Genetics of Sex Differentiation

Ursula Mittwoch

ACADEMIC PRESS, INC. A Subsidiary of Harcourt Brace Jovanovich, Publishers

Genetics of Sex Differentiation

This page intentionally left blank

Genetics of Sex Differentiation

URSULA MITTWOCH

The Galton Laboratory Department of Human Genetics and Biometry University College London London, England

ACADEMIC PRESS New York and London 1973 A Subsidiary of Harcourt Brace Javonovich, Publishers

COPYRIGHT © 1973, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Mittwoch, Ursula. Genetics of sex differentiation.

Bibliography: p. 1. Sex chromosomes. 2. Sex-Cause and determination. 3. Sex chromosome abnormalities. I. Title. [DNLM: 1. Cytogenetics. 2. Sex chromosomes. 3. Sex determination. WQ 206 M685g 1973] QH431.M537 575.1 72-9334 ISBN 0-12-501040-0

PRINTED IN THE UNITED STATES OF AMERICA

Contents

Preface

Chapter 1 Classical Genetics of Sex Differentiation

I. Introduction	1
II. The Structure of Cells	3
III. The Chromosomal Basis of Sex Determination	4
IV. The Genetic Evidence	10
V. Female Heterogamety	13
VI. The Relationship of Genes and Chromosomes	16
VII. Sex Determination in Drosophila	18
VIII. Intersexes in Lymantria	23
IX. The Theory of Genic Balance	24

Chapter 2 Genetics of Continuous Variation

I.	Introduction	29
II.	Major Genes with Minor Effects	36
III.	Quasicontinuous Variation	38
IV.	Polygenes	40

Chapter 3 Aspects of the Gene

I.	Introduction	43
II.	The Gene before 1950	43
III.	DNA and the Molecular Gene	46

Chapter 4 Heterochromatin

I.	Introduction	49
II.	Heteropycnosis	50
III.	Genetic Effects	51
IV.	Minutes and Homoeotic Mutants in Drosophila	53
V.	Nucleolar Organizers	55
VI.	Repetitive DNA Sequences	57
VII.	B Chromosomes	58
VIII.	Variegated-Type Position Effect	59
IX.	Sex Chromosomes in Interphase	60
Х.	Single Active X Chromosome Hypothesis	63
XI.	Autoradiography	70
XII.	Fluorescence Microscopy	74
XIII.	Selective Giemsa Staining	77
XIV.	Constitutive and Facultative Heterochromatin	80

Chapter 5 The Nature of Sex Differentiation with Special Reference to Vertebrates

I.	Introduction	83
II.	Germ Cells	84
III.	Mammalian Gonads	87
IV.	Sex Differentiation in Other Vertebrates	90
V.	Sex Determination in Fish	93
VI.	Induced Sex Reversal	103
VII.	Embryological Basis of Sex Differentiation	106
VIII.	Sex Determination in Three Invertebrates	132
IX.	Sex Factors in Bacteria	134

Chapter 6 Sex Determination in Man and Other Mammals

I. Introduction	137
II. Klinefelter's and Turner's Syndromes	140
III. Females with Multiple X Chromosomes and Males with	
XYY Chromosomes	143
IV. The Male-Determining Function of the Mammalian Y	
Chromosomes	145
V. XX Males	146
VI. True Hermaphroditism	148
VII. Gonadal Dysgenesis	150

CONTENTS

VIII.	Testicular Feminization	151
IX.	Tumors Affecting the Secondary Sexual Characteristics	154
Х.	Triploidy and Other Autosomal Effects	155
XI.	Sex Chromosomes in Other Mammals	156
XII.	Sex Chromosome Chimaeras	158
XIII.	The Freemartin	160
XIV.	Autosomal Sex Reversal	161
XIII.	The Freemartin	160

Chapter 7 Genes, Chromosomes, Growth, and Sex

I.	Introduction	163
II.	Homoeotic Mutants in Drosophila	164
III.	Phenocopies	168
IV.	Genetic Assimilation	170
V.	Transdetermination in Drosophila	172
VI.	Mitotic Rates and Differentiation	175
VII.	Chromosomal Volumes and Mitotic Rates	176
VIII.	Chromosome Puffs, Lampbrush Chromosomes, and the Y	
	Chromosomes in Drosophila	177
IX.	Changes in Karyotypes and Mitotic Rates	181
	The Hierarchy of Genetic Elements	184
XI.	Possible Functions of Nongenic DNA	188
	Sex Differentiation and Growth	192

Bibliography

AUTHOR INDEX233SUBJECT INDEX242

201

This page intentionally left blank

Preface

The role played by chromosomes in the development of male and female characteristics is a topic of exceptional interest. It has been almost seventy years since sex chromosomes were discovered, providing the first real answer to the age-old question as to the cause of sex differentiation. Nevertheless, the hopes of early geneticists to explain the determination of sex in terms of classical Mendelian genetics were never fulfilled. In spite of the accumulation of much pertinent data, no solid evidence could be adduced for the existence of either male- or female-determining genes in *Drosophila* or other organisms. As a result, efforts to unravel the genetics of sex determination were abandoned in favor of investigations which seemed to fit more readily into the Mendelian framework.

This is an opportune time to reinvestigate the problem of sex differentiation for several reasons. The unprecedented progress in the cytogenetics of man and other mammals has focused attention on the relationship between chromosomes and normal, as well as abnormal, sexual development. The large number of sex chromosome abnormalities that have come to light in our own species have forced us to take a closer look at the manifold developmental processes that occur from sex determination (at conception) to sexual maturity. But progress in clinical genetics has been matched by equally far-reaching discoveries of a more fundamental nature. It has become apparent that the chromosomes of higher organisms contain a large amount of DNA and that some of it does not

PREFACE

function in accordance with the genetic code. Furthermore, dramatic advances in our knowledge of this nongenic DNA are continually being made with the aid of newly developed techniques. It is clear that there is a striking correspondence between this part of the DNA and the chromosomal regions that have long been regarded as heterochromatic. It has also long been known that sex chromosomes are particularly rich in heterochromatin.

The purpose of this book is to bring together evidence that the sex chromosomes may affect the rates at which cells divide and that the process of sex differentiation is based on differences in growth rates during development. This has necessitated discussion on a rather wide variety of topics, and no attempt has been made to cover any one exhaustively. Although some of the ideas mentioned are themselves in an early stage of development and no doubt in need of modification, it is hoped that the approach I have chosenlooking beyond the formal gene-phenotype relationship and emphasizing the dynamic relationship between chromosomes and growth--will lead to a better understanding of the role of chromosomes in the development of sexual and other characteristics, i.e., those which are basically of a quantitative nature. The realization that chromosomes, in addition to carrying genes determining chemical specificity, contain other regions which control the rates of cell division and growth should help to ally cytogenetics with embryology and evolution and generally shed light on the interaction between nature and nurture. The process of sex differentiation provides an excellent system to test such correlations.

It is a pleasure to acknowledge the help of a number of colleagues who kindly read individual chapters in the manuscript and made valuable comments: A. Anders, F. Anders, M. J. Fahmy, O. G. Fahmy, C. E. Ford, G. R. Fraser, W. Landauer, R. C. Lewontin, and C. A. B. Smith. I am also grateful to those authors and publishers who have permitted me to use previously published illustrations and particularly to those who have contributed original photographs to be included in this book; they have been acknowledged in the text.

I should like to thank Miss Ruth Lang and Mrs. Lilian Nutter for their patience and care in typing the manuscript, the staff of Collings Design Group for their accuracy and speed in preparing the diagrams, and the staff of Academic Press for their help in seeing the book through production.

Some of the experimental work described in this book was supported by a grant from the Science Research Council.

Ursula Mittwoch

This page intentionally left blank

Genetics of Sex Differentiation