


#1: Data Abstraction (1)

#2: Polymorphism (3)

#3: Design Patterns (7)

#4: The Standard Template 
Library (11)

#5: References Are Aliases, 
Not Pointers (13)

#6: Array Formal Arguments (17)

#7: Const Pointers and Pointers 
to Const (21)

#8: Pointers to Pointers (25)

#9: New Cast Operators (29)

#10: Meaning of a Const 
Member Function (33)

#11: The Compiler Puts 
Stuff in Classes (37)

#12: Assignment and Initialization
Are Different (41)

#13: Copy Operations (45)

#14: Function Pointers (49)

#15: Pointers to Class Members 
Are Not Pointers (53)

#16: Pointers to Member Functions
Are Not Pointers (57)

#17: Dealing with Function and
Array Declarators (61)

#18: Function Objects (63)

#19: Commands and 
Hollywood (67)

#20: STL Function Objects (71)

#21: Overloading and Overriding
Are Different (75)

#22: Template Method (77)

#23: Namespaces (81)

#24: Member Function 
Lookup (87)

#25: Argument Dependent 
Lookup (89)

#26: Operator Function Lookup
(91)

#27: Capability Queries (93)

#28: Meaning of Pointer
Comparison (97)

#29: Virtual Constructors 
and Prototype (99)

#30: Factory Method (103)

#31: Covariant Return Types (107)

#32: Preventing Copying (111)

C++ Common Knowledge

(continued inside the back cover)



Praise for C++ Common Knowledge

“We live in a time when, perhaps surprisingly, the best printed works on C++ are

just now emerging. This is one of those works. Although C++ has been at the

forefront of innovation and productivity in software development for more than

two decades, it is only now being fully understood and utilized. This book is one

of those rare contributions that can bear repeated study by practitioners and

experts alike. It is not a treatise on the arcane or academic—rather it completes

your understanding of things you think you know but will bite you sooner or later

until you really learn them. Few people have mastered C++ and software design

as well as Steve has; almost no one has such a level head as he when it comes to

software development. He knows what you need to know, believe me. When he

speaks, I always listen—closely. I invite you to do the same. You (and your cus-

tomers) will be glad you did.”

—Chuck Allison, editor, The C++ Source

“Steve taught me C++. This was back in 1982 or 1983, I think—he had just returned

from an internship sitting with Bjarne Stroustrup [inventor of C++] at Bell Labs.

Steve is one of the unsung heroes of the early days, and anything Steve writes is

on my A-list of things to read. This book is an easy read and collects a great deal

of Steve’s extensive knowledge and experience. It is highly recommended.“

—Stan Lippman, coauthor of C++ Primer, Fourth Edition

“I welcome the self-consciously non-Dummies approach of a short, smart book.“

—Matthew P. Johnson, Columbia University

“I agree with [the author’s] assessment of the types of programmers. I have encoun-

tered the same types in my experience as a developer and a book like this will go

far to help bridge their knowledge gap.... I think this book complements other

books, like Effective C++ by Scott Meyers. It presents everything in a concise and

easy-to-read style.“

—Moataz Kamel, senior software designer, Motorola Canada

“Dewhurst has written yet another very good book. This book should be required

reading for people who are using C++ (and think that they already know every-

thing in C++).“

—Clovis Tondo, coauthor of C++ Primer Answer Book



This page intentionally left blank 



C++ Common Knowledge



This page intentionally left blank 



C++ Common
Knowledge
Essential Intermediate Programming

Stephen C. Dewhurst

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:
Dewhurst, Stephen C.

C++ common knowledge : essential intermediate programming / Stephen C. Dewhurst.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-32192-8 (pbk. : alk. paper)
1. C++ (Computer program language)  I. Title.

QA76.73.C153D48797 2005
005.13'3—dc22

2004029089

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-321-32192-8

Printing5th July 2009

Text printed in the United States at Demand Print Center in Old Tappan, New Jersey.

www.awprofessional.com


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

A Note on Typographical Conventions  . . . . . . . . . . . . . . . . . . . . . xix

Item 1 Data Abstraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Item 2 Polymorphism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Item 3 Design Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Item 4 The Standard Template Library  . . . . . . . . . . . . . . . . . . . 11

Item 5 References Are Aliases, Not Pointers  . . . . . . . . . . . . . . . 13

Item 6 Array Formal Arguments  . . . . . . . . . . . . . . . . . . . . . . . . 17

Item 7 Const Pointers and Pointers to Const  . . . . . . . . . . . . . . 21

Item 8 Pointers to Pointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Item 9 New Cast Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Item 10 Meaning of a Const Member Function  . . . . . . . . . . . . . 33

Item 11 The Compiler Puts Stuff in Classes  . . . . . . . . . . . . . . . . . 37

Item 12 Assignment and Initialization Are Different  . . . . . . . . . 41

Item 13 Copy Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Item 14 Function Pointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Item 15 Pointers to Class Members Are Not Pointers  . . . . . . . . . 53

Item 16 Pointers to Member Functions Are Not Pointers  . . . . . 57

Item 17 Dealing with Function and Array Declarators  . . . . . . . . 61

Item 18 Function Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Item 19 Commands and Hollywood  . . . . . . . . . . . . . . . . . . . . . . 67

Item 20 STL Function Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



Item 21 Overloading and Overriding Are Different  . . . . . . . . . . 75

Item 22 Template Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Item 23 Namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Item 24 Member Function Lookup  . . . . . . . . . . . . . . . . . . . . . . . 87

Item 25 Argument Dependent Lookup  . . . . . . . . . . . . . . . . . . . . 89

Item 26 Operator Function Lookup  . . . . . . . . . . . . . . . . . . . . . . . 91

Item 27 Capability Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Item 28 Meaning of Pointer Comparison  . . . . . . . . . . . . . . . . . . 97

Item 29 Virtual Constructors and Prototype  . . . . . . . . . . . . . . . . 99

Item 30 Factory Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Item 31 Covariant Return Types  . . . . . . . . . . . . . . . . . . . . . . . . . 107

Item 32 Preventing Copying  . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Item 33 Manufacturing Abstract Bases  . . . . . . . . . . . . . . . . . . . 113

Item 34 Restricting Heap Allocation  . . . . . . . . . . . . . . . . . . . . . 117

Item 35 Placement New  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Item 36 Class-Specific Memory Management  . . . . . . . . . . . . . . 123

Item 37 Array Allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Item 38 Exception Safety Axioms  . . . . . . . . . . . . . . . . . . . . . . . 131

Item 39 Exception Safe Functions  . . . . . . . . . . . . . . . . . . . . . . . 135

Item 40 RAII  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Item 41 New, Constructors, and Exceptions  . . . . . . . . . . . . . . . 143

Item 42 Smart Pointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Item 43 auto_ptr Is Unusual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Item 44 Pointer Arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Item 45 Template Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . 153

Item 46 Class Template Explicit Specialization  . . . . . . . . . . . . . 155

Item 47 Template Partial Specialization  . . . . . . . . . . . . . . . . . . 161

Item 48 Class Template Member Specialization  . . . . . . . . . . . . 165

Item 49 Disambiguating with Typename  . . . . . . . . . . . . . . . . . 169

Item 50 Member Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

viii ❘ Contents



Item 51 Disambiguating with Template  . . . . . . . . . . . . . . . . . . 179

Item 52 Specializing for Type Information  . . . . . . . . . . . . . . . . 183

Item 53 Embedded Type Information  . . . . . . . . . . . . . . . . . . . . 189

Item 54 Traits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Item 55 Template Template Parameters  . . . . . . . . . . . . . . . . . . 199

Item 56 Policies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Item 57 Template Argument Deduction  . . . . . . . . . . . . . . . . . . 209

Item 58 Overloading Function Templates  . . . . . . . . . . . . . . . . . 213

Item 59 SFINAE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Item 60 Generic Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Item 61 You Instantiate What You Use  . . . . . . . . . . . . . . . . . . . 225

Item 62 Include Guards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Item 63 Optional Keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Index of Code Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Contents ❘ ix



This page intentionally left blank 



Preface

A successful book is not made of what is in it, but what is left out of it.

—Mark Twain

…as simple as possible, but no simpler.

—Albert Einstein

…a writer who questions the capacity of the person at the other end of the
line is not a writer at all, merely a schemer.

—E.B. White

When he took over the editorship of the late C++ Report, the quick Herb
Sutter asked me to write a column on a topic of my choosing. I agreed,
and I chose to call the column “Common Knowledge.” It was supposed to
be, in Herb’s words, “a regular summary of basic lore that every working
C++ programmer should know—but can’t always.” After a couple of
columns in that vein, however, I became interested in template metapro-
gramming techniques, and the topics treated in “Common Knowledge”
from that point on were far from common.

However, the problem in the C++ programming industry that motivated
my original choice of column remains. I commonly encounter the follow-
ing types of individuals in my training and consulting work:

■ Domain experts who are expert C programmers but who have only
basic knowledge of (and perhaps some animosity toward) C++

■ Talented new hires direct from university who have an academic
appreciation for the C++ language but little production C++
experience

xi



■ Expert Java programmers who have little C++ experience and who
have a tendency to program in C++ the way one would program 
in Java

■ C++ programmers with several years of experience maintaining
existing C++ applications but who have not been challenged to learn
anything beyond the basics required for maintenance

I want to be immediately productive, but many of the people with whom
I’m working or who I’m training require preliminary education in vari-
ous C++ language features, patterns, and coding techniques before we
can get down to business. Worse, I suspect that most C++ code is written
in ignorance of at least some of these basics and is therefore not what
most C++ experts would consider to be production quality.

This book addresses this pervasive problem by providing essential, com-
mon knowledge that every professional C++ programmer needs to know,
in a form that is pared to its essentials and that can be efficiently and
accurately absorbed. Much of the information is already available from
other sources or is part of that compendium of unwritten information
that all expert C++ programmers know. The advantage is that this mate-
rial resides in one place and was selected according to what my training
and consulting experience over many years has shown are the most com-
monly misunderstood and most useful language features, concepts, and
techniques.

Perhaps the most important aspect of the sixty-three short items that
make up this book is what they leave out, rather than what they contain.
Many of these topics have the potential to become complex. An author’s
ignorance of these complexities could result in an uninformed descrip-
tion that could mislead the reader, but an expert discussion of a topic in
its full complexity could inundate the reader. The approach used here is
to filter out needless complexity in the discussion of each topic. What
remains, I hope, is a clear distillation of the essentials required for pro-
duction C++ programming. C++ language wonks will recognize, there-
fore, that I’ve left out discussion of some issues that are interesting and
even important from a theoretical perspective, but the ignorance of
which does not commonly affect one’s ability to read and write produc-
tion C++ code.

Another motivation for this book came as I was engaged in conversation
with a group of well-known C++ experts at a conference. There was a

xii ❘ Preface



general pall or depression among these experts that modern C++ is so
complex that the “average” programmer can no longer understand it.
(The specific issue was name binding in the context of templates and
namespaces. Yes, getting worked up about such a topic does imply the
need for more play with normal children.) On reflection, I’d have to say
our attitude was pretentious and our gloom unwarranted. We “experts”
have no such problems, and it’s as easy to program in C++ as it is to speak
a (vastly more complex) natural language, even if you can’t diagram the
deep structure of your every utterance. A recurring theme of this book is
that while the full description of the minutia of a particular language fea-
ture may be daunting, day-to-day use of the feature is straightforward
and natural.

Consider function overloading. A full description occupies a large chunk
of the standard and whole or multiple chapters in many C++ texts. And
yet, when faced with

void f( int );

void f( const char * );

//…

f( "Hello" );

not a single practicing C++ programmer will be unable to determine
which f is called. Full knowledge of the rules by which a call to an over-
loaded function is resolved is useful but only rarely necessary. The same
applies to many other ostensibly complex areas of C++ language and
idiom.

This is not to say that all the material presented here is easy; it’s “as simple
as possible, but no simpler.” In C++ programming, as in any other worth-
while intellectual activity, many important details can’t be written on an
index card. Moreover, this is not a book for “dummies.” I feel a great deal
of responsibility to those who grant a portion of their valuable time to
reading my books. I respect these readers and try to communicate with
them as I would in person to any of my colleagues. Writing at an eighth-
grade level to a professional isn’t writing. It’s pandering.

Many of the book’s items treat simple misunderstandings that I’ve seen
over and over again, which just need to be pointed out (for example,
scope order for member function lookup and the difference between
overriding and overloading). Others deal with topics that are in the
process of becoming essential knowledge for C++ professionals but are

Preface ❘ xiii



often incorrectly assumed to be difficult and are avoided (for example,
class template partial specialization and template template parameters).
I’ve received some criticism from the expert reviewers of the manuscript
that I’ve spent too much space (approximately one third of the book) on
template issues that are not really common knowledge. However, each of
these experts pointed out one, two, or several of the template topics they
thought did belong in the book. The telling observation is, I think, that
there was little overlap among these suggestions, and every template-
related item had at least one supporter.

This is the crux of the issue with the items that make up this book. I don’t
expect any reader to be ignorant of every item’s topic, and it’s likely that
some readers will be familiar with all of them. Obviously, if a reader is not
familiar with a particular topic, there would be (I presume) some benefit
in reading about it. However, even if a reader is already familiar with a
topic, I’d hope that reading about it from a new perspective might clear
up a slight misunderstanding or lead to a deeper understanding. This
book may also have a role in saving the more experienced C++ program-
mer precious time. Competent C++ programmers often find themselves
(as described previously) answering the same questions over and over
again to the detriment of their own work. I’d suggest that the approach of
“read this first, and then let’s talk” would save these C++ gurus countless
hours and direct their expertise instead to the complex problems for
which it’s really needed.

I initially tried to group these sixty-three items into neat chapters, but the
items had other ideas. They instead tended to clump themselves together
in ways that ranged from the obvious to the unexpected. For example, the
items related to exceptions and resource management form a rather natu-
ral group. Less obviously, the items Capability Queries, Meaning of Pointer
Comparison, Virtual Constructors and Prototype, Factory Method, and
Covariant Return Types are strongly and somewhat surprisingly interre-
lated and are best grouped in close proximity to each other. Pointer Arith-
metic decided to hang with Smart Pointers rather than with the pointer
and array material earlier in the book. Rather than attempt to impose an
arbitrary chapter structure on these natural groupings, I decided to grant
the individual items freedom of association. Of course, many other inter-
relationships exist among the topics treated by the items than can be
represented in a simple linear ordering, so the items make frequent inter-
nal references among themselves. It’s a clumped but connected community.

xiv ❘ Preface



While the main idea is to be brief, discussion of a topic sometimes
includes ancillary details that are not directly related to the subject at
hand. These details are never necessary to follow the discussion, but the
reader is put on notice that a particular facility or technique exists. For
instance, the Heap template example that appears in several items informs
the reader in passing about the existence of the useful but rarely discussed
STL heap algorithms, and the discussion of placement new outlines the
technical basis of the sophisticated buffer management techniques
employed by much of the standard library. I also try to take the opportu-
nity, whenever it seems natural to do so, to fold the discussion of sub-
sidiary topics into the discussion of a particular, named item. Therefore,
RAII contains a short discussion of the order of constructor and destruc-
tor activation, Template Argument Deduction discusses the use of helper
functions for specializing class templates, and Assignment and Initializa-
tion Are Different folds in a discussion of computational constructors.
This book could easily have twice the number of items, but, like the
clumping of the items themselves, correlation of a subsidiary topic with a
specific item puts the topic in context and helps the reader to absorb the
material efficiently and accurately.

I’ve reluctantly included several topics that cannot reasonably be treated
in this book’s format of short items. In particular, the items on design pat-
terns and the design of the standard template library are laughably short
and incomplete. Yet they make an appearance simply to put some com-
mon misconceptions to rest, emphasize the importance of the topics, and
encourage the reader to learn more.

Stock examples are part of our programming culture, like the stories that
families swap when they gather for holidays. Therefore, Shape, String,
Stack, and many of the other usual suspects put in an appearance. The
common appreciation of these baseline examples confers the same effi-
ciencies as design patterns in communication, as in “Suppose I want to
rotate a Shape, except…” or “When you concatenate two Strings…”
Simply mentioning a common example orients the conversation and
avoids the need for time-consuming background discussion. “You know
how your brother acts whenever he’s arrested? Well, the other day…”

Unlike my previous books, this one tries to avoid passing judgment on
certain poor programming practices and misuses of C++ language fea-
tures; that’s a goal for other books, the best of which I list in the bibliogra-
phy. (I was, however, not entirely successful in avoiding the tendency to

Preface ❘ xv



preach; some bad programming practices just have to be mentioned, even
if only in passing.) The goal of this book is to inform the reader of the
technical essentials of production-level C++ programming in as efficient
a manner as possible.

.

—Stephen C. Dewhurst
Carver, Massachusetts
January 2005

xvi ❘ Preface



Acknowledgments

Peter Gordon, editor on ne peut plus extraordinaire, withstood my kvetch-
ing about the state of education in the C++ community for an admirably
long time before suggesting that I do something about it. This book is the
result. Kim Boedigheimer somehow managed to keep the entire project
on track without even once making violent threats to the author.

The expert technical reviewers—Matthew Johnson, Moataz Kamel, Dan
Saks, Clovis Tondo, and Matthew Wilson—pointed out several errors and
many infelicities of language in the manuscript, helping to make this a
better book. A stubborn individual, I haven’t followed all their recom-
mendations, so any errors or infelicities that remain are entirely my fault.

Some of the material in this book appeared, in slightly different form, in
my “Common Knowledge” column for C/C++ Users Journal, and much
of the material appeared in the “Once, Weakly” Web column on seman-
tics.org. I received many insightful comments on both print and Web
articles from Chuck Allison, Attila Fehér, Kevlin Henney, Thorsten
Ottosen, Dan Saks, Terje Slettebø, Herb Sutter, and Leor Zolman. Several
in-depth discussions with Dan Saks improved my understanding of the
difference between template specialization and instantiation and helped
me clarify the distinction between overloading and the appearance of
overloading under ADL and infix operator lookup.

This book relies on less direct contributions as well. I’m indebted to
Brandon Goldfedder for the algorithm analogy to patterns that appears
in the item on design patterns and to Clovis Tondo both for motivation
and for his assistance in finding qualified reviewers. I’ve had the good
fortune over the years to teach courses based on Scott Meyers’s Effective
C++, More Effective C++, and Effective STL books. This has allowed me
to observe firsthand what background information was commonly miss-
ing from students who wanted to profit from these industry-standard,
intermediate-level C++ books, and those observations have helped to

xvii



shape the set of topics treated in this book. Andrei Alexandrescu’s work
inspired me to experiment with template metaprogramming rather than
do what I was supposed to be doing, and both Herb Sutter’s and Jack
Reeves’s work with exceptions has helped me to understand better how
exceptions should be employed.

I’d also like to thank my neighbors and good friends Dick and Judy Ward,
who periodically ordered me away from my computer to work the local
cranberry harvest. For one whose professional work deals primarily in
simplified abstractions of reality, it’s intellectually healthful to be shown
that the complexity involved in convincing a cranberry vine to bear fruit
is a match for anything a C++ programmer may attempt with template
partial specialization.

Sarah G. Hewins and David R. Dewhurst provided, as always, both valu-
able assistance and important impediments to this project.

I like to think of myself as a quiet person of steady habits, given more to
calm reflection than strident demand. However, like those who undergo
a personality transformation once they’re behind the wheel of an auto-
mobile, when I get behind a manuscript I become a different person
altogether. Addison-Wesley’s terrific team of behavior modification
professionals saw me through these personality issues. Chanda Leary-
Coutu worked with Peter Gordon and Kim Boedigheimer to translate
my rantings into rational business proposals and shepherd them
through the powers-that-be. Molly Sharp and Julie Nahil not only
turned an awkward word document into the graceful pages you see
before you, they managed to correct many flaws in the manuscript while
allowing me to retain my archaic sentence structure, unusual diction,
and idiosyncratic hyphenation. In spite of my constantly changing
requests, Richard Evans managed to stick to the schedule and produce
not one, but two separate indexes. Chuti Prasertsith designed a gorgeous,
cranberry-themed cover. Many thanks to all.

xviii ❘ Acknowledgments



A Note on Typographical
Conventions

As mentioned in the preface, these items frequently reference one
another. Rather than simply mention the item number, which would
force an examination of the table of contents to determine just what was
being referenced, the title of the item is italicized and rendered in full.
To permit easy reference to the item, the item number and page on which
it appears are appended as subscripts. For example, the item referenced
Eat Your Vegetables [64, 256] tells us that the item entitled “Eat Your Veg-
etables” is item 64, which can be found on page 256.

Code examples appear in fixed-width font to better distinguish them
from the running text. Incorrect or inadvisable code examples appear
with a gray background, and correct and proper code appears with no
background.

xix



This page intentionally left blank 



Item 1 ❘ Data Abstraction

A “type” is a set of operations, and an “abstract data type” is a set of oper-
ations with an implementation. When we identify objects in a problem
domain, the first question we should ask about them is, “What can I do
with this object?” not “How is this object implemented?” Therefore, if a
natural description of a problem involves employees, contracts, and pay-
roll records, then the programming language used to solve the problem
should contain Employee, Contract, and PayrollRecord types. This
allows an efficient, two-way translation between the problem domain and
the solution domain, and software written this way has less “translation
noise” and is simpler and more correct.

In a general-purpose programming language like C++, we don’t have
application-specific types like Employee. Instead, we have something bet-
ter: the language facilities to create sophisticated abstract data types. The
purpose of an abstract data type is, essentially, to extend the program-
ming language into a particular problem domain.

No universally accepted procedure exists for designing abstract data types
in C++. This aspect of programming still has its share of inspiration and
artistry, but most successful approaches follow a set of similar steps.

1. Choose a descriptive name for the type. If you have trouble choos-
ing a name for the type, you don’t know enough about what you
want to implement. Go think some more. An abstract data type
should represent a single, well-defined concept, and the name for
that concept should be obvious.

2. List the operations that the type can perform. An abstract data type
is defined by what you can do with it. Remember initialization
(constructors), cleanup (destructor), copying (copy operations),
and conversions (nonexplicit single-argument constructors and
conversion operators). Never, ever, simply provide a bunch of
get/set operations on the data members of the implementation.
That’s not data abstraction; that’s laziness and lack of imagination.

3. Design an interface for the type. The type should be, as Scott Meyers
tells us, “easy to use correctly and hard to use incorrectly.” An

1



abstract data type extends the language; do proper language design.
Put yourself in the place of the user of your type, and write some
code with your interface. Proper interface design is as much a ques-
tion of psychology and empathy as technical prowess.

4. Implement the type. Don’t let the implementation affect the inter-
face of the type. Implement the contract promised by the type’s
interface. Remember that the implementations of most abstract
data types will change much more frequently than their interfaces.

2 ❘ Item 1 Data Abstraction



Item 2 ❘ Polymorphism

The topic of polymorphism is given mystical status in some program-
ming texts and is ignored in others, but it’s a simple, useful concept that
the C++ language supports. According to the standard, a “polymorphic
type” is a class type that has a virtual function. From the design perspec-
tive, a “polymorphic object” is an object with more than one type, and a
“polymorphic base class” is a base class that is designed for use by poly-
morphic objects.

Consider a type of financial option, AmOption, as shown in Figure 1.

An AmOption object has four types: It is simultaneously an AmOption, an
Option, a Deal, and a Priceable. Because a type is a set of operations
(see Data Abstraction [1, 1] and Capability Queries [27, 93]), an AmOption
object can be manipulated through any one of its four interfaces. This
means that an AmOption object can be manipulated by code that is written
to the Deal, Priceable, and Option interfaces, thereby allowing the
implementation of AmOption to leverage and reuse all that code. For a
polymorphic type such as AmOption, the most important things inherited
from its base classes are their interfaces, not their implementations. In 

Figure 1 ❘ Polymorphic leveraging in a financial option hierarchy. An American option
has four types.

Option

AmOption EurOption

Deal Priceable

3



fact, it’s not uncommon, and is often desirable, for a base class to consist
of nothing but interface (see Capability Queries [27, 93]).

Of course, there’s a catch. For this leveraging to work, a properly designed
polymorphic class must be substitutable for each of its base classes. In
other words, if generic code written to the Option interface gets an
AmOption object, that object had better behave like an Option!

This is not to say that an AmOption should behave identically to an
Option. (For one thing, it may be the case that many of the Option base
class’s operations are pure virtual functions with no implementation.)
Rather, it’s profitable to think of a polymorphic base class like Option as a
contract. The base class makes certain promises to users of its interface;
these include firm syntactic promises that certain member functions can
be called with certain types of arguments and less easily verifiable seman-
tic promises concerning what will actually occur when a particular mem-
ber function is called. Concrete derived classes like AmOption and
EurOption are subcontractors that implement the contract Option has
established with its clients, as shown in Figure 2.

For example, if Option has a pure virtual price member function that
gives the present value of the Option, both AmOption and EurOption
must implement this function. It obviously won’t implement identical
behavior for these two types of Option, but it should calculate and return
a price, not make a telephone call or print a file.

Figure 2 ❘ A polymorphic contractor and its subcontractors. The Option base class
specifies a contract.

Option

price()

update()

EurOption

price()

AmOption

price()

code
written to
Option
interface

4 ❘ Item 2 Polymorphism



On the other hand, if I were to call the price function of two different
interfaces to the same object, I’d better get the same result. Essentially,
either call should bind to the same function:

AmOption *d = new AmOption;

Option *b = d;

d->price(); // if this calls AmOption::price...

b->price(); // ...so should this!

This makes sense. (It’s surprising how much of advanced object-oriented
programming is basic common sense surrounded by impenetrable syntax.)
If I were to ask you, “What’s the present value of that American option?”
I’d expect to receive the same answer if I’d phrased my question as,
“What’s the present value of that option?”

The same reasoning applies, of course, to an object’s nonvirtual functions:

b->update(); // if this calls Option::update...

d->update(); // ...so should this!

The contract provided by the base class is what allows the “polymorphic”
code written to the base class interface to work with specific options while
promoting healthful ignorance of their existence. In other words, the
polymorphic code may be manipulating AmOption and EurOption
objects, but as far as it’s concerned they’re all just Options.Various concrete
Option types can be added and removed without affecting the generic
code that is aware only of the Option base class. If an AsianOption
shows up at some point, the polymorphic code that knows only about
Options will be able to manipulate it in blissful ignorance of its specific
type, and if it should later disappear, it won’t be missed.

By the same token, concrete option types such as AmOption and EurOption
need to be aware only of the base classes whose contracts they implement
and are independent of changes to the generic code. In principle, the base
class can be ignorant of everything but itself. From a practical perspec-
tive, the design of its interface will take into account the requirements of
its anticipated users, and it should be designed in such a way that derived
classes can easily deduce and implement its contract (see Template
Method [22, 77]). However, a base class should have no specific knowledge
of any of the classes derived from it, because such knowledge inevitably
makes it difficult to add or remove derived classes in the hierarchy.

In object-oriented design, as in life, ignorance is bliss (see also Virtual
Constructors and Prototype [29, 99] and Factory Method [30, 103]).

Item 2 Polymorphism ❘ 5



This page intentionally left blank 


