

ONE EXAMPLE FRAMEWORK FOR LARGE-SCALE SCRUM

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

FEATURE TEAMS

COMPONENT TEAMS

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

Team
Wei

Team
Shu

Team
Wu

Component
A

Component
B

Component
C

With feature teams, teams can always work on the highest-value features, there is less delay for
delivering value, and coordination issues shift toward the shared code rather than coordination

through upfront planning, delayed work, and handoff. In the 1960s and 70s this code coordination
was awkward due to weak tools and practices. Modern open-source tools and practices such as

TDD and continuous integration make this coordination relatively simple.

system

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6

...

…

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is increased delay, as one customer feature is split across multiple
component teams for programming, and eventually transferred to a separate testing team for

verification. There is handoff waste, and multitasking waste—as one component team may work on
several features in parallel, in addition to handling defects related to !their" component.

Feature
Manager

With component teams, a project or feature manager is
used to coordinate and see to completion a feature that

spans component teams and functional teams.

With component teams, there
is a tendency to select goals
familiar or !fast" for teams, not
for maximizing customer
value. For example,
Component B Team does part
of Item 3 because it mostly
involves Component B work.

This is the “watching the
runner rather than following
the baton” local optimization.

system

Practices for
Scaling Lean & Agile

Development

This page intentionally left blank

Practices for
Scaling Lean & Agile

Development

Large, Multisite, and Offshore
Product Development

with Large-Scale Scrum

Craig Larman
Bas Vodde

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Larman, Craig.
Practices for scaling lean & agile development : large, multisite, and offshore product development

with large-scale Scrum / Craig Larman, Bas Vodde.
 p. cm.

Includes bibliographical references and index.
ISBN 0-321-63640-6 (pbk. : alk. paper)
1. Agile software development. 2. Scrum (Computer software development)
I. Vodde, Bas. II. Title.

QA76.76.D47L3926 2010
005.1—dc22

 2009045495

Copyright © 2010 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-63640-9
ISBN-10: 0-321-63640-6
Text printed in the United States at Courier in Westford, Massachusetts.
First printing, January 2010

To our clients, and my friend and co-author Bas

To Lü Yi, Tero Peltola, and the little one

This page intentionally left blank

ix

1 Introduction 1
2 Large-Scale Scrum 9

Action Tools

3 Test 23

4 Product Management 99

5 Planning 155

6 Coordination 189

7 Requirements & PBIs 215

8 Design & Architecture 281

9 Legacy Code 333

10 Continuous Integration 351

11 Inspect & Adapt 373

12 Multisite 413

13 Offshore 445

14 Contracts 499

Miscellany

15 Feature Team Primer 549

Recommended Readings 559

Bibliography 565

List of Experiments 580

Index 589

CONTENTS

This page intentionally left blank

xi

PREFACE

Thank you for reading this book! We’ve tried to make it practical.
Some related articles and pointers are at www.craiglarman.com
and www.odd-e.com. Please contact us for questions.

Typographic Conventions

Basic point of emphasis or Book Title or minor new term. A notice-
able point of emphasis. A major new term in a sentence.
[Bob67] is a reference in the bibliography.

About the Authors

Craig Larman has served as chief scientist at Valtech, an out-
sourcing and consulting group with a division in Bangalore that
applies Scrum, where he and colleagues created agile offshore
development while living in India and also working in China.
Craig was the creator and lead coach for the lean software devel-
opment initiative at Xerox, in addition to consulting and coaching
on large-scale agile and lean adoptions over several years at Nokia
Networks, Schlumberger, Siemens, UBS, and other clients. Origi-
nally from Canada, he has lived off and on in India since 1978.
Craig is the author of Agile and Iterative Development: A Man-
ager’s Guide and Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design & Iterative Development.

After a failed career as a wandering street musician, he built sys-
tems in APL and 4GLs in the 1970s. Starting in the early 1980s he
became interested in artificial intelligence (having little of his
own). Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Along with Bas Vodde, he is also co-author of the companion book
Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum.

Bas Vodde works as a product-development consultant and large-
scale Scrum coach for Odd-e, a small coaching company based in
Singapore. Originally Bas is from Holland, and before settling in
Singapore, he lived and worked in Helsinki (Finland) and Beijing
and Hangzhou (China). Much of his recent work is in Asian coun-

www.craiglarman.com
www.odd-e.com

xii

tries—especially China, Japan, India, the Philippines, and Sin-
gapore—applying agile principles to offshore and multisite
development. For several years he led the agile and Scrum enter-
prise-wide adoption initiative at Nokia Networks. He has been a
member of the leadership team of a very large multisite product
group adopting Scrum. Bas has worked as developer/architect in
multimedia/real-time graphics product development and in
embedded telecommunication systems. He is co-author of the
CppUTest unit-test framework for C/C++ and still spends some
time programming, and coaching agile-development practices such
as refactoring and test-driven development.

Bas rushed through his B.S. in computer science so that he could
write real software. He has been waiting for some university to
give him an honorary Ph.D. but is afraid he will actually have to
work for it. He is a passionate book collector—especially historical
books related to product development and management.

Acknowledgments

Many thanks for the contributions and reviews from…

Peter Alfvin, Bruce Anderson, Brad Appleton, Tom Arbogast, Alan
Atlas, James Bach, Sujatha Balakrishnan, Gabrielle Benefield,
Bjarte Bogsnes, Mike Bria, Larry Cai, Olivier Cavrel, Pekka
Clärk, Mike Cohn, Lisa Crispin, Ward Cunningham, Pete Deemer,
Esther Derby, Jutta Eckstein, Janet Gregory, James Grenning,
Elisabeth Hendrickson, Kenji Hiranabe, Greg Hutchings, Michael
James, Clinton Keith, Joshua Kerievsky, Janne Kohvakka (and
team), Venkatesh Krishnamurthy, Shiv Kumar MN, Kuroiwa-san,
Diana Larsen, Timo Leppänen, Eric Lindley, Steven Mak, Shiva-
kumar Manjunathaswamy, Brian Marick, Bob Martin, Gregory
Melnik, Emerson Mills, John Nolan, Roman Pichler, Mary Pop-
pendieck, Tom Poppendieck, Jukka Savela, Ken Schwaber,
Annapoorani Shanmugam, James Shore, Maarten Smeets, Jeff
Sutherland, Dave Thomas, Ville Valtonen, and Xu Yi.

Current and past Flexible company team members (and review-
ers), including Kati Vilki, Petri Haapio, Lasse Koskela, Paul Nagy,
Ran Nyman, Joonas Reynders, Gabor Gunyho, Sami Lilja, and Ari
Tikka. Current and past IPA LT members (and reviewers), espe-
cially Tero Peltola and Lü Yi.

Bas thanks the support of Sun Yuan through another year of writ-
ing and traveling. Without her support there would be no book.
And thanks Craig for tolerating all the discussion and feedback
and… more debugging of Bas’s writing. No more “rubber chicken”
on this book, what’s next?

Craig thanks Albertina Lourenci for the healthy food so that he
could write well-nourished, and Tom Gilb for his apartment in
London so he could write well-sheltered.

Thanks to Louisa Adair, Raina Chrobak, Chris Guzikowski, Mary
Lou Nohr, and Elizabeth Ryan for publication support.

(An Early) Colophon

Layout composed with FrameMaker, diagrams with Omnigraffle.

Main body font is New Century Schoolbook, designed by David
Berlow in 1979, as a variant of the classic Century Schoolbook cre-
ated by Morris Benton in 1919—familiar to most North Americans
as the font they learned to read by, and from the font family
required for all briefs submitted to the Supreme Court of the USA.

Book
1 Introduction 1

2 Large-Scale Scrum 9
Action Tools
3 Test 23

4 Product Management 99

5 Planning 155

6 Coordination 189

7 Requirements & PBIs 215

8 Design & Architecture 281

9 Legacy Code 333

10 Continuous Integration 351

11 Inspect & Adapt 373

12 Multisite 413

13 Offshore 445

14 Contracts 499

Miscellany
15 Feature Team Primer 549

Recommended Readings 559

Bibliography 565

List of Experiments 580

Index 589

Chapter
• Thinking & Organizational Tools 2

• No False Dichotomy: These are only Experi-
ments 2

• No Best Practices—and no Fractal Practices 4

• Limitations 5

• Onwards 6

1

Chapter

1
INTRODUCTION

Nobody will ever win the battle of the sexes.
There’s too much fraternizing with the enemy.

—Henry Kissinger

The earliest large-scale software-intensive product development was
the Semi-Automatic Ground Environment (SAGE) system; created
in the 1950s, it involved hundreds of people.1 In retrospect, what did
a senior manager think of the development strategy?

One of the directors of SAGE was discussing why the program-
ming had gotten out of hand. He was then asked, “If you had it
to do all over again, what would you do differently?” His answer
was to “find the ten best people and write the entire thing
themselves.” [Horowitz74] (emphasis added)

This echoes the opening suggestion in the companion book.2 Build
‘big’ systems by building a small group of great people that can work
in teams, and co-locate them in one place. Only grow when it really
hurts, taking the time to hire extraordinary new talent.

But, we know that especially in existing large companies and prod-
uct groups, that is not going to happen—at least not soon. People are
still going to do large-group, multisite, or offshore development—
usually based on beliefs such as “big needs big” or that offshoring is
better value. Rather than debate if so many people are needed, we
try to support people to improve their development with agile and
lean principles so that at some point it becomes clear to the group
that they have too many people in too many places.

1. It was way over budget and partly outdated when finally delivered.
2. The companion book is Scaling Lean & Agile Development: Thinking

and Organizational Tools for Large-Scale Scrum.

2

1 — Introduction

THINKING & ORGANIZATIONAL TOOLS

This book focuses on practices or action tools. To be effective and
take root, these seeds are best cast on fertile ground—and that is
the soil of thinking and organizational-design tools covered in the
companion book. It takes an understanding of systems thinking,
queueing theory, feature teams, requirement areas, the impact of
organizational policies (such as incentives and budgeting), and
more, for these practices to flower into a beautiful environment.

Without that foundation, what is likely is ritualistic application of
shallow practices—a cargo-cult3 adoption—causing disruption with
little benefit, the belief that “the adoption is finished,” and the
impression that all this is just another management fad.

And then eventually… “Agile doesn’t work here. Let’s try X.” Where
X is PMI certification, kanban, CMMI, next-generation lean, …

The good news is that with a little investment in learning and rede-
sign, these action tools have a powerful positive impact. Some years
ago, a well-respected manager at a group we had started coaching
sent us an email: “We actually tried everything you suggested. It
worked!” As consultants and coaches it is a great joy for us to hear
this (recognizing it is the ideas, not us, that help)—and to see people
delighted by tangible improvement and enjoying their work more.

NO FALSE DICHOTOMY: THESE ARE ONLY EXPERIMENTS

A key chapter in the companion book was False Dichotomies. It
emphasized that right/wrong dichotomies are ill-advised with
respect to practices. Practices are context dependent; as such, we are
not prescribing what to do. For example, on balance, feature teams

3. A cargo cult is a religious practice in a (relatively) primitive society
that attempts to get the same wealth (the cargo) of a technically
advanced society through ritualistic practices that superficially
reflect the behaviors of the advanced group. “Cargo-cult process
adoption” is a term suggesting shallow adoption of practices but not
the deeper intention or principles. For example, holding a daily
Scrum meeting to report status to a manager.

3

No False Dichotomy: These are only Experiments

usually have more pluses than minuses and they deliver value
faster, but we know of organizations where—at this phase in their
adoption and in the context of the particular people, learning chal-
lenges, and politics—some component teams are still needed.

Yet, on the other hand, there is the “Avoid…Being agile/lean without
agile/lean practices/tools” section on page 379. It is easy to misuse
the recognition that practices are contextual as an excuse for not
changing. We meet groups that say, “Oh, we are unique4 so we don’t
do that—practices are valid only in a context.”

False Dichotomies is also so named because adopting practices does
not have to be framed as a binary choice of accept/reject. Adoption
can be along a continuum from less to more. For instance, organiza-
tions can have both some feature teams and some component
teams—and their ratio may shift over time.

Watch out for false-dichotomy thinking and speaking; computer peo-
ple—and that includes us—can get a little too binary.

And more broadly, both Scrum and lean thinking encourage inspect
and adapt, and kaizen mindset, rather than formulas or cookbook
recipes for workplace practices and processes.

All that said, we do have opinions based on experience of what is
worth considering for a trial to improve. Therefore, the tools in both
books are presented as a series of experiments that start with Try…
or Avoid… to suggest only experiments—nothing more. As a sugges-
tion, Avoid…X means “experiment with shying away from X and
observe what happens.” It does not mean “never do X.”

Another implication of these experiments is that they can be useful
for a while, but then dropped if they limit further improvement.

4. It is singularly noteworthy how many groups claim uniqueness—
and yet how similar they are in terms of symptoms and causes!

4

1 — Introduction

NO BEST PRACTICES—AND NO FRACTAL PRACTICES

A variant of false-dichotomy thinking is the notion of “best practice.”
But in research and development (R&D)…

In a review of R&D practices and outcomes, Organization of Science
and Technology at the Watershed [RS98], the editors conclude:

…there is no best practice [in R&D], since the use of tools
depends on the specific context and situation of the enterprise.

In Managing the Design Factory, a similar point is made:

…the idea of best practices is a seductive but dangerous trap. …
The great danger in “best practices” is that the practice can get
disconnected from its intent and its context and may acquire a
ritual significance that is unrelated to its original purpose.
[Reinertsen97]

Since so-called best practices are ‘best,’ they also inhibit a “challenge
everything” culture and continuous improvement—a pillar of lean
thinking. Why would people challenge ‘best’? Mary Poppendieck, co-
author of Lean Software Development, reiterates this point and
draws the historical connection from best practices to Taylorism:

Frederick Winslow Taylor wrote “The Principles of Scientific
Management” in 1911. In it, he proposed that manufacturing
should be broken down into very small steps, and then indus-
trial engineers should determine the ‘one best way’ to do each
step. This ushered in the era of mass production, with ‘experts’
telling workers the ‘one best way’ to do their jobs. The Toyota
Production System is founded on the principles of the Scientific
Method, instead of Scientific Management. The idea is that no
matter how good a process is, it can always be improved, and
that the workers doing the job are the best people to figure out
how to do it better… Moreover, even where a practice does apply,
it can and should always be improved upon. There are cer-

There are no best practices—only adequate practices in context.

5

Limitations

tainly underlying principles that do not change. These
principles will develop into different practices in differ-
ent domains… [Poppendieck04]

This last emphasized point raises
a connection to this book’s cover
by the fractal-artist Ken Chil-
dress.

All our cover art symbolizes some
point—usually unexplained. Yet
this book’s fractal cover art could
be misinterpreted and warrants
clarification: It hints at a creative
tension: that principles scale “self

similar” or fractally, but practices and processes may not—they are
context sensitive. “Fractal practices” that apply at all scales has a
seductively neat charm to it—compelling to those that yearn for sim-
ple solutions for complex problems.

Consider the daily Scrum meeting: Answering the three questions is
an excellent way to share information needed for a team to take a
shared responsibility and manage themselves in a complex environ-
ment. But when you do not have a team-shared responsibility (com-
mon in a “higher level” organizational group), will that practice still
be useful? Perhaps…and perhaps not.

The lean principle of continuous improvement, and the Scrum prin-
ciples of transparency, and frequent inspection and adaptation,
these—perhaps—scale “fractaled up” from one person to larger sys-
tems. Situational-appropriate practices can be generated consistent
with fractal principles, but what is practiced for one team may not
work at the level of the enterprise.

Do not assume the executive group need a Sprint Backlog.

LIMITATIONS

We visited a client, sharing our experiences and coaching. When we
left, the client thanked us and said they had learned a lot. We

6

1 — Introduction

thanked them in return and said we also learned a lot. They
responded quite surprised…not realizing that we learn something
new every day and every time we work with large product groups.

There is still much for us to learn in these areas of large, multisite,
and offshore product creation and delivery. We welcome other sto-
ries, insights, and advice from our readers, especially in the areas
where you (the reader) feel that we were limited.

Some experiments in this book are relevant to general-purpose prod-
uct development, but most of our experience is in software-intensive
products that include specialized hardware, including factory auto-
mation, ship control systems, printers, and telecom equipment. Con-
sequently, the bias is toward software-oriented practices that may
help large-scale agile or lean development.

Finally, we apologize that we are not skilled enough to make this
book about big development…smaller.

ONWARDS

The last major chapter in the companion book was Large-Scale
Scrum. This is a bridging chapter that connects both books. So, we
start with a review of frameworks for Scrum when scaling…

This page intentionally left blank

Chapter
• Frameworks for Scaling 10

• Try…Large-scale Scrum FW-1 for up to ten
teams 10

• Try…Large-scale Scrum FW-2 for ‘many’ teams
15

Book
1 Introduction 1

2 Large-Scale Scrum 9
Action Tools
3 Test 23

4 Product Management 99

5 Planning 155

6 Coordination 189

7 Requirements & PBIs 215

8 Design & Architecture 281

9 Legacy Code 333

10 Continuous Integration 351

11 Inspect & Adapt 373

12 Multisite 413

13 Offshore 445

14 Contracts 499

Miscellany
15 Feature Team Primer 549

Recommended Readings 559

Bibliography 565

List of Experiments 580

Index 589

9

Chapter

2
LARGE-SCALE SCRUM

One of the symptoms of an approaching nervous
breakdown is the belief that one’s work is terribly important.

—Bertrand Russell

(An expanded version of this was also the last chapter in the companion
book. It is a bridge that connects both books.)

Large-scale Scrum is Scrum.

It is not “new and improved Scrum.” Rather, it is regular Scrum, an
empirical process framework that within an organization can
inspect and adapt to work in a group small or large. Large-scale
Scrum is a label—for brevity in writing—to imply regular Scrum
plus the set of tips that we have experienced and seen work in large
multiteam, multisite, and offshore agile development. These are
experiments to…experiment with, in the context of the classic
Scrum framework.

Be dubious of messages such as “Scrum 2.0,” “Scrum++,” “Scrum#,”
“UnifiedScrum,” “OpenScrum,” or “new and improved Scrum that
should replace regular Scrum.” They may miss the point of empirical
process1 and the implications of Scrum. To quote Ken Schwaber, the
co-creator of Scrum:

There will be no Scrum Release 2.0…Why not? Because the
point of Scrum is not to solve [specific problems of develop-
ment]… Scrum unearths the problems caused by the complexity
and lets the organization solve them, one by one, over and over
again. [Schwaber07b]

1. Based on transparency, inspection, and adaptation.

10

2 — Large-Scale Scrum

Regular Scrum is a simple framework that exposes problems. It is a
mirror. We are not suggesting that new ideas cannot arise and
improve the framework. But attempts to ‘improve’ it are most often
(1) avoidance of dealing with the weaknesses exposed when regular
Scrum is really applied, (2) conformance to status quo policies or
entrenched groups, (3) belief in a new silver bullet practice or tool,
(4) fuzzy understanding of Scrum and empirical process control, or
(5) an attempt by the traditional consulting companies to sell you a
process—“Accenture Scrum/Agile,” “IBM Scrum/Agile,” and so on.

See “Try…Lower
the waters in the
lake” on p. 407.

Large-scale Scrum, as regular Scrum, is a framework for develop-
ment in which the concrete details need to be filled in by the teams
and evolved iteration by iteration, team by team. It reflects the lean
thinking pillar of continuous improvement. It is a framework for
inspecting and adapting the product and process when there are
many teams.

FRAMEWORKS FOR SCALING

The following descriptions only emphasize what is noteworthy in the
context of scaling. Regular Scrum elements are not explained unless
we felt that reiteration was useful.2

For large-scale Scrum we suggest two alternative frameworks. One
is for up to about ten teams. The other goes beyond that—scaling to
at least many hundreds, if not thousands, of people.

TRY…LARGE-SCALE SCRUM FW-1 FOR UP TO TEN TEAMS

The first framework is appropriate for one (overall3) Product Owner
(PO) and up to ‘ten’ teams. ‘Ten’ is not a magic number for choosing
between framework-1 and framework-2. The tipping point is context

2. See the online Scrum Primer and Scrum Guide for basic concepts.
Terminology point: This chapter (and book) uses iteration rather
than Sprint because of the former’s familiarity and use in other iter-
ative and agile methods.

3. See “Try…Map different scaling terms” on p. 134.

11

Frameworks for Scaling

dependent; sometimes less. At some point, (1) the PO can no longer
grasp an overview of the entire product, (2) the PO can no longer
effectively interact with the teams, (3) the PO cannot balance an
external and internal focus, and (4) the Product Backlog is so large
that it becomes difficult for one person to work with. When the PO is
no longer able to focus on high-level product management, some-
thing should change.

Figure 2.1 large-
scale Scrum, FW-1

See “Try…Prod-
uct Owner repre-
sentative
(supporting PO)”
on p. 138.

Before switching to framework-2, first consider if the PO can be
helped by (1) delegating more work to the teams and/or (2) identify-
ing PO representatives—who are usually within teams. Encourage
teams to directly interact with real customers to reduce handoff and
reduce the burden on the PO. Most project management should be

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

12

2 — Large-Scale Scrum

done by the teams. The PO does not need to be involved in low-level
details; the PO should be able to focus on true product management.

Roles

! Product Owner

! (Feature) Teams

! ScrumMasters

Product Owner—The Product Owner role and responsibilities are
the same as in regular one-team classic Scrum. What are those?
There is some confusion, so it may be worthwhile to review…

[The Product Owner] owns the vision for the total product port-
folio, the business plan, the road map, and the dates. They are
accountable for the revenue stream… [and are] business-focused
on the product, so there is not a one-to-one mapping to teams.
[Sutherland08]

The Product Owner’s focus is return on investment (ROI).
[Schwaber04].

The PO needs more support from the teams as the number grows.

For more on the PO role, see the Product Management chapter.

(Feature) Teams—These are the normal teams in Scrum that take
whole customer-centric features and complete them. They are self-
managing and cross-functional teams. Because they are feature
teams, there should be a reduced need for the teams to interact or
coordinate, except at the level of integration of code. And that is
resolved through continuous integration; see the Coordination and
Continuous Integration chapters for more. That said, multi-team
requirements and design coordination are required in a large sys-
tem; see the Test, Requirements & PBIs, and Design & Architecture
chapter for experiments when scaling.

Teams in Scrum are explored in the Feature Teams and Teams chap-
ters of the companion book.

13

Frameworks for Scaling

For large groups that have many component teams, see the
“Try…Transition from component to feature teams gradually” sec-
tion on page 391.

ScrumMasters—These are regular ScrumMasters that (1) act as
Scrum coaches for their teams and the Product Owner, (2) help their
team become a real team by facilitating conflict resolution and
removing obstacles, (3) help the Product Owner, (4) remind the team
of their goal, and (5) bring change to the organization so that overall
product development is optimized and maximum ROI is realized.

In the context of scaling and multiteam development, there are
many opportunities for a team to require a representative at meet-
ings. Avoid designating a ScrumMaster as team representative.
Why? See the Coordination chapter for details.

Artifacts

! Product Backlog

! Sprint Backlogs

! Potentially Shippable Product Increment

Product Backlog—Some scaling discussions advise that each team
have its own “Product Backlog” or “Team Product Backlog.” This is
not correct. As the Scrum Guide [Schwaber09a] explains4:

Multiple Scrum Teams often work together on the same product.
One Product Backlog is used to describe the upcoming work on
the product. (emphasis added)

See the Test, Requirements & PBIs, and Product Management chap-
ters for suggestions on content and priority and for analyzing and
splitting large requirements.

Sprint Backlog—Each team has its own regular Sprint Backlog.

4. The Certified ScrumMaster course [Schwaber05] also asserts one
Product Backlog for many teams.

14

2 — Large-Scale Scrum

Potentially Shippable Product Increment—One perfection
challenge in Scrum is that the output of each iteration is a poten-
tially shippable product increment. This is not a difficult goal in a
small product group, but requires a multiyear journey of improve-
ment in a gargantuan group that has institutionalized weaknesses.
See the Planning and Inspect & Adapt chapters for improving the
Definition of Done and other things over time, until it is really poten-
tially shippable.

Is test the same in large-scale Scrum? No. Its role changes from just
verifying to prevention by concurrent engineering with both accep-
tance- and unit- test-driven development—and that blurs the dis-
tinction between test, requirements analysis, and design, so
that…testing is no longer testing. See the Test chapter.

Large-scale design issues for the shippable product are covered in
the Design & Architecture chapter.

Releasing a large product is often so laborious that many special
release activities are necessary; see the Planning chapter for more.

Note that the product increment is not per team. Rather, all teams
need to integrate their output into one potentially shippable incre-
ment—within the iteration. This means the teams need to continu-
ously integrate their code and coordinate in any other way required.
These issues are explored in the Continuous Integration and Coordi-
nation chapters.

Events

Sprint Planning—For scaling, see tips in the Planning and Prod-
uct Management chapters.

Daily Scrum—This is the usual Scrum event. The Coordination
chapter has scaling-relevant experiments.

! Sprint Planning

! Daily Scrum

! Product Backlog Refine-
ment

! Sprint Review

! Sprint Retrospectives

! Joint Retrospective

15

Frameworks for Scaling

Product Backlog Refinement (also called backlog ‘grooming’
or ‘refactoring’)—This is the normal Scrum activity of refining the
Product Backlog, taking five or ten percent of each iteration for the
team, often in a focused workshop. See the workshop suggestions in
the Test and Requirements chapters. For initial Product Backlog
refinement, see Planning.

Sprint Review—See the Inspect & Adapt and Coordination chap-
ters for experiments when scaling.

Sprint Retrospectives—Each team has its own individual retro-
spective. See the Inspect & Adapt chapter for relevant tips.

Joint Retrospective (optional but recommended)—This is useful
for improving the organization as a whole. See the Inspect & Adapt
chapter for more.

Other Elements

Definition of Done (DoD)—The DoD applies to all Product Backlog
items for all teams. See Planning for DoD and Undone Work tips.

TRY…LARGE-SCALE SCRUM FW-2 FOR ‘MANY’ TEAMS

Large-scale Scrum framework-2 builds on—rather than replaces—
framework-1. In essence, it is a set of framework-1 sub-groups.

Beyond ten teams (or even fewer), the Product Owner cannot effec-
tively work with all the teams or all the details in the Product Back-
log. At this point it is useful to identify the major requirement
areas and then define the Product Backlog with separate views
called Area Backlogs, each with its own Area Product Owner
(APO) and its own dedicated Teams. This is explored in the Require-
ment Areas chapter of the companion book, the Feature Teams
Primer in this, and the Product Management chapter.

16

2 — Large-Scale Scrum

Figure 2.2 large-
scale Scrum FW-2

Potentially
Shippable
Product

Increment

Product
Owner

Area
Product
Owner

Area
Product
Backlog

Product
Backlog

S
pr

in
t R

et
ro

sp
ec

tiv
e

S
pr

in
t R

ev
ie

w

Jo
in

t R
et

ro
sp

ec
tiv

e

1 day

2-4 week
Sprint

Product Backlog
Refinement

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

(2-4 h)

 (5-10% of Sprint)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily Scrum

17

Frameworks for Scaling

see Feature
Teams Primer
chapter

Consequently, framework-2 of large-scale Scrum introduces some
new terms: Area Product Owner, Product Owner Team (all
APOs and the Product Owner), and the Area Backlog. To be pre-
cise, the Area Backlog is not a separate backlog or new artifact; it is
simply a view onto the Product Backlog for one area.

There are some changes to events in framework-2:

Sprint Planning—There is separate Sprint Planning for each
requirement area. See “Try…Scaling Sprint Planning Part One” on
p. 163.

Sprint Review—There is a separate Sprint Review for each area.
Each involves the Area Product Owner and teams. The Product
Owner may attend particular reviews that he or she is especially
interested in. It is otherwise the same as framework-1.

(Joint product-level) Sprint Review (optional, recommended)—
To focus on the overall product and increase visibility of overall
progress, a joint Sprint Review for the entire system is possible—
and recommended. See Inspect & Adapt for more.

Joint Retrospectives (optional but recommended)—These may
happen at the area, site, and/or overall product level.

CONCLUSION

Framework-1 of large-scale Scrum involves a wide variety of prac-
tices expanded throughout this book, including experiments in Test,
Design & Architecture, Multisite, and many other chapters.

Framework-2, for bigger groups, builds on the practices applied in
framework-1 and adds requirement areas as the key organizational
unit for larger assemblies. Framework-2 is essentially a set of many
framework-1 units for each requirement area.

The remaining chapters—Multisite, Offshore, Contracts—provide
suggestions related to these common contexts for large-scale Scrum.

All these practices build on the thinking tools and organizational
tools explored in the companion.

18

2 — Large-Scale Scrum

RECOMMENDED READINGS

! The companion book, Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum,
focuses on foundations supporting the practices in this book.

This page intentionally left blank

Action Tools

This page intentionally left blank

Chapter
• Thinking About Testing 24

• Customer-Facing Test 42

• Developer Testing 72

• Example: Robot Framework 83

Book
1 Introduction 1

2 Large-Scale Scrum 9
Action Tools
3 Test 23

4 Product Management 99

5 Planning 155

6 Coordination 189

7 Requirements & PBIs 215

8 Design & Architecture 281

9 Legacy Code 333

10 Continuous Integration 351

11 Inspect & Adapt 373

12 Multisite 413

13 Offshore 445

14 Contracts 499

Miscellany
15 Feature Team Primer 549

Recommended Readings 559

Bibliography 565

List of Experiments 580

Index 589

23

Chapter

3
TEST

Two things are infinite: the universe and human stupidity;
and I’m not sure about the universe.

—Albert Einstein

“If we advocate cross-functional teams, then we ought to have a
cross-functional adoption team,” said the manager of a centralized
process-improvement group in a company with perhaps twenty thou-
sand engineers. She put her money where her mouth is and formed
a team consisting of an agile development expert, a process architect
and CMMI coach, a program management adviser, a programmer,
and a testing specialist who was well-versed in test automation and
TPI1 assessments.

The shift in thinking between traditional and agile development was
perhaps the most difficult for the testing specialist. He knew every-
thing about testing, yet when it was discussed in an agile perspec-
tive, it appeared like a foreign language to him. He spoke fluent test
automation; nevertheless, test automation in an agile context
sounded alien.

For the first few weeks, he tried to map agile concepts to his tradi-
tional frame of reference. But after a couple of months he said, “I
don’t believe anymore in what I had been teaching for all those
years.”

His experience is not unique. Changing to agile and lean develop-
ment powerfully alters the way to think about testing and how to do
testing. As a result, this chapter is one of the largest and comprises
these sections:

1. Test Process Improvement (TPI) is a model for assessing test pro-
cesses. It can also be used as a road map for improvements [KP99].

24

3 — Test

! thinking about testing

! customer-facing tests

! developer tests

! Robot Framework example

THINKING ABOUT TESTING

This section covers topics related to testing in general, such as ter-
minology, assumptions, and organizational issues.

Avoid…Assuming testing means testing

Confused? We can imagine! The purpose of testing used to be fairly
clear—“Testing is the process of executing a program with the intent
of finding errors” [Meyers79]. This changes when adopting agile and
lean development.

Concurrent engineering necessitates parallelizing work. Dedicated
cross-functional teams encourage single-specialists to broaden their
expertise. These cause the purpose of conventional development
activities—such as test—to shift.

At the code level, practices such as (unit) test-driven development
blur the division between test and design as is made explicit by agile
leader Ward Cunningham’s statement:

“Test-first coding is not a testing technique.” [Beck01]

Acceptance test-driven develop-
ment fuzzes the distinction
between test and requirements
analysis. In their IEEE Soft-
ware article, “Test and Require-
ments, Requirements and Test:
A Möbius strip,” Martin and
Melnik argue…

25

Thinking About Testing

… for early writing of acceptance tests as a requirements-engi-
neering technique. We believe that concrete requirements blend
with acceptance tests in much the same way as the two sides of a
strip of paper become one side in a Möbius strip. In other words,
requirements and tests become indistinguishable, so you can
specify system behavior by writing tests and then verify that
behavior by executing the tests. [MM08]

This blurring of boundaries is fraught with fallacies. Adopting (unit)
test-driven development as a testing technique misses the point and
drives superficial adoption. Likewise, we regularly need to clarify to
testing groups that they cannot adopt acceptance test-driven devel-
opment without involvement of others.

Try…Challenge assumptions about testing

see Lean Think-
ing in the com-
panion book

As touched upon, testing discussions are rife with assumptions.
Challenge these! To be clear, we are not saying that these assump-
tions are false, but that leaving them unchallenged will limit think-
ing and the ability to improve. Deeply rooted in the Toyota culture is
a pillar of the Toyota way: continuous improvement by challenging
everything. Taiichi Ohno (a founder of lean thinking) said:

If you’re going to do kaizen continuously… you’ve got to assume
that things are a mess. Too many people assume that things are
all right the way they are… Kaizen is about changing the way
things are. If you assume that things are all right the way they
are, you can’t do kaizen. So change something!

Testing is no longer testing.

26

3 — Test

What assumptions? Some of the beliefs we bump into:

Leaving these assumptions unchallenged retains in-the-box think-
ing. As long as you believe “Testing can only start after coding is fin-
ished,” you will never consider innovative ways of doing testing
earlier. But once you are conscious of your assumption, you can
question it and ask, “Is there any way I could work differently so
that testing starts before coding is finished?”

Avoid…Complex testing terminology

A question we enjoy asking big product groups is, “What do you all
need to do before you can ship your product?”2

Long ago, we learned that we need two columns: one for ‘normal’
activities, and a larger one for testing activities. The first column
fills up with items such as coding, creating the users documentation,
developing hardware, pricing, and training sales personnel. The sec-

• testing must be independent and
thus separated from development

• testing cannot start before coding
is finished

• testing follows the sequence of (1)
test case design, (2) test case exe-
cution, (3) test case reporting
(a test waterfall)

• there must be a separate test
department

• there must be a test manager

• testing must be done at the end
• testing must be “well planned”
• there must be a “testing strategy”

and a “master test plan”
• 100% coverage is too expensive
• 100% test automation is too

expensive
• testing requires a sophisticated

test-management tool
• testing must be done by ‘testers’

2. Or, “What does potentially shippable mean?” since the outcome of
every Scrum iteration is called a potentially shippable product incre-
ment.

27

Thinking About Testing

ond column comprises test activities, test levels, or test classifica-
tions. Common entries in the second column are shown below:

See “Avoid…A
complex require-
ments meta-
model” on p. 233.

Elaborate terminology is not harmful by itself but it often leads to
test-level specialists located in test-specialist departments. For
example, the integration-test specialists in the integration team,
and the performance-testing specialist in the performance-testing
team. These specialist groups cause organizational constraints and
department suboptimizations.

Of course, all of these tests are probably compulsory, but compli-
cated classification is occasionally confused with comprehension and
capability. As Nobel Prize winner Richard Feynman observed:

You can know the name of a bird in all the languages of the
world, but when you’re finished, you’ll know absolutely nothing
whatever about the bird… So let’s look at the bird and see what
it’s doing—that’s what counts. I learned very early the difference
between knowing the name of something and knowing some-
thing.

Try…Simple testing classifications

Straightforward terminology inspires intelligent behavior. Brian
Marick, an Agile Manifesto author and testing authority, created the
simple test categorization shown in Figure 3.1 [Marick03].3

unit test
functional test
stress test
interoperability test
load test
installation test
monkey test
documentation test

module test
system test
stability test
compatibility test
traffic test
security test
exploratory test
acceptance test

developer test
integration test
regression test
reliability test
performance test
capacity test
usability test
user-acceptance test

3. Variants exist in most agile testing-related literature [CG09,
Poppendieck06]; [Meszaros07] extends it to six categories.

28

3 — Test

Figure 3.1 Marick’s
test categories

Marick defines two dimensions:

! technology versus business facing—tests done from end-user
perspective are business facing, whereas tests concerning the
implementation are technology facing.

! supporting the team versus critiquing the product—tests that
aid the development by, for example, discovering the require-
ments or driving the design are supporting the team, whereas
tests done with the conventional purpose of breaking the sys-
tem are critiquing the product.

These two dimensions lead to four quadrants (see Figure 3.1); we
added an example in each quadrant. The quadrants are useful for
thinking about testing because each quadrant has a distinct purpose
and characteristic. For example, technology-facing tests that support
the team are normally done by programmers during coding, while
customer-facing tests that critique the product are usually done by a
person other than the original author and are executed right after
some user-functionality is implemented.

Our classification is even simpler! Two groups:

! developer test

! customer-facing test

Developer test—these are usually created by the person who is
implementing. The purpose is to check whether the code is doing
what the programmer wants. If the tests pass, it means that the sys-

e.g.,
functional

e.g.,
exploratory

usability

e.g.,
unit

e.g.,
non-functional

business facing

technology facing
su

pp
or

tin
g

th
e

te
am critique product

29

Thinking About Testing

tem does what the developer intended—but this does not necessarily
mean it does what the customers wants.

Customer-facing tests—these test whether the requirements are ful-
filled. They are frequently implemented and executed by a person
other than the one who wrote the code. In this grouping, non-func-
tional tests are classified as customer-facing tests because non-func-
tional requirements for large systems are typically explicit and the
most important.

Avoid…Separating development and testing

Bill Hetzel, the organizer of the first software testing conference,4

defined in The Complete Guide to Software Testing six principles of
testing. The sixth principles—test independence—is a common
theme throughout the history of software testing. Glenford Meyers,
author of the first book5 on software testing, stressed the indepen-
dence of testing in Software Reliability:

Testing should always be done by an outside party who is some-
what detached from the program and project… System testing
should always be done by an independent group such as a sepa-
rate quality-assurance department. [Meyers76]

Why is separation important? Some frequently stated arguments:

! Programming is constructive whereas testing is destructive—
thus, programmers cannot test.

! If programmers test their own code, then they will change the
test according to the implementation.

! When testing is done by the same group as implementation,
then they can meet their deadline by skipping testing.

4. Computer Program Test Methods Symposium, organized at Univer-
sity of North Carolina in 1972.

5. The Art of Software Testing. In fact, Program Test Methods
[Hetzel73] actually was the first but was a collection of papers and is
therefore often forgotten [GH88].

30

3 — Test

The first two arguments assume single-specialist teams rather than
cross-functional teams. The last argument suggests a quick fix for
the much larger problem of quality-destroying shortcuts when pres-
suring developers.

In these arguments, test independence is equated to test separation
from development. However, Hetzel clarifies the principle:

The requirement is that an independence of spirit be achieved,
not necessarily that a separate individual of group do the test-
ing. [Hetzel88] (emphasis in original)

This point is reiterated in Agile Testing in which the authors also
point out the suboptimization created by separating testing:

Teams often confuse “independent” with “separate.” If the
reporting structure, budgets, and processes are kept in discrete
functional areas, a division between programmers and testers is
inevitable. Time is wasted on duplicate meetings, programmers
and testers don’t share a common goal, and information shar-
ing is nonexistent. [CG09]

How to achieve test independence in spirit without separating test-
ing? By writing tests before implementing code. The test cannot be
influenced by the implementation, because it does not exist yet. This
way, test-driven development achieves the spirit of independence
without separation of departments.

Avoid…Test department

In Scrum, the Team is cross-functional, consisting of at minimum
developers and testers.

We sometimes work with organizations where the test department
‘gives’ the testers to the team toward the end of the iteration. Not
recommended.

Test independence does not mean independent testers.

31

Thinking About Testing

see Organization
in the compan-
ion for more on
matrix organiza-
tions

Alternatively, some organizations have a matrix organization where
‘resources’ are ‘allocated’ to a Scrum project. When finished, the
‘resources’ are returned to their traditional functional organiza-
tion—the pool. The tester is full-time on the ‘team’ but will return to
the test department. This can work though is not recommended.

Having testers return to their test department often inhibits them
from broadening their skill and learning different non-test special-
izations. It leads to testers being testers on the team—the waste of
working to job title—instead of team members with their main spe-
cialization being testing.

Avoid having a test department. Dissolve the test group and merge
with the development department to create a “product development”
department consisting of permanent cross-functional teams. Also:
See “Avoid…Separate analysis or specialist groups” on p. 234.

See “Try…Prod-
uct-level Defini-
tion of Done” on
p. 170.

A product group we coached in India had two separate testing
groups—an “end to end” testing group and a non-functional one.
When adopting Scrum, they dissolved the end-to-end testing group
and merged them into the cross-functional teams. However, even
after six months, they were still unable to disband the non-func-
tional testing group, because of its narrow specialization, interre-
lated work, and lack of automation. Last time we visited the product
group, they were automating the non-functional tests and doing pair
testing to broaden their skills; they estimated it would take another
six months before they could dissolve the non-functional testing
group.

Integrating all testing into Scrum teams is a gigantic step for many
big product groups. They do not yet have the capability to take that
step for example, because they do not have any test automation. In
this case, they might temporarily keep the test department for the
testing that is not yet included in their definition of done—the
“undone unit.” As the organization improves—the Definition of Done
expands—this department will gradually disappear.

Every now and then we hear, “We cannot integrate our testing with
the development!” Organizations should be able to at least integrate
their ‘functional’ testing with the development teams when starting
Scrum. We do promote incremental improvement, but integrating

32

3 — Test

development and testing is the minimal baby-step an organization
should take for their journey to a lean and agile development.

Avoid…Test department

In Scrum, the Team is cross-functional consisting of at minimum
developers and testers. Déjà vu? These are frequently recurring top-
ics. We would like to repeat them. Goto p. 29.

Avoid…TMM, TPI, and other ‘maturity’ models

See
“Avoid…Believ-
ing CMMI
appraisal or cer-
tification means
much in creative
R&D work” on
p. 489.

“Maturity Goal 3.1: Establish a Test Organization.” [Burnstein02]

An organization without a separate testing department is not a very
mature organization—according to the Testing Maturity Model
(TMM). The Test Process Improvement (TPI) model of assessing
organizational maturity also assumes a separate test function. A
truly cross-functional organization would be immature? Wrong.

These ‘maturity’ models invariably measure a complex system by
using a simplistic model6 and therefore provide a limited perspec-
tive. But can these models not be used for uncovering improvement
ideas? Yes, they can. However, they by definition consist of so-called
“best practices”7 and rarely novel ideas—therefore, for improvement
ideas, look for other, non-“maturity-assessment” testing literature.

Avoid…ISTQB and other tester certification

We were giving an introduction to agile development at a client in
Poland. Most people appreciated the ideas we introduced but there
was an unusually strong resistance from the testers—which puzzled
us. At the next-day workshop we had the opportunity to dig deeper

6. The models are often very complex, yet in comparison with the over-
all development system and potential development contexts they
are simplistic.

7. The second principle of the context-driven school to software testing
is “There are good practices in context, but there are no best prac-
tices” [KBP02].

33

Thinking About Testing

into the resistance and found one difference between them and other
groups…they were ISTQB-certified testers.

We promote learning better testing skills. However, a problem with
the ISTQB8 test certification is that it seems to assume a traditional
environment. For example, “For large, complex or safety critical
projects, it is usually best to have multiple levels of testing, with some
or all of the levels done by independent testers” [ISTQB07]. It also
seems to promote narrow role definitions. For example, “The respon-
sibility for each activity [debugging and testing] is very different, i.e.
testers test and developers debug.”

Try…Testers and programmers work together

Separating testing from development often leads to a conflict
between programmers and testers. Testers—hunting for bugs—try
to prove that part of the program is faulty. Programmers—with their
ego in their code—defend themselves, their code, and the program.
Probably everyone who has been in the role of a tester in a test
department has experienced this.

In a Scrum team, ‘testers’ are no longer testers but ‘simply’ members
of the team—with testing as their primary specialization. ‘Program-
mers’ are any members of the team who can code. Every member of
the team has a shared goal and is held—as a team—accountable to
that goal. Team members with different primary specializations
have to cooperate in order to reach that goal.

Try…Testers not only test

see Lean in the
companion for
more lean wastes

Specialization is good—it increases depth of knowledge, productivity
and pride in workmanship. Single specialization is harmful—it cre-
ates constraints, silos, waste of handoff, and mental communication
barriers.

8. ISTQB stands for International Software Testing Qualifications
Board. Information can be found from www.istqb.org.

www.istqb.org

34

3 — Test

The tasks for a team never exactly map to the specialization of its
members. There might be fewer testing tasks than testing special-
ists and the tasks will not be balanced over the iteration.

The “person with testing as a main specialization” could become a
part-time member of the team or could just wait for testing work to
become available. Not recommended. Instead, he picks up a non-test-
ing task and gradually broadens his specialization. For example, he
could pair-program with other team members—pairing with a test
specialist is likely going to increase the code quality. Or, he might
support the Product Owner or “the technical writer.”

Try…Technical writer tests

See “Avoid…Sep-
arate analysis or
specialist
groups” on
p. 234.

“Can a technical writer be a part-time member of multiple teams?”
we are occasionally asked. We typically reply that it is possible, but
we suggest they have a dedicated technical writer9 on each team.10

“But, there is not enough writing work for a full-time writer on each
team” is the predictable answer.

Technical writers usually work from a customer viewpoint. This per-
spective is especially useful when discovering requirements and cre-
ating tests. Use their viewpoint and make them dedicated team
members who, like other team members, can broaden their special-
ization. We sometimes joke that its easier to teach a technical writer
to test than to teach a tester to write proper English.

Try…Educate and coach testing

Good testing skills come with deliberate practice and time. Unfortu-
nately, especially in large organizations, testing skills are not
respected. “Everybody can do that” is their belief, so they offshore it
to a company that grabs people randomly from the street and
assigns them to test. Random people hired to bang away on an appli-

9. With “technical writer” in this section, we mean “person with techni-
cal writing as a primary specialty.”

10. This is not a novel idea. In fact, it is similar to the Mercenary Ana-
lyst organizational patterns described in Organizational Patterns of
Agile Software Development [CH05].

35

Thinking About Testing

cation routinely see their job as a temporary stage they need to go
through before advancing to a “real job.” They do not bother deepen-
ing their testing skills and so contribute to the false belief that test-
ing is trivial.

Testers who don’t bother to learn new skills and grow profes-
sionally contribute to the perception that testing is low-skilled
work. [CG09]

Falling into the “testing is trivial” trap is costly. Support testing
mastery by providing self-study material, education, and coaching.
We have listed some general testing-skills literature in the recom-
mended reading section.

Of course, providing education and coaching in testing is also impor-
tant to traditional environments. In cross-functional teams, this
becomes even more relevant as testers at times feel marginalized.
Not having a testing functional organization may impact the feeling
of career progression and their interest in testing. And this is exac-
erbated if all education and coaching is related to development or
management practices. High test turnover during an agile transi-
tion is not uncommon

They split up their test organization… However, they put the
testers into the development units without any training; within
three months, all of the testers had quit because they didn’t
understand their new role. [CG09]

Similarly, in an agile transition we worked with, many testers left to
different products because they felt they had lost their identity and
did not know how to work in a Scrum team. Prevent this by develop-
ing the team’s testing expertise.

Try…Community of testing

see Organization
in the compan-
ion for more on
Communities of
Practice

Education and coaching are not the only ways to grow expertise.
Open discussion and experience-sharing foster learning. One pur-
pose of a functional unit—a test department—is to enable this learn-
ing. Without it, other means for discussion and sharing experiences
are needed. For instance, by establishing a Community of Practice
for testing. People interested in testing—not only those with testing

36

3 — Test

as their main specialization—meet every now and then to learn from
each other or discuss via a mailing list or wiki.

Test managers can play an important role in this community. They
can use their expertise in testing and management and become CoP
coordinators—in accordance with the lean principle of manager–
teachers.

Rather than keeping the testers separate… [think about] a com-
munity of testers. Provide a learning organization to help your
testers … share ideas and help each other. If the QA manager
becomes a practice leader in the organization, that person will
be able to teach the skills that testers need to become stronger
and better able to cope with the ever-changing environment.
[CG09]

Try…Recognize project test smells

A smell is an indication that something is not okay. In xUnit Pat-
terns, Gerard Meszaros defined a set of project test smells:

! buggy tests—defects are found that should be detected by auto-
mated tests. They were not found due to mistakes in the tests.

! developers not writing tests—no automated tests are added
while the developers are implementing functionality.

! high test maintenance—a lot of time is spent maintaining the
tests. And, when new functionality is implemented, most of the
effort goes to updating the automated tests.

! production bugs—many defects slip through the testing.

Meszaros calls these “project smells” because they are at a high level
and are easily recognized by the management. Smells signal that
something is wrong—they are not the cause themselves.

We should look for project-level causes. These include not giving
developers enough time to perform the following activities
 ! Learn to write tests properly.
 ! Refactor the legacy code to make test automation easier and

more robust.
 ! Write the tests first. [Meszaros07]

37

Thinking About Testing

see Lean Think-
ing and Systems
Thinking in the
companionasdfm

The causes of these smells can be discovered with root-cause analy-
sis using tools such as Five Whys or Ishikawa diagrams. Alterna-
tively, causal loop diagrams are a great technique for exploring
system dynamics.

Avoid…Separate test automation team

see Legacy code
chapter

We advise organizations to invest in test automation and create a
safety net of regression tests around their legacy code so that they
can gradually work themselves out of the mess. They listen, and
then create a separate test automation team.

Sometimes the test automation team tries to solve all world prob-
lems with their testware, and the effort produces only a lot of paper.
But, sometimes we encounter a more pragmatic test automation
team that actually creates testware such as an automation frame-
work. They release every couple of months and everyone is
impressed with the results.

What happens then? New functionality is implemented. Interfaces
change and the automated tests fail. The development teams are
upset and tell the test automation team to fix the tests. Or, the
development teams comment out the tests because they do not
understand them. Or, the testware is handed over to the develop-
ment teams who discover it is unusable or incomprehensible and
ignore it. Or… we have experienced a dozen different scenarios in
organizations. It never worked.

Why? The assumption that is the creation of the testware is the diffi-
cult part and the most important thing. But other important aspects
are under-appreciated:

! Creating testware requires deep understanding of the product.

! Maintenance and evolution is more effort than initial creation.

! Insights obtained during testware creation is perhaps more
important than the testware itself.

! Creating testware without using it leads to complex and unus-
able testware.11

38

3 — Test

Considering these aspects, a separate automation team causes addi-
tional complexity, the wastes of handoff, and knowledge scatter. No
wonder it so often fails.

Test automation should be the responsibility of the cross-functional
development teams—just as testing is also their responsibility.

There is no shortcut to learning how to automate; a separate auto-
mation team is a quick fix—and harmful in the long run.

Try…Feature team as test automation team

A separate test-automation team has many drawbacks but also
some advantages. They can create the initial test framework, pro-
duce training material, and support the teams.

How to get these benefits without the drawbacks?

A feature team can temporarily take on the role of test-automation
team. Advantages:

! They have a deep understanding of the system.

! They can take a small feature so that the automation is con-
crete and realistic.

! The learning created during test -automation will not be lost.

! There is visibility into test automation as the items go on the
Product Backlog.

Try…All tests pass—stop and fix

Test fails?

Stop and fix it!

11. The same is true for creating reusable components without having
used them.

39

Thinking About Testing

see Continuous
Integration chap-
ter

“What about your automated tests?” we ask product groups when we
visit them. Sometimes they reply, “We have 800 automated tests of
which 200 are failing right now.” This is a huge queue and causes a
complete lack of transparency in the development. When automated
tests fail, fix them immediately.

Avoid…Using defect tracking systems during the iteration

Fix bugs discovered in the work underway for the iteration immedi-
ately. If it takes a lot of work, create a task on the Sprint backlog.
However, there is usually no need to log this bug in the defect-track-
ing system. Logging it would only create another work queue and
more delay—a waste.

See
“Avoid…Defect
items in the
Product Back-
log—unless few”
on p. 225.

On the other hand, defects found outside the iteration—by an
‘undone’ unit or the final users—are normally tracked in a defect-
tracking system.

Try…Zero tolerance on open defects

Why do people insist on creating defects? They spend effort to insert
a defect, then they need to search for it, prioritize it, and finally fix
it. Not creating the bug in the first place would be a lot less work.

We do believe it is possible to write bug-free code. We do not believe
it is easy or common. Still, focus on preventing defects.

“Zero tolerance on open defects” is a guideline used by one of our cli-
ents. If they find a defect, they fix it as soon as possible. This pre-
vents

! effort spent on tracking many defects

! effort spent on prioritization

! delaying the learning that happens when fixing a defect

! spending extra time on fixing because the developers do not
remember the code anymore

40

3 — Test

Delaying the fixing of bugs is a false economy inasmuch as they need
to be fixed anyway and the cost will be higher. Moving bugs from
queue to queue is fooling yourself—they are still there!

Avoid…Commercial test tools

We once coached at a company building a commercial “automated
testing” tool—a GUI testing tool. The requested coaching? To learn
how to do automated testing for developing their automated testing
tool…

A gazillion commercial test tools are available. We rarely meet peo-
ple who are actually satisfied with any of them. Most are overly com-
plex and focus more on reporting and ‘management’ than on robust
test automation. Favor free and open-source tools—made by devel-
opers solving real problems—over commercial tools.

Overview of testing in an iteration

What are the test-related activities in an iteration? This section pro-
vides an overview of these activities and a road map for the rest of
the chapter (see Figure 3.2).

Figure 3.2 testing
activities in an
iteration

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

41

Thinking About Testing

Testing activities in a typical iteration:

Before the iteration

! The Team and the Product Owner clarify the requirements by
writing example tests in a requirements workshop.

! After the workshop, a team member moves the examples on the
wall to the team’s wiki. The team might already distill tests out
of these examples and write them in their A-TDD tool.

Sprint Planning

! Additional requirements clarification may happen during
Sprint Planning part one, resulting in new examples and tests.

! The tasks for implementing the examples/tests are created
during Sprint Planning part two. Tasks are created for

– distilling tests out of the workshop artifacts

– creating more automated tests for unanticipated scenarios

– implementing glue code between the A-TDD tool and the
system under test

– manual tests that cannot be fully automated (yet), such as
usability tests or expensive tests

– timeboxed sessions for doing exploratory testing

During the iteration

! Example tests are the driver for implementing requirements.

! Glue code between the A-TDD tool and system under test is
developed.

! Tests that pass are added to the continuous integration system.
Long-running tests are also continuously executed—though in
a longer cycle.

! Manual tests—such as exploratory or usability testing—are
done right after the requirement is implemented.

42

3 — Test

Sprint Review

! The examples and tests created during the requirements work-
shop are executed and demonstrated to the Product Owner and
other stakeholders.

Before release

! Expensive tests that could not run frequently are executed in a
final test run before the release. There should be no surprises
anymore during this test run, because the risks have been
tackled during the iterations.

CUSTOMER-FACING TEST

This section covers testing focused on whether the product fulfills
the customer requirements: customer-facing tests. Most experi-
ments in this section are also applicable in single-team development
but, from our coaching experiences, these are especially relevant for
large organizations with many people involved in the development.

Try…Acceptance test-driven development

Acceptance test-driven develop-
ment (A-TDD)12 is a collaborative
requirements discovery approach
where examples and automatable
tests are used for specifying
requirements—creating executable
specifications. These are created
with the team, Product Owner, and
other stakeholders in requirements
workshops.

12. Acceptance test-driven development [Hendrickson08] is also
known as agile acceptance testing [Adzic09] or story test-
driven development [Reppert04].

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

43

Customer-Facing Test

A-TDD integrates some major ideas:

! tests as requirements, requirements as tests

! workshops for clarifying requirements

! concurrent engineering

! prevention instead of detection

Tests as requirements, requirements as tests—In Exploring
Requirements: Quality before Design, authors Gause and Weinberg
investigate the link between requirements and tests, “one of the
most effective ways of testing requirements is with test cases very
much like those for testing the completed system” [GW89]. Melnik
and Martin extend this further and claim, “As formality increases,
tests and requirements become indistinguishable. At the limit, tests
and requirements are equivalent” [MM08]. Tests must be precise in
order to be automatable. A-TDD exploits this formality and formu-
lates requirements by writing automatable tests.

See
“Try…Require-
ments work-
shops” on p. 240.

Workshops for clarifying requirements—The sixth agile princi-
ple reminds us “The most efficient and effective method of conveying
information to and within a development team is face-to-face conver-
sation.” Face-to-face requirement clarifications in workshops have
been used since the invention of Joint Application Design (JAD)
[WS95]. And these are also used in Rapid Application Development
(RAD) [Martin91] and the agile method DSDM [Stapleton03]. A-
TDD similarly exploits face-to-face conversation by using workshops
for formulating requirements-as-tests.

See “Try…Two-
week iterations to
break waterfall
habits” on p. 394.

Concurrent engineering—The authors of Concurrent Engineer-
ing Effectiveness define concurrent engineering as follows: “There is
a tight link between participants in the product development process,
such that they can perform much of their work at about the same
time” [FL97]. The main driver of concurrent engineering is shorter
cycle times in development. Two-week iterations are fast and there-
fore the team needs to conceive a way to work concurrently—
sequential development in a short iteration does not work. We have
seen teams invent A-TDD again and again simply because they had
to answer the question: “How can we perform our work at the same
time.”

44

3 — Test

Prevention rather than detection—In one of the first studies of
Toyota, A Study of the Toyota Production System, Singeo Shingo
writes “The purpose of inspection must be prevention; however, for
inspection to have that function, we must change our way of think-
ing”13 [Shingo89]. Similarly, in “The Growth of Software Testing,”
the authors identify five periods in the evolution of software testing.
They call the latest period “The prevention-oriented Period” and
state, “Asking test-related questions… early is often more important
to software quality and cost-effective development than actually exe-
cuting the tests” [GH88]. This is exactly what A-TDD strives to do.
When including people specialized in test in the requirements work-
shop, they can ask the test-related questions, and in that way
improve the requirements and prevent defects. The Total Quality
movement—an influence to Toyota and lean development—also pro-
motes prevention over detection.

How does A-TDD work? Figure 3.3 presents an overview.

Figure 3.3 A-TDD
overview

A-TDD consists of three steps:

1. Discuss the requirements in a workshop.

2. Develop them concurrently during the iteration.

3. Deliver the results to the stakeholders for acceptance.

13. In manufacturing the term ‘inspection’ is used instead of test.

discuss
in

workshop

develop
in

concurrence

deliver
for

acceptance

45

Customer-Facing Test

Discuss—Requirements are discovered through discussion in a
requirements workshop14. Participants of a workshop are the cross-
functional team, the Product Owner or representative, and any
other stakeholder who potentially has information about the
requirements. A common question to ask during such workshops is
“Imagine the system to be finished. How would you use it and what
would you expect from it?” Such a question results in examples of
use, and these examples can be written as tests—the requirements.
The workshop focus ought to be on discussion and discovery of
requirements more than on the actual tests.

Develop—At the end of the workshop, the examples are distilled15

into tests and all activities needed to implement the requirement
are done concurrently. These include

! making the glue code between the tests and the system under
test (“test libraries” and “lower-level tables” in Robot Frame-
work or ‘fixtures’ in Fit)

! implementing the requirement so that the tests pass

! updating architectural and other internal documentation
according to the working agreement of the team

! writing customer documentation for the requirement

! additional exploratory testing

See “Try…Prod-
uct-level Defini-
tion of Done” on
p. 170.

The exact list depends on the product, context, working agreements,
and the Definition of Done.

Deliver—When the tests pass, the requirement is reviewed with the
Product Owner and other stakeholders. This might lead to new
requirements or a change in the existing tests.

A more detailed way of describing A-TDD is shown in Figure 3.4.

14. Gojko Adzic calls these specification workshops [Adzic09].
15. [Hendrickson08] considers distill a separate step in A-TDD.

46

3 — Test

Figure 3.4 A-TDD
in more detail

Avoid…Traditional requirement handoff

The collaborative style of discovering requirements in A-TDD is con-
trary to conventional serial development—where an analyst clarifies
requirements by herself, documents them in specifications, and
hands these off to a developer and tester.

The developer implements the software according to his understand-
ing of the specification. Afterwards, the tester tests whether her
understanding of the specification is the same as the developer’s
understanding—which often has nothing to do with the real wishes
of the customer (see Figure 3.5).

The amount of waste—handoff, delay, partially done work, and
knowledge scatter—in this document-centric way of development is
extraordinary. Avoid it.

example tests

create

sy
st

emtest
libraries

at the end of the
requirements workshop,
the tests can be
executed but they fail

tests may be automated
before code is ready and
become a criteria for
when the item is done

test fails--item not doneite
m

 d
on

e

all activities needed to
implement the item are
done concurrently

Team

discuss
in workshop

develop
in concurrence

deliver
for acceptance

develop, test,
architect, and other
needed activities

47

Customer-Facing Test

Figure 3.5 conven-
tional document-
centric style of
requirements
clarification

Avoid…Thinking A-TDD is for testers

“Our testers do A-TDD” we sometimes encounter at clients. Testers
cannot “do A-TDD” because it is a whole-team technique—including
people with testing as their primary specialty. If not the whole team,
including the Product Owner or representative, is involved, then
whatever they are doing might be useful—but it is not A-TDD.

Avoid…Confusing TDD and A-TDD

Test-driven development is a developer technique that drives the
design by a microcycle of test–code–refactor. Acceptance test-driven
development is a whole-team technique that drives the requirement
discovery by a cycle of discuss–develop–deliver. Both write tests
first, but their goals are unalike. Don’t confuse them.

Analyst

specification

Developer Tester

writes the
specification
to how she
understands the
requirements

implements to
how he
understands the
specification

tests to how she
understands the
specification

Traditional document-centric test only tests whether the
interpretation of the specification of the tester is the same
as the interpretation of the developer. This frequently has
little relationship with the goal of the user. It promotes
hand-over, delay, and faults due to misinterpretation and
misrepresentation of requirements.

