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PREFACE 

Rheology as the science of deformation and flow is today well recog-
nized. Dissemination of knowledge of rheology and of its importance in a 
rapidly increasing number of fields has come about in large part through 
the years of activity of the American and British Societies of Rheology and 
of the more recently founded societies and committees in Brazil, France, 
Germany, Holland, Italy, and Japan. Valuable information in the varied 
fields of rheology has been made available through the Transactions of 
meetings of these groups and of the International Rheological Conferences 
of 1949 and 1953 as well as through recent monographs. 

However, searching for information on specific rheological questions 
only too often turns out to be disappointing. As a rule, it is necessary to 
consult a large number of books and papers, to piece together evidence, 
and to adapt a number of assumptions to the case. Often unfamiliarity 
with rheological concepts and nomenclature presents an additional difficulty. 

I t is no exaggeration to state that there is no research or production 
laboratory in which rheological problems of one kind or another are not 
likely to present themselves at some time, and in many laboratories such 
problems arise all the time. Searches for information are, therefore, fre-
quent. 

In this book noted workers in rheology have pooled their knowledge and 
made it easily available in condensed form. The contributions although 
self-contained are interrelated. They are so planned that scientific workers 
are introduced to well-demarcated areas of rheology through introductory 
and descriptive material which then leads into integrated surveys of the 
present knowledge in these areas. The careful selection of topics, the 
authoritative and well-documented chapters, and the comprehensive index 
of this book all combine to further an awareness that the general concepts 
and laws of rheology form an entity. Furthermore, it offers the novice a 
very general introduction to many topics, and the advanced reader a ready 
means of comparing the different viewpoints of the contributing authors 
and of studying new material in fields related to rheology. 

Thus it is hoped that this book will be instrumental in bringing about a 
better understanding of the essential unity of rheology. For although the 
applicability of many of the basic laws is generally accepted among rheol-
ogists, we are far from achieving the full benefits that can come from a 
more complete interchange of theories and applications among the various 
fields of rheology. 

All of these factors were in the mind of the Editor when he asked his 
v 
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colleagues to contribute to this volume and the two succeeding volumes that 
will comprise this work. Thanks are due to the contributors for their careful 
preparation of articles in this rapidly growing field. It is to be hoped that 
their efforts will benefit many and will serve to stimulate others to further 
activities in all branches of research. 

In the present volume, the first of three, the reader will find two intro-
ductory chapters, one from the physicochemical and the other from the 
physics and engineering angle, followed by five chapters on various phases 
of the deformations of solids. The paper on flow under high pressures leads 
to those on the mechanism of liquid flow, large elastic deformations, visco-
elasticity, and melt flow. Four chapters on the basis of the rheology of 
disperse systems and one on acoustic responses of liquids complete this 
part. 

Volume II will open with an integrated survey which will serve to link 
the fifteen chapters, woven through the three volumes of the book, that 
deal with various fields and aspects of linear viscoelasticity. Volume II 
will continue with relaxation theory and three chapters on experimental 
techniques; then there follows the series of chapters on special types of 
materials or behavior such as the relaxation of polymers, the rheology of 
elastomers, glasses, cellulose derivatives, and fibers; it will include also 
chapters on concrete and on seismic measurements. 

Volume III will contain more specialized chapters, on crystalline and on 
cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. 
This part will conclude with a series of technological articles on lubrication, 
spinning, molding, extrusion, and adhesion and a survey of the general 
features of industrial rheology. 

When this work was planned, it was hoped that a uniform nomenclature 
might be achieved throughout. I t was soon found that, especially in view 
of the diversity of the work, the time was not ripe for such an undertaking. 
To help the reader to compare derivations and data, a list of symbols has 
been appended to each chapter. 

The variety, and often variance, of rheological terms employed today 
presented a major difficulty also in the way of preparing a consistent index 
commensurate with the purpose of this treatise. It is hoped that for those 
less acquainted with general rheology the grouping and bracketing of terms 
as well as the many cross references will help to clarify the synonymity or 
interrelation of concepts used today by different authors in different fields. 

FREDERICK R. EIRICH 
Brooklyn, N. Y. 
Spring, 1956 
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ERRATA 

Page 15, last line—instead of "shortening", read "cancelling". 
Page 47, equation (125)—first parenthesis, replace + by —. 
Page 48, equation (127)—should read M = H — N. 

Page 48, equation (130)—for y read y ( = dy/dt). 

Page 49, equation (131)—for 70 read 70 
Page 400, equation (35)—line 3—second expression right-hand side, read 

So / \ 
■=— ( COS φ — 18ΐηφ) 
δβο \ / 

Page 425, equation (128), lower line, signs within parentheses should be reversed. 
Page 427, first line below equation (137) after "crosslinks" read "in number per 

milliliter". 
Page 554, equation (31) read 

p = 12 /1+cos θ\ /1+cös φ\ 
0 \ l - c o s θ) \ l - c o s φ) 

Page 701, second paragraph line 14, omit "and G". 
Page 702, 3rd line from bottom, omit "will be compared with the theoretical 

dependence". 
Page 730, entrance "frictional", read 115 instead of 114 
Page 731, entrance "friction", read "coefficient, 115" and "model, 44, 115, 116". 
Page 737, after "Lorentz field", enter "Loss, see Impedance". 
Page 744, after "effect and molecular weight", enter "effect on stress-strain 

relation, 303". 
In addition, on p. 645, 18th from the top, third line from bottom; p. 646, second 
& eighth line from bottom; p. 647, legend for fig. 21 & 22; p. 648, fourth line from 
bottom: The name Treolar should read Treloar. 
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CHAPTER I 

INTRODUCTION TO RHEOLOGICAL CONCEPTS 

F. R. Eirich 

During the acceleration of a body as a whole, in translation or rotation, 
the relative positions of its mass points remain the same, and the forces 
are defined by the acceleration of the total mass. The deformation, or dis-
tortion, of a body refers to relative displacement of mass points by balanc-
ing couples, so that neither the center of gravity is moved, nor a concentric 
rotation of the body as a whole is imparted. Strain, S, is a displacement de-
fined as a relative change of a length and is homogeneous if the displace-
ment varies lineally to reference coordinates. Stress, P, is the acting force 
per unit area and may be thought of as being composed of normal (tensile 
and compressive) and tangential (shearing) components. The division 
is artificial (Chapter II), since every application of force entails inevitably 
the application of both components. It permits, however, a useful deline-
ation, as the normal components are consistent with volume changes 
whereas the shearing forces (couples) are sources of, or response to, de-
formation of a body, which is defined as a coherent entity of matter. 

The term deformation is used both for a relative displacement in prog-
ress and for the state of displacement reached during this process at any 
instant of time. Accelerations of body parts occur until a steady velocity 
of deformation is reached. It is a fundamental property of real matter 
that apart from the forces of acceleration of the body parts, forces are 
required to keep a body in a steady state of progressing deformation. Many 
bodies require also forces to maintain a state of deformation for a finite, 
or for an indefinite period. Bodies for which the latter property can be ne-
glected, are classified as liquids. No similarly fitting term exists for the non-
liquids, although the term solid is usually employed. Thus the deformed 
state exhibits a spectrum of behavior. Ideally, completely elastic solids re-
quire the same stress which was applied during the last moment of de-
formation to maintain the deformation indefinitely. On the other hand, 
ideal liquids require no perceptible force to maintain the state at which the 
process of deformation left off. 

Completely elastic bodies also do not show any dependence on the rate 
of deformation. Their process of deformation may be visualized as a se-

1 
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quence of equilibrium states in which the extent of deformation only, and 
not history, or time effects, determine the required stress. Thus, one has to 
imagine a system of stresses set up in a body which exactly balances the 
deforming external set of stresses; or vice versa, imagine the external stresses 
as necessary to balance the internal resistance to departures from the equi-
librium (unstrained) state. This balance remains preserved when stresses 
subside until the body has returned into its undeformed original state. 
Ideally elastic bodies follow Hooke's law, according to which the external 
stress, or stress component, is proportional to the corresponding deforma-
tion, or deformation component: P = GS, where G is the static modulus 
of elasticity. 

It is also inherent in ideally elastic behavior that deformation, due to 
its independence of history or path, can be cycled at will as a reversible proc-
ess. The work A done on, and the work F returned by, the body is equal 
and corresponds to a reversible input and regain, i.e. to a storage, of free 
(potential) energy of shape. Such a system is conservative, or frictionless. 

In the case of the liquids every new relative position of the mass points 
represents a new equilibrium state of which these materials possess an 
infinite number. Since no forces are required to maintain a given shape, 
the slightest applied force causes deformation so that these materials are 
completely fluid. In fact, self-diffusion can be shown to change the relative 
position of mass points spontaneously and continuously. In the absence of 
unique shape, deformation in the static sense does not exist, progressive 
deformations suffered are not recovered, and no energy can be stored in 
the body or be regained. Instead, the process of deformation, i.e. the en-
forced change through a number of infinitesimally separated equilibrium 
positions at a given rate, requires force. The work per time spent in this 
irreversible process is quantitatively dissipated into heat. 

One might infer in the elastic case an orderly transition from one ordered 
(solid) equilibrium state to another of higher energy, and the orderly return 
to the former. In flow we observe the transition of one disordered equilib-
rium state to the next, with the temporary order imposed on the system 
during flow becoming continually dissipated. In the simplest case, that of 
Newton's law, the stress is proportional to the rate of deformation: P = ηδ, 
and the dissipated energy to the square of the rate of deformation, where η 
is the coefficient of viscosity in macroscopic flow (see Appendix). 

These extremes, as stated, of ideally solid and ideally fluid viscous ma-
terials are oversimplifications. Real materials exhibit a whole spectrum of 
behavior from dependence of the forces on the speed of deformation only 
shown by liquids, to the practical independence on speed of deformation 
and dependence on the extent of deformation only, of the ideally elastic 
bodies. Any material may be caused to flow, i.e. become fluid, by varying 
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temperature and force field. Fluidity, thus, describes a temporary state of 
matter. Obviously, there is a practically infinite variety of indigenous and 
imposed responses, and also of composite structures, so that any enumera-
tion or classification must remain arbitrary and inadequate. 

In the following we will discuss nonetheless two classes of materials be-
cause of their practical importance. In the viscoelastic solids the elastic 
element forms the continuous, reversibly deformed, phase but encompasses 
frictional, viscous, elements; during deformation the movement of the 
latter permits them to consume energy and to retard the elastic extension; 
in the same manner energy is dissipated when the elastic phase returns in 
the process of strain recovery, i.e. strain relaxation, to its undeformed 
state and gives up its stored energy. Thus, internal friction is responsible 
for the energy difference, or hysteresis, between work returned and ex-
pended. 

The elastico-viscous bodies are liquids containing dispersed elastic ele-
ments linked by friction. In motion these elements become extended and 
stay so, while the liquid flows, adding their extension to the fluid deforma-
tion. When the external forces cease, there will be partial strain relaxation 
as the elastic elements return to their original equilibrium state, releasing 
the stored energy which is partly recoverable and partly dissipated in over-
coming the frictional resistance in the way of this return. If the specimen 
is held at constant deformation, the elastic elements glide past each other 
in viscous flow so as to return to their original length while conforming to 
the imposed over-all strain. This process constitutes stress relaxation. 

Any stresses or strains which remain unrelaxed due to lack of time are 
called frozen in, or internal. Subsequent strains may become superimposed 
on the residual ones and thus give rise to the elastic memory; higher 
stresses may become necessary to deform prestrained materials, offering a 
partial explanation for such observations as annealing, case hardening, 
work hardening, and other mechanical property changes. Real bodies and 
real stresses, thus, are never quite homogeneous except for mobile liquids. 
In the glassy state of liquids diffusion and fluctuations are frozen to an ex-
tent that no flow can occur and large deformations lead to rupture. 

In crystalline solids the primary forms of deformation are gliding, twin-
ning, and kinking; diffusion again is so small as to allow indefinite preserva-
tion of cracks, dislocations, vacancies, or foreign elements at which stresses 
will concentrate. Where either the stress concentration is high enough, or 
the mass point coherence too weak, deformation will be carried to an extent 
from wThich return to the old equilibrium is no longer possible. Thus, a 
stress activated diffusion or flow on a micro scale has taken place which is 
often termed anelasticity. The mobilized sections may become readily 
anchored or may travel and unseat other dislocations, depending on struc-
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tural details. Eventually, at the yield stress, a sufficient number of local 
place changes add up to macroscopic creep, or plastic flow. 

In distinction, therefore, to the previous deformation mechanisms which 
affect the whole body, relatively small sections of mass points may give 
rise to a major, irreversible, deformation or, conversely, block it if they 
lie fixed in the path of flow. At stress levels sufficient to create very intense 
plastic flow, this distinction may become arbitrary as more and more of the 
body becomes affected. The essential criterion for plastic flow is that it is 
produced in an otherwise solid body by shearing stresses above a critical 
level, and that it ceases the moment the stresses fall again below this yield 
value. Further, as the magnitude and mobility of the flowing areas varies 
with the applied stress, the energy dissipated depends much more on the 
yield stress of the material than on the rate of deformation. 

A special case is presented by the plastico-viscous (Bingham) bodies 
whose structure under a critical stress breaks down quickly and com-
pletely, so that these bodies change into liquids above a certain stress level 
and reset to new (deformed) solids on lowering the stress. Stresses will thus 
liquefy the surface first and the progress of breakdown or stress melting 
into the interior will depend on the stresses in the fluid areas. 

In the plastic case, then, deformations are dictated by the nature and 
the distribution of the more readily deformed or more resistant regions; in 
the examples of combined viscous and elastic behavior, on the other hand, 
we were concerned rather with superposition of nonlocalized responses. 
The deformational behavior of many materials reflects a threefold com-
bination, comprising the nature of the deformed elements, their distribu-
tion through the specimen, and the manner of superposition of the re-
sponses, quite apart from stress distributions on account of the geometry of 
the specimen or of its lack of homogeneity. It is this immense number of 
possible combinations which is responsible for the statistical behavior of 
samples even in simple test procedures. 

Surveys of theoretical attempts to general, rational, analyses will be 
found in the chapters of this book. Another very general presentation which 
affords a simple quantitative formulation of much of the preceding qualita-
tive picture will be briefly discussed in the Appendix. 

An important aspect of superimposed elastic and viscous behavior is 
observed during oscillatory deformations. A simple case of imposed 
sinusoidal stresses or strains will be used in the Appendix to discuss the 
essential features. Equivalent descriptions can be given in terms of imposed 
periodical stress or strain. 

Consider a material between two parallel plates which is sheared with 
sinusoidally decreasing speed from zero deformation to the return point of 
shear at zero speed. Reversing, the material returns at increasing speed 
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to zero deformation and then undergoes the symmetrical opposite half-
cycle. Thus, the rate of deformation and the viscous processes are at a maxi-
mum at zero deformation, and zero at maximum deformation. Timewise, 
therefore, extent and rate are 90° out of phase, or in quadrature, though 
the directions of the tensors of shear and shear rate are the same, 45° to 
the plates, provided the deformations stay small (see Chapter II). 

The forces during such cycling may be elastic due to the extent, or fric-
tional due to the rate of deformation. Each of these force components will 
be in phase with its causative process and, therefore, 90° out of phase with 
each other in the cycle, while constituting the additive contributions to a 
resulting force which is parallel to rate and extent of deformation. In an 
ideally elastic material all stress is due to strain and is in phase with the 
deformation; in a viscous material the stress is in phase with the rate of de-
formation. In general, the sinusoidal course of the resultant stress magni-
tude will be displaced against the cycle of deformation by a phase angle, a, 
being more nearly in phase with the rate of deformation if the material is 
more viscous than elastic, and vice versa. As will be seen from the discussion 
in the Appendix, the reaction of materials to imposed stresses is governed by 
a characteristic parameter r (or a set of these) with the dimension of time, 
the so-called relaxation or retardation time, which itself can be understood 
as the ratio of a viscosity to an elastic modulus. 

The angle a must be a function of the frequency; the elastic component 
responds instantaneously and does not consume energy, but viscous flow 
or relaxation require time, dissipating energy proportional to the square of 
the rate of deformation. At frequencies very small compared with 1/r, 
the viscous elements will operate but contribute little and the stress will 
be almost in phase with the deformation. Increasing the frequency, the 
dissipative effort will rise sharply and the stress will get increasingly out of 
phase with the deformation, but as the frequency approaches and exceeds 
the relaxation and retardation times, the viscous mechanisms become 
more and more incapable of following. As a result, we observe a maximum 
of dissipation, or a maximum loss. The course of a depends on details of the 
elastic and viscous properties, and especially on the flow unit which may 
be part of, or the whole, molecule, or a larger domain. 

Related considerations serve to explain certain forms of shear depend-
ence of the viscosity in steady flow. To show this, reference is made to the 
close relation between the principal shearing stresses on an area element 
and the principal (shear free) tensile and compressive forces on the same 
element which can be obtained by its rotation within the plane by 45°. 
These relations will be discussed in more detail in the next chapter.* In 

* See also T. Alfrey, "Mechanical Behaviour of High Polymers", Interscience, 
N. Y. 1948, pp. 7. 
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the process of shearing an elastico-viscous element, the axes of the elastic 
tensile deformation and stress coincide with the direction of rate of defor-
mation and the corresponding stress (45° to the direction of flow) only as 
long as the elastic deformation is kept very small. As soon as the strain is 
not immediately relaxed, and finite elastic strains are produced, the axis 
of tensile deformation rotates towards the direction of flow, while the 
rate of shear remains at 45°. The resultant of the components of stress 
therefore will lie at less than 45° to the streamlines, the angle becom-
ing the smaller the larger the elastic contribution to the stress. Since the 
effective stress is the projection of an applied stress into the direction of 
the displacement, and since the rate of shear remains at 45°, any rota-
tion of the axis of stress will reduce the amount of dissipation, permit 
more effective action by the applied stress and accelerate the over-all flow 
at a given stress level. In mechanistic terms, volume elements of the flow-
ing material are being transported (as a function of the ratio of rate of strain/ 
rotational diffusion, i.e. of relaxation) in a deformed or oriented state at re-
duced internal friction. This is akin to plastic flow, but different from 
both plastico-viscous flow and thixotropy in which cases viscous flow 
is enhanced by a structural breakdown and decreasing viscosity as a rever-
sible function of the shearing stress. 

The discussion up to this point followed largely the macroscopic or 
phenomenological approach. Necessarily, our advancing knowledge of 
atomic and molecular structures makes it imperative to interpret rheologi-
cal constants in terms of molecular parameters. 

The static as well as the kinematic properties of all materials are deter-
mined by the interplay of molecular (attractive-repulsive) potentials and 
kinetic energy. When at condensation the attractive forces plus pressure 
become able to reduce the mean free path to below molecular dimensions the 
rotational and linear vibrations in this liquid state remain large enough to 
permit in-phase augmentation of nearest neighbor amplitudes to create a 
hole which permits the slip of a molecule from one constellation to the 
next. The probability of this self-diffusion depends on an exponential ratio 
containing the activation energy for place exchange, Ea, over the tempera-
ture, and on a frequency factor Z which depends primarily on molecular 
weight and packing: D8 tt Z exp (—EJRT). 

When an external field is added, the accelerations superimpose them-
selves on the random thermal agitation and create a preponderance of 
movements in the direction of stress relief. These movements lead to in-
creased numbers of collisions and to an exchange of momentum into direc-
tions other than that of the flow, until an equilibrium between the acquisi-
tion of velocity and deceleration by momentum dissipation is obtained. 
Liquid flow thus is governed by the rate of self-diffusion and the rate 
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of transfer of extra energy from one translational degree of freedom into 
all other degrees of freedom. 

Finally, in the freezing process, the atomic or molecular distances 
shrink to an extent where the average kinetic energy no longer suffices for 
self-diffusion. The order imposed by the consequent molecular stacking 
permits no flow under small superimposed stresses. Rather, the molecules 
will increase their average distances. Whenever the molecules are pulled 
beyond the small degree of displacement from which they can return re-
versibly, stress-activated diffusion will give rise to a slow plastic deforma-
tion. Such diffusion will always be locally restricted to the inevitable 
inhomogeneities and increased stress will act on the more mobile, or already 
moving, areas. I t follows that solids of other than metallic, ionic, or molecu-
lar structure in at least one crystal plane, e.g. solids possessing three-
dimensional covalent links, cannot flow within the crystallites but only 
flow at boundaries, or rupture. Another case of "hardness" is presented by 
glasses for which the high viscosity at and below the freezing point pre-
vents the ordering process of crystallization, even down to the tempera-
tures (glass point) where volume shrinkage causes cessation of diffusion. 
Tight, three-dimensionally disordered, packing excludes flow so that here, 
too, the only response beyond elastic deformation is rupture. A third case 
of hardness is presented by polycrystallinity where intra-crystalline de-
formation is stopped at the crystal boundaries which themselves are pre-
vented from moving due to structural irregularities. Thus disorder, normally 
connected with ease of flow, can also become a block to flow. 

A special type of deformation is performed by chain molecules. In most 
low-molecular weight materials the intramolecular forces are so much 
greater than the intermolecular ones that relative movement of the mole-
cules occurs long before appreciable molecular deformation. Chain mole-
cules, however, as will be discussed in detail in Chapters XI to XV un-
less crystallized, possess the property of assuming a great number of 
coiled configurations of very different extension. The work required to 
uncoil them against internal friction to the more elongated configurations 
apt to relieve external stresses may be smaller than the work required to 
move the molecules as a whole relative to each other in flow. The very large 
deformations resulting from this unique, essentially rotatory, internal flow 
mechanism may be quite reversible as regards strain, if the chains are pre-
vented from slipping by either cross-linking or by briefness of the extension 
cycle which does not allow for disentanglement of the rubber molecules. 

Rubberiness depends also on the molecular weight and its distribution; 
a change in time scale, or chemically minor changes such as some slight 
cross-linking, may alter material characteristics from that of a liquid to that 
of a solid with respect to strain recovery, but not with respect to internal 
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friction; one further sees that elastico-viscous liquids should be represented 
by models of liquids made of springs rather than by models of liquids and 
springs in series. It is altogether one of the serious limitations of theoretical 
rheology and of qualitative discussions such as the present one that in 
order to be readily intelligible models have, as a rule, to be so simple as not 
to apply correctly, while generally applicable models have to be extremely 
complex. 

Chain molecules of regular structure may be able to crystallize partially 
so that the solid becomes a composite of interlocked crystalline and amor-
phous areas. If the latter are above the glass temperature, they will endow 
the whole material with some extensibility or flexibility, while the crystals 
tend to increase the modulus and act as cross-linking agents. Elongation 
will enhance recrystallization of the amorphous areas, and also of soft 
crystals. A closely related composite structure can be introduced into rub-
bers by filling them with finely dispersed solids. The opposite effect, a 
softening to a more rubbery state, is observed in plasticization, i.e. the re-
duction of macromolecular friction by imbibed liquids, or in polymer 
blending when rubbery elements become the continuous phase. 

I t will be seen from this discussion, that simple behavior can only be 
expected for completely liquid materials as long as biased diffusion can 
perform the required transport, or for uniform solids provided they are not 
strained beyond the elastic limit. Even "ideal" liquids begin to behave 
"non-ideally" at rates so high that liquid diffusion cannot provide enough 
relaxation, and transport in domains must take over, or at stresses in solids 
so high that partial diffusion and limited flow are enforced. Materials of 
more complex structure will show complex behavior under less extreme, or 
almost all, experimental conditions. Thus, though there is only a limited 
number of basic deformational patterns, full flow, partial flow, rubberlike 
extension, and ideal elasticity, they can be invoked to any degree and in 
any combination either because of a propensity of the material, or because 
of conditions. It is, therefore, often impossible to judge structures from a 
limited range of mechanical responses, or vice versa. Only a study over a 
wide range of stresses, rates, and temperatures can give a sufficiently com-
plete picture from which to predict mechanical behavior or to draw con-
clusions with respect to molecular structure. 
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I. Introduction 

1. SOME DEFINITIONS 

Deformation is a movement of parts or particles of a material body rela-
tively to one another such that the continuity of the body is not destroyed. 
If under the action of finite forces the deformation of the body increases 
with time continuously and indefinitely, the material is said to flow. Plastic 
flow appears only when the forces exceed a certain limit, indicated by the 
yield point of the material. Viscous flow occurs under the action of any 
forces, however small, albeit at a reduced rate of deformation, which van-
ishes with the forces. When the forces are removed, part of the deformation 
λνϋΐ always be recovered. This part is elastic and is called strain. (The reader 
must be warned that this definition is not in general use: he will find in 
many of the best books that strain denotes an irrecoverable deformation.) 
From this definition it follows that we cannot determine the strain from a 
loading diagram in λνηίοη the total deformation is recorded but only upon 
unloading, when we see how much is recovered. The recovery from de-
formation is a manifestation of the property of elasticity; accordingly all 
strain is elastic. Ordinarily all strain vanishes when the load is removed. 
However, as a result of certain manufacturing processes (e.g., the rolling 
of mild steel or hardening of cheese1) a body may become self-strained when 
internal stresses are present in the absence of external forces. In every case 
there is no strain without stress. In contradistinction, while nascent viscous 
and plastic deformations are accompanied by stresses, these deformations 
do not disappear with the removal of the load and accordingly there will be 
stressless deformations. The investigation of these different kinds of de-
formations in relation to the stresses by which they are accompanied is the 
subject of rheology. It should be noted that there are stressless volume 
changes resulting from variations of temperature or of moisture content of 
such materials as wood, concrete, and earth which, when not resisted, are 
not accompanied by stresses, even in the nascent state. While they do not 
form part of the subject-matter of rheology, they must be taken into ac-
count in rheological observations. Phenomenological rheology2 deals with 

1 M. Reiner, G. W. Scott Blair, and G. Mocquot, Lait 29, 351 (1949). 
2 Phenomenological rheology is treated in two textbooks by M. Reiner: "Twelve 

Lectures on Theoretical Rheology." North Holland Publ., Amsterdam, 1949;" De-
formation and Flow." H. K. Lewis, London, 1949; cf. also M. Reiner, Appl. Me-
chanics Revs. 4, 202-204 (1951). 
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homogeneous or quasi-homogeneous materials on a phenomenological level, 
i.e., considering them as continuous media. Both the aeolotropic crystal 
and the ultimate discrete entities, such as molecules and atoms, constituting 
the medium are outside its range. Gases are not included; as they possess 
no free boundary surfaces, they do not form bodies.3 Rheology is separated 
from thermodynamics by the provision that rheological processes take place 
under isothermal conditions (e.g., placing viscometers in thermostatic 
baths). 

Macrorheology regards all materials as they may appear to the super-
ficial inspection by the naked eye; i.e., homogeneous and devoid of struc-
ture. Only pure liquids and perfect single crystals are phenomenologically 
homogeneous. Most materials are dispersed systems consisting of two or 
more phases of which one will usually be air contained in pores which may 
be visible or invisible. For instance such an apparently homogeneous ma-
terial as gold has its density raised from 19.258 to 19.367 "by compression 
between dies used in coining."4 Dispersed systems are included in phenom-
enological rheology if the dispersed elements down to molecules can be 
considered as small bodies differing from large masses only in scale. A ma-
terial is quasi-homogeneous when the size of the largest dispersed element 
is smaller than the smallest volume elements, the deformation of which is 
under consideration; e.g., in the case of a material such as concrete, when 
the dimensions of the structural elements made of concrete are ordinarily 
much greater than the dimensions of the largest stones of which it is com-
posed. 

Materials are considered to be isotropic or quasi-isotropic when the 
smallest volume element contains anisotropic dispersed elements of all 
orientations. Such is the case of a commercial polycrystalline metal when 
the crystals making it up are orientated at random. A quasi-isotropic 
material can become anisotropic through deformation as, for instance, a 
metal sheet through rolling or metal rod through drawing. In the present 
chapter it is assumed that the materials under consideration are isotropic 
or quasi-isotropic. Anisotropic materials are treated in Chapters 6 and 15. 

Microrheology takes account of quasi-homogeneity and quasi-isotropy, 
deriving the rheological behavior of the complex materials from the known 
rheological behavior or its constituents. The first and the most famous 
microrheological investigation was Einstein's derivation of the viscosity of 
a suspension,6 about which more is said in Chapter 14. Here the solid 

3 However, an exploding "body" of gas may be treated by the methods of rheology: 
it would come under volume flow (compare Section IX). 

4 Lord Kelvin (Sir W. Thomson), "Elasticity." Encyclopaedia Britannica. 9th 
ed., 1875; also Papers (London) 3 (1890). 

• A. Einstein, Ann. Physik 19, 289 (1906); 34, 591 (1911). 
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phase was assumed to consist of rigid spheres and the continuous phase of 
a simple viscous liquid. The actual composition of dispersed systems makes 
such a mathematical approach unworkable beyond the simplest cases. In 
this situation one substitutes for the unknown structure a mechanical 
model which is supposed to behave analogously to the real structure. Such 
models consist of different elements such as elastic springs, viscous dash-
pots, and friction weights which will in general have no exact counterpart 
in the real material. More about this method is said in Section VI. Micro-
rheology is not treated in the present chapter. 

Where phenomenological rheology borders on other branches of physics, 
chemistry, or psycho-physiology, a belt of subjects is formed which may 
be comprised under the term metarheology. They are dealt in such chapters 
as 4 and 17. The last mentioned branch which is not represented in the 
present book is treated in the publications of Scott Blair and his school.6 

2. MECHANICAL FOUNDATIONS 

Mechanics is the physics of movements of material bodies as wholes in 
relation to the forces causing them. Inasmuch as every particle of a body 
can be considered as a body subjected in its movements to the laws of 
mechanics, rheology must be founded on mechanics. The following con-
cepts and equations are used: 

Let P denote force and a acceleration, both symbols indicating vectors, 
i.e., quantities which have not only magnitude but also direction. Further-
more let ^ P be the resultant of all external forces acting upon a body, m 
be its mass and a0 the acceleration of its centre of mass. (In contradistinc-
tion to P and a, the massm is a scalar, i.e., a quantity which has magnitude 
only but no direction). Then for every body 

Σ P - ma0 = 0 (1) 

where wa0 is called the inertia or d'Alembert force. 
In the case of equilibrium (when ao vanishes) and written in Cartesian 

coordinates x, y, z, we have 

ΣΜ. = Σ(Ρυχ - r*y) = o 
with three pairs of equations, the other two to be derived by cyclical per-
mutation of x, y, and z. This is indicated by (x, y, z) following the equation. 
Me is the moment around the 2-axis. The second of equations (2) can also 

6 G. W. Scott Blair, f<A Survey of General and Applied Rheology." Pitman, Lon-
don, 1949. 

fo V, *) (2) 
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be written in the form 

ΣΜ = Σ(Ρτ) = 0 (3) 
where r is the normal distance of each single force P from any one point in 
the xy-plsme. 

Let V be the volume of the body of mass ra, dV the volume of a "particle" 
of the body and dm its mass, then 

dm ,.s 
P = W (4) 

is a quantity characteristic of the material of which the body consists. I t 
is called the density of the material and is a "material constant" or rather 
a coefficient or parameter. It is the only one to appear in mechanics. 

II. Traction and Stress 

1. CARTESIAN COORDINATES 

If we consider a particle within the body, it may be regarded as bounded 
by imaginary surfaces of any shape. Through these surfaces the rest of the 
body acts upon the particle. Let us consider a plane element of the boundary 
surface of area AA. Its orientation in space is determined by the direction 
n pointing from the particle outwards. Let Pn be the force which the rest of 
the body exerts upon the particle through the surface element A A, then 

pn = lim ^ (5) 
ΑΑ-+0 AA 

is called the traction at the point to which AA is reduced when tending to 
zero. Note that the traction is a vector. 

The traction pn is generally inclined against the surface element upon 
which it acts and can be resolved into a normal component pnn or σ and a 
tangential component pnt or r. If the arrow of pnn points outward, a positive 
sign is applied and it is known as tension. In the opposite case the traction 
is named pressure. The traction pn can also be resolved into three com-
ponents in accordance with the matrix 

Pn = || Pnx Pny Pnz || ( 6 ) 

These components will have different values for different orientations n. 
The aggregate of all tractions corresponding to all orientations n passing 

through a point is called the stress at that point. If the surface element is 
oriented normal to the x-axis, the components of the traction px are pxx, 
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pxy, and pxz, of which the first is normal = σχ and the other two tangential = 
Txy and τχζ . 

Let the particle have the shape of an elementary prism of edges dx, 
dy, and dz. The following tractions act upon its sides: 

Px = 1 Pxx Pxy Pxz | 

Py = II Pyx Pw Vv* I 

Pz = = II Pzx Pzy Pzz I 

(7) 

dp*. with pxx differing on two parallel sides dx apart by - ^ dx. etc. The stress 

is defined by the three tractions px , py , and p* which are its components. 
Indicating the stress by || p || we write 

Pxx 

Pyx 

Pzx 

Pxy 

Pyy 

Pzy 

Pxz 

Pyz 

Pzz 

= (8) 

for which we can also write pr8 with r and s being given in turn the meaning 
x, y, and z? Such a quantity having vectors as components and therefore 
being of higher rank than a vector is called a tensor. Applying the first of 
equations (2), the forces acting upon the particle through the boundary 
surface are the tractions multiplied by the areas. These are called surface 
forces. In addition there is gravity acting directly upon the mass. This is 
a body force. Van der Waals forces are internal body forces. The d'Alembert 
forces can also be regarded as body forces. 

The tractions are continuous functions of the coordinates. Application 
of equation (1) accordingly gives for every particle of the body of unit 
volume 

dpxx . dpl yx + *£«? + ρ(Βχ ax) = 0 (χ, y, z) (9) 
dx dy dz 

where B is the body force per unit mass. These are called the stress equations. 
Applying the second of equations (2) we find that the surface tractions 
give a torque 

M» — (pxy dy dz) dx — (pyx dz dx) dy (x, y, z) (10) 

neglecting higher terms, while the body forces which pass through the 
center of the prism do not give rise to a moment. Assuming that the ma-

7 The Pr» notation is used in the classical mechanics of continua, the σ and r no-
tation in engineering literature. 
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dA cos (/i,*) 

FIG. 1. Traction on an arbitrarily directed surface element, n, direction of the 
outer normal to the surface element dA. 

terial is not magnetic, this moment must vanish and therefore 

Pyz = Pxy (X, 2/, Z) 

Using running notation prs, we can write for (9) 

Σ ^ + P(BS - a.) = 0 
r dXr 

where x, is, in turn, x, y, and z; and for (11) 

Pra = fir 

(11) 

(12) 

(13) 

A tensor for which the indices may be exchanged in this way is called 
symmetrical and the stress is therefore a symmetrical tensor. Applying the 
first of equations (2) upon a particle in the shape of a pyramid with basis 
dA and sides dA cos (nx), dA cos (ny), and dA cos (nz) (as shown in Fig. 1) 
we find 

pnx dA = pxx dA cos (nx) + pyx dA cos (ny) + pzx dA cos (nz) 

, phdA , . (14) 
+ 3 ax (x} y, z) 

Shortening by dA and making h —* 0 we find, using running index notation, 

Pns = Σρ™ cos (nxr) (15) 
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2. MOHR'S STRESS CIRCLE 

There are three directions in space, i, j , and &, normal to each other, for 
which the r's vanish and the a's have extreme or principal values σ;, σ;, 
and ah, so that 

(16) 

σ% 

0 

0 

0 

a·,· 

0 

0 

0 

σ i,j,k 

Consider the two-dimensional case referred to axes i and j . In this case 
from (15) 

ση = σ» cos2 (ra) + σ3· cos2 (ry) 

rn = σ» cos (ra) cos (to") + σ,- cos (717) cos (#) 

or after some rearrangement, 

(σ, + σ,) . (σ» — σ,·) 0 / Λ 

ση = ^ — ! τ — - + ^—^—- cos 2 (m) 

(17) 

τη = 
(σ< - ^ sin 2(m) 

(18) 

From (18) we see that if we plot rn versus σ„ , the locus of the points is a 
circle with a radius (σ» — σ;)/2 which has its centre on the abscissa axis 
at the distance (σ,- + σ3)/2. This is called Mohr's circle (Fig. 2). The figure 
shows how the components pxx and pxy are found for some direction x, if 
the σ», σ7, and the angle (ix) are given. The component pyy follows from 
the invariant 

pxx + pyy = Pi + Pi (19) 

By applying Mohr's circle one finds for the case of simple shearing stress 

0 r 0 

r 0 0 

0 0 0 

= 

x,y,z 

T 

0 

0 

0 0 

-T 0 

0 0 

Prs = 

with (xi) = 45 deg. 
Simple tension can be resolved as follows: 

Prs = 

(20) 

o- 0 0 
0 0 0 
0 0 0 

σ 
~ 3 

1 0 0 
0 1 0 
0 0 1 

+-I 
3 

1 0 
o -y2 
o o 

o 
o (21) 

The Mohr circle for the first component on the right side is reduced to a 
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F I G . 2. Plane Mohr circle for stresses, pa , pjj , principal stresses; pnn , pnt , normal 
and tangential components of t ract ion pn acting upon a surface element the ' O u t e r " 
normal of which is n . 

To construct Mohr 's stress circle if the principal stresses σ» > σ,- are given, draw 
the pnn-axis parallel to the ι-direction and the pni-axis in the direction opposite to j . 
Plot σ» and σ,- on the pnn-axis and find point C, the centre of the circle from (σ< + σ;·)/2. 
Draw circle with radius (σ» — σ,·)/2. To find the t ract ions pnn and pnt on any surface 
element the normal of which is in the direction of n, draw parallel to n through left-
most point of circle; the intersection of this line with the circle has the coordi-
nates pnn and pnt . If n is parallel to x, the coordinates are σχ and rxy . For infinitesi-
mal deformations or strains use the same method with di (or e,·) for σ< and dxy (or 
exy) = yxy/2 for TX1, . 

point and the normal component of the stress tensor is therefore the same 
in all directions, while all tangential components vanish. Such a tensor is 
called isotropic. Hydrostatic pressure is an example. The second component, 
where the mean of the diagonal components 

Vxx + V™ + P* (22) 

vanishes is that by which the tensor "deviates" from isotropy. It is ac-
cordingly called the deviator of the tensor. We shall indicate the deviator 
of a tensor by the index (o), e.g., pr8(0) is the deviator of prs . 
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3. CYLINDRICAL COORDINATES 

In rheology, problems which can best be solved in cylindrical coordinates 
are prominent. 

The cylindrical coordinates of a point are 

xr= | M * || (23) 

In most cases there will be axial symmetry or vanishing d/θθ. Then as-
suming that z points vertically upward, the three stress equations (12) 
become 

—— -f- —- -+- — par — u 
or oz r 

^ + ^ + ^ ? - ρ α , = 0 (24) 
or , dz r 

dprz , Opzz . Prz , \ r\ ~i~ + ~- + — - p(az - g) = 0 
dr dz r 

where g is the acceleration of gravity. 

III. Deformation 

1. INFINITESIMAL DEFORMATION 

The kinematic state of a body is determined by the position xr (where xr 

stands for x, y, z), and the velocity vr 

Vr = ^-; = Xr (25) 
* at 

of all its particles at all times. The continuity mentioned in Section I-l 
requires that the velocities are continuous functions of the coordinates. 
They can be expressed through the displacements ur by means of 

vr = lim £ (26) 

The displacements must also be continuous functions of the coordinates 
and therefore, proceeding in the spatial direction s, 

du ciu <9 77 ciu 
-T1 = ^ cos (de x) + —- cos (ds y) + —^ cos (ds z) (x, y, z) (27) 
as ox oy oz 

Accordingly dujds can be considered as a vector. 

Ψ Ψ Ψ\ (x>y>z) (28) 

dx dy dz \\ 
(ΐ)-
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We thereby arrive at the tensor of the displacement gradient. 

7rs = 

duz dux dux 

dx dy dz 

dUy ÖUy dUy 

dx dy dz 

duz duz duz 
dx dy dz χ,ν,ζ 

(29) 

This tensor is in general not symmetrical. For instance, in simple shear 

ux = 7 
shown in Fig. 3, we have 

7rs = 

0 

0 

o 

7 0 | 

0 0 

0 0 | 

(30) 

(31) 

If dujdy is infinitesimal, 7 is the reduction of the angle between x and y, 
initially a right angle. 

The tensor 7™ can be resolved into a symmetrical and an antisymmetrical 
tensor as follows: 

dux 

dx 
1 (dux , duy\ 1 (dux duz\ 
2 \dy ~dx) 2 \dz ~dx) 

/dUy 

2\dx dy 
dux\ dUy 

dy 
1 (dUy L duz\ 

l) 2\dz + dy 

1 (dut . dux\ 1̂  fdUz , duy\ 
2 \dx Ίΰ) 2 \dy ~dz) 

dUz 

"dz 

+ 
1 IdUy _ dux\ 
2\~dx ~dy) 

1 iduz _ d^x\ 
2\dx ~dz) 

1 (dux 

0 

l (du, 
2\dy 

_ dUy\ 
dx) 

_ duy\ 
~~dz) 

1 (dux __ du2\ 
2\dz ~dx) 

1 (duy _ du2\ 
2\di ~dy~) 

0 

(32) 

As can be seen from Fig. 4 the expression (dujdy — dnu/dx)/2 = 
(7x1/ — 7ι/*)/2 describes a rotation of an element without deformation, pro-
vided the 7Js are infinitesimal. Such a "rigid" rotation of a particle belongs 
to mechanics proper and is of no interest in rheology. Therefore, always 
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dy < 

1 lau, 

/ 
/ 
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/ 
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■dy 
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\ 
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F I G . 3. Simple shear. 
ux , displacement in direction x; 
7, displacement gradient; 
7/2, angle of rotat ion. 

F I G . 4. Superposition of two simple shears resulting in a rotat ion. <f>, angle of rota-
t ion. Note t ha t yyx is positive = +φ and yxy negative = — φ. 

provided that the displacement gradient is infinitesimal, the deformation, 
which itself is infinitesimal, is defined by the first tensor on the right-hand 
side of (32) or the symmetrical tensor 

, __ dUr/dX8 + dUs/dXr 
(33) 

If we consider in a similar manner the velocity vector vr, we arrive at the 
flow tensor 

, _ dVr/dXs + dVs/dXr 
Jrs 2 (34) 
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W///////////W^ 

Stationary platen 

FIG. 5. Velocity gradient between two parallel platens. V, velocity of moving 
platen. 

In simple laminar shear the tangential components of these two tensors 
are one-half of the displacement gradient yyx = U/H in the first case and 
one-half of the velocity gradient yyx = V/H in the second case (compare 
Fig. 5). If there are displacements in both the x and y directions, the tangen-
tial component is the mean gradient. For instance, 

CtXy 
7x2/ + 7yx (35) 

The meaning of the normal components can be visualized by considering a 
prism of length l0 moving axially in extension. Let Ui be the displacement 
of one end and u0 the displacement of the other end and ux > u0, then 
(ui — u0)/l0 is the longitudinal displacement gradient; and if we choose 
the element dx as the length l0, we see from (33) that the extension 

dx 
A(dx) 

dx 
du 
dx 

(36) 

This measure of deformation was formulated by Cauchy; it is the elongation 
per unit original length in the appropriate direction. 

On the other hand, if u0 = 0 i.e. the prism is fixed at one end, while the 
other end travels with the velocity v, the normal component of fr8 or the 
longitudinal flow fi is from (34) 

fl = (37) 

But 

v = 
dl 

dt 
= I (38) 
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and therefore 

Si = \ (39) 

2. FINITE DEFORMATION 

When the flow extends through some time At = t — to, this results in a 
longitudinal deformation Di* 

J tQ J lQ I to 
(40) 

This is called the "natural" or logarithmic measure of deformation or the 
Hencky measure. There exist other measures of finite deformation about 
which more will be said in Section V. 

We can define the tensor of deformation Drs by its principal values 
Di, Dj, and Dk : 

Drs = 

From (40) and (36) we see that 

Di 0 0 

0 Dj 0 

0 0 Dk 

(41) 

dOVT-^Ud, (42) 

It should be noted that this relation cannot be generalized to make dr
s 

equal to the differential of Dfs because relation (42) is only valid in respect 
of the principal components. On the other hand, the rate of infinitesimal 
deformation is equal to the flow, or 

L· = frs (43) 

3. POISSON'S RATIO 

While the prism of Section 2 is elongated, its width generally decreases. 
The transversal contraction is a fraction of the longitudinal extension, the 
ratio being called Poisson's ratio v. One has to distinguish different Poisson 
ratios, one (the usual) referring to elastic strain, the others to (plastic) de-
formation and (viscous) flow, etc. The reciprocal of Poisson's ratio is called 
Poisson number. 

4. CUBICAL DILATATION AND DISTORTION 

The deformation of a prismatic volume element will in general change 
the length of its edges and the right angles between its sides. If the de-
formation is infinitesimal the increase of volume per unit volume, or the 


