

RICHARD M.F.S. SADLEIR THE REPRODUCTION OF VERTEBRATES

The Reproduction of Vertebrates

This page intentionally left blank

THE REPRODUCTION OF VERTEBRATES

RICHARD M. F. S. SADLEIR

Department of Biological Sciences Simon Fraser University

Illustrations and Cover Design

KEITH A. CHAPMAN

ACADEMIC PRESS New York and London A Subsidiary of Harcourt Brace Jovanovich, Publishers Copyright © 1973, by Academic Press, Inc. all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 72-88371

PRINTED IN THE UNITED STATES OF AMERICA

To the students of Biological Sciences 316—Vertebrate Biology Simon Fraser University This page intentionally left blank

Contents

PREFACE

1. FISH

Evolutionary History	1
Classification of Living Fish	4
Gonads and Their Ducts	5
External Indications of Sex	14
Mating and Fertilization	16
The Placement of Eggs and Their Parental Care	10
Development inside the Female	
(Ovoviviparity and Viviparity)	19
Endocrinology	23
Breeding Seasons	25
Sexual Maturation and Frequency of	
Breeding by Individuals	27
Environmental Factors and Fish Breeding	27
Migration and Breeding	30
Economic Importance of the Study of Fish Reproduction	34

xi

2. AMPHIBIANS

Evolutionary History	36
Classification	38

Gonads and Their Ducts	38
External Indications of Sex	42
Mating and Fertilization	44
Location of Eggs and Their Care after Spawning	45
Development inside the Female	47
Endocrinology	48
Breeding Seasons	48
Sexual Maturation and Frequency of	
Individual Reproduction	49
Environmental Factors	50
Migration and Breeding	52
Hibernation, Aestivation, and Breeding	52

3. REPTILES

Evolutionary History	53
Classification	56
Gonads and Their Ducts	56
External Indications of Sex	59
Courtship, Copulation, and Fertilization	61
The Cleidoic (Amniote) Egg and the Removal of	
Nitrogenous Wastes	63
The Types, Care, and Hatching of Eggs	66
Development inside the Female	69
Endocrinology	73
Breeding Seasons	74
Puberty and Frequency of Breeding by the Individual	76
Environmental Factors and Breeding	78
Migration and Breeding	79
Hibernation, Aestivation, and Breeding	81
Economic Importance	82

4. BIRDS

Evolutionary History	83
Classification	84
Gonads and Their Ducts	85
External Indications of Sex	89
Territory, Courtship, and Nest Construction	90
Copulation and Fertilization	93
The Avian Egg	94
Egg Laying and Clutch Size	96
Incubation and Hatching	98

Contents	t
----------	---

Parental Care and Survival after Hatching	101
	101
Endocrinology	102
Breeding Seasons	103
Age to Sexual Maturity	106
Environmental Factors in Breeding	106
Migration and Breeding	111
Economic Value of Avian Breeding	111

5. MAMMALS

Evolutionary History	114
Classification	116
Gonads and Their Ducts	110
External Indications of Sex	125
The Estrous Cycle	127
Copulation and Fertilization	130
Pregnancy and Placentation	132
Delayed Implantation	142
Parturition	143
Litter Size	147
Lactation and Parental Care	148
Endocrinology	150
Breeding Seasons	154
Puberty and Frequency of Breeding by Individuals	156
Environmental Factors and Breeding	158
Migration and Breeding	162
Hibernation and Breeding	164
Economic Importance of Mammalian Breeding	165
Artificial Control of Mammalian Breeding	166
8	

6. MAN

Evolutionary History and Classification	169
Gonads and Their Ducts	170
External Indications of Sex	172
The Menstrual Cycle	172
Copulation and Fertilization	174
The Control of Human Fertility	176
Pregnancy	179
Parturition	181
Lactation	181
Endocrinology	182
Breeding Seasons	183
Puberty and Length of Reproductive Life	183

7. COMPARATIVE ASPECTS OF VERTEBRATE REPRODUCTION

Gonads and Their Ducts	184
External Indications of Sex	190
Courtship, Copulation, and Fertilization	192
Eggs and Their Care	195
Viviparity	197
Breeding Seasons and the Environment	. 199

BIBLIOGRAPHY

SUBJECT INDEX

202 209

Preface

Although sexual activity does not actually supply the motive power for the rotatory motion of our planet, the ability to reproduce is perhaps the most fundamental characteristic of the living organisms which abide there. It seems fair to suggest that vertebrates, the animals with backbones, spend proportionately more of their time and energy in breeding processes than do most invertebrate species. There can be no doubt that the great diversity of body forms and life histories of vertebrates has evolved as a result of the many different habitats they occupy. In turn, their ability to utilize such habitats is a function of their distinct and varied methods of reproduction.

Reproduction is a unique physiological process. All other physiological systems, such as excretion, thermoregulation, and digestion, have evolved to promote the survival of the individual organism in which the processes are acting. The selective forces which have molded the reproductive processes promote the optimal survival of the young so that parental survival is secondary. There are extreme cases, in vertebrates and invertebrates, in which completion of reproduction means death to the individual. For example, the salmon fights its way upstream only to die immediately after spawning; the mayfly mates, lays eggs, and dies within twelve hours. In addition selective forces are particularly severe in their action during reproductive processes and on the immature life forms present at those times. Eggs and sperm can tolerate much narrower ranges of physical conditions than adult animals, and free external zygotes, or developing eggs, are likewise highly susceptable to changes in physical conditions or to predation. As a result of these selective pressures, and related to their shift from aquatic to terrestrial environments, vertebrates have developed internal fertilization. However, it is still generally true to say that selective forces are most severe on individuals and their young at or near the times of breeding.

Yet despite such severe selection, vertebrates do occupy, and breed in, a very wide diversity of environments-from the pressurized blackness of oceanic depths to the shallow muddy pools of desert oases, from tropical jungles with their relatively unchanging physical conditions and food supply to the Artic where good conditions occupy such a short period of the year. To be able to breed in so many different sorts of areas has meant the development of many specific reproductive patterns and also of several uniquely vertebrate reproductive features. For example, the change to a terrestrial environment resulted in the development of the cleidoic egg, while many vertebrates have overcome the problem of poor survival of independent eggs by retaining them inside the body so that viviparity has arisen. Many other trends in reproduction will be discussed in the following chapters. Comparison between vertebrate classes shows that fewer and fewer young are produced as one progresses from fish to birds and mammals. The size of the egg or size of the newborn young tends to become larger relative to the size of the parent. Parental care of the young is most highly developed in the upper vertebrate classes.

Two more features of vertebrate reproduction deserve mention. Generally vertebrates live longer than invertebrates, and as many of the former are repeat breeders they undergo reproduction several times during their lives. This allows for the development of experience and expertise in the rearing of young inside the life-span of one individual which is not possible in the shorter-lived invertebrates. Second, unlike numbers of invertebrate species in which many members of the species are asexual and play no part in