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PREFACE 

This is the first volume in this treatise to deal exclusively with the millimeter 
and submillimeter wave properties of materials and the methods of measuring 
and interpreting these properties. A second volume on this topic is now in 
preparation, and plans for a third are in progress. 

The table of contents speaks eloquently for the theme of this subseries on 
electromagnetic wave interaction in matter. G. W. Chantry's dielectric materials 
studies are the foundation of a branch of modern classical physics that he inspires 
with his semiannual Gordon conferences. This general treatment of dielectrics is 
naturally followed by the work of W. F. X. Frank and U. Leute on the far-
infrared spectroscopy of high polymers and then by several semiconductor 
chapters. S. Perkowitz gives a general treatment of the spectroscopy of semi
conductors; B. Jensen provides a most thorough treatment of free carrier be
havior in semiconductors (which is most important in the far infrared); A. Hadni 
then reviews pyroelectric detectors. 

We were most fortunate to obtain a contribution on cyclotron resonance by 
T. Ohyama and E. Otsuka, who have done a great deal of work in that area. 
F. Gervais contributed a chapter on his very innovative spectroscopic work. The 
chapter by Phillipe Goy appeared to me to be so timely that I designated it as 
the opening invited paper at the Miami Beach conference in December 1981. 
Finally, J. C. Maan was invited to prepare the chapter on semiconductor layered 
structures because he has the ability to make this specific example of a larger, 
emerging topic sound simple. 

A second volume devoted to electromagnetic waves in matter is being readied 
for press. Volumes 9, 10, and 11 begin a subseries on millimeter wave compo
nents and techniques; all three of these volumes are in production and scheduled 
for publication very soon. 

xi 
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I. Introduction 
The study of liquids and polymers by means of far-infrared and submilli

meter spectroscopy forms part of the much larger topic of dielectric physics. 
A dielectric medium is one in which there are no free charges so the dc 
conductivity is zero, but the medium can sustain displacement currents and 
these may have lossy components. Thus dielectrics are all materials that are 
not metallic, semiconducting, or ionized. If an external field E is applied to a 
dielectric, the field inside the dielectric is given by 

D = (e/e0)E, (1) 
where ε is the permittivity of the dielectric and ε0 the absolute permittivity of 
free space (8.85418 X 10"12 F/m). In nearly all dielectric work, however, it is 
customary to write ε = ε/ε0 to avoid the constant apperance of the ε0 factor; 
then ε so defined is the relative permittivity of the medium, i.e., the permit-

1 
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2 G. W. CHANTRY 

tivity relative to that of the vacuum. The relative permittivity is complex 
because it will have a lossy component, and one therefore usually writes 

g = β ' - / β " , (2) 

where the caret is used to signify an explicitly complex quantity. The use of 
complex relative permittivities goes very well with the use of the complex 
representation to describe alternating fields. The dielectric medium will thus 
sustain two currents in response to an ac field of circular frequency ω, a 
quadrature or displacement current determined by ε' and an in-phase or 
lossy current determined by ε ". The complex relative dielectric conductivity 
a is therefore also complex with components 

σ=]ωε' + ωε'\ (3) 
and the current, in the complex plane, is not perpendicular to the voltage but 
departs from this position by an angle δ whose tangent is given by 

tan δ = ε"/ε'. (4) 
In most practical cases, δ will always be small and it is permissible to write 

δ = ε"/ε\ (5) 
which is the justification for the common practice of quoting the dimen-
sionless ratio ε"/ε' in microradians. 

The presence of a slab of dielectric in a volume that would otherwise be 
vacuum leads to a polarization P whose magnitude is given by the field in the 
dielectric minus the applied field; in other words, 

Ρ=(ε-1)Ε. (6) 
This equation is not very useful as it stands because the frequencies at which 
P will fall to zero, and at which consequentially ε will equal unity, lie in the 
x-ray region, whereas all dielectric work is restricted to the region of 
millimeter and longer wavelengths. It is more usual, therefore, to write 

P = (g -OJ? , (7) 
where ε^ is a high-frequency limiting permittivity. This is unfortunately a 
rather amorphous and poorly defined quantity because it is not possible, in 
fact, to find any measurable frequency at which dispersion does not exist. It 
is rather to be considered as a parameter: the permittivity in frequency 
regions so high that the particular dispersion mechanism under considera
tion will no longer have any effect. It is also helpful to normalize the 
polarization by writing 
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where es is the static relative permittivity. Then Pn will go from one at ω = 0 
to zero at ω = oo. 

At extra-high frequencies and beyond (v > 30 GHz) it is not possible, 
with the currently available techniques, to measure field parameters such as 
the vectorial electric field strength and its phase. Rather, one measures 
energy flow; and in this situation one is led naturally to introduce a 
refractive index n which is the ratio of phase velocity in free space (i.e., c) to 
that in the medium. The space dependence of the field is then given by 

E = E0 exp(— iconx/c), (9) 

but the measurable quantity, the intensity, is given by 

I = ie0cEl (10) 
The propagating medium will usually be lossy, so one has a progressive 
attenuation of the field given by Lambert's law 

E = EQ exp(— $ax), (11) 
which also can be written as 

7 = /0exp(-ox). (12) 

Here a is the power absorption coefficient (usually measured in nepers per 
centimeter). Equations (9) and (11) can be combined to give 

E = E0 exp(— ίωηχ/c), (13) 

where the complex refractive index n is defined by 
n = n — i(a/4nv), (14) 

in which the wave number 
v = v/c = co/2nc (15) 

is introduced. The two formalisms, in terms of either ε or /?, are readily 
connected by means of Maxwell's celebrated relationship 

ε = η2. (16) 
Identifying real and imaginary components in Eq. (16) gives the simple 
relations 

ε' = n2 - (α/4πν)2 (17a) 

and 
e" = 2η(α/4πν), (17b) 

which have the not-so-simple converses 
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n = (ε72)1/2{[1 + (ε"/ε')2]1/2 + 1}1/2 (18a) 
and 

α/Απν = (β'/2)1/2{[1 + (ε'ΊεΎΥ'2 ~ 01/2. (18b) 
It is a fairly widespread practice in dielectric work to introduce the absorp
tion index k and to write 

n = n-ik, (19) 

from which it immediately follows that 

k = a/4nv. (20) 
This is a rather unsatisfactory practice because confusion with the wave 
vector, also designated by k, arises; nevertheless it is firmly established, 
especially in solid-state work. Another convention, fortunately now tending 
to become obsolete, is the use of the extinction index κ defined by 

fi = n{\ -ίκ). (21) 

It is also worth mentioning that there is no universally agreed convention for 
the sign of the imaginary components in these complex quantities. One can 
find £, for example, defined with either sign. There is no physical difference; 
the two signs merely represent the sense of the conventional rotation of the 
vectors in the Argand diagram: negative going with clockwise and positive 
with anticlockwise. However, as soon as one has defined any one of these 
quantities, all the rest become fixed. Thus, because it seems more natural to 
consider the vector E(t) rotating anticlockwise into the first quadrant, one 
writes E(0 = E0 expO'atf); then the sign for the imaginary component of ε 
will be negative because the charge will lag behind the driving field. 

Dielectric spectroscopy is the determination of the variation of ε or n with 
frequency. In principle there is no upper frequency limit to dielectric 
spectroscopy; but to keep the concept useful, it is usual to introduce a 
division that separates phenomena involving long-range cooperative mo
tion from phenomena involving highly localized, essentially independent 
motion. The former is the class to be treated by dielectric concepts, whereas 
the latter is treated by the methods of, for example, molecular spectroscopy. 
This division is helpful, but it is arbitrary, and physical phenomena may well 
transgress its boundaries. Thus the positions and intensities of lines in 
molecular spectra can be calculated by purely local models; but calculating 
their shapes demands a more global treatment involving long-range interac
tions. The division does make sense spectroscopically, because at frequen
cies below 6 THz (200 cm-1), one is often talking of dielectric phenomena 
whereas at higher frequencies one seldom is. So, for the purposes of this 
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review, the upper limit to dielectric spectroscopy will be taken to be 
200 cm"1. 

One can approach dielectric physics from two directions: one can con
sider the macroscopic theory, which essentially stems from the application 
of universally valid physical laws such as Maxwell's equations; or one can 
consider the microscopic theory, which shows how the motion of the 
constituent entities leads to the observed dielectric properties. The macro
scopic theory gives results that are exact or nearly so but of somewhat 
limited information content. The microscopic theory is much more inter
esting because it can, in principle, give a wealth of information; however, the 
computational difficulties involved in its full elaboration are formidable and 
can be side-stepped only by means of rather drastic approximations. There
fore the microscopic theory does not give quite as much insight as one might 
hope; nevertheless considerable progress has been made. 

II. The Macroscopic Theory 
The complex permittivity ε is the natural quantity for those who have 

coherent sources and detectors and can measure field parameters. Typically 
this means those who work below 30 GHz, but the rapid development of 
techniques for measuring the higher-frequency regions is tending to extend 
this limit upward. The complex refractive index n is the natural quantity for 
those limited to optical techniques with incoherent black body sources and 
thermal detectors. Rather interestingly, the closing up of the millimeter -
submillimeter gap has enabled direct tests of Maxwell's relation Eq. (16) to 
be carried out by comparing ε with n2 at a fixed frequency; but the results, as 
expected, entirely support the theory. Therefore one can use either forma
lism; but because that involving ε is simpler, it is usually preferred. We now 
consider those properties of ε that are independent of particular microscopic 
models, calling this branch of the topic the macroscopic theory. 

A. THE RESPONSE FUNCTION 

The behavior of dielectric media can be modeled quite well by simple RC 
circuits. There are many possible combinations, but they all contain a 
common element, a resistor R and a capacitor C in series. It is therefore 
important to analyze the response of this simple circuit combination to 
various time dependences of the applied field. The situation is illustrated in 
Fig. 1. A driving voltage V(t) is applied across the resistor and capacitor in 
series, and we are interested in the resulting voltage across the capacitor 
Vc(t). The basic differential equation is 

V(t)-[dVc(t)/dt]RC=Vc(t\ (22) 
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V(t) 

Vfclt) 

FIG. 1 A simple RC circuit used to model a lossy dielectric. 

and we seek solutions valid in the long time limit (i.e., t » RC) when 
starting transients will have died out. Taking Laplace transforms through
out gives 

V(s) = Vc(s) + RCsVc(s) (23) 
from which 

Vc(s) = V(s)/(l + RCs). (24) 

Inverting the Laplace transform and invoking the convolution theorem 
gives 

Vc(t) = f η θ τ " 1 exp[-(f - η/τ] dt\ 
Jo 

which is a special case of the more general relation 

Vc(t) = f V{t')R{t - t') dt 
Jo 

The function R(t) whose time derivative appears in this equation is the 
response function. For the simple RC circuit it takes the elementary form 

(25) 

(26) 

R(t) = exp(-t/zl (27) 

where τ = RC. It is called the response function because, if V(t) changes 
abruptly, R(t) measures the subsequent response. Thus suppose that V(t) is 
constant for a time t0 ( » τ) but then drops to zero. What will be the voltage 
across the capacitor at a subsequent time t (> t0)l Substituting in Eq. (26) 
and noting that exp(i0/r) is much greater than unity gives the answer 

Vc(t)=V0exp(-(t-t0)/r). (28) 
It t0 is allowed to decrease toward zero, this becomes 


