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Preface 

For more than a century, it has been acknowledged that proliferation and 
differentiation are fundamental biological processes. Equally important, it has 
been understood that a relationship between cell growth and expression of pheno
typic properties characteristic of specialized cells and tissues is associated with 
key regulatory events in the control of development as well as tissue repair. 
However, until recently, proliferation and differentiation were experimentally 
addressed independently. 

It would be arbitrary and less than accurate to invoke any single explanation for 
the convergence of both concepts and experimental approaches that have provided 
the basis for addressing the integrated relationship between proliferation and 
differentiation. Indeed, the advances that have been made in molecular biology 
have played an important role in this context, permitting the assessment of a broad 
spectrum of biological parameters in single cells and tissue preparations and 
facilitating identification of cell growth and tissue-specific genes and their regu
latory complexes (transcription factors and cognate regulatory elements). But it 
appears that it has been the combined application of molecular, biochemical, and 
morphological approaches, together with the development of in vitro systems that 
support differentiation and tissue organization, that has led to significant incre
ments in our ability to define the proliferation-differentiation relationship. 

To attempt coverage of all aspects of cell growth and differentiation in a single 
volume would be unrealistic and, at best, treatment of the principal elements of the 
developmental process and their control would be descriptive and superficial. 
Rather, in this volume we restrict our considerations to basic mechanisms involved 
in cell growth control, emphasizing the coupling of proliferation and the pro
gressive expression of several specific cellular phenotypes. The manner in which 
cell structure is involved in the selective expression of genes associated with 
proliferation and differentiation and, in turn, how expression of such genes in 
response modulates both intracellular (nuclear matrix and cytoskeleton) and ex
tracellular (extracellular matrix) architecture are emerging concepts that are ad
dressed. 

xiii 



xiv Preface 

Most authors have focused primarily on a single model system or cell pheno
type. But collectively these chapters provide information for beginning to assess 
the extent to which common signaling mechanisms and regulatory events are 
operative in the control of proliferation and differentiation in general. And while 
it would be premature to propose unifying mechanisms to explain the relationship 
of growth to differentiation, optimistically, the next few years should yield valu
able insight into the regulation of this relationship as it is operative during early 
development and in the maintenance of structural and functional integrity of cells 
and tissues. 

Gary S. Stein 
Jane B. Lian 
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1 
Growth Factors: Their Role in the Control 
of Cell Proliferation 

NANCY E. OLASHAW, J A M E S E. OLSON, VLADIMIR DROZDOFF, 
AND W. J . PLEDGER 

Department of Cell Biology 
Vanderbilt University School of Medicine 
Nashville, Tennessee 37203 

I. Growth Factors and Receptors 
A. Fibroblast Proliferation Is Coordinately Regulated by Multiple Growth Factors 
B. Growth-Factor Receptors 

II. Signal Transduction 
III. Growth-Related Gene Expression 

A. Early Growth-Regulated Genes 
B. Late Growth-Regulated Genes 

IV. Concluding Remarks 
References 

Polypeptide growth factors act in a synergistic and sequential manner to promote 
the proliferation of nontransformed cells in culture. Although the mechanisms by 
which these factors impart mitogenic information to target cells are incompletely 
understood, recent studies have defined a series of biochemical and molecular 
events that occur in response to growth-factor treatment and as cells shift from a 
quiescent to a proliferative state. To initiate the mitogenic response, growth factors 
interact with, and consequently activate, specific membrane-bound receptors. Re
ceptor activation, in turn, stimulates the formation of second messengers, which 
transduce the mitogenic signal from the cell membrane to the cell interior. As 
described below, the receptors for growth factors such as platelet-derived growth 
factor (PDGF) and epidermal growth factor (EGF) possess an intrinsic ligand-
activated tyrosine kinase; accumulating evidence suggests that it is via this activity 
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4 Nancy Ε. Olashaw et al. 

that these receptors communicate with second messengers. Second messengers 
participate in a variety of events including, for example, the modification of 
transactivating factors that, via interaction with DNA response elements, induce 
the expression of specific genes. Proteins preferentially synthesized as a result of 
second messenger-mediated gene transcription modulate a host of regulatory 
processes that lead ultimately to the proliferative response. 

Early studies identified the pre-DNA synthetic (Gj) phase of the cell cycle as the 
primary site of growth-factor action. Using cells arrested in early Gx (G 0 , see 
below) by mitogen deprivation, numerous investigators characterized events that 
occurred rapidly in response to growth-factor treatment. While the importance of 
these early G1 responses is not to be minimized, data from other studies indicate 
that growth factor-dependent processes occurring in mid and late Gl are also 
essential for proliferation. Thus, the purpose of this chapter is twofold: first, to 
describe potential mechanisms involved in growth factor-induced receptor activa
tion and second messenger formation and, second, to detail changes in gene 
expression and other activities that occur throughout the G! phase of the cell cycle. 
Of the numerous growth factors previously characterized, PDGF and EGF have 
been extensively studied as models for growth-factor action in fibroblast systems. 
For this reason, and as a comprehensive review of all growth factors is beyond the 
scope of this chapter, we focus primarily on actions of these factors in fibroblastic 
growth control 

I. GROWTH FACTORS AND RECEPTORS 

Polypeptide growth factors form part of a large class of hydrophilic, extra
cellular signaling molecules, which constitute an important part of the endocrine 
system. Like classic peptide hormones, they bind to specific receptor proteins on 
the surface of target cells and regulate a wide variety of cellular functions through 
activation of several intracellular signals (discussed below). It has been useful to 
consider growth factors as a distinct class in that, unlike classic hormones, they are 
also important local mediators for cell regulation. Additionally, individual growth 
factors may be expressed in a wide variety of cells and can exhibit activity in a 
number of different target cells and tissues. 

Molecular cloning techniques have greatly facilitated the identification of a 
growing number of growth factors, along with their complementary receptors. 
Three important themes have become apparent with further characterization of the 
role of growth factors and receptors in cell regulation. First, sequence and struc
tural comparisons have allowed both growth factors and receptors to be recognized 
as members of distinct families (see discussion on receptors). Second, strong 
evidence has been found that, surprisingly, common mechanisms are shared 
between the different families both for receptor activation and for how the extra-
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cellular signal is then subsequently conveyed through activation of intersecting 
intracellular signaling pathways. This will be discussed in part in this section, in 
terms of the common structural and functional aspects of the different receptors, 
and later in terms of the intracellular events following activation. Last, and 
probably most relevant to the functional effect of growth factors, is the under
standing that cell proliferation and physiological responses are not specifically 
regulated by any one growth factor but are instead under the coordinate control of 
several factors acting at numerous stages in the growth and development of cells 
and tissues. 

A. Fibroblast Proliferation Is Coordinately Regulated by 
Multiple Growth Factors 

In vitro fibroblast systems have been extremely useful in the development of 
experimental paradigms for growth-factor action. The isolation of PDGF was 
prompted by the observation that fibroblasts could proliferate in growth medium 
containing serum but not platelet-poor plasma, the liquid fraction of unclotted 
blood. PDGF was identified as the primary factor among several released from 
platelet secretory granules that enabled fibroblasts to proliferate. This system was 
important in providing evidence that clearly demonstrated that both the concerted 
and sequential action of several growth factors was required in order to signal cells 
to divide. 

The cell cycle can be defined as the sequence of events occurring from the 
completion of mitosis in the parent cell until the completion of the subsequent 
mitosis in one or both daughter cells. 1 In most cell systems, the cycle is made up 
of sequential phases consisting of the mitotic or Μ phase, the presynthetic gap or 
G x phase, the DNA-synthetic or S phase and the postsynthetic or G 2 phase. The 
majority of cells in vivo, however, are not cycling, but remain in a nonproliferating 
state during most of their life. Similarly, cells in culture may remain viable for an 
extended period in a growth-arrested or quiescent state referred to as G 0 . Non-
transformed fibroblastic cells, such as BALB/c 3T3 cells, may be growth-arrested 
either by growth-factor deprivation or by growth to a confluent density. The 
differences between noncycling, quiescent cells and those in a proliferating pop
ulation have been an intriguing area of study, and the reader is referred to several 
excellent reviews for more detail. 1 - 3 Quiescent fibroblasts may be stimulated to 
reenter the cell cycle by exposure to several mitogenic factors. These have been 
termed competence factors because exposure to these factors alone is both re
quired and sufficient to render the cells competent or responsive to additional 
factors in plasma that govern the further transition through the cell cycle and 
initiation of DNA synthesis 4 (see below). Studies employing BALB/c 3T3 cells 
identified PDGF as the primary competence factor present in serum, 5 although 
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several other factors including fibroblast growth factor (FGF), calcium phosphate 
crystals, and bombesin, have been subsequently identified as additional com
petence factors in either BALB/c 3T3 cells or other fibroblastic systems. 6 - 8 

PDGF is an approximately 30-kDa cationic glycoprotein composed of A and Β 
polypeptide chains, which are encoded by two distinct homologous genes. 9 PDGF 
in its active form exists as either a disulfide-bonded homodimer or heterodimer of 
its two chains. PDGF, like most other peptide growth factors, is biologically active 
at nano- and picomolar concentrations, and interacts with its target cells by 
binding to a cell-surface receptor that exhibits both high affinity and selectivity for 
its ligand. The PDGF receptor shares several important common characteristics 
with other growth-factor receptors, which will be discussed in more detail below. 
Ligand binding results in rapid activation of receptor tyrosine kinase activity and, 
subsequently, changes in a variety of cell processes, including redistribution of 
vinculin and actin, 1 0 formation of inositol phosphates and consequent calcium 
mobilization (see below), cellular alkalinization,1 1 and the induction of a number 
of early genes, including the cellular protooncogenes c-fos and c-mvc. 1 2 1 3 

It is still unclear which events are actually required for the transition from a 
quiescent to a proliferative state. The use of mutant receptor constructs has shown 
that receptor kinase activity is crucial for the mitogenic function of the PDGF 
receptor 1 4 and, as will be discussed, for other growth-factor receptors as 
well. 1 5 The ability of antisense c-myc and c-fos oligonucleotides to inhibit DNA 
synthesis suggests that expression of myc and fos proteins is also required for 
mitogensis. 1 6 , 1 7 However, it is difficult to determine from these studies whether 
these proteins are required exclusively in the initial stage of the mitogenic re
sponse, or whether they might also function in regulating progression throughout 
the cell cycle. In BALB/c 3T3 cells, PDGF stimulation is not itself sufficient to 
promote a complete mitogenic response, which requires the subsequent and con
tinuous exposure of PDGF-stimulated cells to progression factors found in plas
ma. 1 8 Importantly, cells exposed first to plasma and then to PDGF do not progress 
though the cell cycle, implying that not only may cell proliferation be coordinately 
regulated by multiple growth factors, but also that the regulatory events occur in 
a definite sequential order. 

Progression factors include insulin-like growth factor 1 (IGF-1), a 7-kDa mem
ber of the insulin peptide family first identified as a mediator of growth hormone 
action, 1 9 and possibly EGF, a 6-kDa polypeptide isolated as an inducer of preco
cious eyelid opening and tooth eruption in newborn mice. 2 0 The specific function 
of these factors clearly depends on both the target-cell type and the context in 
which a particular cell is exposed to these factors. The effects of specific growth 
factors in other cell systems are not always so easily distinguished as in the 
BALB/c 3T3 system. For example, in C3H10T 1/2 fibroblasts, EGF appears able to 
substitute for both competence and progression factors, and to act alone as a 
mitogen, albeit at concentrations significantly above those normally found in 
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serum. However, exposure to PDGF increases the sensitivity of these cells to EGF 
by more than 10-fold.21 Thus, the synergistic effect of multiple growth factors may 
indeed be required to achieve an optimal mitogenic response at growth-factor 
concentrations normally encountered by cells. 

The sequential regulation of mitogenic events by multiple factors observed in 
the 3T3 system is not restricted to fibroblastic cells. The proliferation of Τ lym
phocytes is similarly regulated in discrete steps. In this system, either plant lectins 
(Con A or phytohemagglutinin), phorbol esters, or antigens play the role of 
competence factors in mitogenically activating quiescent cells. Exposure to these 
factors results in similar activation of intracellular responses and the induction of 
several of the same early genes as in BALB/c 3T3 ce l l s . 2 2 2 3 Treatment with these 
factors alone is not sufficient to induce DNA synthesis, but enables cells to 
respond to interleukin 2 (IL-2) through up-regulation of the IL-2 receptor 2 4; 
analogously, PDGF has been shown to up-regulate the IGF-1 receptor in 3T3 
cells. 2 5 

The coordinate regulation of cellular events by multiple growth factors is 
important in a broader scope, apart from proliferation alone. In fact, in almost all 
cases, the differentiation and clonal expansion of cell populations from small 
numbers of stem cells depends on the action of multiple growth factors acting at 
discrete points during the expansion of the resulting cell lineages. In an elegant in 
vitro model, Zezulak and Green 2 6 demonstrated that growth hormone regulate, 
two steps in the differentiation of an adipogenic fibroblast line. Growth hormone 
both promoted differentiation of the cells to preadipocytes, which then became 
responsive to IGF-I, and served to regulate the clonal expansion of these cells by 
inducing IGF-I synthesis in the differentiated cells. Optimal formation of differ
entiated hematopoietic colonies from in vitro bone marrow stem-cell cultures has 
been shown to require the synergistic action of IL-1 and at least one other 
hematopoietic growth factor. 2 7 In vivo, IL-1 was proposed to play a dual role 
during hematopoiesis by both stimulating the proliferation of quiescent stem cells 
and indirectly regulating their differentiation by subsequently up-regulating re
ceptors for various hematopoietic factors in the stimulated cells. 2 8 Evidence that 
IL-1 can also induce production of hematopoietic growth factors themselves in a 
variety of stromal cells 2 9 illustrates how the control of differentiation may require 
a complex cascade of growth-factor interactions among several different cell 
types. 

Several important roles for growth factors beyond the scope of this review 
should be mentioned. The chemotactic activities of several growth factors includ
ing PDGF, 3 0 fibroblast growth factor (FGF), 3 1 and transforming growth factor β 
(TGFP) 3 2 are central to angiogenesis, wound healing, and tissue development. 
Several growth factors have been demonstrated to modulate the synthesis of 
extracellular matrix proteins, and their cellular receptors. 3 3 3 4 In light of growing 
evidence that the extracellular environment at least in part directs cellular respon-
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siveness to growth factors, this provides an indirect pathway for growth control. 
Probably the widest role assumed by the TGFp family of peptides, however, is 
their function as potent growth inhibitors, especially in epithelial and immune 
cells. The reader is referred to several recent comprehensive reviews for informa
tion on this important polypeptide family. 3 5 3 6 

B. Growth-Factor Receptors 

Almost all of the receptors for polypeptide growth factors characterized have 
been identified as tyrosine kinases, and share a consistent set of structural and 
functional features. These receptors each contain three distinct structural regions: 
an extracellular ligand-binding domain, a hydrophobic domain that makes one 
pass through the cell membrane, and a hydrophilic intracellular domain containing 
a highly conserved kinase domain, in which resides the receptor tyrosine kinase 
activity. A more detailed comparison of structural characteristics has allowed 
several of the receptors to be placed in distinct families. The insulin-receptor 
family is characterized by a heterotetrameric receptor formed from two α and two 
β subunits, which are processed from a precursor molecule encoded by a single 
gene . 3 7 - 3 9 Two nearly identical insulin receptors and the IGF-I receptor share 
significant homology in the extracellular binding domain, which contains a single 
cysteine-rich region, and exhibits numerous conserved cysteine residues, glyco-
sylation, and precursor cleavage sites. Members of the PDGF-receptor family 
possess extracellular ligand-binding regions characterized by multiple immuno-
globulin-like domains, a lack of cysteine-rich regions, and a number of conserved 
cysteine residues and glycosylation sites. 4 0 A unique feature of this receptor family 
is that the conserved tyrosine kinase domain is split into two regions around a 
short, poorly conserved sequence of approximately 100 amino acids. 4 1 Members 
of this family include the receptors for PDGF (termed α and β), colony-stimulating 
factor 1 (CSF-1), 4 2 and the protein product of the c-kit gene, 4 3 recently identified 
as the receptor for stem-cell factor.4 4 The FGF-receptor family bears some resem
blance to the PDGF-receptor family but has a shorter ligand-binding domain. 1 5 A 
third receptor family includes the EGF receptor and the HER-2/neu receptor 
identified in rat ce l l s . 4 5 4 6 In contrast to the insulin-receptor family, the extracellular 
portion of these receptors contains two cysteine-rich regions, which flank the 
putative ligand-binding site. 4 7 Several other receptors, including the nerve growth 
factor (NGF) receptor 4 8 and the IGF-II/mannose 6-phosphate receptor 4 9 appear 
unrelated to the above families and to each other. 

The usefulness of these structural comparisons has been validated by evidence 
that similar receptors may be functionally related as well, in terms of overlapping 
specificities for binding several related growth-factor ligands. For example, high 
levels of insulin can activate the IGF-I receptor, 5 0 and there is good evidence that 


