APPLICATIONS OF METAGENOMICS

AGRICULTURE, ENVIRONMENT, AND HEALTH

Edited by Hrudayanath Thatoi Sukanta Kumar Pradhan Upendra Kumar

Applications of Metagenomics

This page intentionally left blank

Applications of Metagenomics

Agriculture, Environment, and Health

Edited by

HRUDAYANATH THATOI

Center for Industrial Biotechnology Research, Siksha 'O' Anusandhan (Deem to be University), Bhubaneswar, India

SUKANTA KUMAR PRADHAN

Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

UPENDRA KUMAR

ICAR-National Rice Research Institute, Cuttack, Odisha, India

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-98394-5

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Stacy Masucci Acquisitions Editor: Ali Afzal-Khan Editorial Project Manager: Timothy Bennett Production Project Manager: Neena S. Maheen

Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

Dedication

Hrudayanath Thatoi dedicates this book to his parents and wife.

Sukanta Kumar Pradhan dedicates this book to his late parents and wife Mrs. Sonali Pradhan.

Upendra Kumar dedicates this book to his parents, wife, and students.

This page intentionally left blank

Contents

	of contributors	XII
	out the editors	Χİλ
Prei	face	XX
Se	ection I Agriculture	
1.	Meta-omics approaches for understanding and exploring soil microbial communities for sustainable agriculture	3
	Jyotsana Tilgam, Deepanshu Jayaswal, Mushineni Ashajyothi, Jyoti Prakash Singh, Adarsh Kumar and Hillol Chakdar	
	1.1 Introduction	3
	1.2 Effect of climate change on soil microbial communities	5
	1.3 Meta-genomics and its application in sustainable agriculture	6
	1.4 Meta-transcriptomics and its application in sustainable agriculture	ç
	1.5 Meta-proteomics and its application in sustainable agriculture	11
	1.6 Metabolomics and its application in sustainable agriculture	13
	1.7 Stable isotope probing—omics and its application in sustainable agriculture	14
	1.8 Challenges for meta-omics approaches in microbiome studies	15
	1.9 Conclusion	17
	References	17
2.	Impact of long-term agricultural management practices on	
	rhizospheric microbiome <i>vis-à-vis</i> soil and plant health	23
	Abinash Das, Khushboo Rani, Ankita Trivedi, Adarsh Kumar and Dolamani Amat	
	2.1 Introduction	23
	2.2 Role of microbial diversity in soil health and plant productivity	24
	2.3 Impact of agricultural management practices on rhizospheric microbiome	30
	2.4 Conclusions	43
	References	44
3.	Plant microbiome: trends and prospects for sustainable agriculture	
	management	53
	Anupam Mondal, Sagar Bag and Avishek Banik	
	3.1 Introduction	53
	3.2 Diversity and function of plant microbiomes	55

	3.3 Impact of microbiomes on plant functions	58
	3.4 Modulation and employment of the plant microbiomes	60
	3.5 Plant microbiomes modulations by agricultural management	65
	3.6 Applications of beneficial microbiome for crop improvement	67
	3.7 Plant microbiomes improvement by using inoculants for sustainable	
	productivity of plants	70
	3.8 Different biological strategies to minimize fertilizer application	71
	3.9 Microbiome engineering	73
3	3.10 Conclusions and prospects	77
А	Acknowledgments	78
R	References	78
n	ong-term application of compost influences soil and root nicrobial communities under diverse rice-based cropping systems Dolamani Amat, J.K. Thakur, Asit Mandal, Kampati Kiran Kumar Reddy,	89
	Abinash Das and A.K. Patra	
4	I.1 Introduction	89
4	1.2 Compost as soil amendments	90
4	3.3 Composting and recycling of organic matter	90
4	1.4 Composting process	91
4	1.5 Change in microbial community during composting period	92
4	1.6 Effect of compost on soil microbial properties	94
4	4.7 Long term effect of compost on root and soil microbial communities under rice-based cropping system	95
4	1.8 Conclusions	97
R	References	98
Sect	tion II Health	
	Understanding the role of gut microbiome in response to dietary supplement of prebiotics with reference to aquaculture	103
	Alla Devivaraprasad Reddy, Dharnappa Sannejal Akhila, Premnath Ramya, /ittal Rajeshwari, Guladahalli Manjunatha Kavitha and Sanjay Kumar Gupta	
5	5.1 Introduction	103
5	5.2 Classification	105
5	5.3 Applications of prebiotics	112
5	5.4 Metagenomics approaches for the identification of fish gut microbiota	113
5	5.5 Fish gut microbiome	117
5	5.6 Effect of prebiotic in immune response	117
5	5.7 Conclusion and future prospects	119
R	References	120

Contents	ix

6.	Profiling of microbiome diversity in cattle: present status and future prospectives	129
	Sanatan Majhi, Rout George Kerry and Lakshman Sahoo	
	6.1 Introduction	129
	6.2 Methods used for microbiome study	130
	6.3 Conclusion	137
	References	138
7.	A metagenomic overview of microbial diversity and their impact on human health	143
	Jamseel Moopantakath, Madangchanok Imchen, Aathira Sreevalsan and Ranjith Kumavath	
	7.1 Introduction	143
	7.2 Microbiome dysbiosis in noncommunicable disease	146
	7.3 Modulation of the microbiome in COVID-19 patients	148
	7.4 Oral microbiome in caries and periodontal disease	149
	7.5 Influence of microbiome in neurological development	151
	7.6 Antibiotic-induced microbiome dysbiosis	153
	7.7 Restoration of the gut microbiome with probiotics and prebiotics	154
	7.8 Conclusion	155
	Acknowledgments	156
	References	156
8.	Severity of severe acute respiratory syndrome coronavirus 2 and its impact on human health, with special reference to gut metabiome	163
	Debanjan Mitra, Ishita Biswas and Pradeep K. Das Mohapatra	
	8.1 Introduction	163
	8.2 Evolution of SARS-CoV to SARS-CoV-2	164
	8.3 Gut microbiome of a healthy human	167
	8.4 Relation of COVID-19 and gut microbiome	168
	8.5 Post COVID-19 complications and mucormycosis	171
	8.6 Nutritional measures during and after COVID-19	172
	8.7 Therapeutic role of nutritional supplements	173
	8.8 Conclusion	174
	References	174
9.	Metagenomics-based diagnosis support system for the surveillance of infectious disease in healthcare settings	179
	Dibyabhaba Pradhan, Amit Katiyar, Tanya Sharma, Harpreet Singh and Punit Kaur	
	9.1 Introduction	179

	9.2	Protocol for clinical metagenomics next-generation sequencing	180
	9.3	Bioinformatic expertise and software's	184
	9.4	Applications of clinical metagenomics	184
	9.5	Metagenomics next-generation sequencing—based clinical decision support systems	189
	9.6	Challenges	191
	9.7	Metagenomics next-generation sequencing in the next decade	193
	Refe	rences	193
Se	ctio	n III Environment	
10.	mic	nomic approaches for the investigation of seagrass rhizosphere robiome and bioprospecting potential: a field study from ika Lagoon, Odisha, India	20 1
	Mad	husmita Mohapatra, Stiti Prangya Dash and Gurdeep Rastogi	
	10.1	Introduction	20
	10.2	Seagrass microbiome in relation to plant growth and benthic biogeochemistry	203
	10.3	Molecular techniques to explore seagrass rhizosphere microbiome	205
	10.4	Seagrass microbial ecology research in India: a case study from Chilika Lagoon	217
	10.5	Bioprospecting applications of seagrass microbiome	227
	10.6	Concluding remarks and future perspectives	228
	Ackr	nowledgments	229
	Refe	rences	229
11.		isiting metagenome of South-Asian hot springs for exploration of molecules	235
	Atif	Khurshid Wani, Daljeet Singh Dhanjal, Chirag Chopra and Reena Singh	
	11.1	Introduction	235
	11.2	Microbial adaptability: surviving in hot springs	236
	11.3	Metagenomics and hot springs: exploring the thermophilic reservoirs	239
	11.4	Bioprospecting South-Asian hot springs using metagenomics	242
	11.5	Strategies for improving the bioactivity of metagenome-derived molecules	245
	11.6	Conclusion	246
	Refe	rences	247
12.		agenomic insights of microbial diversity in mangrove forest ironment	253
		angchanok Imchen, Jamseel Moopantakath, Aathira Sreevalsan and ith Kumavath	
	12.1	Introduction	253
	12.2	The microbiome of mangrove rhizosphere	254

		Contents	xi
	12.3 Microbiome in polluted mangrove sediments	256	
	12.4 Diversity of extreme halophiles	258	
	12.5 Industrial and pharmaceutical significant biomolecules	259	
	12.6 Antibiotic-resistant genes in mangrove sediments	262	
	12.7 Antimicrobial compounds from mangrove environment	263	
	12.8 Conclusion	265	
	Acknowledgments	265	
	References	265	
13.	Distinct biotic and abiotic factors influencing microbial diversity of soil:		
	metagenomic tools and approaches employed	271	
	Renuka Ravinath, Abhinash Kumar Giri, Shraddha Bijalwan, Karthick Vasudevan, Anupam J. Das, Ligi Milesh, Nijalingappa Ramesh and Sushil Kumar Middha		
	13.1 Introduction	271	
	13.2 Factors driving the microbial diversity of soil	274	
	Acknowledgments	286	
	References	286	
	Further reading	292	
14.	Applications and limitations of bioinformatics pipelines and tools for metagenomic study	297	
	Sangita Dixit, Dibyajyoti Uttameswar Behera, Mahendra Gaur and Enketeswara Subudhi		
	14.1 Introduction	297	
	14.2 Pipelines and parameters used for metagenomic analysis	297	
	14.3 QIIME2 (Quantitative Insights into Microbial Ecology)	298	
	14.4 MG-RAST	299	
	14.5 MEGAN	301	
	14.6 Strength and weakness of QIIME2, MGRAST, and MEGAN	304	
	14.7 Conclusion	306	
	Acknowledgment	306	
	References	307	
15.	Bioinformatics methods and tools in metagenomics	311	
	Sushil Kumar Middha, Kadabagere Narayanaswamy Hemavathi, Nidhi Dwivedi, Raju Sowmya, Korthusheril Ajayakumar Akshaya, Arvind Kumar Goyal, Bilqueesa Khaliq, Mashooqa Bhat and Talambedu Usha		
	15.1 Introduction	311	
	15.2 Application of metagenomics	312	

		Methods involved in metagenomics study	313
		Conclusion	327
		owledgment ences	327 327
		er reading	333
	ruitti	er reading	333
16.		ances in microbial ecology illustration using metagenomics and nformatics approaches	335
		nkar Ghosh, Nilothpal Sinha, Mitun Sen, Irin Khatun, eep K. Das Mohapatra and Joseph Saoud	
	16.1	Introduction	335
	16.2	Influence of microbial ecology on environment and human health	336
	16.3	Impact on microbial association toward balancing or equilibrating the ecosystem (microbial flora and microbial fauna and human microbiomes)	339
	16.4	Quantification of microbial ecology and its limitations	342
	16.5	Impact of metagenomics on microbial ecology with special emphasis on advanced tools	345
	16.6	Advantages and challenges of metagenomics to balance microbial ecology	348
	16.7	Conclusion	350
	Ackn	owledgments	351
	Refer	ences	351
17.		agenomics and bioinformatics in microbial ecology:	359
		ent status and beyond it De, Tilak Nayak, Gargi Das and Paltu Kumar Dhal	339
	17.1	Introduction	359
	17.2	Metagenomics and its development	360
	17.3	Sequence-based metagenomics	362
	17.4	Function-based metagenomics analysis	373
	17.5	Recent advancement	373
		Additional approaches for the fulfilment of Metagenomics void	376
	Ackn	owledgments	377
	Refer	ences	377
Inde.	X		387

List of contributors

Dharnappa Sannejal Akhila

Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India

Korthusheril Ajayakumar Akshaya

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Dolamani Amat

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India; Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India

Mushineni Ashajyothi

ICAR-Indian Agricultural Research Institute, New Delhi, India; ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India

Sagar Bag

Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University (2nd Campus), Kolkata, West Bengal, India

Avishek Banik

Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University (2nd Campus), Kolkata, West Bengal, India

Dibyajyoti Uttameswar Behera

Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

Mashooga Bhat

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Shraddha Bijalwan

Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India

Ishita Biswas

Department of Microbiology, Raiganj University, Raiganj, West Bengal, India; Department of Botany, S. B. S. Government College, Hili, Dakshin Dinajpur, West Bengal, India

Hillol Chakdar

ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India

Chirag Chopra

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

Abinash Das

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India

Anupam J. Das

Molsys Scientific (Molsys Pvt. Ltd), Bengaluru, Karnataka, India

Gargi Das

Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India

Pradeep K. Das Mohapatra

Department of Microbiology, Raiganj University, Raiganj, West Bengal, India

Stiti Prangya Dash

Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, India

Debjit De

Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India

Paltu Kumar Dhal

Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India

Daljeet Singh Dhanjal

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

Sangita Dixit

Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

Nidhi Dwivedi

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Mahendra Gaur

Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

Dipankar Ghosh

Microbial Engineering and Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, West Bengal, India

Abhinash Kumar Giri

Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India

Arvind Kumar Goyal

Department of Biotechnology, Bodoland University, Kokrajhar, Assam, India

Sanjay Kumar Gupta

ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India

Kadabagere Narayanaswamy Hemavathi

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Madangchanok Imchen

Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, India

Deepanshu Jayaswal

ICAR-Indian Agricultural Research Institute, New Delhi, India; ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India

Amit Katiyar

Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India

Punit Kaur

Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India

Guladahalli Manjunatha Kavitha

Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India

Rout George Kerry

Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India

Bilqueesa Khaliq

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Irin Khatun

Microbial Engineering and Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, West Bengal, India

Adarsh Kumar

ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India

Ranjith Kumavath

Department of Biotechnology, School of Life Science, Pondicherry University, Puducherry, India; Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, India

Sanatan Majhi

Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, Odisha, India

Asit Mandal

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India

Sushil Kumar Middha

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammani College for Women, Bengaluru, Karnataka, India

Ligi Milesh

Department of Surgery, University of Wisconsin, Madison, WI, United States

Debanjan Mitra

Department of Microbiology, Raiganj University, Raiganj, West Bengal, India

Madhusmita Mohapatra

Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, India

Anupam Mondal

Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University (2nd Campus), Kolkata, West Bengal, India

Jamseel Moopantakath

Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, India

Tilak Nayak

Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India

A.K. Patra

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India

Dibyabhaba Pradhan

ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India; Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India

Vittal Rajeshwari

Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India

Nijalingappa Ramesh

Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India

Premnath Ramya

Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India

Khushboo Rani

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India; Division of Soil Chemistry and Fertility, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India

Gurdeep Rastogi

Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, India

Renuka Ravinath

Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India

Alla Devivaraprasad Reddy

Krishi Vigyan Kendra, Dr. YSR Horticultural University, Venkataramannagudem, Andhra Pradesh, India

Kampati Kiran Kumar Reddy

Crop Improvement Division, ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, India

Lakshman Sahoo

Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India

Joseph Saoud

Department of Natural Resources, McGill University, Montreal, QC, Canada

Mitun Sen

Microbial Engineering and Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, West Bengal, India

Tanya Sharma

ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India

Harpreet Singh

ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India

Jyoti Prakash Singh

ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India

Reena Singh

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

Nilothpal Sinha

Microbial Engineering and Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, West Bengal, India

Raju Sowmya

DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, Karnataka, India

Aathira Sreevalsan

Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala, India

Enketeswara Subudhi

Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India

J.K. Thakur

Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India

Jyotsana Tilgam

ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, India

Ankita Trivedi

Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India

Talambedu Usha

Department of Biochemistry, Maharani Lakshmi Ammanni College For Women, Bengaluru, Karnataka, India

Karthick Vasudevan

Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India

Atif Khurshid Wani

School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India

About the editors

Prof. (**Dr.**) **Hrudayanath Thatoi** is currently serving as a director of the Industrial Biotechnology Research (CIBR), Siksha "O" Anusandhan, Deemed to be University, Bhubaneswar. Previously, Dr. Thatoi has also served as a Chairman of the P.G. Council, Maharaja Sriram Chandra Bhanja Deo University (MSCBU), Baripada, and as a Professor and Head of the Department of Biotechnology, MSCB University. Dr. Thatoi has also discharged additional responsibilities as the director of the Human Resource Development Centre (HRDC), a Director of the Centre for Similipal

Studies, and a Director of self-finance courses, prof-in-charge, R&D and library coordinator, IDP of Maharaja Sriram Chandra Bhanja Deo University. Dr. Thatoi has also served as a mangrove biologist and Senior Scientist at the MS Swaminathan Research Foundation, Chennai. Dr. Thatoi obtained his MSc, MPhil, and PhD from Utkal University and is serving as faculty of biotechnology since 2004. The teaching and research interests of Dr. Thatoi include molecular biology, industrial and pharmaceutical biotechnology, and microbiology. Dr. Thatoi has implemented several research projects funded by UGC-DAE, Government of India, DST, Government of Odisha, and Forest Department, Government of Odisha. To date, Dr. Thatoi is credited with publication of 25 books including two textbooks and more than 326 research papers in national and international journals, proceedings of conferences, and book chapters and awarded two patents. He serves as a member of several scientific societies and editorial boards of national and international journals. He is a recipient of the Samanta Chandra Sekhar Award by DST, Government of Odisha, Prof. Harihar Pattanaik Award for environment science by Orissa Botanical Society and Fellow of Society of Applied Biotechnology. So far, he has guided 20 PhD scholars and a number of MTech, BTech, and MPhil students for their thesis and dissertation works. He has visited Bangkok, Nepal, and Malaysia to attend international conferences on biodiversity and biotechnology. Dr. Thatoi is a functional area expert in ecology and biodiversity being accredited by QCI, NABET, and MoEF, Government of India.

Dr. Sukanta Kumar Pradhan is serving as a HoD in the Department of Bioinformatics of Odisha University of Agriculture and Technology (OUAT). He obtained his BSc (Agriculture) and MSc (Bioinformatics) from OUAT and PhD (biotechnology) from Ravenshaw University. He is also working as the Director of the OUAT Data Centre. The teaching and research interests of Dr. Pradhan include genomics, metagenomics, transcriptomics, bioinformatics, biotechnology, and microbiology. He has successfully implemented several research projects funded by DBT, Government of India, RKVY,

Government of Odisha, and DST, Government of Odisha. To date, Dr. Pradhan is credited with publication of 59 research papers in reputed national and international journals and 9 book chapters. He serves as a member of several scientific societies of national repute. So far, he has guided one PhD scholar and 53 MSc students for their thesis and dissertation works. He has visited the United States and Bangkok to attend international conferences on computational biology.

Dr. Upendra Kumar is working as a Senior Scientist at ICAR-National Rice Research Institute, Cuttack (Odisha), India. He has also served as a visiting scientist at CSIRO, Adelaide, Australia, twice. His research work is a blend of basic and applied nature, covering major aspects of microbiology in relation to plant and soil health. Dr. Kumar has handled several internal and external projects granted by ICAR, RKVY, DST, DBT, NASF, etc. He has more than 17 years of experience in rice research; published 77 research/review articles, 7 books, 38 book chapters, 20 technical bulletins, 40 popular articles,

226 e-publications; and guided 15 MSc and 2 PhD students. The cumulative impact factor of his publication is about 267. He has developed more than 12 technologies/products such as liquid- and carrier-based rice-specific bioinoculants, *Azolla*-based biofertilizer (sporocarp), livestock feed, and microbial-growth medium. He has developed csaXpert mobile app and characterized the microbial resources in relation to nitrogen fixation, nitrification, and denitrification under varying nutrient and climatic conditions in rice-based cropping systems. He is a recipient of several awards such as Edita David Memorial—2014 (AZRA, Bhubaneswar), Best Scientist Award Twice from ICAR-NRRI, Cuttack (2017 and 2023), AZRA Fellow—2018, Lal Bahadur Shastri Outstanding Young Scientist Award 2020 (ICAR, New Delhi), Nanaji Deshmukh ICAR Award for Outstanding Interdisciplinary Team Research in Agriculture and Allied Sciences—2020 (ICAR, New Delhi) and Fellow of Association of Rice Research Workers (ARRW)—2020, SCON Recognition Award—2021, and Young Scientist Awards, twice (GAP, 2018 and AZRA, 2022).

Preface

Microbes are ubiquitous in nature, present everywhere in both biotic and abiotic environment. Because of their complexities, majorities of these microbes are still unexplored as well as uncharacterized and act as reservoir of genetic and metabolic diversity. The transformation from classical microbiology to modern metagenomics studies requires the development of advanced techniques, new branches of knowledge and specialization. Next-generation sequencing (NGS) techniques allow large-scale analysis of unculturable microbes present in the environment by performing comparative metagenomics, metatranscriptomics, and metaproteomics. The correlation and interpretation of the comprehensive datasets derived from these approaches with varied parameters of environment, agriculture, and health help to decipher the complex functions of microbial communities of that system. High-performance computing technologies have empowered scientists to collect, process, and extract useful novel biological information from a variety of samples and complex datasets. Metagenomics study requires the integration of advanced computational techniques and enrichment of reference databases so that comprehensive analyses of diverse metagenomic datasets are possible.

Soil microorganisms play a vital role in provoking the growth, stress, and defense responses in plants. Exploring the relationship between the huge microbial diversities available in the soil environment and plants using metagenomics techniques is helpful in designing the crop systems. Soil metagenomics study gives insights into the soil nutrient status and reduces the dependence on inorganic fertilizers. Beneficial microorganisms of agricultural importance are crucial for sustainable agricultural production. Metagenomics analysis helps in finding out the microbial community structure of those agriculturally important microorganisms.

Clinical microbiology involves diagnostic as well as identification of pathogens from the patient samples to supervise the management and treatment strategies and surveillance and monitoring of infectious disease outbreaks in the community. The clinical metagenomic mNGS analysis of microbiome and host genetic material isolated from patient samples is rapidly moving from research to clinical laboratories to understand the host – gene – microbial interactions.

The proposed book will highlight the various metagenomics methods and its application in soil, polluted environment sites, agriculture production system as well as in health care. Special attention will be given to biotechnological exploitation of novel microbial resources for social welfare. Besides various methods and applications, the