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Foreword 

T h e subject of this treatise, the restricted problem of three bodies, 
occupies a central place in analytical dynamics, celestial mechanics, and 
space dynamics. En t ry into celestial mechanics and space dynamics can 
be gained by the s tudy of the problem of two bodies. T o penetra te the 
fundamental problems, the n u m b e r of part icipating bodies mus t be 
increased from two to three . T h i s step is critical. No t only is the two-
body problem solved—and the meaning of ' ' solution' ' may be different 
for as t ronomers , engineers, and mathemat ic ians—but a general unde r -
s tanding exists regarding this dynamical system. T h e problem of three 
bodies on the other hand is neither solved nor is the behavior of the 
dynamical system completely unders tood. 

T h e solar system provides few applications of the general problem 
of three bodies. T h i s results in an unusual si tuation where a more 
general problem having considerable complexity is less useful than a 
comparatively simple formulation. Also it is impor tan t to realize that 
more is known about the restricted problem than about the general 
p roblem. 

T h i s volume is strongly influenced by the creators of mode rn dynamics, 
H . Poincaré and G. D . Birkhoff. Poincaré, in his Méthodes Nouvelles de 
la Mécanique Céleste and also in his famous Mémoire Couronné, " S u r 
le problème des trois corps et les équat ions de la dynamique , ' ' uses the 
problem of three bodies as his favorite example when present ing his 
work in dynamics. T h e same is t rue for G. D . BirkhofFs Dynamical 
Systems, and for C. L. Siegel's Vorlesungen iiber Himmelsmechanik. 
A. Win tne r ' s Analytical Foundations of Celestial Mechanics was originally 
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planned to treat the p rob lem of three bodies, especially the restricted 
problem, bu t it actually presented more of the mathematical foundations 
than of the celestial mechanics . I t is interest ing to note that H . Happe l ' s 
book is entitled Das Dreikorperproblem, and the subti t le reads "Vor -
lesungen uber H immelsmechan ik , , , while the second volume of K. 
StumpfFs Himmelsmechanik displays the subtit le " D a s Dreikorper-
p rob lem." How intimately the problem of three bodies is connected 
with celestial mechanics and with dynamics in general when titles, 
subtitles, contents, applications, and examples become interchangeable! 

T h e applications of the restricted problem to celestial mechanics 
form the basis of some lunar and planetary theories. T h e mo d e rn 
applications to space mechanics are probably even more cogent if not 
more numerous than the classical applications. T h e implications of the 
restricted problem for cosmogony and stellar dynamics are also numerous . 
Finally, it can be shown that a great variety of dynamical systems can 
be presented by equations of mot ion which are formally identical with 
the equations of the restricted problem. One measure of the impor tance 
of a scientific endeavor is its effect on peripheral fields. While authors 
from Euler to Siegel recognized astronomy and dynamics as the only 
peripheral fields, today we know that space mechanics and stellar 
dynamics are fields which benefit equally. 

T h e interest in space sciences rejuvenated celestial mechanics, and 
the well-established tools of the latter were immediately applied. Some 
of the problems were not really new and the proven methods of classical 
celestial mechanics—in the hands of the mas ters—produced immedia te 
results. I think of several solutions of the drag-free earth-satelli te 
problem, for instance, which today may be considered settled. I t is a 
per turbat ion of the two-body problem, and the success in solving it is 
partly explained by the populari ty of satellite problems in classical 
celestial mechanics. Other problems in space dynamics, closely associated 
with the restricted problem, are of considerable impor tance and interest 
today. Many of these problems are new, and in what follows one of 
them will be contrasted to a classical problem. Consider the famous 
classical three-body problem, the sun-ear th-moon combinat ion and the 
determinat ion of the motion of the moon. We might think about two 
large bodies, the sun and the earth, which move around each other in 
approximate circles, and in their field a thi rd body, the moon, which 
moves on an approximate ellipse. Th i s configuration is stationary in a 
sense, since no collisions take place. Th i s is also t rue for the motion of 
a Trojan asteroid under the cont inued influence of the sun and Jupi ter . 
On the other hand, one of the central problems in space science is to 
create artificial bodies which may be required to move on orbits con-
necting the close neighborhood of two natural celestial bodies. Some-
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t imes collision orbits are desired. Problems with close approaches and 
collisions were hardly ever treated in classical celestial mechanics and 
these problems became impor tant in the new science of space dynamics. 

T h e use of three essentially different approaches to dynamics, the 
qualitative, the quanti tat ive, and the formalistic, is dictated by the 
special advantages of each and is described in the In t roduct ion , where 
a n u m b e r of references to the history of the restricted problem are also 
given. 

T h e first chapter introduces the problem of three bodies and formulates 
the equations of mot ion in inertial and in rotating coordinate systems. 
T h e relation of the restricted problem to the general p rob lem of three 
bodies is described and illustrated with examples. Several applications 
to cosmogony and stellar dynamics are also outl ined. Chapter 2 discusses 
reduct ions of the problem and offers a comprehensive t rea tment of 
streamline analogies. 

Chapter 3 is concerned with regularization and shows how the equa-
tions of mot ion can be wri t ten in a system free of singularities. T h i s 
subject is the feature which distinguishes a work on classical celestial 
mechanics from one on modern applications. T h i s chapter is probably 
the most impor tan t one for the reader who is working in the field of 
space mechanics . Chapter 4 is devoted to the principal qualitative 
aspect of the restricted p rob lem—the curves of zero velocity, several 
uses of which are discussed. T h e regions of permissible motion and the 
location and propert ies of the libration points are established. Mot ion 
and nonlinear stability in the neighborhood of these equi l ibr ium points 
are treated in detail in Chapter 5. 

Chapter 6 contains a short in t roductory t rea tment of Hamil tonian 
dynamics in the extended phase space. Chapter 7 applies the principles 
and methods of the previous chapter to the restricted problem and to 
its regularization. T h e generat ing functions that are used are derived 
with emphasis on justification and motivation. A natural way to in t roduce 
the concept of per turbat ion theory is presented. 

Chapter 8 discusses the problem of two bodies in a rotat ing coordinate 
system and treats periodic orbits in the restricted problem, following 
H . Poincaré and G. D . Birkhoff. Chapter 9 presents the quanti tat ive 
aspects of the restricted problem. T h e results of G. Darwin, E. St rômgren, 
and F . R. Moul ton are discussed and several of the recently established 
lunar and interplanetary orbits in the Soviet and American l i terature 
are compared. Chapter 10 is devoted to modifications of the restricted 
problem, such as the elliptic problem, the three-dimensional problem, 
and HilPs problem. 

V. SZEBEHELY 
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Preface 

T h i s volume has been developed from my lectures and seminars on 
various aspects of celestial mechanics, dynamics, the restricted problem 
of three bodies, periodic orbits, regularization, and space dynamics. 
While directed primari ly to the graduate s tudent , it is in tended to be 
sufficiently comprehensive to serve as a reference and advanced text on 
many applications of celestial mechanics . One purpose is to familiarize 
those readers who are concerned with the space applications of celestial 
mechanics with the next step after the problem of two bodies. T h e 
s tudent of celestial mechanics will find both classical studies and recent 
developments in the restricted problem of three bodies with a survey 
of the per t inent l i terature. 

T h i s is the first book devoted to the theory of orbits in the restricted 
problem. M y aim is to build a bridge between books wri t ten for the 
astronomer, mathematic ian, space engineer, and s tudent of dynamics. 
Instead of developing the subject separately for each of these professions, 
it is hoped that the single subject of this volume will be useful for all 
its readers. As t ronomers will find more references to analytical dynamics 
than is usual in textbooks on celestial mechanics ; workers in the field 
of dynamics will read about astronomical applicat ions; the needs of 
mathemat ic ians and engineers will be met by the problem of establishing 
the totality of possible mot ions of our dynamical system. 

Teach ing experience shows that s tudents are interested in historical 
reviews and remarks in the field of celestial mechanics, which is so rich 
in t radi t ions and in cultural background material. Such comments are 
collected at the end of each chapter with the discussions of the per t inent 
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references. Mos t chapters contain a generous amount of basic ma the -
matical information. I make it a point to extend the foundations more 
than necessary for the building, in order to establish a more solid 
edifice and offer to the reader the oppor tuni ty of proceeding with his 
own applications. 

M y guiding principle has been to inform the reader of the motivation 
and purpose of the developments , hoping to inspire his enthusiastic 
interest in the subject. I try to avoid unnecessary epsilontics in the 
mathematical parts and highly specialized and undefined te rms in the 
applications. Mathemat ics is a tool in dynamics, not a goal. T h e 
Wintner ian tu rna round from the problem of three bodies to mathemat ics 
is avoided, and an a t tempt is made to emphasize the dynamics. I subject 
the brilliance of Poincaré and of G. D . Birkhoflf to scrut iny and explana-
tion rather than to competi t ion. M y aims are to summar ize G. Darwin ' s 
eloquence, to expand Siegel's terseness, to generalize Charlier, and to 
particularize Moul ton and E. S t romgren. Special at tention is paid to 
the Soviet l i terature of the past two or three decades ; it contains many 
significant contr ibut ions to celestial mechanics and space dynamics . 
Recent numerical results on ear th-moon trajectories are compared with 
previous results, and classical orbit computa t ions are brought u p to date . 

April, 1967 V. SZEBEHELY 
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Introduction 

T h e purpose of dynamics is to characterize the totality of possible 
motions of a given dynamical system. Such a characterization does not 
necessarily mean an explicit, closed-form, general solution of the 
problem since this is seldom possible, and when it is possible, it is most 
of the t ime neither meaningful nor helpful in unders tanding the behavior 
of the system. An example is the problem of two bodies, which is 
considered solved since the propert ies of the totality of possible motions 
are known. Al though the coordinates describing the mot ion of the 
bodies participating in the problem cannot be represented as explicit 
functions of the t ime in closed form, the problem is nevertheless 
considered solved. 

Qualitative, quanti tat ive, and formalistic dynamics are the three 
major approaches to the unders tanding of the behavior of dynamical 
systems. T h e qualitative approach is probably the most elegant and 
sometimes the most powerful. T h e formalistic method is the basis of 
classical celestial mechanics . T h e quanti tat ive approach is often the most 
popular among as t ronomers and engineers who may want to find one 
particular solution of a problem rather than to s tudy the behavior of 
the dynamical system. Examples are the ephemerides of the planets, 
represent ing particular solutions of the as t ronomers ' ra-body problem 
and Apollo trajectories, being part icular solutions of the engineers ' 
problem. 

Qualitative methods in dynamics are well suited to the t rea tment of 
such quest ions as stability, existence problems, integrability, and 
reducibility. T h e names of H . Poincaré and G. D . Birkhoff are associated 
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with qualitative dynamics; Hill 's name is seldom thought of in this 
connection, in spite of his use of the zero velocity curves to establish 
limiting regions. His method is probably one of the most powerful and 
successful qualitative ideas in the restricted problem. 

I t is sometimes said of qualitative dynamics that its results are not 
helpful to "prac t ica l" men (to the " u s e r s " as opposed to the "crea tors") . 
Th i s misconception is partly because some of the qualitative results in 
dynamics have not yet been interpreted and some of these results are 
of theoretical interest only. 

Knowledge of certain qualitative propert ies of a dynamical system 
may be much more valuable than numerical solutions. An example is 
the existence question of periodic orbits. Solutions of nonintegrable 
dynamical systems are never known along the whole t ime axis unless 
they are of periodic or asymptotic nature . Th i s is seen when we consider 
an a t tempt to establish a part icular solution of the differential equat ions 
of a dynamical system with an electronic computer . No t a t tempt ing for 
the momen t to evaluate such an under taking, let us visualize the compute r 
output as the t ime increases wi thout limit and as various error sources 
contr ibute to the pr intouts . Unless some systematic behavior of the 
result is discovered, sooner or later the computer ou tpu t becomes 
meaningless and no valuable information about the dynamical system 
will be obtained along the whole t ime axis. T h e orbit or the behavior 
of the system will remain unknown in spite of the numerical work. 

Another example is furnished by one of the fundamental quest ions 
of dynamics: the description of the totality of possible mot ions of a 
dynamical system. For nonintegrable systems this is a major problem 
as no closed-form general solution is available. T h e practical impor tance 
of knowing all possible orbits between the earth and the moon does not 
need emphasis , since selection of an orbit " b e s t " suited for a certain 
mission requires information regarding the possible choices. A formalistic 
approach to this problem is not fruitful, for even if it should furnish 
convergent series which give the general solution, the nature , the 
properties, and the totality of the solution could not in general be 
determined from such series. T h e quanti tat ive approach to this problem 
is to select a region of the initial conditions which is of practical interest 
and to compute as many orbits as possible in this region. Th i s set of 
orbits is called the "totali ty of orbits of interest ." T h e deficiency in this 
approach is the possible omission of useful orbits or of whole families 
of useful orbits. W h e n the possible range of initial conditions is con-
siderable, the establ ishment of families of orbits according to six varying 
initial conditions is almost a hopeless task numerically. T h e description 
of the totality of possible motions should come from a combined approach 
(numerical and formalistic) with qualitative dynamics leading and 
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organizing the steps. One of the most practical and most impor tan t 
problems in applied celestial mechanics, the selection of a suitable orbit , 
is therefore equivalent to one of the most advanced problems of 
qualitative dynamics . 

T u r n i n g now to the formalistic approach we enter the s t ronghold of 
classical celestial mechanics. T h e formalistic methods are also called 
general per turba t ion methods , and the principal mathematical tools are 
series expansions. In order to have a general per turbat ion method the 
initial condit ions are kept arbi trary in the solution. Justification of the 
method from a mathematical point of view requires scrut iny of the 
convergence of the series with respect to the variables. I t is ironic tha t 
one of the qualitative results of dynamics, a t t r ibuted to Poincaré, states 
that the series used in celestial mechanics are in general divergent. 
Nevertheless, finite parts of such series are often extremely useful in 
celestial mechanics since they do give results in agreement with obser-
vations. Quest ions connected with the behavior of the system as the 
t ime increases to infinity cannot, of course, be answered by such series 
solutions. T h e classical series of celestial mechanics become of little use 
when bodies approach each other closely and when they collide. Since 
such orbits are of central impor tance in modern dynamics, new formal-
istic approaches have had to be devised. 

T h e hopefully expected ul t imate answer of represent ing the totality 
of solutions as " s i m p l e " functions of the initial condit ions and of t ime 
may come from formalistic dynamics. Such a result can probably be 
expected from a combined effort of the three major approaches with the 
formalistic approach taking the lead. Newton ' s approach to dynamics 
was to find jus t such explicit expressions represent ing the mot ion of 
dynamical systems. Advances in celestial mechanics and in other 
branches of science with mathematical orientation show more or less 
the same steps. First comes the a t tempt to describe the field of interest 
with simple analytic expressions. T h i s leads of necessity to successive 
approximations and series solutions if the first a t tempt for simple 
closed-form solutions fails. T h o s e fields, such as the "so lvable" 
dynamical systems, in which the first s tep furnishes results, are con-
sidered solved and are soon abandoned. T h e quanti tat ive approach to 
dynamics is not unlike the first step because it gives a part icular solution 
in a simple form: a set of number s represent ing the coordinates as 
functions of t ime. Those fields in which sufficient interest exists for 
establishing general solutions, bu t which at the same t ime are not 
" in tegrab le" and therefore are not amenable to simple general solutions, 
are graduated to the second phase of mathematical physics: to series 
solutions. Some problems are solved at this stage if the series solutions 
furnish the propert ies of the general solution. T h i s is seldom the case 
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for systems of appreciable complexity where nei ther the convergence of 
the successive approximat ions nor the physical meaning of the series 
solution is completely clear. T h o s e physical problems that fall in this 
last category are elevated to the domain of qualitative methods . 

T h e quanti tat ive approach to dynamics corresponds to exper imenta-
tion. I ts significance cannot be overestimated, especially in nonintegrable 
dynamical systems since, after all, this is the only method which 
furnishes an orbit when the convergence of the formalistic approach is 
in doubt . T h e power of properly designed exper iments and the 
impor tance of proper interpretat ion of results are well known in physics. 
Dynamics ' experimental tool, the computer , only recently became 
efficient enough to handle complex problems; therefore, exper imentat ion 
in dynamics has not advanced as far as it has for example in physics. 
Famous classical computat ional results in the restricted prob lem were 
obtained without the use of digital computers by E. S t romgren and 
G. Darwin . Recent high-speed computat ional results, together with the 
older results, reveal several significant propert ies of the system that can 
be verified theoretically. Such a combined theoret ical-experimental 
approach has shown great potentialities in dynamics. 

T h e history of the restricted problem begins with Euler and Lagrange 
in 1772, continues with Jacobi (1836) and Hill (1878), and is followed 
by Poincaré (1899), Levi-Civita (1905), and Birkhoff (1915). T h e span 
of almost 200 years, from Euler unti l now, includes other great names 
and impor tant contr ibut ions; this short historical review nevertheless will 
concentrate on the accomplishments of Euler, Jacobi, and Poincaré. 

T h e first contr ibut ion was made by Euler in 1772 in connection with 
his lunar theories. His work was the first impor tan t contr ibut ion to the 
restricted problem and its influence on further developments of lunar 
theories and even on some very recent work in space dynamics is clearly 
evident. His principal accomplishment was the in t roduct ion of a 
synodic (rotating) coordinate system, the use of which led to an integral 
of the equations of motion, known today as the Jacobian integral. 
Euler himself did not discover the Jacobian integral which was first 
given by Jacobi (1836) who, as Win tne r remarks, " red iscovered" the 
synodic system. T h e actual situation is somewhat complex since Jacobi 
publ ished his integral in a sidereal (fixed) system in which its significance 
is definitely less than in the synodic system. T h e tongue-in-cheek 
remark of Win tner which is ment ioned before, is not completely accurate, 
nor is his immediately following recommendat ion , citing Newcomb ' s 
report on lunar theory as a useful reference for the history of the 
restricted problem. 

Prior to his lunar theory Euler (1760) gave the solution of the problem 
of two fixed centers of force, in which two fixed masses act on a third 
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body according to the Newtonian law of gravitation. Th i s dynamical 
system is a special and highly simplified case of the restricted problem 
since centrifugal and Coriolis forces do not enter. I ts direct significance 
is l imited as fixed force centers do not occur either in celestial mechanics 
or in its applications. I n view of the fact, however, that Euler ' s p roblem 
of two fixed force centers can be solved in closed form its indirect 
applications are numerous . I n the l i terature of space mechanics at tention 
was called to this problem (and to its simplification by use of Bonnet ' s 
theorem) in 1959 in connection with the reliability and accuracy of 
digi tal-computer solutions. Euler ' s solution of the problem of two 
fixed centers of force can also be used in connection with the artificial 
satellite problem and as a reference orbit for general -per turbat ion 
calculations in the restricted problem. In fact Vinti 's solution of the 
artificial satellite problem, established independent ly of Euler ' s result, 
tu rns out to be essentially analytically identical with it. T h e idea to use 
Euler ' s solution as a reference orbit in the restricted problem is not new. 
Unfortunately, this solution involving elliptic functions is less useful 
than the far simpler Encke method using conic sections as reference 
orbits. On the other hand, Euler ' s problem-does include the effect of 
both masses while Encke 's method considers only one. T h e thi rd 
application of Euler ' s two fixed force centers is related to the problem 
of regularization. T h e coordinate t ransformation employed by Euler to 
treat the problem of two fixed centers of force when used for the 
restricted problem eliminates the singularities or in other words 
" regular izes" the problem. Not only did Thie le (1892) and Burrau (1906) 
make use of this t ransformation for the restricted problem, performing 
the regularizing process, bu t also the large amount of numerical work 
performed by the Copenhagen school under the direction of S t romgren 
(1935) was based on this transformation. 

T h e Jacobian integral of the restricted problem is at tached to the 
name of the second major contr ibutor . 

Implicat ions of this integral are numerous . Since it connects the 
magni tude of the velocity vector ( the speed) of the thi rd body to its 
location, it allows us to make certain general, qualitative s ta tements 
regarding the motion wi thout actually solving the equat ions of motion. 
T h i s fact gives great impor tance to an integral applicable to an 
' i n s o l v a b l e " dynamical problem. I t permits the establ ishment of a certain 
forbidden region from which the th i rd body is excluded. T h e application 
of this principle to celestial mechanics was first made by Hill (1878) to 
show that the ea r th -moon distance mus t remain bounded from above 
for all t ime, which is to say that if Hill 's model for the sun-ea r th -moon 
system is accepted, then the moon cannot depar t from the ear th 's 
neighborhood arbitrarily far. 
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Poincaré s famous three volumes of Méthodes Nouvelles were completed 
in 1899. T h i s work was so new and original that many of its implications 
are still not entirely clear. Probably the most significant contr ibut ion 
made by Poincaré was his emphasis on the qualitative aspects of celestial 
mechanics as opposed to the quanti tat ive approach. Jus t as Euler 
proposed the lunar theories, which may be considered the highest 
computat ional accomplishments of mankind, Poincaré initiated analytical 
methods which seem to be the highest theoretical accomplishments . 
Jus t as Euler ' s work on the restricted problem was followed by Hill and 
Brown (1896), who gave the most precise lunar theory, so was Poincaré 
followed by BirkhoflF(1915), who elevated the methods of qualitative dyna-
mics to heights still unconquered by those who wish to apply his results . 

T h e problem of regularization, which is so p rominen t in certain 
applications of space dynamics, is associated with the names of Thie le 
(1892), Painlevé (1897), Levi-Civita (1903), Burrau (1906), S u n d m a n 
(1912), and Birkhoff (1915). 

In terpreta t ion and continuat ion of the under taking begun by Euler 
and culminating in Birkhoff's work was by no means finished by the 
latter. In the 1920's Moul ton ' s school publ ished its results, while in 
the thirties Moiseev and again Birkhoff made their qualitative contr i-
but ions, and the final quanti tat ive results of the S t romgren school were 
published. In 1941 Win tne r ' s book was published, and in the fifties 
came Kolmogorov 's impor tan t work, and also Siegel's book. In the 
sixties Russian writers following Kolmogorov 's work took significant 
steps in qualitative analysis. Also dur ing the sixties a considerable amoun t 
of numerical experimental dynamics was performed on digital computers . 

T h e li terature of the restricted problem is closely associated with 
publications in celestial mechanics and with the appearance of books 
on dynamics. Chapters in books on celestial mechanics by P l u m m e r 
(1918), by Charlier (1907), by Moul ton (1914), by Brouwer -Clemence 
(1961), by Danby (1962), and by McCuskey (1963) offer informative 
descriptions of the restricted problem. Whi t taker ' s Analytical Dynamics 
(1904) may be considered the outs tanding reference text in dynamics 
on the general and on the restricted problem of three bodies, while 
chapters by Pars (1965) and Pollard (1966) give concise t rea tments from 
the points of view of dynamics and mathemat ics . 

T h e justification given by Birkhoff in 1927 for the appearance of a 
book like this may be quoted here to close the introduct ion. " A t a t ime 
when no physical theory can properly be te rmed fundamenta l—the 
known theories appear to be merely more or less fundamental in certain 
directions—it may be asserted with confidence that ordinary differential 
equations in the real domain, and particularly equat ions of dynamical 
origin, will cont inue to hold a position of the highest impor t ance . " 



Chapter 

Description of the 

Restricted Problem 

1.1 In t roduct ion 

I t is often the case in physical sciences that the major difficulty in 
attacking a p rob lem is the lack of clear definitions, and once the p rob lem 
is stated the solution is on its way. In this spirit we shall pu t emphasis 
on describing the restricted problem in the clearest and simplest t e rms 
possible. 

T h e offering of a clear definition is of course a necessary bu t not a 
sufficient condit ion for making progress. T h e p rob lem of three bodies is 
a good example where with a little care the most precise s ta tement of 
the problem can be given. T h i s s ta tement describes a ra ther simple 
sounding problem, the solution of which is not available. 

I n this chapter the simplest and most frequently occurr ing version of 
the restricted problem is described. T h e basic formulat ion seems to 
appear first in Euler ' s memoi r on his second lunar theory; therefore, it is 
almost 200 years old. 

After defining the problem, the equat ions of mot ion are derived in 
inertial (sidereal) and rotat ing (synodic) coordinate systems using physical 
(dimensional) and dimensionless variables. T h e four equat ions are 
compared and it is shown how the in t roduct ion of synodic coordinates 
results in the existence of the Jacobian constant and of the Jacobian 
integral. T h e derivations of these four sets of equat ions of mot ion are 
performed start ing with basic and simple principles and using ra ther 
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elementary methods in order to facilitate the unders tanding of the 
physical picture. In a later chapter (Chapter 7) the Lagrangian and 
Hamil tonian formulations will be given and a more sophisticated picture 
will be revealed. 

T h e appearance of the restricted problem as the degenerate case of 
the general th ree-body problem is shown next to serve as the basis for 
two impor tant i tems. As the first outcome the review of various modifica-
tions of the basic restricted problem is presented. In the last section the 
applicability of the restricted prob lem is analyzed. 

1.2 S t a t e m e n t of the p r o b l e m and equations of m o t i o n in 
a sidereal system 

W e define our problem as follows: T w o bodies revolve a round their 
center of mass in circular orbits unde r the influence of their mutua l 
gravitational attraction and a th i rd body (attracted by the previous two 
bu t not influencing their motion) moves in the plane defined by 
the two revolving bodies. The restricted problem of three bodies is to 
describe the motion of this third body. 

T h e two revolving bodies are called the primaries (or the pr imary and 
the secondary, a nomencla ture popular in stellar dynamics bu t which we 
will not follow). T h e masses m1 and m2 of these bodies are arbi trary bu t 
the bodies have such internal mass distr ibutions that they may be 
considered point masses. T h e mass of the th i rd body ms is an intricate 
subject which will be discussed in some detail later in this chapter . 
At this point the approximate s ta tement is accepted, that m3 is m u c h 
smaller than either mx or m2. T h i s is intuitively correct since m3 does 
not influence the motion of mx and m2 . 

T h e circular mot ion of m1 and m2 a round their mass center 0 is shown 
in Fig. 1.1. 

Balance between the gravitational and centrifugal forces requires that 

k2 mi™2 — m2an2 = ηιφη2, (1) 

where k is the Gaussian constant of gravitation, η is the (common) 
angular velocity of m1 and m2 , / is their mutua l distance, and a and b 
are as shown in Fig. 1.1. T h e quant i ty η in celestial mechanics is called 
the mean motion and the angle nt* the longitude of m1 . T h e symbol t* 
is used for t ime, this way preserving t for the dimensionless t ime. 

F r o m this 

k2m1 = anH2, k2m2 = bn2l2, k\mx + m2) = n2l3, (2) 

the last equat ion being Kepler ' s th i rd law. 
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F I G . 1.1. T h e fixed (sidereal) and the ro ta t ing (synodic) coord ina te sys tems {m1 > m2). 

Also 
m J 

a n d (3) 

where M ---= ml - m2 

T h e equat ions of mot ion of m3 in an inertial (fixed) rectangular 
coordinate system, X being the abscissa and Y the ordinate of m3 , are 

d2X/dt* dF\dX a n d d2Y/dt*2 = dF\dY. (4) 

W e note that the inertial coordinate system X, Y shown in Fig. 1.1 
is called the sidereal system. F is the force function or the negative 
potential and is given by 

F = Λ2(*ι/*ι + fn2/R2). 

T h e distances R± and R2 are given by 

R, = [(X - X,)2 + (Y-

R2 = [(x-x2y + (Y-Y2n^ 

(5) 

( 6 ) 

where (X1 , Y J and (X2 , Y2) are the t ime-dependen t coordinates of 
m1 and m2 , respectively, which are obtainable by inspecting Fig. 1.1: 

X1 = b c o s X2 

Yx = b s i n n i * , η = 
-a c o s 

s i n nt*. 

T h e t ime dependence of the coordinates of m1 and m2 in t roduces the 
t ime explicitly in the equat ions of motion. T h i s is intuitively expected 
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r mx\X — b c o s
 nt ) , m2\A -f- a c o s nt*) Ί 

L R? f Rj J ' dt*2 L R^ 

d2Y το Γ τηΛΥ — b s i n nt*) mJY + a s i n nt*) 
- & — r T s V 

(7) 
ι oui y ι 

dt*2 ~~ 'v L i? , 3 1 R} J 1 

or simply 

d2x _ dF(x, y, **) </2y _ a^(x, y^*) 
^ * 2 ~ d x ~ ~ dt*2 - ~dY " ' ( 8) 

1.3 A n invar iant re la t ion and the t o t a l energy of t h e system 

T h i s section discusses three quest ions of considerable theoretical 
importance. In Part (A) an invariant relation for the restricted p rob lem 
in the inertial system is derived, Par t (B) gives the definition of an 
integral of a dynamical system in general, and Part (C) discusses the 
conservation of energy. 

(A) Inasmuch as the gravitational force field possesses a potential , 
an a t tempt might be made to derive an invariant relation corresponding 
to the energy conservation of the dynamical system. Mul t ip ly ing 
Eqs . (8) by dXjdt* and dY/dt*, respectively, adding and integrat ing 
with respect to the t ime gives 

1 0 

where, for the t ime being, the constant of integration is disregarded. 
Since 

dF = Fx dX + F γ dY + Ft* dt*, 

where subscripts denote partial derivatives, the quadra tu re on the right 
side of (9) becomes 

(dF -Ft* dt* = F - Ç Ft* dt*. ( 1 0 ) 

10 f0 
Equat ions (9) and (10) give 

since m1 and m2 move in the fixed system of coordinates. T h e formal 
proof of the explicit occurrence of the t ime consists of subst i tut ing the 
preceding t ime dependencies into (6), (6) into (5), and (5) into (4). 
Equat ions (4) become 

d2X ^ 2 ρ mx(X — b c o s nt*) L m2(X + a c o s nt*) 
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where V is the velocity of m3 . T h e energy is therefore not conserved in 
the system since \V2 — F is a function of the t ime and not constant . 
T h e interpretat ion of the quadra tu re 

f'* 8F(X, Y, t*) 

t* et* 

occurring in (11) is as follows. Consider the solution given in the form 
X = X{oLi , **), Y = Y(&i y t*), where the constants at- (i = 1,2,..., 4) 
represent the initial condit ions. Subs t i tu t ing this solution into the 
quadra tu re gives a function depending on the initial condit ions and on 
the t ime. Therefore (11) becomes 

\ V 2 - F = C{oc^t*). 

T h e essential point is that a relation like (11) is of l imited use unless 
additional approximat ions are made, since in general its in terpreta t ion 
requires the solution of the problem. On the other hand, if F should not 
depend explicitly on the t ime, t h e n i ^ * = 0 and \V2 — F = C(c^); i.e., 
the constant of integrat ion depends only on the initial condit ions. 

I t is to be noticed that Eq. (11) is an invariant relation of the dynamical 
system in quest ion. Whi le it is not immediately helpful in establishing the 
"so lu t ion" it does serve as a useful check in numerical and formal 
computat ions . I n the following we give the definition of an integral of a 
dynamical system to avoid any misunders tanding . 

(B) Consider a dynamical system of η degrees of freedom with 
coordinates q1 , q2 qn and write the equat ions of mot ion in the form 

d2
qi/dt2 = Qfa qn , q\ qn , f), (12) 

where i = 1,..., η and t is used for the t ime. T h i s set of η second-order 
equations form a system of the 2/zth order, which can be wri t ten as 2n 
equat ions of the first order by in t roducing 

Xi = qA a n d x n +i = q\ 

or 

X1 == g1 y χ2 — q2 Xn ~ qn , Xn+l = 4l » xn+2 ~ 4% >··•> X2n ~ 4n · ( I ^ ) 

Equat ions (12) become 

dxi 

dxn+i/dt = Qi(Xi , X2 ,···) χ2η ι 0* 

(14) 
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or simply 

X± — Xn+1 > X2 — Xn+2 >···> Xn X2n > 

Xn+1 — Qi(X\ , · · ·> X2n > *)> 

*w+2 = Qlkx\ >"·> Λ :2η > 0» 0̂ ) 

= Ρ^(χχ#m , t), (16) 

where k = I, 2>...y m, m = 2n, and the functions and their partial 
derivatives are defined and cont inuous in some domain. 

Consider ing now the 2n first-order differential equat ions given by 
Eq. (16) we define an integral of this system as follows. If a function 
G(x1 , x2 xm , t) with the same propert ies as Pk satisfies the condit ion 

dG/dt =0 (17) 

when any set of solution x^t), x2(t),...y xm(t) is subst i tuted, we call 
G(x1 , x2 xm , i) = const an integral of the system (16). Equat ion (17) 
can be expanded: 

™ dG^dx^ dG_ = 

^ dxk dt ^ dt U' 

or using (16) 

Equat ion (18) is the condit ion to be satisfied in order that G be an 
integral. 

(C) W e will now show that the total energy in the restricted problem 
is not constant . T h e total energy of m3 per uni t mass is 

h3 = \{dXjdt*f + \{dYldt*f —F, (19) 

which, as shown in Par t (A), is not constant . T h e quest ion arises whether 
the total energy of the dynamical system formed by the three bodies is 
constant. T h e total energy of the individual particles is, of course, the 
sum of their separate energies, so we have 

H = m3h3 + H12, ( 2 0 ) 

Explicit and detailed forms of Eqs . (14) are 
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where H12 is the energy of the m1 , m2 system, and 
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H12 = \n\mxb
2 + m2a

2) - k2 -^p-. (21) 

T h e first t e rm is the kinetic energy and the second the potential energy. 
Using the elementary relations given by Eqs . (1) and (2) one finds that 

\n\mxb
2 + m2a

2) = \k2 -^p- ; (22) 

therefore, H12 = —\k2 mxm2\l = const, and the total energy of the 
system formed by the three bodies becomes 

H = msh3 - \k2 -^p- φ const. (23) 

T h e formal reason for the result tha t the total energy of the three 
bodies part icipat ing in the restricted problem is not constant is simply 
that the total energy of m3 is not constant while that of the m1 , m2 

system is constant ; therefore, the sum of the energies cannot be constant . 
T h e deeper reason for this "violation of the energy conservat ion" will 
become clear in the next chapter when the general problem of three 
bodies will be discussed. In the restricted prob lem we neglected the 
effect of m3 on the mot ion of m1 and m2 , creating in a way a dynamical 
situation which, strictly speaking, exists only when m3 = 0. If this 
condit ion is satisfied then, of course, Eq. (23) gives for the total energy 
of the three bodies Η = — \k2mxm2\l = const. 

If the mass of m3 is different from zero it mus t have an effect on the 
motion of m1 and m2 , which cannot move any more on their assumed 
circular orbits . I n this case Eq. (21) is not valid and H12 is not constant . 
T h e total energy of the dynamical system formed by the three bodies 
wi thout restrictions on the motion of m1 and m2 possesses a potential 
which does not depend explicitly on the t ime; therefore, the total 
energy of this system is conserved. 

1.4 Equations of m o t i o n in a synodic coord inate system and 
t h e Jacobian in tegra l 

I t was discussed in some detail that the force function F contains the 
t ime explicitly because of the motion of the primaries . Consequent ly 
the Hamil tonian depends on the t ime explicitly, it is not an integral, 
and it is not constant along an orbit as will be shown in Chapter 7. 
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Based on the principle that one purpose of mathemat ics is indeed to 
verify intuitive results, the question is proposed: what coordinate 
system would result in a force function which would show no explicit 
dependence on the t ime ? T h e intuitive answer is that since the t ime 
dependence is a consequence of the motion of the primaries in a fixed 
(sidereal) system one should expect that a coordinate system in which 
m1 and m2 are fixed will show superior qualities. T h e following derivation 
shows the correctness of this intuitive guess. 

T h e coordinate t ransformation is the well-known rotation which, with 
the notation of Fig. 1.1, becomes 

X — χ cos nt* — y sin nt*, 

Υ = χ sin nt* + y cos nt*, * • - , * ( 2 4) 

or, in the notat ion of matrices, 

R - Ar , 

where the vector R has the components X, Y; the components of the 
vector r are x, y and the matr ix A is 

/cos nt* —sin nt*\ 
A = · ,* ,* · ( 2 5) 

\sm nt* cos nt*/ 

T h e transformation of Eqs . (7) is probably simplest when complex 
variables are in t roduced. Le t 

Ζ = zeint\ (26) 

where 

z = x + iy, Z = X + iY, z' = ( - l ) 1 / 2. 

T h e distances R± and R2 , for instance, are given by Eqs . (6) as 

RX = \Z-ZX\ and R2 = \Z-Z2\, (27) 

where according to Eqs . (7) 

Z1 = beint* and Z 2 = — aeint*. (28) 

Subst i tu t ing for Ζ from Eq. (26) and for Zx , Z2 from Eqs . (28), the 
distances given by Eqs . (27) become 

R2 = \z + a\ = [(x + af+y*Y>\ 2 I VT211/2 

(29) 
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T h e left-hand sides of Eqs . (7) in complex notat ion become 

d2Z ι d2z dz « \ • ** / ( 1 Λν 

and the collection and ar rangement of the remaining t e rms of Eqs . (7) 
is left to the reader as a simple example. T h e complex form of the 
equations of mot ion in the rotat ing system is 

T h e real and imaginary parts give 

d2x dy r (x — b) (χ + α) ι 

(32) 

where the f1, f2 notat ion was in t roduced for Rx , R2, indicating tha t in 
the rotating coordinate system the distances show no explicit dependence 
on the t ime [cf. Eq . (29)]. Equat ions (32) verify the intui t ion that in the 
rotating coordinate system the force function is not expected to show 
explicit dependence on the t ime. T h e r igh t -hand sides of Eqs . (7) have 
been simplified since Eqs . (32) do not contain t*\ the left-hand sides have 
become more complicated by the appearance of the first derivatives and 
linear te rms . T h e t e rms n2x and n2y are of small concern since they can 
be combined with t e rms in the r igh t -hand members , bu t the presence 
of the first derivatives raises the quest ion whether the t ransformat ion 
serves any interest or whether it only complicates mat ters . T h e answer 
to this quest ion is connected with the fact that the new Eqs . (32) possess 
a "useful" integral. I n fact the only known integral of the restr icted 
problem can be obtained directly from (32) in the same way as Eq . (9) 
was obtained from (8). Prior to this step, it is convenient to establish 
the force function belonging to Eqs . (32). For this purpose we wri te 
t hem as 

d2x - dy dF* 
In- — 

dt*2 dt* dx 

d2y ^ dx dF* 1 2n- — 
(33) 

dt*2 1 dt* dy 

and find the function F* so tha t 

—: n2x — k2 1 — /ΜΛ 

dx 

dF* 

r (x — b) (χ + a) l 

dy L r2
s
 J 

(34) 
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Thi s problem is well known in potential theory and, since in 
establishing the generat ing functions of canonical t ransformations 
similar problems and methods will be used later, we offer a short 
discussion of this quest ion in Section 1.7. At this point we give the 
answer to the problem proposed by Eqs . (34): 

F * = | ( * » + ^ ) + A * ( - ^ + - ^ ) . (35) 

Note that F * may also be obtained directly from the t ransformat ion. 
Equat ions (33) possess an integral, as may be shown by mult iplying 

the first by dxjdt*, the second by dy/dt*, and adding and integrat ing 
with respect t o 4the t ime t*. T h i s gives 

1 r/ dx γ / dy \ 2l r** (dF* dF* \ C* 

since now 

dF* dF* 

T h i s integral and C* are known as the Jacobian integral and the 
Jacobian constant after Jacobi. 

Another form of Eq . (36) is obtained if we write ϋ for the magni tude 
of the velocity relative to the rotat ing coordinate system and obtain 

v2 = IF* - C*. (37) 

Subst i tu t ing F* from (35) and wri t ing f2 for x2 + y2 we obtain 

ϋ2 = n2r2 + 2k2 i™1- + ^ ) - C*. (38) 

1.5 Equations of m o t i o n in dimensionless coordinates 

(A) T h e equat ions of mot ion in the inertial system [Eqs. (7)] contain 
k2, a, b, m1 , m2 , and η as physical parameters which are not all independ-
ent. I t will now be shown by means of dimensionless variables that the 
restricted problem depends on only one parameter . For this purpose let 
Greek letters (excepting for the t ime) represent dimensionless quanti t ies 
as follows: 

ξ = Xjl η = Y / / , t = nt*, μλ = mx\M = a\l, 

μ2 = m2\M = bjl, Pl = RJl, p2 = R2\l. 
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T h e equat ions of mot ion (7) become 

d2$/dt2 = 8φΙ3ξ, d2
v/dt2 = θφ/θη, (40) 

where 

φ = F\l2n2 =μχ\9χ + μ2\?2 (41) 

and 

P l
2 = (ξ — μ2 COS t)2 + (η — μ2 sin t)2, 

P22 = (f + f*i cos tf + (η+μι sin t)2. ( 4 2) 

T h e variables occurr ing in the equat ions of mot ion are the dimension-
less coordinates (ξ, η) and the dimensionless t ime t. T h e only remaining 
parameters (constants) are μ1 and μ2 , bu t since mJM + m2jM = 1 we 
have μι + μ 2 ^ 1, i.e., given one of the dimensionless masses, the 
other is de termined. W e are therefore left with only one parameter 
(either μλ or μ 2) , the selection of which determines the problem. 

T h e dimensionless equat ions corresponding to Eqs . (7) are 

d2j _ Γ (ξ — μ2 COS t) (ξ + μλ COS t) 

dt2 - ΙΛ ?̂ + ?̂ 
dS Γ 

P l ?2 

d2r) _ Γ (η — μ2 sin t) (η + μχ sin t) 
(43) 

P l Ρ2 

(Β) N o w we establish the equat ions of mot ion in the rotating 
coordinate system using dimensionless variables. W e will observe that 
in this way we obtain the simplest form of the differential equat ion of 
motion. 

In t roduc ing 

χ = xjl, y = y\l, t = nt*, 

ri = hlh r2 = hli Mi, 2 = mi.JM, 
(44) 

Eqs . (32) of Section 1.4 become 

χ — 2y = Ωχ 

y + 2x = Dy 
(45) 

where dots denote derivatives with respect to the dimensionless t ime (t) 
and subscr ipts signify partial derivatives. T h e function Ω corresponds 
to the previously in t roduced function φ for the fixed coordinate system 
by Eq. (41), and to the dimensionless form of F given by Eqs . (35); i.e., 
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Mi , M2 
M = ^yX- -γ- y-j - f 

where 

a ^ ^ + y ^ + ^ + ^ i (47) 
' 1 ' 2 

V = (* - M 2)
2 + J2» 

(χ + i^i)2 + J>2. 

Equat ions (45) and (47), which define the problem in a synodic 
coordinate system, are widely used. A modification of Ω by the addit ion 
of a constant will not affect the equations of mot ion and will offer a 
more symmetr ic form. Let 

Ω = Ω + \μφ%, (49) 

which results in 

Ω = itaV + F 2r 22 ] + + J^- (50) 
rl r2 

or 

β = Μΐ+^)+ΜΫ + ̂ )· ( 5 1 ) 

T h e equations of mot ion are 

x — 2y = Ωχ , 
(52) 

T h e Jacobian integral of Eqs . (45) is 

x2+y2 =2D-C (53) 

and, using Ω instead of Ω, the integral becomes 

χ2
 + y2 = 2Ω - C , (54) 

giving 

C = C + μφ2 . (55) 

T h e Jacobian integral (54) in the dimensionless synodic system 
connects the dimensionless relative velocity with the position coordinates 
th rough the Jacobian constant. 

T h e re turn to the fixed system (dimensionless sidereal) is effected by 
the transformations 

ξ = χ cos t — y sin t, 

η = x sin t + y cos t, 

or 


