rolled over” in short-term borrowing repeatedly until date I .

It would be a simple situation, both computationally and conceptu-
ally, if any security’s price were merely the expected discounted dividends
of the security. Of course, this is unlikely to be the case in a market with
risk-averse investors. We can nevertheless come close to this sort of charac-
terization of security prices by adjusting the original probability measure
P . For this, we define a new probability measure Q to be equivalent to
P if Q and P assign zero probabilities to the same events. An equivalent
probability measure Q is an equivalent martingale measure if

St = EQt
(

T∑
j=t+1

>j

Rt� j

)
� t < T �


