Developmental Regulation

Aspects of Cell Differentiation

Edited by Stuart J. Coward

Academic Press, Inc. A Subsidiary of Harcourt Brace Jovanovich, Publishers

DEVELOPMENTAL REGULATION

Aspects of Cell Differentiation

CELL BIOLOGY: A Series of Monographs

EDITORS

D. E. BUETOW

Department of Physiology and Biophysics University of Illinois Urbana, Illinois I. L. CAMERON

Department of Anatomy University of Texas Medical School at San Antonio San Antonio, Texas

G. M. PADILLA

Department of Physiology and Pharmacology Duke University Medical Center Durham, North Carolina

- G. M. Padilla, G. L. Whitson, and I. L. Cameron (editors). THE CELL CYCLE: Gene-Enzyme Interactions, 1969
- A. M. Zimmerman (editor). HIGH PRESSURE EFFECTS ON CELLULAR PROCESSES, 1970
- I. L. Cameron and J. D. Thrasher (editors). CELLULAR AND MOLECULAR RENEWAL IN THE MAMMALIAN BODY, 1971
- I. L. Cameron, G. M. Padilla, and A. M. Zimmerman (editors). DEVELOPMENTAL ASPECTS OF THE CELL CYCLE, 1971
- P. F. Smith. THE BIOLOGY OF MYCOPLASMAS, 1971
- Gary L. Whitson (editor). CONCEPTS IN RADIATION CELL BIOLOGY, 1972
- Donald L. Hill. THE BIOCHEMISTRY AND PHYSIOLOGY OF TETRA-HYMENA, 1972
- Kwang W. Jeon (editor). THE BIOLOGY OF AMOEBA, 1973
- Dean F. Martin and George M. Padilla (editors). MARINE PHARMACOGNOSY: Action of Marine Biotoxins at the Cellular Level, 1973
- Joseph A. Erwin (editor). LIPIDS AND BIOMEMBRANES OF EUKARYOTIC MICROORGANISMS, 1973
- A. M. Zimmerman, G. M. Padilla, and I. L. Cameron (editors). DRUGS AND THE CELL CYCLE, 1973
- Stuart Coward (editor). DEVELOPMENTAL REGULATION: Aspects of Cell Differentiation, 1973

In preparation

Govindjee (editor). BIOENERGETICS OF PHOTOSYNTHESIS

DEVELOPMENTAL REGULATION

Aspects of Cell Differentiation

Edited by STUART J. COWARD

Department of Zoology University of Georgia Athens, Georgia

1973

ACADEMIC PRESS New York and London A Subsidiary of Harcourt Brace Jovanovich, Publishers COPYRIGHT © 1973, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 71-187254

PRINTED IN THE UNITED STATES OF AMERICA

Contents

List Pref	OF CONTRIBUTORS VACE	ix xi
1.	RNA and Protein Synthesis during Early Animal Embryogenesis	
	Tom Humphreys	
I.	Introduction	1
II.	Synthesis of RNA	2
III.	Protein Synthesis References	13
	References	20
2.	Developmental Regulation in Cotton Seed Embryogenesis and Germination	
	Leon S. Dure, III	
I.	Introduction	23
II.	Cotton Cotyledons as a Developmental System	24
III.		26
IV.		30
V. VI.	1 20	37 42
VI.	1 1 0	42 44
v 11.	References	47
3.	Plant Hormones and Developmental Regulation:	
	Role of Transcription and Translation	
	Joe L. Key and Larry N. Vanderhoef	
I.		49
II.		51
III.		
IV.	of Hormone Action The Occurrence of Cytokinins in Transfer RNA	55 68
V.		00
••	and Chromatin	72

VI. Possible Model Systems for Developmental Regulation at the Level of Transcription 76

CONTENTS

78
80
80

4. Transitions in Differentiation by the Cellular Slime Molds

James H. Gregg and W. Sue Badman

I.	Introduction	85
II.	Variability among the Myxamoebae	87
III.	Pseudoplasmodium Formation	88
IV.	The Migrating Pseudoplasmodium	90
V.	Cell Association and Differentiation	95
VI.	Summary	103
	References	105

5. Metabolism, Cell Walls, and Morphogenesis

Stuart Brody

I.	General Morphogenesis	107
II.	Possible Approaches to Answers	110
III.	The Cellular Morphogenesis of Certain Microorganisms	119
IV.	Specific Experimental Information about Neurospora	
	${f Morphogenesis}$	128
V.	Outlook	142
VI.	Summary	144
	References	146

6. Colony Differentiation in Green Algae

Gary Kochert

I.	Introduction	155
II.	Chlamydomonas and Gonium	156
III.	Pandorina, Eudorina, and Pleodorina	158
IV.	Volvox	161
	References	166

7. Myogenesis: Differentiation of Skeletal Muscle Fibers

Thomas L. Lentz

I.	Introduction	169
II.	Structure of the Myoblast	171
III.	Formation of the Multinucleated Myotube	173

vi

CONTENTS

IV.	Synthesis of Myofilaments	176
V.	Differentiation of the Myofiber	182
VI.	Innervation of the Myofiber	187
	References	190

8. Some Comparative Aspects of Cardiac and Skeletal Myogenesis

Francis J. Manasek

I.	Introduction	193
II.	Embryonic Origin of Skeletal Muscle	195
III.	Embryonic Origin of Cardiac Muscle	196
IV.	Fibril Formation and Mitosis during Myogenesis	197
V.	Other Cell Functions during Myogenesis	207
VI.	Conclusion and Summary	211
	References	216

9. Chondrogenesis

Robert Searls

	Description of Cartilage Differentiation Control of Cartilage Differentiation References	220 240 249
Au	THOR INDEX	253

SUBJECT INDEX

vii

 $\mathbf{264}$

This page intentionally left blank

List of Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- W. SUE BADMAN, Society for Developmental Biology, Kalamazoo, Michigan (85)
- STUART BRODY, Department of Biology, University of California at San Diego, La Jolla, California (107)
- LEON S. DURE, III, Department of Biochemistry, University of Georgia, Athens, Georgia (23)
- JAMES H. GREGG, Department of Zoology, University of Florida, Gainesville, Florida (85)
- TOM HUMPHREYS, Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii (1)
- JOE L. KEY, Department of Botany, University of Georgia, Athens, Georgia (49)
- GARY KOCHERT, Department of Botany, University of Georgia, Athens, Georgia (155)
- THOMAS L. LENTZ, Department of Anatomy, Yale University School of Medicine, New Haven, Connecticut (169)
- FRANCIS J. MANASEK, Departments of Anatomy and Pediatrics, Harvard Medical School, Boston, Massachusetts, and Departments of Cardiology and Pathology, The Children's Hospital Medical Center, Boston, Massachusetts (193)
- ROBERT SEARLS, Department of Biology, Temple University, Philadelphia, Pennsylvania (219)
- LARRY N. VANDERHOEF, Department of Botany, University of Illinois, Urbana, Illinois (49)

This page intentionally left blank

Preface

In a field of such wide scope as developmental biology, it is impossible to include or to do justice to each and every important facet in any one book. I have attempted to draw together in this work some studies which are directed toward the orderly changes in cell phenotypes which we understand to be developmental in nature. The exciting, fundamental advances in genetics, cell biology, and molecular biology occurring over the last decade not only have reshaped the investigator's thinking and reinforced his armamentarium, but have brought developmental studies to a critical threshold point toward the elucidation of the basic mechanisms of differentiation. These changes, I believe, are reflected in the nine chapters of this volume. The linear ordering of the chapters obviously should not be regarded as describing the principal logical interactions. This would require arrangement within a spheroid; it is for the reader to make that juxtaposition.

STUART J. COWARD

This page intentionally left blank

1

RNA and Protein Synthesis during Early Animal Embryogenesis

TOM HUMPHREYS

I.	Introduction	1
II.	Synthesis of RNA	2
	A. RNA Synthesis before Fertilization	2
	B. RNA Synthesis during Development	4
	C. Summary of RNA Synthesis	12
III.	Protein Synthesis	13
	A. Acceleration of Protein Synthesis at Fertilization	13
	B. Proteins during Early Development	15
	C. Summary	19
	References	20

I. Introduction

Embryogenesis is an orderly progression of the organism from a relatively simple fertilized egg to a much more complex functional individual. The rather similar cells resulting from cleavage must differentiate into a host of different cell types organized into diverse tissues and specialized for a variety of functions. Modern analysis of cellular biochemistry and molecular biology has established a scheme of molecular function and interdependency which leads to the general assertion that the central event in this morphological diversification is the orderly synthesis of appropriate enzymatic, structural, and regulatory proteins. It is the proteins, with their extensive molecular diversity, which perform most cellular functions. RNA molecules copied from the DNA encoding the protein's amino acid sequence direct the assembly and synthesis of the protein molecules. The activities of the DNA and RNA which specify the structure of the proteins appear to be regulated by protein molecules. The other molecules of cells, such as polysaccharides and lipids, are themselves synthesized and usually organized by protein mole-