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Preface 

The continuing success of the American Chemical Society Rubber Divi-
sions^ correspondence course, based on Professor Morton's "Rubber 
Technology" persuaded the Division's Educational Committee to introduce a 
second, more-advanced course. This editor was commissioned to assemble a 
number of chapters, on the graduate to postgraduate level, stressing the 
continuous relation between ongoing research in synthesis, structure, 
physics, and mechanics and rubber technology and industry. This collection 
of chapters covering, to various depths, the most important aspects of rubber 
science and technology, and the list of authors, all leading authorities in their 
fields, should be of vital interest not only to those who want to expand their 
formal education or update and supplement their experience in the field, but to 
anyone interested in the unusual chemistry and physics and the outstanding 
properties and farflung usefulness of elastomers. The intermediate level of 
presentation, a mixture of theory, experiment, and practical procedures, 
should offer something of value to students, practitioners, and research and 
development managers. 

It has been the bias of this editor, based on many years of teaching at 
Polytechnic's Institute of Polymer Chemistry, that the most successful way of 
teaching and learning polymer subjects is to refer continually to the special 
features of macro molecules. For elastomers, in particular, it is most instruc-
tive to derive the unique features of high elasticity from those of long flexible 
chain molecules in their matted and netted state and the changes imposed by 
large deformations, including the key role played by the internal viscosity as a 
function of temperature and rate. Swaying the authors to lean to this approach 
inevitably caused some overlap but, at the same time, allowed synthesis and 
structure, elasticity and flow, blending, filling, and cross-linking to be treated 
in different contexts; a more integral composition without too frequent a need 
for cross references to other chapters became possible. For the same reason, 
some variation in nomenclature was allowed, especially if it reflected differing 
uses in the literature. 

Particular concerns in preparing this composite book have been the combi-
nation of information and instruction, and the sequence and correlation of the 
chapters' contents. The first ten chapters take the reader from an introduction 
through synthesis characterization, mechanical behavior, and flow to the 

xiii 
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major processing steps of filling, compounding, and vulcanization and to the 
theories and measurement of elastomeric performance, leaning strongly on 
the "materials" approach. The next three chapters deal with the ever 
broadening fields of blended, modified, and thermoplastic elastomers, while 
the last chapter, for reasons of space, is the only representative of the chapters 
originally planned on manufacturing, possibly the forerunner of another vol-
ume. All chapters, while presenting theory, mechanism, and the author's 
overview of the internal consistency of the material's pattern of behavior, 
serve also as substantial sources of data and as guides to the relevant literature 
and to further selfstudy. As such, this book should be suitable not only as a 
basis for the new course, but also as an instrument of instruction for students, 
teachers, and workers in all fields of polymer and, indeed, of material science. 

This, in any case, was the intent of all the authors whose extensive, 
conscientious, and patient cooperation made this book possible. Special 
thanks are due to Dr. A. Gessler of the Exxon Corporation, Linden, New 
Jersey, and Dr. E. Kontos, Uniroyal Chemical Division, who conceived the 
idea of a second course and of the nature of this book and to Dr. H. Remsberg, 
Carlisle Tire and Rubber Company, then Chairman of the Division's Educa-
tional Committee, without whose firm backing and continuous understanding 
this effort could not have been concluded. Drs. Gessler, Kontos, and Rems-
berg were further instrumental in gathering many of the authors and offer-
ing a number of early revisions of the manuscripts. 
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I. Introduction 

The single most important property of elastomers—that from which their 
name derives—is their ability to undergo large elastic deformations, that is, 
to stretch and return to their original shape in a reversible way. Theories to 
account for this characteristic high elasticity have passed through three dis-
tinct phases: the early development of a molecular model relating experimental 
observations to the known molecular features of rubbery polymers; then gen-
eralization of this approach by means of symmetry considerations taken from 
continuum mechanics which are independent of the molecular structure; and 
now a critical reassessment of the basic premises upon which these two quan-
titative theories are founded. In this chapter, the theoretical treatment is briefly 
outlined and shown to account quite successfully for the observed elastic be-
havior of rubbery materials. The special case of small elastic deformations is 
then discussed in some detail, because of its technical importance. Finally, 
attention is drawn to some aspects of rubber elasticity which are still little 
understood. 

1 
Copyright © 1978 by Academic Press, Inc. 

AH rights of reproduction in any form reserved. 
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2 A. N. GENT 

II. Elasticity of a Single Molecule 

The essential requirement for a substance to be rubbery is that it consist 
of long flexible chainlike molecules. The molecules themselves must therefore 
have a "backbone" of many noncollinear single valence bonds, about which 
rapid rotation is possible as a result of thermal agitation. Some representative 
molecular subunits of rubbery polymers are shown in Fig. 1; thousands of 
these units linked together into a chain constitute a typical molecule of the 
elastomers listed in Fig. 1. Such molecules will change their shape readily and 
continuously at normal temperatures by Brownian motion. They take up ran-
dom conformations in a stress-free state, but assume somewhat oriented con-
formations if tensile forces are applied at their ends (Fig. 2). One of the first 
questions to consider, then, is the relationship between the applied tension / 
and the mean chain end separation r, averaged over time or over a large number 
of chains at one instant in time. 

Chains in isolation will take up a wide variety of conformations,* governed 
by three factors: the statistics of random processes; a preference for certain 
sequences of bond arrangements because of steric and energetic restraints 
within the molecule; and the exclusion of some hypothetical conformations 
which would require parts of the chain to occupy the same volume in space. 
In addition, cooperative conformations will be preferred for space-filling rea-
sons in concentrated solutions or in the bulk state. 

Flory [1] has argued that the occupied-volume exclusion (repulsion) for 
an isolated chain is exactly balanced in the bulk state by the external (repulsive) 
environment of similar chains, and that the exclusion factor can therefore be 
ignored in the solid state. He has also pointed to many experimental observa-
tions which indicate that cooperative effects do not significantly affect the dis-
tribution of chain end-to-end distances in bulk, or the relation between tension 
and distance. It is noteworthy, for example, that modest swelling by simple 
liquids (say <50%) does not make rubbers much softer [2], although it would 
certainly reduce any packing constraints. Also, direct observation of single 
chain dimensions in the bulk state by inelastic neutron scattering gives values 
fully consistent with unperturbed chain dimensions obtained for dilute solu-
tions in theta solventsf [3, 4], although intramolecular effects may distort the 
local randomness of chain conformation. 

Flory has again given compelling reasons for concluding that the chain 
end-to-end distance r in the bulk state will be distributed in accordance with 

·* Although the terms "configuration" and "conformation" are sometimes used interchangeably, 
the former has acquired a special meaning in organic stereochemistry and designates specific steric 
structures. Conformation is used here to denote a configuration of the molecule which is arrived 
at by rotation of single-valence bonds in the polymer backbone. 

t These are (poor) solvents in which repulsion between different segments of the polymer 
molecule is balanced by repulsion between polymer segments and solvent molecules. 
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Fig. 1. Repeat units for some common elastomer molecules. 

(a) (b) 

Fig. 2. (a) Random chain and (b) oriented chain. (From Gent [46].) 

Gaussian statistics for sufficiently long chains, even if the chains are relatively 
stiff and inflexible over short lengths [1]. With this restriction to long chains it 
follows that the tension-displacement relation becomes a simple linear one: 

f=Ar (1) 

where / is the tensile force, r is the average distance between the ends of the 
chain, and A is inversely related to the mean square end-to-end distance r0

2 

for unstressed chains; 

A = 3kT/r0
2 (2) 

where k is Boltzmann's constant and Tis the absolute temperature. 
If the real molecule is replaced by a hypothetical chain consisting of a large 

number n of rigid, freely jointed links, each of length / (Fig. 3), then 

r0
2 = nl2 (3) 

Fig. 3. Model chain of freely jointed links. 
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In this case r0
2 is independent of temperature because completely random link 

arrangements are assumed. The tension fin Eq. (1) then arises solely from an 
entropic mechanism, i.e., from the tendency of the chain to adopt conforma-
tions of maximum randomness, and not from any energetic preference for one 
conformation over another. The tension/is then directly proportional to the 
absolute temperature T. 

For real chains, consisting of a large number n of primary valence bonds 
along the chain backbone, each of length /, 

r0
2 = Coo«/2 (4) 

where the coefficient C^ represents the degree to which this real molecule 
departs from the freely jointed model. C^ is found to vary from 4 to 10, depend-
ing upon the chemical structure of the molecule and also upon temperature, 
because the energetic barriers to random bond arrangements are more easily 
overcome at higher temperatures [1]. C^2/ may thus be regarded as the effective 
bond length of the real chain [5], a measure of the "stiffness" of the molecule. 

Equation (1) is reasonably accurate only for relatively short distances r, 
less than about one third of the fully stretched chain length [2]. Unfortunately, 
no good treatment exists for the tension in real chains at larger end separations. 
We must therefore revert to the model chain of freely jointed links, for which 

f={kTll)L-\rlnl) (5) 

where L"1 denotes the inverse Langevin function. An expansion of this rela-
tion in terms of r/nl [2], 

/ = (3kTr/nl2)[\ + (3/5)(r/nl)2 

+ (99/175)(r/«/)4 + (513/875)(r/w/)6 + ■ · ■] (6) 

gives a useful indication of where significant departures from Eq. (1) may be 
expected. 

Equation (5) gives a steeply rising relation between tension and chain end 
separation when the chain becomes nearly taut (Fig. 4), in contrast to the 
Gaussian solution, Eq. (1), which becomes inappropriate for r > %nl. Rubber 
shows a similar steeply rising relation between tensile stress and elongation at 
high elongations. Indeed, experimental stress-strain relations closely resemble 
those calculated using Eq. (5) in place of Eq. (1) in the network theory of rubber 
elasticity (outlined in the following section). The deformation at which a small 
but significant departure is first found between the observed stress and that 
predicted by small-strain theory, using Eq. (1), yields a value for the effective 
length / of a freely jointed link for the real molecular chain. This provides a 
direct experimental measure of molecular stiffness. The values obtained are 
relatively large, of the order of 5-15 main-chain bonds, for the only polymer 
which has been examined by this method so far, ds-l,4-polyisoprene [6, 7]. 
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Fig. 4. Tension-displacement relation for a freely jointed chain (Eq. (5)): ( ), Gaussian solu-
tion (Eq. (1)). (From Gent [46].) 
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Fig. 5. Stress-induced softening of a carbon-black-filled vulcanizate of a copolymer of styrene 
and butadiene (25/75); ( ), stress-strain curve of a corresponding unfilled vulcanizate. (From 
Tobolsky and Mark [7a].) 

Equation (5) has also been used to estimate the force at which a rubber 
molecule will become detached from a particle of a reinforcing filler, for example 
carbon black, when a filled rubber is deformed [8]. In this way, a general semi-
quantitative treatment has been achieved for stress-induced softening (Mullins 
effect) of filled rubbers (shown in Fig. 5). 
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HI. Elasticity of a Three-Dimensional Network of Polymer Molecules 

Some type of permanent structure is necessary to form a coherent solid 
and prevent liquidlike flow of elastomer molecules. This requirement is usually 
met by incorporating a small number of intermolecular chemical bonds (cross-
links) to make a loose three-dimensional molecular network. Such cross-links 
are generally assumed to form in the most probable positions, i.e., so that the 
long sections of molecules between them have the same spectrum of end-to-end 
lengths as a similar set of uncross-linked molecules would have. Under Brownian 
motion each molecular section takes up a wide variety of conformations, as 
before, but now subject to the condition that its ends lie at the cross-link sites. 
The elastic properties of such a molecular network are treated later. We con-
sider first another type of interaction between molecules. 

High molecular weight polymers form entanglements by molecular inter-
twining, with a spacing (in the bulk state) characteristic of the particular 
molecular structure. Some representative values of the molecular weight Me 

between entanglement sites are given in Table I. Thus, a high molecular weight 
polymeric melt will show transient rubberlike behavior even in the absence of 
any permanent intermolecular bonds. 

In a cross-linked rubber, many of these entanglements are permanently 
locked in (Fig. 6), the more so the higher the degree of cross-linking [9, 10]. 
If they are regarded as fully equivalent to cross-links, the effective number N 
of network chains per unit volume may be taken to be the sum of two terms 
TVe and Nc, arising from entanglements and chemical cross-links, respectively, 
where 

Ne = pNA/Me, Nc = pNA/Mc 

and p is the density of the polymer, NA is Avogadro's number, and Mt and 
Mc denote the average molecular weights between entanglements and between 
cross-links, respectively. However, the efficiency of entanglements in con-
straining the participating chains is somewhat uncertain, particularly when the 
number of chemical cross-links is relatively small [11-13]. Moreover, the force-

TABLE I 

REPRESENTATIVE VALUES OF THE AVERAGE MOLECULAR WEIGHT Me BETWEEN 

ENTANGLEMENTS FOR POLYMERIC MELTS0 

Polymer Mt Polymer Mt 

Polyethylene 4,000 Poly(iso-butylene) 17,000 
cis-l ,4-Polybutadiene 7,000 Poly(dimethylsiloxane) 29,000 
cw-l,4-Polyisoprene 14,000 Polystyrene 35,000 

0 Obtained from flow viscosity measurements. 
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Fig. 6. Sketch of a permanent entanglement. (From Gent [46].) 

extension relation for an entangled chain will differ from that for a cross-linked 
chain [14], being suffer initially and nonlinear in form. The effective number N 
of molecular chains which lie between fixed points (i.e., cross-links or equivalent 
sites of molecular entanglement) is therefore a somewhat ill-defined quantity, 
even when the chemical structure of the network is completely specified. 

It is convenient to express the elastic behavior of the network in terms of 
the strain energy density Wper unit of unstrained volume. The strain energy w 
for a single chain is obtained from Eq. (1) as 

w = Ar2/2 (7) 

For a random network of TV such chains under a general deformation charac-
terized by extension ratios λί, λ2, λ3 (deformed dimension/undeformed di-
mension) in the three principal directions (Fig. 7), W is given by [2] 

W = NAr2(l2 + λ2
2 + V - 3)/6 (8) 

where r2 denotes the mean square end-to-end distance between chain ends (cross-
link points or equivalent junctions) in the undeformed state. The close similar-
ity of Eqs. (7) and (8) is evident, especially since r2 = (rf

2/3)(Ax
2 + λ2

2 + λ3
2). 

For a random cross-linking process r2 may be assumed to be equal to r0
2. 

the corresponding mean square end-to-end distance for unconnected chains 
of the same molecular length. Because A is inversely proportional to r0

2 (Eq. 
(2)), the only molecular parameter which then remains in Eq. (8) is the number 
N of elastically effective chains per unit volume. Thus, the elastic behavior of 
a molecular network under moderate deformations is predicted to depend only 
upon the number of molecular chains and not upon their flexibility, provided 
that they are long enough to obey Gaussian statistics. 

Although r2 and r0
2 are generally assumed to be equal at the temperature 

of network formation, they may well differ at other temperatures because of 
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(a) (b) 

Fig. 7. (a) Undeformed and (b) deformed state. 

the temperature dependence of r0
2 for real chains (Eq. (4)). Indeed, the tempera-

ture dependence of elastic stresses in rubbery networks has been widely em-
ployed to study the temperature dependence of r0

2, as discussed elsewhere [1, 
15-17]. 

Another way in which r2 and r0
2 may differ is when the network is altered 

after formation. For example, when the network imbibes a swelling liquid, r2 

for the swollen network will be increased by a factor Xs
2 in comparison to its 

original value, where Λ* is the linear swelling ratio. At the same time the number 
of chains per unit volume will be decreased by a factor λ~3. Thus, the strain 
energy density under a given deformation will be smaller for a swollen network 
by a factor As~ * [2]. 

From the general relation for strain energy, Eq. (8), the elastic stresses re-
quired to maintain any given deformation can be obtained by means of virtual 
work considerations (Fig. 7), 

λ2λ3ίί = δΙ¥/δλί 

with similar relations for t2 and /3. Because of the practical incompressibility 
of rubbery materials in comparison to their easy deformation in other ways, 
the original volume is approximately conserved under deformation. The exten-
sion ratios then obey the simple relationship 

λιλ2λ3 = 1 (9) 

As a result, the stress-strain relations become 

h = λ^δΨ/δλι) - p, etc. 

where p denotes a possible hydrostatic pressure (which has no effect on an 
incompressible solid). Thus, only stress differences can be written explicitly [2], 

h - t2 = (NAr2^)^2 - λ2
2) (10) 

For a simple extension, say in the 1-direction, we set λί = λ, and λ2 = λ3 = 
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λ~112 (from Eq. (9)), and t2 = h = 0. Hence, 

/(= tl) = (ΝΑκ2/3)(λ2 - λ-1) (11) 

It is customary to express this result in terms of the tensile force/acting on 
a test piece of cross-sectional area A0 in the unstrained state, where 

f/Ao = t/λ 

The corresponding relation is shown in Fig. 8. It illustrates a general feature 
of the elastic behavior of rubbery solids: although the constituent chains obey 
a linear force-extension relationship (Eq. (1)), the network does not. This 
feature arises from the geometry of deformation of randomly oriented chains. 
Indeed, the degree of nonlinearity depends upon the type of deformation im-
posed. In simple shear, the relationship is predicted to be a linear one with a 
slope (shear modulus G) given by 

hi = Gy, G = NAr2ß (12) 

where y is the amount of shear, e.g., dx/dy. 
Because rubbery materials are virtually incompressible in bulk, the value of 

Poisson's ratio is close to 0.5. Young's modulus E is therefore given by 3G to 
good approximation. However, the predicted relation between stress and tensile 
strain (extension) e (= λ - 1) is only linear for quite small extensions (Fig. 8), 
so that Young's modulus is only applicable for extensions or compressions of 
a few percent. 

5 

4 

f/AjS 

3 

2 

I 

1 2 3 4 5 

λ H+e) 

Fig. 8. Force-extension relation for simple extension: ( ), linear relation obtaining at in-

finitesimal strains. (From Gent [46].) 
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For other deformations, notably the inflation of a thin spherical shell and 
of a cylindrical tube, the load-deformation relations become so nonlinear that 
in these cases the inflation pressure P passes through a maximum value when 
the radial expansion is only 38% and 60%, respectively, above r0, the unstrained 
radius. Thereafter, the pressure decreases continuously on further inflation. 
This feature indicates a potentially unstable condition. Indeed, it is not possible 
to inflate a spherical balloon or cylindrical tube uniformly to expansions 
greater than these amounts because they undergo a transition from a uniform 
to a nonuniform deformation state at these points. 

Experimental measurements for a spherical rubber balloon (initial radius 
r0 = 29 mm, initial thickness d0 = 0.40 mm, shear modulus G = 0.35 MN/ 
m2) are shown in Fig. 9 and compared with the relation obtaine from Eqs. 
(9) and (10): 

Pr0/Gd0 = 2(X-1 -λ~2) (13) 

where λ is now the radial expansion ratio r/r0. The expansion at which P reaches 
a maximum value is indicated by a vertical broken line. Up to this point the 
deformation appears to be uniform and the experimental measurements of 
inflation pressure are in good agreement with Eq. (13). Beyond this point they 
diverge from the calculated relation and the balloon undergoes a strikingly 
nonuniform expansion, as revealed by a grid drawn on it in the unstrained state. 

All of the stress relations given above are derived from Eq. (8). They are 
therefore only valid for moderate deformations of the network, i.e., for de-
formations sufficiently small for the chain tensions to be linearly related to 
their end-to-end distances r (Eq. (1)). Unfortunately, no correspondingly simple 
expression can be formulated for W using Eq. (5), the relationship for large 
strains of the constituent chains, in which the molecular stiffness parameter 
reappears. Instead, a variety of series approximations must be used, as in 
Eq. (6), to give close approximations to the behavior of rubber networks under 
large strains [21. 

6 
P 

(kN/m2) 

4 

2 

λ 
Fig. 9. Inflation of a thin-walled spherical rubber balloon. Solid curve: Eq. (13). (From Gent 

[46].) 
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IV. Comparison with Experiment 

Although the treatment of rubber elasticity given in the preceding section 
is generally rather successful, certain discrepancies are found to occur. The 
first consists of observed stresses higher than predicted, e.g., by Eq. (11), and 
is often expressed by an additional contribution referred to as the C2 term. 
This contribution is relatively large at small strains (although it is always the 
smaller part of the observed stress) and decreases in importance as the strain 
increases. It also decreases as the network is dilated by swelling with an inert 
liquid. Thus, the "C2 stress" appears to reflect a non-Gaussian characteristic 
of network chains which is only important at small values of the chain end-to-
end distance r. Indeed, Thomas [18] has shown that the magnitude of the C2 

stress and its complex dependence upon type and degree of strain, and upon 
degree of swelling, can all be accurately described by a simple additional term 
in the relation for the strain energy w for a single network chain, Eq. (7), which 
becomes 

2w = Ar2 + BY1 (14) 

The second term clearly becomes insignificant at large values of r. 
Further evidence bearing on the physical nature of the discrepancy is pro-

vided by two other observations: C2 does not appear to be strongly dependent 
upon temperature [19] and therefore does not appear to be associated with 
the energetics of chain conformations; and it is closely correlated with the 
tendency of the polymer chains to form molecular entanglements [20, 21]. 
For example, those polymers that have a high density of entanglements in the 
bulk state (Table I) yield rubbery networks with a relatively high C2 stress 
component. 

Finally, there is no evidence that isolated chains in theta solvents fail to 
conform to Gaussian statistics, so that the C2 discrepancy appears to arise 
only when the molecular chains are tied into a network. 

These varied aspects of the C2 stress suggest that it is associated with en-
tangled chains in networks (Fig. 6) and specifically that it arises from restrictions 
on the conformations available to entangled chains, different from those operat-
ing at cross-link sites. Prager and Frisch [14] have pointed out that chains in-
volved in model entanglements are governed by different statistics; their 
conclusions are quite consistent with what is known of the C2 stress, but a 
quantitative comparison is not yet possible. 

A second discrepancy between theory and experiment is found when the 
Gaussian part of the measured stresses is compared with the theoretical result 
for an ideal network. Numerical differences of up to 50% are obtained between 
the density of effective chains calculated from the observed stresses and that 
from the chemistry of cross-linking (e.g., see Bueche [9]). This discrepancy may 
be due to an error in the theoretical treatment as given here [22]. James and 
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Guth [23] arrived at stresses only half as large as those given in Eq. (10), from a 
somewhat different theoretical standpoint. However, up to the present the 
quantitative aspects of cross-linking and the topology of networks formed by 
cross-linking have been difficult to measure and to control, so that an accurate 
test of the theory is not yet feasible. 

A third and major discrepancy, already referred to, is found at large de-
formations when the network chains fail to obey Gaussian statistics, even 
approximately. Considerable success is achieved in this case by using Eq. (5) 
in place of Eq. (1) for chain tensions in the network [2]. 

Notwithstanding these discrepancies, the simple treatment of rubber 
elasticity outlined in this chapter has proved to be remarkably successful in 
accounting for the elastic properties of rubbers under moderate strains, up to 
about 300% of the unstrained length (depending upon the length and flexibility, 
and hence the extensibility, of the constituent chains). It predicts the general 
form of the stress-strain relationships correctly under a variety of strains, the 
approximate numerical magnitudes of the stresses for various chemical struc-
tures, and the effects of temperature and of swelling the rubber with an inert 
mobile liquid upon the elastic behavior. It also predicts novel second-order 
stresses, discussed later, which have no counterpart in classical elasticity theory. 
In summary, it constitutes a major advance in our understanding of the proper-
ties of polymeric materials. 

V. Continuum Theory of Rubber Elasticity 

A general treatment of the stress-strain relations of rubberlike solids was 
developed by Rivlin [24, 25], assuming only that the material is isotropic in 
elastic behavior in the unstrained state, and incompressible in bulk. It is quite 
surprising to note what far-reaching conclusions follow from these elementary 
propositions, which make no reference to molecular structure. 

Symmetry considerations suggest that appropriate measures of strain are 
given by three strain invariants, defined as 

I, = V + λ2
2 + λ3

2 

*2 = Λχ A2 ~f" Λ-2 A3 ■+■ A3 A\ 

I3 = λχ λ2 Λ.3 

Moreover, for an incompressible material 73 is identically unity (Eq. (9)) and 
hence only two independent measures of strain, namely, /1 and /2, remain. It 
follows that the strain energy density Wis a function of these two variables only: 

W = f(hJ2) (15) 

Furthermore, because the differences between the deformed and undeformed 
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states 11 — 3 and I2 — 3 are of second order in the strains, eu e2,e3, the strain 
energy function at sufficiently small strains must take the form 

W= Cdh - 3) + C2(/2 - 3) (16) 

where d and C2 are constants. This particular form of strain energy function 
was originally proposed by Mooney [26] and is therefore often called the 
Mooney-Rivlin equation. It is noteworthy that the first term corresponds to 
the relation obtained from the molecular theory of rubber elasticity, Eq. (8), 
if the coefficient d were identified with NAr2/6 = \NkT{r2jr0

2). 
Eq. (16) leads to the following stress-strain relation in simple extension or 

compression, 

/(= tl) = 2 d a 2 - A-1) + 2c2a - λ~2) 

in place of Eq. (11). In terms of the tensile or compressive force F acting on a 
test piece of cross-sectional area A0 in the unstrained state, this relation becomes 

F/A0(/
2 - r 1 ) = 2C1 + 2C 2 /A (17) 

Although Eq. (17) is necessarily valid at small strains, considerable con-
fusion has arisen from its application at larger strains, when it no longer 
holds. It is almost unfortunate that the stress-strain relation obtained in 
simple extension appears to be in accord with the Mooney-Rivlin equation 
(16), up to moderately large strains. This fortuitous fit arises because the par-
ticular strain energy function obeyed by rubber, discussed later, depends upon 
strain in a certain way [27]. 

The strain energy function W is determined experimentally from measured 
stresses in terms of its derivatives dW/dli and dWjdI2, denoted hereafter Wx 

and W2. The former is found to be approximately constant, but the latter varies 
with the strain, primarily as a function of the strain measure I2 [2, 27-29]. 
This variation may be described to a good approximation by the simple em-
pirical relation 

W2 = K2/I2 

where K2 is a constant [30]. However, it should be noted that both the small 
dependence of Wi and the large dependence of W2 upon strain are described 
accurately by Eq. (14), the Thomas modification of Gaussian molecular theory 
[18]. 

Considerable success has also been achieved in fitting the observed elastic 
behavior of rubbers by strain energy functions which are formulated directly 
in terms of the extension ratios ku λ2, λ3 instead of in terms of the strain in-
variants / l 5 I2 [28, 29, 31-35]. Although experimental results can be de-
scribed economically and accurately in this way, the functions employed are 
empirical and the numerical parameters used as fitting constants do not appear 
to have any direct physical significance in terms of the molecular structure of 
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the material. On the other hand, the molecular elasticity theory, supplemented 
by a simple non-Gaussian term whose molecular origin is in principle within 
reach, seems able to account for the observed behavior at small and moderate 
strains with comparable success. 

VI. Second-Order Stresses 

Because the strain energy function for rubber is valid at large strains, 
and yields stress-strain relations which are nonlinear in character, the stresses 
depend upon the square and higher powers of strain, rather than the simple 
proportionality expected at small strains. A striking example of this feature 
of large elastic deformations is afforded by the normal stresses fll5 f22, t33 

that are necessary to maintain a simple shear deformation of amount y (in 
addition, of course, to simple shear stresses) [24, 25, 36]. These stresses are 
predicted to increase in proportion to y2. 

They are represented schematically in Figs. 10 and 11 for two different 
choices of the arbitrary hydrostatic pressure /?, chosen so as to give the appro-
priate reference (zero) stress. In Fig. 10, for example, the normal stress txl in 
the shear direction is put equal to zero; this condition would arise near the 
front and rear surfaces of a sheared block. In Fig. 11, the normal stress f33 

is put equal to zero; this condition would arise near the side surfaces of a sheared 
block. In each case a compressive stress t22 is found to be necessary to maintain 
the simple shear deformation. In its absence the block would tend to increase 
in thickness on shearing. 

When the imposed deformation consists of an inhomogeneous shear, as 
in torsion, the normal forces generated (corresponding to the stresses t22 in 
Figs. 10 and 11) vary from point to point over the cross section (Fig. 12). The 
exact way in which they are distributed depends upon the particular form of 
strain energy function obeyed by the rubber, i.e., upon the values of W\ and 
W2 which obtain under the imposed deformation state [36]. 

t 2 2 = -2(W(+W2)72 

Fig. 10. Stresses required to maintain a simple shear deformation of amount y. The normal 
stress tu is set equal to zero. (From Gent [46].) 
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W - 2 W 2 J " 

i l 2y72 , wi+ w2>* 

t„=2w,r 

Fig. 11. Stresses required to maintain a simple shear deformation of amount y. The normal 
stress i33 is set equal to zero. (From Gent [46].) 

If a rubber block is subjected to a shearing stress while it is simultaneously 
compressed against a rigid frictional surface, it may undergo, when the coeffi-
cient of friction μ is high, a large shear deformation before sliding begins. If 
the applied compressive deformation (assumed small) is held constant, the 
normal stress t22 will then increase sharply as the amount of shear increases. 
Indeed, when the amount of shear y exceeds a critical value of (2μ)-1 and 
W2(Wi + W2)~

1(2^)~1 for the stress conditions shown in Figs. 10 and 11, 
respectively, no sliding is possible, because the greater the applied shear stress 
r12, the more the compressive stress t22 generated by the shear deformation 
exceeds that necessary to prevent sliding. 

We therefore infer that sliding becomes completely inhibited for soft elastic 
materials held under a small compressive strain of approximately 0.08μ~2 

[37]. The condition for such frictional "locking" depends upon whether the 
material under consideration lies near front and rear surfaces of the block, or 
near the side surfaces, because different stress conditions prevail in these dif-

Fig. 12. Sketch of a cylindrical rod under torsion, showing the distribution of normal stress 
tz: (corresponding to -t22 in Figs. 10 and 11) over the cross section of the rod [36]. 
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ferent regions (Figs. 10 and 11). When it does occur, however, the block must 
undergo frictional tearing, and hence abrasive wear, in order to move over the 
frictional surface. 

These considerations illustrate again the close connection between an under-
standing of rubberlike elasticity and of other physical properties of rubbery 
materials. 

VII. Elastic Behavior under Small Deformations 

Under small deformations rubbers are linearly elastic solids. Because of 
high moduli of bulk compression, about 2000 MN/m2, compared to the 
shear moduli G, about 0.2-5 MN/m2, they may be regarded as relatively in-
compressible. The elastic behavior under small strains can thus be described 
by a single elastic constant G. Poisson's ratio is effectively 1/2, and Young's 
modulus E is given by 3G, to good approximation. 

A wide range of values for G can be obtained by varying the composition 
of the elastomer, i.e., by changing the chemistry of cross-linking, oil dilution, 
and filler content. However, soft materials with shear moduli of less than about 
0.2 MN/m2 prove to be extremely weak and are seldom used. Also, particularly 
hard materials made by cross-linking to high degrees prove to be brittle and 
inextensible. The practical range of shear modulus, from changes in degree of 
cross-linking and oil dilution, is thus about 0.2-1 MN/m2. Stiffening by fillers 
increases the upper limit to about 5 MN/m2, but those fillers which have a par-
ticularly pronounced stiffening action also give rise to stress-softening effects 
like those shown in Fig. 5, so that the modulus becomes a somewhat uncertain 
quantity. 

It is customary to characterize the modulus, stiffness, or hardness of rubbers 
by measuring their elastic indentation by a rigid die of prescribed size and shape 
under specified loading conditions. Various nonlinear scales are employed to 
derive a value of hardness from such measurements [38]. Corresponding values 
of shear modulus G for two common hardness scales are given in Fig. 13. 

Many rubber products are normally subjected to fairly small deformations, 
rarely exceeding 25% in extension or compression or 75% in simple shear. A 
good approximation for the corresponding stresses can then be obtained by 
conventional elastic analysis assuming linear relationships. One particularly 
important deformation is treated here: the compression or extension of a 
thin rubber block, bonded on its major surfaces to rigid plates (Fig. 14). A 
general treatment of such deformations has recently been reviewed [39]. 

It is convenient to assume that the deformation takes place in two stages: 
a pure homogeneous compression or extension of amount e, requiring a uni-
form compressive or tensile stress σγ = Ee, and a shear deformation restoring 
points in the planes of the bonded surfaces to their original positions in these 
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Fig. 13. Relations between shear modulus G and indentation hardness: ( ), Shore A Scale; 
( ), International Rubber Hardness Scale. (From Tobolsky and Mark [7a].) 

planes [40]. For a cylindrical block of radius a and thickness /z, the correspond-
ing shear stress / acting at the bonded surfaces at a radial distance r from the 
cylinder axis is given by 

/ = Eerjh 

This shear stress is associated with a corresponding normal stress or pressure 
σ2, given by 

σ2 = Ee(a2/h2)[\ - (r2/a2)] (18) 

These stress distributions are shown schematically in Fig. 14. Although they 
must be incorrect right at the edges of the block, because the assumption of a 
simple shear deformation cannot be valid at these points of singularity, they 
appear to provide satisfactory approximations over the major part of the 
bonded surfaces [41]. 
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Fig. 14. Sketch of a bonded rubber block under a small compression. The distributions of 
normal stress σ and shear stress / acting at the bonded surfaces are represented by the upper por-
tions of the diagram. (From Tobolsky and Mark [7a].) 
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By integrating the sum of the normal stresses σγ + σ2 over the bonded 
surface, the total compressive force F is obtained in the form [40] 

F/na2e = E[\ + (a2/2h2)] = E (19) 

Clearly, for thin blocks of large radius the effective value E of Young's modulus 
(given by the right-hand side of Eq. (19)) is much larger than the real value £, 
due to the restraints imposed by the bonded surfaces. Indeed, for values of the 
ratio a/h greater than about 10, a significant contribution to the observed dis-
placement comes from volume compression or dilation because E is now so 
large that it becomes comparable to the modulus of bulk compression [40] 
(Fig. 15). 

When a thin bonded block is subjected to tensile loading, a state of approx-
imately equal triaxial tension is set up in the central region of the block. The 
magnitude of the stress in each direction is given by the tensile stress, or negative 
pressure, σ2 at r = 0, i.e., Eea2/h2, from Eq. (18). Under this outwardly directed 
tension a small cavity in the central region of the block will expand uniformly 
in size. However, the degree of expansion is predicted by the theory of rubber-
like elasticity to become indefinitely large at a critical value of the tension of 
about 5E/6 [42]. (This is a type of elastic instability, resembling that observed 
in the inflation of a balloon or tube.) Thus, if cavities are present in the interior 
of a bonded block, they are predicted to expand indefinitely, i.e., rupture, at a 
critical tensile strain eG9 given approximately by 

ec = 5h2/6a2 

and at a corresponding critical value of the applied tensile load, obtained by 
substituting this value of e in Eq. (19). 
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Fig. 15. Effective value of Young's modulus E for bonded blocks versus ratio a/h of radius 
to thickness. (From Tobolsky and Mark [7a].) 
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As discussed in Chapter 10, internal cracks and voids are found to develop 
suddenly in bonded rubber blocks at well-defined tensile loads, which agree 
with those predicted by the treatment outlined above [42]. In particular, the 
loads are found to increase in proportion to Young's modulus E for rubbers 
of different hardness, in support of the proposed mechanism of fracture due 
to elastic instability. To avoid internal fractures of this kind it is thus necessary 
to restrict the mean tensile stress applied to thin bonded blocks to less than 
about E/3. 

In compression, on the other hand, quite large stresses can be supported. 
A stress limit can be calculated by assuming that the maximum shear stress, 
developed at the bonded edges, should not exceed G, i.e., that the maximum 
shear deformation should not exceed about 100%. This yields a value for the 
allowable overall compressive strain oih/3a, corresponding to a mean compres-
sive stress of the order of E for discs with ratios a/h between about 3 and 10. 
However, this calculation assumes that the approximate stress analysis outlined 
earlier is valid right at the edges of the block, and this is certainly incorrect. 
Indeed, the local stresses in these regions will depend strongly upon the detailed 
shape of the free surface in the neighborhood of the edge. 

VIII. Some Unsolved Problems in Rubber Elasticity 

We turn now to some features of the elastic response of rubbery materials 
which are still not fully understood: 

(a) As normally prepared, molecular networks comprise chains of a wide 
distribution of molecular lengths. Numerically, small chain lengths will tend 
to predominate. The effect of this diversity upon the elastic behavior of net-
works, particularly under large deformations, is not known. 

A related problem concerns the elasticity of short chains. They are in-
evitably non-Gaussian in character and the analysis of their conformational 
statistics is likely to be difficult. Nevertheless, it seems necessary to carry out 
this analysis in order to be able to treat real networks in an appropriate way. 

(b) Insufficient attention seems to have been paid to problems of network 
topology, i.e., to the functionality of cross-links, their distribution in space, 
intramolecular loop formation, and the type and degree of molecular entangle-
ment set up in networks. (See however Alfrey and Lloyd [43], Dusek and Prins 
[44] and interpenetrating networks [45].) 

(c) The effect of mutual interaction between molecular chains in the 
condensed state, and their probable adoption of cooperative conformations 
in hydrocarbon rubbers appears to be small, as discussed earlier. However, 
this is unlikely to be a valid generalization for all networks; some will probably 
interact strongly and the effect in these cases will presumably be quite signif-
icant. No analysis of this effect is known to the author. 
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(d) Finally, the formulation of a satisfactory general treatment of net-
works under large deformations, when the chains approach their fully stretched 
state, would be valuable in the quantitative treatment of work hardening, 
fatigue, and fracture processes. 
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