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Foreword 

"The continual rattling during the motion . . . is principally produced 
by the fact that it is scarcely possible to retain the four points of the rails, on 
which the wheels of the locomotive rest, continually in one plane. . . ." 
This excerpt from a 1829 study of railroad operation, written when the very 
first railway in the world was barely 5 years old, represents an astute observa
tion. Although the "rattling during the motion" may have been reduced, the 
problems of rail - vehicle dynamics resulting from the moving contact points 
between wheels and rails are of as much concern today as they were over 150 
years ago when the first railway system was designed. 

The importance of railways to world commerce and world development 
is self-evident. Canada owes its existence as a nation extending from the 
Atlantic to the Pacific to the decision to build a railway. Railways are still the 
most energy-efficient overland movers of heavy freight. Railway networks 
penetrate all corners of the world, and the construction of a railway is one of 
the first requirements to be met after the decision has been made to develop a 
new area of a country. 

Yet, there are problems in the maintenance and operation of railways 
that go back to the early days. The use of flanged steel wheels running on steel 
tracks to provide simultaneously support, guidance, and traction was a bril
liant concept. But the simplicity of the concept masked the complexity of the 
dynamics of the resulting motions. The motions of railway wheels and 
vehicles are the result of complex interactions among contact forces, compo
nent geometry, suspension, and vehicle masses—stiffness and damping 
coefficients that challenge analysis. Yet, an understanding of railway dy
namics is fundamental to the control of rail - wheel wear and vehicle stability 
and reliability. 

IX 



X Foreword 

The railroad industry is essentially conservative. Only during recent 
years have modern scientific methods of analysis been applied to the prob
lem of rail-wheel-vehicle dynamics. The complexity is extreme, but the 
demands for increased speeds and greater load capacity, which bring new 
problems of wear and stability, have forced railway operators and equipment 
suppliers to address these problems in a more systematic and fundamental 
way. 

This book is the first devoted to a thorough, modern, analytical treatment 
of the rail-wheel interaction problem and its effect on vehicle dynamics. As 
well as providing a comprehensive source for information on the latest 
theories and results of studies on rail dynamics, it has been organized so that 
the relevant equations are clearly derived and the limitations to applications 
well defined. Thus, this work will provide a guide for future analysts and 
research workers seeking to improve our understanding of rail-vehicle dy
namics, an understanding that is fundamental to the continued successful 
development of railway transportation. 

Although the first century and a half of railway technological develop
ment was noted for the ingenuity and determination of its protagonists, the 
second will be founded firmly on a more complete understanding of the 
phenomena involved. This volume is a valuable contribution to scientific 
analysis and research in this area. 

National Research Council Canada 
Ottawa, Ontario, Canada 

Ε. H . DUDGEON 



Preface 

Although the subject of railway vehicle dynamics is constantly gaining 
importance in all aspects of modern railway engineering, currently there is 
no book available that deals with this rapidly expanding discipline. This 
book covers the development of mathematical models and their applications 
to dynamic analyses and the design of railway vehicles. It should help to put 
in proper perspective the role of analytical models in various railway vehicle 
design activities. 

The book contains all the information that is usually needed to formulate 
general procedures and conduct detailed design analyses of common railway 
vehicle systems. Special attention is given to a clear presentation of the 
equations and methods of their solution. Related references to guide the 
reader further in this field are given at the end of each chapter. 

The authors have developed the material in a way that allows the book to 
be used in courses in railway vehicle dynamics. Design and research engi
neers will be able to draw upon the book in selecting and developing mathe
matical models for analytical and design purposes. 

The distinctive features of this book are as follows: Chapters 1 - 4 cover 
the necessary background material required to study the dynamics of railway 
vehicles. In Chapter 1, a review of the analytical techniques used in deter
mining the dynamic response of single- and multiple-degree-of-freedom 
systems is given, covering deterministic and nondeterministic approaches. 
Chapter 2 deals with a condensed presentation of numerical solutions of 
linear and nonlinear dynamic systems; explicit and implicit numerical inte
gration schemes are presented. Chapter 3 outlines various problems asso
ciated with the dynamic behavior of railway vehicles and train consists. 
Several mathematical models are proposed to study these problems. Both 

xi 



X Ü Preface 

deterministic and nondeterministic approaches are used to represent various 
track irregularities. Chapter 4 deals with the wheel-rail rolling contact 
theories being applied in railway vehicle dynamics problems. Brief descrip
tions, applications, and limitations of these theories are also given. 

Chapters 5 - 8 are devoted to the modeling of the vehicle and its compo
nents on both tangent and curved track. In Chapter 5, a complete derivation 
of the equations of motion for a single wheel-axle set traveling on tangent 
and curved track is presented. Chapter 6 is devoted to developing analytical 
models for the dynamic response of railway vehicles on tangent track. The 
equations of motion for a freight car, locomotive, and passenger car are 
developed by using deterministic and random track inputs. In Chapter 7, the 
lateral stability of these vehicles on tangent track is discussed. Chapter 8 
presents the formulation of mathematical models for vehicle response on 
curved track. 

Chapter 9 deals with the dynamic behavior of a train consist. The prob
lems associated with the longitudinal, lateral, and vertical dynamic behavior 
of a train consist are outlined; quasi-static and quasi-dynamic approaches 
are presented. Analytical models for longitudinal, lateral, and vertical train 
dynamics are formulated. 

Chapter 10 presents vehicle-bridge interaction models, whereas in 
Chapter 11 an introduction to validating railway vehicle dynamics models is 
given. 

Vector and matrix notation is used throughout the book. This usage 
presupposes an elementary knowledge of calculus, ordinary differential 
equations, vector and matrix algebra, and dynamics. 
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Chapter 1 Analysis of Dynamic Systems 

1.1 Introduction 

In this chapter we briefly discuss the analytical techniques that are used 
with dynamic systems. The initial portion of the chapter is devoted to the 
analysis of a linear single-degree-of-freedom system. Both free and forced 
responses of the system are discussed. In the following sections of the chapter, 
the analytical methods for a multiple-degree-of-freedom system are presented. 
Dynamic systems with and without damping are considered. Eigenvalue 
problems for these systems are formulated. The modal superposition tech
nique for calculating the response of a multiple-degree-of-freedom system is 
also presented. Finally, a brief discussion of the theory of random vibration is 
given, and a method for calculating the response of a linear system subjected 
to stationary random excitations is presented. 

1.2 Constraints, Generalized Coordinates, and Degrees of Freedom 

The position of a system of particles is called its configuration. Usually, 
because of constraints on the system, actual coordinates need not be assigned 
to each particle. In a dynamic system, constraints may be at its boundary or at 
points internal to the system. Constraints may be either static or kinematic in 
nature. The static constraints result from relationships among forces, 
whereas the kinematic constraints are due to the relationships among 
displacements. In selecting the coordinates to describe a dynamic system, the 
static and kinematic constraints must be considered. Relationships among 
coordinates, which exist because of constraints on the system, are termed 

ι 



2 1 Analysis of Dynamic Systems 

constraints equations. Based on this discussion, it can be said that systems of 
unconstrained or independent coordinates exist. In general, this is true in 
dynamic systems, and such a system can be described by a system of con
strained coordinates. As an example, we can consider a dynamic system that 
is defined in terms of Μ coordinates. If there are R constrained displacements, 
then R coordinates can be expressed in terms of the remaining Μ — R 
coordinates, which are independent. Thus, if 

Ν is the number of independent coordinates, and the forces and displacements 
are fully defined by these Ν coordinates. The independent coordinates 
required to specify completely the configuration of a dynamic system are 
called generalized coordinates. It is assumed that the generalized coordinates 
may be varied arbitrarily and independently without violating the constraints. 
Such a dynamic system is called a holonomic system. The number of generalized 
coordinates is called the number of degrees of freedom of a dynamic system. 

To illustrate a dynamic system with constraint, we consider a rigid body 
attached to a point that is constrained to translate in the y direction, as 
shown in Fig. 1.1. In three-dimensional space, the motion of the rigid body 
would be described by five coordinates, i.e., two translations, one each along 
the χ and ζ axes, and three rotations about the x, y, and ζ axes, respectively. 
In this case, the number of degrees of freedom for the system is five. Let us 
suppose that the rigid body is further constrained and that it undergoes 
motion in the x-y plane only, as shown in Fig. 1.2. The rigid body in a planar 
motion configuration would require two degrees of freedom to describe its 
motion. These degrees of freedom would correspond to the translation along 
the χ axis and the rotation about the ζ axis. 

JV = Μ - R, (1.1) 

y 

C O N S T R A I N E D TO 
M O V E IN y D I R E C T I O N 

χ 

z' 

Fig. 1.1. Rigid body in general mot ion (five degrees of freedom). 
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y 

t χ 
ζ 

Fig. 1.2. Rigid body in planar mot ion (two degrees of freedom). 

1.3 Linear Dynamic Systems 

We have already seen that the number of degrees of freedom of a dynamic 
system is the number of independent coordinates required to describe its 
motion completely. A discrete model of a dynamic system possesses a finite 
number of degrees of freedom, whereas a continuous model has an infinite 
number of degrees of freedom. Of the discrete mathematical models, the 
simplest one is the single-degree-of-freedom linear model. The advantages 
of linear models are these: 

(1) their response is proportional to input, 
(2) superposition is applicable, 
(3) they closely approximate the behavior of many dynamic systems, 
(4) their response characteristics can be obtained from the form of 

system equations without a detailed solution, 
(5) a closed-form solution is often possible, 
(6) numerical analysis techniques are well developed, and 
(7) they serve as a basis for understanding more complex nonlinear 

system behaviors. 
It should, however, be noted that in most nonlinear problems it is not 

possible to obtain closed-form analytic solutions for the equations of motion. 
Therefore, a computer simulation is often used for the response analysis. 
Numerical analysis techniques used in computer simulations are discussed in 
the next chapter. 

1.4 Classification of Vibrations 

Vibrations can be classified into three categories: free, forced, and self-
excited. Free vibration of a system is vibration that occurs in the absence of 
forced vibration, where damping may or may not be present. In the absence of 
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damping, the total mechanical energy due to the initial conditions is conserved, 
and the system can vibrate forever because of the continuous exchange 
between the kinetic and potential energies. Because almost all mechanical 
systems exhibit some form of damping, the application of such free-vibration 
theories lies in the areas of celestial mechanics, space dynamics, and struc
tural dynamics problems, in which the amount of damping is so small that the 
system can be treated as an undamped system. 

Forced vibrations are caused by an external force that acts on the system. 
In this case, the exciting force continuously supplies energy to the system to 
compensate for that dissipated by damping. Forced vibrations may be either 
deterministic or random. The differential equations of motion of the dynamic 
systems considered in this book are all deterministic; i.e., the parameters are 
not randomly varying with time. However, the exciting force may be either a 
deterministic or a random function of time. In deterministic vibrations, the 
amplitude and frequency at any designated future time can be completely 
predicted from the past history; whereas random forced vibrations are 
defined in statistical terms, and only the probability of occurrence of desig
nated magitudes and frequencies can be predicted. 

Self-excited vibrations are periodic and deterministic oscillations. Under 
certain conditions, the equilibrium state in such a vibration system becomes 
unstable, and any disturbance causes the perturbations to grow until 
some effect limits any further growth. The energy required to sustain these 
vibrations is obtained from a nonalternating power source. In self-excited 
vibrations, the periodic force that excites the vibrations is created by the vibra
tions themselves. If the system is prevented from vibrating, then the exciting 
force disappears. In contrast, in the case of forced vibrations, the exciting 
force is independent of the vibrations and can still persist even when the 
system is prevented from vibrating. 

1.5 Linear Single-Degree-of-Freedom (SDOF) System 

We now consider a single-degree-of-freedom model of a linear dynamic 
system, as shown in Fig. 1.3. From Newton's third law we write 

where F(t\ F s(i), and Fd(t) are the exciting, spring, and damping forces, 
respectively; m denotes the mass of the body and x(t) its acceleration. Because 
Fs(t) = kx(t) and Fd(t) = c x(t), Eq. (1.2) becomes 

where c and k are the damping and stiffness coefficients, respectively. 

F(t) - Fs(t) - Fd(t) = m x(t\ (1.2) 

m x(t) + c x(t) + kx(t) = F(t\ (1.3) 
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x ( t ) 

k 

T l 

m 

J J 
c 

I L M 

- F ( t ) 

F « | < t > -

X ( t ) 

m m m m F ( t ) 

Fig. 1.3. Linear single-degree-of-freedom system. 

Equation (1.3) is the equation of motion of the linear single-degree-of-
freedom system and is a second-order linear differential equation with 
constant coefficients. 

1.5.1 Free Vibration of an SDOF System 

In the case of the free vibration of an SDOF system, the exciting force 
F(t) = 0 and the equation of motion is 

m x(t) + c x(t) + kx(t) = 0. (1.4) 

If we define ω 2 = k/m and ξ = c/2mcon, Eq. (1.4) can be written as 

x(t) + 2ξωη x(t) + ωΙχ(ϊ) = 0. (1.5) 

To solve Eq. (1.5), we assume that 

x(t) = Aes\ (1.6) 

where A is a constant and s a parameter that remains to be determined. By 
substituting (1.6) into (1.5), one obtains 

(s2 + 2£cons + co2)Aest = 0. 

Since Aest φ 0, then 

s 2 + 2£cons + ω 2 = 0. 

(1.7) 

(1.8) 
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Equation (1.8) is known as the characteristic equation of the system. This 
equation has the following two roots 

3 1 , 3 2 = (-ξ±^ξ2 -ί)ωη. (1.9) 

Solution α. ξ < 1 (underdamped condition): 

su *2 = (~ξ ± iyjl ~ £ 2 )ω η , 

χ(ί) = A βχρ( - ίω η ί ) c o s ^ ^ / l - ξ2ί - φ\ (1.10) 

x(t) = A exp( — ϊ'ωηί) cos(codi — φ\ (1-11) 

where ω η is the natural circular frequency, ξ the damping factor, and ωά = 
ωη\/ΐ — ζ2 the damped frequency of the system. Constants A and φ are 
determined from the initial conditions. 

Solution b. ξ > 1 (overdamped condition): 
*ι,82 = (-ξ±^ξ2-1)ωη9 

x(t) = A1 expi-ξ + V'ξ2 - 1)ω η ί + X 2 e x p ( - c ^ - ^ - 1)ω ηί. 
(1.12) 

The motion is aperiodic and decays exponentially with time. Constants 
Α γ and ^ 2

 a r e determined from the initial conditions. 

Solution c. ξ = 1 (critically damped condition): 

S i = ^ 2 = ~ ω η , 

χ(ί) = (Al + >4 2 ί )βχρ(-ω η ί ) . (1-13) 

Equation (1.13) represents an exponentially decaying response. The constants 
Α ι and A2 depend on the initial conditions. 

For this case, the coefficient of viscous damping has the value 

cc = 2mwn = l^Jkm. 

Hence, 

ξ = c/cc. (1.14) 

The locus of the roots s x and s2 can be represented on a complex plane, as 
shown in Fig. 1.4. This permits an instantaneous view of the effect of the 
parameter ξ on system response. For an undamped system with ξ = 0, the 
imaginary roots are ±ίωη. For a system 0 < ξ < 1, the roots sl and s2 are 
complex conjugates that are located symmetrically with respect to the real 
axis on a circle of radius ω η . For ξ = 1, s1 = s2 = — ω η , and as ξ -> o o , 
s x —• 0,ands 2 -> — o o . 
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Im 

ξ = 0 
ω η 

0 < ξ < 1 
/ Ι χ ι 

t ί ω η \ J R e 

si y 0 

ξ>1 

< = o 
- ω η 

Fig. 1.4. Complex planar representat ion of roots su s2. 

We further consider the underdamped condition in which tx and t2 denote 
the times corresponding to the consecutive displacements xt and x2, measured 
one cycle apart, as shown in Fig. 1.5. By using Eq. (1.11), we can write 

* i = A exp ( - /o j n r 1 ) cos(mdt1 - φ) 
x2 A exp( — icont2) cos(codi2 — Φ) 

Since t2 = t1 4- Τ = ίλ + 2π/ω α , then οο^{ωάίχ — φ) = cos(cod£2 — Φ)-
Equation (1.15) then reduces to 

xjx2 = exp(£ö) nT). (1.16 ) 

If w e defin e 

δ = ln(x 1 /x 2 ) = ξωηΤ = Ιπξ/Jl - ξ\ (1.17) 

x ( t ) 

Fig. 1.5. Response of an underdamped system. 


