SILICATE SCIENCE

VOLUME VIII

INDUSTRIAL GLASS: GLAZES AND ENAMELS

WILHELM EITEL

Silicate Science

VOLUME VIII

This page intentionally left blank

SILICATE SCIENCE

BY WILHELM EITEL

INSTITUTE FOR SILICATE RESEARCH THE UNIVERSITY OF TOLEDO TOLEDO, OHIO

VOLUME VIII

INDUSTRIAL GLASS: GLAZES AND ENAMELS

ACADEMIC PRESS New York San Francisco London A Subsidiary of Harcourt Brace Jovanovich, Publishers Copyright © 1976, by Academic Press, Inc. all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Eitel, Wilhelm, (date) Silicate science.

Bibliographical footnotes. CONTENTS: Silicate structures.-v. 2. v. 1. Glasses, Dry silicate systems. [etc.] enamels, slags.-v. 3. 1. Silicates-Collected works. 2. Ceramics-Collected works. I. Title. TA455.S46E5 546'.683'24 63-16981 ISBN 0-12-236308-6

PRINTED IN THE UNITED STATES OF AMERICA

To the Memory of KAMILLO KONOPICKY

This page intentionally left blank

Contents

Preface to Volumes VII and VIII	xi
Acknowledgments	xiii
Contents of Other Volumes	xv

1

GENERAL INTRODUCTION

Chapter I

PART A: REACTIONS OF GLASS BATCH MIXTURES AT ELEVATED TEMPERATURES

Introduction	3
Elementary Batch Reactions	5
Heterogeneities in Primary Batch Reaction Products	10
Vacuum Melting of Glass; Influence of the Furnace Gas Atmosphere	17

PART B: REACTIONS IN BATCHES AND THEIR KINETICS

Glass Formation in Carbonate-Containing Batch Systems	24
Borosilicate and Lead Silicate Glass-Batch Reactions	27
Sulfate Reactions in Glass Batches	31
Composition and Reactions of the Glass Tank Furnace Atmosphere	34
Dissolution Processes of Solid Batch Ingredients	40

Chapter II

FINING OF MOLTEN GLASS

Introduction: Bubbles in Glass and the Nature of Their Gaseous Contents	45
Practical Fining Experience. Details of Fining Techniques	51
Hydrodynamic Flow Conditions in the Glass Bath	57

Chapter III

REQUIREMENTS THAT MUST BE FULFILLED BY THE FINED GLASS BEFORE WORKING

Stainings; Color Correction (Decolorization)	66
Color Effects Caused by Transition Elements	76
Color Changes Caused by Irradiation Luminescence	96
Minor Heterogeneities; Cords and Surface-Tension Effects	105
Rheology of Glass in the Workability Range	108
Surface Reactions of Flowing Glass Melts in Contact with Refractories	113
Problems of Contacts of Glass Melts with Gas Phases and Their Release	119
Inert Gases Dissolved in Glass Melts	128

Chapter IV

PART A: TECHNOLOGICALLY IMPORTANT PHYSICAL AND CHEMICAL PROPERTIES OF GLASSES

Viscosity, Rheology, Phenomena, and Effects	147
Adhesion of Glass on Hot Metal Surfaces	151
Wettability and Corrosivity of Glass Melts in Contact with Metals and	
Ceramic Refractories	154
Heat Transfer by Conductance and Radiation in Glass Furnace Operations	158
-	163
Selectivity of Transmissivity and Reflectance of Special Glass	167
Amber Glass Selectivity of Transmissivity and Reflectance of Special Glass	

PART B: PHYSICAL PROPERTIES OF GLASS AS A FUNCTION OF THE CHEMICAL COMPOSITION

The Principle of Additivity	172
	• · -
Mechanical Properties and Chemical Composition of Glasses	182
Titania-Modified Glasses and Their Physical Properties	188
Optical Properties of Glasses	196
Crystallization Tendencies in Glasses	202
Dielectric Properties in Correlation with Crystallization	204
Electrical Properties at Low Temperatures Glass Electrodes	207
Behavior of Special Glasses for High-Vacuum and High-Frequency Technology	218
Composites of Semiconductor and Ionic Glasses	223
Glass/Metal Sealing Problems	229

Chapter V

CHEMICAL DURABILITY OF GLASS

Introduction	237
Leachability and Weathering Phenomena	243
Chemical Resistivity Phenomena of Glasses Exposed to Corrosive Acids	254
Constitutional Effects on the Chemical Durability of Glass	258
Effects of Organic Agents; Chelating Reactivity	263
Influence of Cords on Heterogenetics in Glass on Durability	264
Deterioration of Optical and Related Special Glasses by Moisture	272
Chemical Durability of Enamels, Frits, and Glazes in Comparison with	
Analogous Glasses	276

CHAPTER VI

SPONTANEOUS AND CONTROLLED CRYSTALLIZATION IN GLASS

Devitrification of Glass "Stones" and Their Constituents	278
Representative Literature References on Crystallization in Glasses of	
Diversified Characteristics	285
Opalescence and Opacity of Glasses Containing Fluorides	291
Opalescence and Turbidity of Phosphate Glasses	296
Titanium Dioxide, Zirconium Dioxide, and Other Dioxides in Opal Glasses	300
Glass-Type Properties of Enamels	303
Adhesion Problems of Enamels on Metal Substrate	308
Metal-Ceramic Sealing Technologies	318
Constitution and Properties of Ceramic Glazes	326
Nucleated Crystalline Opacifiers in Enamels and Glazes	335
Titanium, Tin, and Zirconium Dioxide-Opacified Enamels, and Glazes	343
Author Index	355
Subject Index	369
Compound Index	393
Mineral Index	395

This page intentionally left blank

Preface to Volumes VII and VIII

In general, Volumes VII and VIII are organized in the same manner as Volume II, Sections A and B. The numbering system used for paragraphs facilitates crossreferencing and index entries.

Advances made in silicate research from 1960 through 1970 are presented. Although much of the discussion is still based on the classic physical chemistry theories, an attempt has been made to introduce the essential solid state physics principles and to show how they can be applied to noncrystalline solids. The properties of many diverse vitreous materials are presented.

All of the international literature was examined in its original form by the author. Some came from the author's own collection of periodicals and books and some from The University of Toledo, the Toledo-Lucas County Public Libraries, and from the Library of the State of Ohio. The kind cooperation and help of the National Library Loan Service in obtaining rare literature are greatly appreciated.

When original texts were not available from any source, abstracts were used which, though critically chosen, sometimes lacked the information sought. Selected abstracts, however, have been included, but only when they could function as a guide to the reader's special endeavors.

These volumes complete this treatise. It is hoped that the information they supply will lead to fruitful research in the future.

The author is deeply grateful to Dr. W. C. Carlson, the previous President of The University of Toledo, to his successor Dr. G. R. Driscoll, and particularly to Dr. J. R. Long, previous Executive Vice President, and to his successor Dr. Robert S. Sullivant for their kind understanding and advancement of this enterprise during which the author enjoyed liberal hospitality as Professor Emeritus. The facilities of the Villa House of Cheltenham were placed at his disposal. The Board of Trustees of this University is sincerely thanked for providing financial aid for clerical help and for the administration of the Institute of Silicate Research.

Special gratitude is due Mr. P. T. Barkey, Director of the University Libraries, and his staff, especially to Mrs. I. J. Weis and to Mr. J. M. Morgan, for their help in supplying bibliographical material not only from the local libraries but from many outside organizations. A debt of thanks goes to Mrs. B. M. Lorenzen and to Mrs. J. H. Kent, the author's personal secretaries, and to Mrs. B. G. Kirkpatrick who helped so much in preparing the many manuscripts and in keeping organized the tremendous amount of material to be examined through the many stages of proof. The accurate secretarial assistance of Mrs. M. Foster and Mrs. J. S. Barnes is greatly appreciated.

A good deal of energy was expended in securing and selecting the best available original illustrations for these volumes. We received invaluable aid from competent laboratories and special departments of The University of Toledo in reproducing, enlarging, and correcting the illustrations used, particularly from the staff of the University's Office Manager in Education, Mr. W. Douglas, and the Print Shop Manager, Mr. J. L. Clemens.

Our sincere thanks go to the numerous publishing organizations and editors who helped our enterprise by granting the necessary permissions to reproduce illustrations from their original literature.

Finally, it is the author's privilege and pleasure to express his deepest appreciation to Mr. Frederick K. McIlvaine for his editorial assistance in the form of valuable advice and discussions on the manuscripts for these volumes, essentially contributing to their readability.

Wilhelm Eitel

Acknowledgments

The organizations listed below kindly granted permission to reproduce figures taken from their copyrighted publications.

Akadémiai Kiadó, Publishing House of the Hungarian Academy of Science, Budapest, Hungary American Ceramic Society, Columbus, Ohio Asahi Glass Co., Ltd., Yokohama, Japan The British Ceramic Society, Stoke-on-Trent, England Central Glass & Ceramic Institute, Calcutta, India Deutsche Glastechnische Gesellschaft, E.V., Frankfurt am Main, Germany Deutsche Keramische Gesellschaft, E.V., Bad Honnef/Rhein, Germany Institut Du Verre, Paris, France North-Holland Publishing Company, Amsterdam, Holland Silicates Industriels, Brussels, Belgium Società Technologica Italiana Del Vetro, Roma - Via Bissolati, Italy Society of Glass Technology, Sheffield, England Society of Mining Engineers of AIME, New York, N.Y. VEB Verlag für Bauwesen, Berlin, Germany (DDR) Verlag Brunke Garrels, Hamburg, Germany Verlag Schmid GmbH, Freiburg, Germany

This page intentionally left blank

Contents of Other Volumes

VOLUME I. SILICATE STRUCTURES

SECTION A.	Silicate Crystal Structures
Section B.	Clay Minerals: Structures
Section C.	Silicate Dispersoids

VOLUME II. GLASSES, ENAMELS, SLAGS

- SECTION A. Properties and Constitution of Silicate Glasses
- SECTION B. Industrial Glass and Enamels
- SECTION C. Industrial Slags

VOLUME III. DRY SILICATE SYSTEMS

SECTION A.	Dry Silicate Equilibria: Fusion and
	Polymorphism
SECTION D	Dry Silicate Systems: Fusion and

SECTION B. Dry Silicate Systems: Fusion and Polymorphism

VOLUME IV. HYDROTHERMAL SILICATE SYSTEMS

- SECTION A. Silicate Systems with Volatiles
- SECTION B. Dehydration Behavior of Silicate Hydrates: Zeolites and Related Materials

Appendix

VOLUME V. CERAMICS AND HYDRAULIC BINDERS

SECTION A.	Solid-State Reactions and Their Uses
Section B.	Reactions in Ceramic Bodies
SECTION C.	Portland Cements and Related Hydraulic
	Binders

VOLUME VI. SILICATE STRUCTURES AND DISPERSOID SYSTEMS

- SECTION A. Silicate Crystal Structure
- SECTION B. General Principles of Clay Minerals
- SECTION C. Silicate Dispersoids: Introduction and Definitions

VOLUME VII. GLASS SCIENCE

Chapter I.	General Introduction
Chapter II.	Viscosity of Molten Glass
Chapter III.	Electrolytic Conductivity of Silicates
Chapter IV.	Specific Volumina of Glass Melts. Changes under High-Pressure Effects
Chapter V.	Specific Applications of Infrared Spectro- scopy for Structure Problems
Chapter VI.	Physical Properties Varied by Thermal Actions in the Transformation and Anneal- ing Ranges
Chapter VII.	Miscellaneous Additional Constitution Problems

General Introduction*

1. The present state of the art of glass manufacturing, or glass technology in the meaning proper for this text, is based on the developments of glass melting units over several centuries, from the primitive forms of pot furnaces of little capacity to modern tank furnaces that make possible the production of several hundred tons of glass a day. These furnaces are so well and richly described in the technological literature that we feel obliged to only make brief reference in this volume to the many possibilities for improvement and modification of the traditional forms and constructions beyond tank furnace to units equipped for glass fusion. These will not advance any essentially new principles beyond the classical reactions and operation for glass fusion from a "batch" consisting of the fundamental mixtures of mineral raw materials like quartz (sand), limestone, or dolomite, in combination with such chemicals as Na_2CO_3 or Na_2SO_4 as the simplest ingredients. Progress actually made in the last decades did not concern the basic concepts of the production from the batch in tank furnaces as the given tool of the industrial processes, but came in improvement of the heat economy of the furnace system, and acceleration of treatment of the batch to achieve homogenization and fining. These evolutions of the last decade will therefore be the subject of our introductory chapter.

2. A few remarks may be appropriate concerning the great and promising prospects offered by modern electric engineering through special modification of the usual glass fusion methods to gain essential advantages in the thermochemical balance aspects of corresponding new construction of electrical glass furnace. Such units create new possibilities for the manufacturing of special glasses which, because of their contents of highly corrosive or highly refractory batch components cannot be melted in the classical tank or pot furnaces. They require walls and linings of refractory ceramic materials which are much different and, in principle, new con-

^{*}All volumes of "Silicate Science" have been published by Academic Press, New York. Vol. I, 1964; Vol. II, 1965; Vol. III, 1965; Vol. IV, 1966; Vol. V, 1966; Vol. VI, 1975; Vol. VII, 1976. Where a reference is listed by volume and paragraph number, this treatise is indicated.

GENERAL INTRODUCTION

this process is available from the experience of electrometallurgy.

tainer materials (refractories) such as noble metals of the Pt group, Wo, Mo metal, and the like. When high electrical current intensities must be applied in such cases, the fusion may be achieved in modern electric arc furnaces. Abundant literature on

3. We will omit discussions of this wide and extremely specialized field of glass engineering, referring, however, to such excellent and comprehensive reviews as we have at hand. These include a publication by E. Plumat, P. Éloy, J. Duthoit, and J. Cl. Barbier[†] which not only outlines possibilities for evolution in glass fusion furnace construction, but also offers details for improvement of the efficiency of the different systems concerned. Later in this section we will call attention to important improvements in reactions of the batches, the homogenization and fining of the raw melts, and the behavior of the glass melts when refractories come into contact with the molten material. Plumat et al. give so many instructive examples for improvement to be proposed and others performed in the last 10 years that we feel justified in restricting consideration here to the physical and chemical reaction phenomena which normally occur in every glass tank furnace, and in electric furnaces of many shapes. This will be a rich source of information and recommendations for advancement. Studies of the more than one hundred references presented in Plumat's review are an excellent and adequate introduction of the student to patent literature on glass fusion units.

†Glastech. Ber. 40, (11), 411-425 (1967).

Chapter I

Part A: Reactions of Glass Batch Mixtures at Elevated Temperatures

INTRODUCTION

4. As an instructive introduction to the physical-chemical basic reactions in batches for glass compositions of the common Na-Ca type we recommend the interesting report by K. Kautz and G. S. Stromburg¹ which starts from results essentially disclosed in reports by G. Tammann and W. Oelsen (1930), O. Knapp (1934), C. Kröger and J. Blömer (1958), and more recently by F. W. Wilburn, S. A. Metcalfe, and R. S. Warburton.² Most of these investigations were made by determination of reaction rates in the batches, measuring the temperature ranges for the appearance of definite phases which are different from those in the original batches, and are characteristic of partial reactions of the mixes. Kautz and Stromburg paid special attention to the changes in the raw materials, namely, quartz (sand), CaCO₃ (present as limestone, or in dolomite), and alkalies in the form of commercially pure Na₂SO₄. The nature of the new-formed compounds was examined by the classical methods of polarization microscopy techniques.

5. The application of a special gradient furnace³ with an accurately controlled rate of heating and gas atmosphere is paradigmatic. The observed results were supplemented by the microscopic evaluation of thin sections and X-ray diffraction analysis of the crystalline phases. For the control of the water content in the batches and reaction products, infrared absorption spectroscopy proved to be an important help. Beside the α -III modification of Na₂SiO₃, CaO, and Na-Ca-double carbonate, the crystallization of Na₄CaSi₃O₉ was established, whereas Na₂Ca₂Si₃O₉, as de-

¹Glastech. Ber. 42, (8), 309-317 (1969); see also the comprehensive literature references presented by K. Kautz, *ibid.*, (6), 244-250.

²Glass Technol. 6, (4), 107–114 (1965); see ¶ 16.

³Cf. K. Beyersdorfer and J. Hammer, Ber. Deut. Keram. Ges. 42, (2), 44-49 (1965).

scribed by Kröger and Blömer was uncertain. From the glass technological viewpoint, it is significant that definite variations in the presence of the crystalline phases after the batch reactions were observed as a function of variable grain sizes on the reagents, the batch composition, and their moisture contents. There were characteristic differences between the products of the laboratory experiments and samples taken from industrial batches in the furnace process although, in most cases, the samples had been treated equally in the gradient temperature process. The experiments of Kautz and Stromburg, on the other hand, definitely confirm Kröger's conclusions on the importance of the presence of moisture in the furnace atmosphere and of "impregnation" effects; the existence of the latter was confirmed anew.

6. The moisture content of glass sand as an essential constituent of glass batch mixes, plays a very important role eventually as an accelerating agent for the fusion of the batch, and the fining of the glass melt. Its accurate determination and the constant survey for its presence are therefore some of the most important problems in glass manufacturing.⁴ For all these reasons it is indispensable to organize periodically a regular and accurate survey of the moisture in commercial glass sands before they are introduced to batch feeding operation for which the nuclear methods using rapid neutrons in their interreaction with hydrogen cores (protons) are particularly attractive.⁵

A recent publication by V. Caimann⁶ refers to more developed instrumentation for the current automatic survey of moisture determinations and digital-counter statistical evaluation for the plant control of glass sands, using a 100 (or better 300) Ci $^{-241}$ Am-Be source and an impulse-time counter (scintillometer) system. The accuracy for single measurements could thus be reproduced to ± 0.1 wt. % H₂O.

7. In order, as far as it is possible by simple technological measures, to reduce uncontrolled divergencies in the course of batch reactions in the early stages of their evolution in the tank furnace atmosphere, granulation, or pelletizing, of the batch mixtures by compacting treatments were again and again proposed, going back to recommendations of G. Keppeler (1929) and J. Löffler (1951). They now have been emphasized by S. Kirchhof⁷ who constructed a rotating granulation panel which was adjustable to an optimum axial inclination of the pan, normally for an angle of 35° to 55° to have a reproducible efficiency comparable to that of the well-known

⁴Cf. the classical studies of batch reactions in many papers by C. Kröger *et al.*, *Glastech. Ber.* **29**, 275–289 (1956); **30**, 42–52 (1957); but also older literature, e.g., of F. Zsckacke, *et al.*, 1938.

⁵See older literature by E. Amrhein, A. Dietzel, and K. Metzner, Ber. Deut. Keram. Ges. **37**, (7), 311-315 (1960); H. Neuhaus, G. Hombeck, and W. Kühn, Arch. Eisenhüttenw. **82**, 1017-1026 (1962).

⁶Glastech. Ber. 45, (6), 247–256 (1972).

⁷Silikattechnik 13, (9), 325-329 (1962).