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Preface
Who Should Read This Book
Over the last two decades, several publications appeared on the subject of 
computer viruses, but only a few have been written by professionals (“insiders”) 
of computer virus research. Although many books exist that discuss the computer
virus problem, they usually target a novice audience and are simply not too inter-
esting for the technical professionals. There are only a few works that have no
worries going into the technical details, necessary to understand, to effectively
defend against computer viruses. 

Part of the problem is that existing books have little—if any—information about
the current complexity of computer viruses. For example, they lack serious techni-
cal information on fast-spreading computer worms that exploit vulnerabilities to
invade target systems, or they do not discuss recent code evolution techniques
such as code metamorphism. If you wanted to get all the information I have in this
book, you would need to spend a lot of time reading articles and papers that are
often hidden somewhere deep inside computer virus and security conference pro-
ceedings, and perhaps you would need to dig into malicious code for years to
extract the relevant details.

I believe that this book is most useful for IT and security professionals who
fight against computer viruses on a daily basis. Nowadays, system administrators
as well as individual home users often need to deal with computer worms and
other malicious programs on their networks. Unfortunately, security courses have
very little training on computer virus protection, and the general public knows
very little about how to analyze and defend their network from such attacks. To
make things more difficult, computer virus analysis techniques have not been 
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discussed in any existing works in sufficient length before.
I also think that, for anybody interested in information security, being aware of

what the computer virus writers have “achieved” so far is an important thing to
know.

For years, computer virus researchers used to be “file” or “infected object” ori-
ented. To the contrary, security professionals were excited about suspicious events
only on the network level. In addition, threats such as CodeRed worm appeared to
inject their code into the memory of vulnerable processes over the network, but
did not “infect” objects on the disk. Today, it is important to understand all of
these major perspectives—the file (storage), in-memory, and network views—and
correlate the events using malicious code analysis techniques.

During the years, I have trained many computer virus and security analysts to
effectively analyze and respond to malicious code threats. In this book, I have
included information about anything that I ever had to deal with. For example, I
have relevant examples of ancient threats, such as 8-bit viruses on the
Commodore 64. You will see that techniques such as stealth technology appeared
in the earliest computer viruses, and on a variety of platforms. Thus, you will be
able to realize that current rootkits do not represent anything new! You will find
sufficient coverage on 32-bit Windows worm threats with in-depth exploit discus-
sions, as well as 64-bit viruses and “pocket monsters” on mobile devices. All along
the way, my goal is to illustrate how old techniques “reincarnate” in new threats
and demonstrate up-to-date attacks with just enough technical details.

I am sure that many of you are interested in joining the fight against malicious
code, and perhaps, just like me, some of you will become inventors of defense
techniques. All of you should, however, be aware of the pitfalls and the challenges
of this field!

That is what this book is all about.

What I Cover
The purpose of this book is to demonstrate the current state of the art of computer
virus and antivirus developments and to teach you the methodology of computer
virus analysis and protection. I discuss infection techniques of computer viruses
from all possible perspectives: file (on storage), in-memory, and network. I classify
and tell you all about the dirty little tricks of computer viruses that bad guys
developed over the last two decades and tell you what has been done to deal with
complexities such as code polymorphism and exploits. 
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The easiest way to read this book is, well, to read it from chapter to 
chapter. However, some of the attack chapters have content that can be more rele-
vant after understanding techniques presented in the defense chapters. If you feel
that any of the chapters are not your taste, or are too difficult or lengthy, you can
always jump to the next chapter. I am sure that everybody will find some parts of
this book very difficult and other parts very simple, depending on individual 
experience.

I expect my readers to be familiar with technology and some level of program-
ming. There are so many things discussed in this book that it is simply impossible
to cover everything in sufficient length. However, you will know exactly what you
might need to learn from elsewhere to be absolutely successful against malicious
threats. To help you, I have created an extensive reference list for each chapter that
leads you to the necessary background information.

Indeed, this book could easily have been over 1,000 pages. However, as you
can tell, I am not Shakespeare. My knowledge of computer viruses is great, not my
English. Most likely, you would have no benefit of my work if this were the other
way around.

What I Do Not Cover
I do not cover Trojan horse programs or backdoors in great length. This book is
primarily about self-replicating malicious code. There are plenty of great books
available on regular malicious programs, but not on computer viruses.

I do not present any virus code in the book that you could directly use to 
build another virus. This book is not a “virus writing” class. My understanding,
however, is that the bad guys already know about most of the techniques that I
discuss in this book. So, the good guys need to learn more and start to think (but
not act) like a real attacker to develop their defense!

Interestingly, many universities attempt to teach computer virus research
courses by offering classes on writing viruses. Would it really help if a student
could write a virus to infect millions of systems around the world? Will such stu-
dents know more about how to develop defense better? Simply, the answer 
is no…

Instead, classes should focus on the analysis of existing malicious threats.
There are so many threats out there waiting for somebody to understand them—
and do something against them.

Of course, the knowledge of computer viruses is like the “Force” in Star Wars.
Depending on the user of the “Force,” the knowledge can turn to good or evil. I
cannot force you to stay away from the “Dark Side,” but I urge you to do so.



Acknowledgments
First, I would like to thank my wife Natalia for encouraging my work for over 15
years! I also thank her for accepting the lost time on all the weekends that we
could have spent together while I was working on this book.

I would like to thank everybody who made this book possible. This book grew
out of a series of articles and papers on computer viruses, several of which I have
co-authored with other researchers over the years. Therefore, I could never ade-
quately thank Eric Chien, Peter Ferrie, Bruce McCorkendale, and Frederic Perriot
for their excellent contributions to Chapter 7 and Chapter 10.

This book could not be written without the help of many friends, great
antivirus researchers, and colleagues. First and foremost, I would like to thank Dr.
Vesselin Bontchev for educating me in the terminology of malicious programs for
many years while we worked together. Vesselin is famous (“infamous?”) for his
religious accuracy in the subject matter, and he greatly influenced and supported
my research.

A big thank you needs to go to the following people who encouraged me to
write this book, educated me in the subject, and influenced my research over the
years: Oliver Beke, Zoltan Hornak, Frans Veldman, Eugene Kaspersky, Istvan
Farmosi, Jim Bates, Dr. Frederick Cohen, Fridrik Skulason, David Ferbrache, Dr.
Klaus Brunnstein, Mikko Hypponen, Dr. Steve White, and Dr. Alan Solomon.

I owe a huge thanks to my technical reviewers: Dr. Vesselin Bontchev, Peter
Ferrie, Nick FitzGerald, Halvar Flake, Mikko Hypponen, Dr. Jose Nazario, and
Jason V. Miller. Your encouragements, criticisms, insights, and reviews of early
handbook manuscripts were simply invaluable.

xxv



Acknowledgments

xxvi

I need to thank Janos Kis and Zsolt Szoboszlay for providing me access to in-
the-wild virus code for analysis, in the days when the BBS was the center of the
computing universe. I also need to thank Gunter May for the greatest present that
an east European kid could get—a C64. 

A big thanks to everybody at Symantec, especially to Linda A. McCarthy and
Vincent Weafer, who greatly encouraged me to write this book. I would also like to
thank Nancy Conner and Chris Andry for their outstanding editorial work.
Without their help, this project simply would never have finished. I also owe a
huge thanks to Jessica Goldstein, Kristy Hart, and Christy Hackerd for helping me
with the publishing process all the way.

A big thanks to all past and present members of the Computer Antivirus
Researchers Organization (CARO), VFORUM, and the AntiVirus Emergency
Discussion (AVED) List for all the exciting discussions on computer viruses and
other malicious programs and defense systems.

I would like to thank everybody at Virus Bulletin for publishing my articles and
papers internationally for almost a decade and for letting me use that material in
this book.

Last but not least, I thank my teacher parents and grandparents for the extra
“home education” in math, physics, music, and history.



Contact Information

If you find errors or have suggestions for clarification or material you would like to
see in a future edition, I would love to hear from you. I am planning to introduce
clarifications, possible corrections, and new information relevant to the 
content of this work on my Web site. While I think we have found most of the
problems (especially in those paragraphs that were written late at night or
between virus and security emergencies), I believe that no such work of this 
complexity and size can exist without some minor nits. Nonetheless, I made all
the efforts to provide you with “trustworthy” information according to the best of
my research knowledge.

Peter Szor,
Santa Monica, CA
pszor@acm.org

http://www.peterszor.com

xxvii

http://www.peterszor.com


This page intentionally left blank 



1

PART I

STRATEGIES OF THE ATTACKER



This page intentionally left blank 



3

CHAPTER 1
Introduction to the Games

of Nature
“To me art is a desire to communicate.”

—Endre Szasz



Computer virus research is a fascinating subject to many who are interested in
nature, biology, or mathematics. Everyone who uses a computer will likely
encounter some form of the increasingly common problem of computer viruses. In
fact, some well-known computer virus researchers became interested in the field
when, decades ago, their own systems were infected. 

The title of Donald Knuth’s book series1, The Art of Computer Programming, sug-
gests that anything we can explain to a computer is science, but that which we
cannot currently explain to a computer is an art. Computer virus research is a rich,
complex, multifaceted subject. It is about reverse engineering, developing detec-
tion, disinfection, and defense systems with optimized algorithms, so it naturally
has scientific aspects; however, many of the analytical methods are an art of their
own. This is why outsiders often find this relatively young field so hard to under-
stand. Even after years of research and publications, many new analytical tech-
niques are in the category of art and can only be learned at antivirus and security
vendor companies or through the personal associations one must forge to succeed
in this field.

This book attempts to provide an insider’s view of this fascinating research. In
the process, I hope to teach many facts that should interest both students of the
art and information technology professionals. My goal is to provide an extended
understanding of both the attackers and the systems built to defend against viru-
lent, malicious programs. 

Although there are many books about computer viruses, only a few have been
written by people experienced enough in computer virus research to discuss the
subject for a technically oriented audience. 

The following sections discuss historical points in computation that are rele-
vant to computer viruses and arrive at a practical definition of the term computer
virus.

1.1 Early Models of Self-Replicating Structures
Humans create new models to represent our world from different perspectives.
The idea of self-replicating systems that model self-replicating structures has been
around since the Hungarian-American, Neumann János (John von Neumann), sug-
gested it in 19482, 3, 4.

Von Neumann was a mathematician, an amazing thinker, and one of the great-
est computer architects of all time. Today’s computers are designed according to
his original vision. Neumann’s machines introduced memory for storing informa-
tion and binary (versus analog) operations. According to von Neumann’s brother
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Nicholas, “Johnny” was very impressed with Bach’s “Art of the Fugue” because it
was written for several voices, with the instrumentation unspecified. Nicholas von
Neumann credits the Bach piece as a source for the idea of the stored-program
computer5.

In the traditional von Neumann machine, there was no basic difference
between code and data. Code was differentiated from data only when the operat-
ing system transferred control and executed the information stored there. 

To create a more secure computing system, we will find that system operations
that better control the differentiation of data from code are essential. However, we
also will see the weaknesses of such approaches. 

Modern computers can simulate nature using a variety of modeling tech-
niques. Many computer simulations of nature manifest themselves as games.
Modern computer viruses are somewhat different from these traditional nature-
simulation game systems, but students of computer virus research can appreciate
the utility of such games for gaining an understanding of self-replicating struc-
tures.

1.1.1 John von Neumann: Theory of Self-Reproducing Automata
Replication is an essential part of life. John von Neumann was the first to provide
a model to describe nature’s self-reproduction with the idea of self-building
automata.

In von Neumann’s vision, there were three main components in a system:

1. A Universal Machine

2. A Universal Constructor

3. Information on a Tape

A universal machine (Turing Machine) would read the memory tape and, using
the information on the tape, it would be able to rebuild itself piece by piece using
a universal constructor. The machine would not understand the process—it would
simply follow the information (blueprint instructions) on the memory tape. The
machine would only be able to select the next proper piece from the set of all the
pieces by picking them one by one until the proper piece was found. When it was
found, two proper pieces would be put together according to the instructions until
the machine reproduced itself completely.

If the information that was necessary to rebuild another system could be
found on the tape, then the automata was able to reproduce itself. The original
automata would be rebuilt (Figure 1.1), and then the newly built automata was
booted, which would start the same process.

1.1 Early Models of Self-Replicating Structures
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Figure 1.1 The model of a self-building machine.

A few years later, Stanislaw Ulam suggested to von Neumann to use the
processes of cellular automation to describe this model. Instead of using “machine
parts,” states of cells were introduced. Because cells are operated in a robotic fash-
ion according to rules (“code”), the cell is known as an automaton. The array of
cells comprises the cellular automata (CA) computer architecture.

Von Neumann changed the original model using cells that had 29 different
states in a two-dimensional, 5-cell environment. To create a self-reproducing struc-
ture, he used 200,000 cells. Neumann’s model mathematically proved the possibil-
ity of self-reproducing structures: Regular non-living parts (molecules) could be
combined to create self-reproducing structures (potentially living organisms). 

In September 1948, von Neumann presented his vision of self-replicating
automata systems. Only five years later, in 1953, Watson and Crick recognized
that living organisms use the DNA molecule as a “tape” that provides the informa-
tion for the reproduction system of living organisms. 

Unfortunately, von Neumann could not see a proof of his work in his life, but
his work was completed by Arthur Burks. Further work was accomplished by E.F.
Codd in 1968. Codd simplified Neumann’s model using cells that had eight states,
5-cell environments. Such simplification is the base for “self-replicating loops”6

developed by artificial life researchers, such as Christopher G. Langton, in 1979.
Such replication loops eliminate the complexity of universal machine from the sys-
tem and focus on the needs of replication.
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In 1980 at NASA/ASEE, Robert A. Freitas, Jr. and William B. Zachary7

conducted research on a self-replicating, growing lunar factory. A lunar manufac-
turing facility (LMF) was researched, which used the theory of self-reproducing
automata and existing automation technology to make a self-replicating, self-
growing factory on the moon. Robert A. Freitas, Jr. and Ralph C. Merkle recently
authored a book titled Kinematic Self-Replicating Machines. This book indicates a
renewed scientific interest in the subject. A few years ago, Freitas introduced the
term ecophagy, the theoretical consumption of the entire ecosystem by out of con-
trol, self-replicating nano-robots, and he proposed mitigation recommendations8.

It is also interesting to note that the theme of self-replicating machines occurs
repeatedly in works of science fiction, from movies such as Terminator to novels
written by such authors as Neal Stephenson and William Gibson. And of course,
there are many more examples from beyond the world of science fiction, as nan-
otech and microelectrical mechanical systems (MEMS) engineering have become
real sciences. 

1.1.2 Fredkin: Reproducing Structures
Several people attempted to simplify von Neumann’s model. For instance, in 1961
Edward Fredkin used a specialized cellular automaton in which all the structures
could reproduce themselves and replicate using simple patterns on a grid (see
Figure 1.2 for a possible illustration). Fredkin’s automata had the following rules9:

� On the table, we use the same kind of tokens.
� We either have a token or no token in each possible position.
� Token generations will follow each other in a finite time frame.
� The environment of each token will determine whether we will have a new

token in the next generation.
� The environment is represented by the squares above, below, to the left, 

and to the right of the token (using the 5-cell-based von Neumann 
environment).

� The state of a square in the next generation will be empty when the token
has an even number of tokens in its environment.

� The state of a square in the next generation will be filled with a token if it
has an odd number of tokens in its environment.

� It is possible to change the number of states.

1.1 Early Models of Self-Replicating Structures
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Figure 1.2 Generation 1, Generation 2, and…Generation 4.

Using the rules described previously with this initial layout allows all struc-
tures to replicate. Although there are far more interesting layouts to explore, this
example is the simplest possible model of self-reproducing cellular automata.

1.1.3 Conway: Game of Life
In 1970, John Horton Conway10 created one of the most interesting cellular automa-
ta systems. Just as the pioneer von Neumann did, Conway researched the interac-
tion of simple elements under a common rule and found that this could lead to
surprisingly interesting structures. Conway named his game Life. Life is based on
the following rules:

� There should be no initial pattern for which there is a single proof that the
population can grow without limit.

� There should be an initial pattern that apparently does grow without limit.
� There should be simple initial patterns that work according to simple genetic

law: birth, survival, and death.



Figure 1.3 demonstrates a modern representation of the original Conway table
game written by Edwin Martin11

.
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Figure 1.3 Edwin Martin’s Game of Life implementation on the Mac using “Shooter” starting 
structure.

It is especially interesting to see the computer animation as the game develops
with the so-called “Shooter” starting structure. In a few generations, two shooter
positions that appear to shoot to each other will develop on the sides of the table,
as shown in Figure 1.4, and in doing so they appear to produce so-called gliders
that “fly” away (see Figure 1.5) toward the lower-right corner of the table. This
sequence continues endlessly, and new gliders are produced.

Figure 1.4 “Shooter” in Generation 355.



Figure 1.5 The glider moves around without changing shape.

On a two-dimensional table, each cell has two potential states: S=1 if there is
one token in the cell, or S=0 if there is no token. Each cell will live according to
the rules governed by the cell’s environment (see Figure 1.6). 
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Figure 1.6 The 9-cell-based Moore environment.

The following characteristics/rules define Conway’s game, Life:
Birth: If an empty cell has three (K=3) other filled cells in its environment,
that particular cell will be filled in a new generation.

Survival: If a filled cell has two or three (K=2 or K=3) other filled cells in its
environment, that particular cell will survive in the new generation.

Death: If a filled cell has only one or no other filled cells (K=1 or K=0) in its
environment, that particular cell will die because of isolation. Further, if a cell
has too many filled cells in its environment—four, five, six, seven, or eight
(K=4, 5, 6, 7, or 8), that particular cell will also die in the next generation due
to overpopulation.

Conway originally believed that there were no self-replicating structures in Life.
He even offered $50 to anyone who could create a starting structure that would
lead to self-replication. One such structure was quickly found using computers at
the artificial intelligence group of the Massachusetts Institute of Technology (MIT). 

MIT students found a structure that was later nicknamed a glider. When 13
gliders meet, they create a pulsing structure. Later, in the 100th generation, the
pulsing structure suddenly “gives birth” to new gliders, which quickly “fly” away.



After this point, in each 30th subsequent generation, there will be a new glider on
the table that flies away. This sequence continues endlessly. This setup is very sim-
ilar to the “Shooter” structure shown in Figures 1.3 and 1.4.

Games with Computers, written by Antal Csakany and Ferenc Vajda in 1980,
contains examples of competitive games. The authors described a table game with
rules similar to those of Life. The table game uses cabbage, rabbits, and foxes to
demonstrate struggles in nature. An initial cell is filled with cabbage as food for
the rabbits, which becomes food for the foxes according to predefined rules. Then
the rules control and balance the population of rabbits and foxes.

It is interesting to think about computers, computer viruses, and antiviral pro-
grams in terms of this model. Without computers (in particular, an operating sys-
tem or BIOS of some sort), computer viruses are unable to replicate. Computer
viruses infect new computer systems, and as they replicate, the viruses can be
thought of as prey for antivirus programs. 

In some situations, computer viruses fight back. These are called retro viruses.
In such a situation, the antiviral application can be thought to “die.” When an
antiviral program stops an instance of a virus, the virus can be thought to “die.” In
some cases, the PC will “die” immediately as the virus infects it. 

For example, if the virus indiscriminately deletes key operating system files,
the system will crash, and the virus can be said to have “killed” its host. If this
process happens too quickly, the virus might kill the host before having the oppor-
tunity to replicate to other systems. When we imagine millions of computers as a
table game of this form, it is fascinating to see how computer virus and antiviral
population models parallel those of the cabbage, rabbits, and foxes simulation
game.

Rules, side effects, mutations, replication techniques, and degrees of virulence
dictate the balance of such programs in a never-ending fight. At the same time, a
“co-evolution”12 exists between computer viruses and antivirus programs. As
antivirus systems have become more sophisticated, so have computer viruses. This
tendency has continued over the more than 30-year history of computer viruses. 

Using models along these lines, we can see how the virus population varies
according to the number of computers compatible with them. When it comes to
computer viruses and antiviral programs, multiple parallel games occur side by
side. Viruses within an environment that consists of a large number of compatible
computers will be more virulent; that is, they will spread more rapidly to many
more computers. A large number of similar PCs with compatible operating sys-
tems create a homogeneous environment—fertile ground for virulence (sound
familiar?).

1.1 Early Models of Self-Replicating Structures
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With smaller game boards representing a smaller number of compatible com-
puters, we will obviously see smaller outbreaks, along with relatively small virus
populations.

This sort of modeling clearly explains why we find major computer virus infec-
tions on operating systems such as Windows, which represents about 95% of the
current PC population around us on a huge “grid.” Of course this is not to say that
5% of computer systems are not enough to cause a global epidemic of some sort.

Note

If you are fascinated by self-replicating, self-repairing, and evolving 
structures, visit the BioWall project, http://lslwww.epfl.ch/
biowall/index.html.

1.1.4 Core War: The Fighting Programs
Around 1966, Robert Morris, Sr., the future National Security Agency (NSA) chief
scientist, decided to create a new game environment with two of his friends,
Victor Vyssotsky and Dennis Ritchie, who coded the game and called it Darwin.
(Morris, Jr. was the first infamous worm writer in the history of computer viruses.
His mark on computer virus history will be discussed later in the book.)

The original version of Darwin was created for the PDP-1 (programmed data
processing) at Bell Labs. Later, Darwin became Core War, a computer game that
many programmers and mathematicians (as well as hackers) play to this day. 

Note

I use the term hacker in its original, positive sense. I also believe
that all good virus researchers are hackers in the traditional
sense. I consider myself a hacker, too, but fundamentally 
different from malicious hackers who break into other people’s
computers.

The game is called Core War because the objective of the game is to kill your
opponent’s programs by overwriting them. The original game is played between
two assembly programs written in the Redcode language. The Redcode programs
run in the core of a simulated (for example, “virtual”) machine named Memory
Array Redcode Simulator (MARS). The actual fight between the warrior programs
was referred to as Core Wars.

http://lslwww.epfl.ch/biowall/index.html
http://lslwww.epfl.ch/biowall/index.html


The original instruction set of Redcode consists of 10 simple instructions that
allow movement of information from one memory location to another, which pro-
vides great flexibility in creating tricky warrior programs. Dewdney wrote several
“Computer Recreations” articles in Scientific American13,14 that discussed Core War,
beginning with the May 1984 article. Figure 1.7 is a screen shot of a Core War
implementation called PMARSV, written by Albert Ma, Na’ndor Sieben, Stefan
Strack, and Mintardjo Wangsaw. It is interesting to watch as the little warriors
fight each other within the MARS environment.

1.1 Early Models of Self-Replicating Structures
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Figure 1.7 Core Wars warrior programs (Dwarf and MICE) in battle.

As programs fight in the annual tournaments, certain warriors might become
the King of the Hill (KotH). These are the Redcode programs that outperform their
competitors.

The warrior program named MICE won the first tournament. Its author, Chip
Wendell, received a trophy that incorporated a core-memory board from an early
CDC 6600 computer14.



The simplest Redcode program consists of only one MOV instruction: MOV
0,1 (in the traditional syntax). This program is named IMP, which causes the con-
tents at relative address 0 (namely the MOV, or move, instruction itself), to be
transferred to relative address 1, just one address ahead of itself. After the instruc-
tion is copied to the new location, control is given to that address, executing the
instruction, which, in turn, makes a new copy of itself at a higher address, and so
on. This happens naturally, as instructions are executed following a higher
address. The instruction counter will be incremented after each executed 
instruction.

The basic core consisted of two warrior programs and 8,000 cells for instruc-
tions. Newer revisions of the game can run multiple warriors at the same time.
Warrior programs are limited to a specific starting size, normally 100 instructions.
Each program has a finite number of iterations; by default, this number is 80,000.

The original version of Redcode supported 10 instructions. Later revisions con-
tain more. For example, the following 14 instructions are used in the 1994 revision,
shown in Listing 1.1.

Listing 1.1
Core War Instructions in the 1994 Revision
DAT data
MOV move
ADD add
SUB subtract
MUL multiply
DIV divide
MOD modula 
JMP jump
JMZ jump if zero
JMN jump if not zero
DJN decrement, jump if not zero
CMP compare
SLT skip if less than
SPL split execution

Let’s take a look at Dewdney’s Dwarf tutorial (see Listing 1.2). 

Listing 1.2
Dwarf Bombing Warrior Program
;name          Dwarf
;author        A. K. Dewdney
;version       94.1
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;date          April 29, 1993
;strategy      Bombs every fourth instruction.

ORG     1 ; Indicates execution begins with the second
; instruction (ORG is not actually loaded, and is
; therefore not counted as an instruction).

DAT.F   #0, #0     ; Pointer to target instruction.
ADD.AB  #4, $-1    ; Increments pointer by 4.
MOV.AB  #0, @-2    ; Bombs target instruction.
JMP.A   $-2, #0    ; Loops back two instructions.

Dwarf follows a so-called bombing strategy. The first few lines are comments
indicating the name of the warrior program and its Redcode 1994 standard. Dwarf
attempts to destroy its opponents by “dropping” DAT bombs into their operation
paths. Because any warrior process that attempts to execute a DAT statement dies
in the MARS, Dwarf will be a likely winner when it hits its opponents.

The MOV instruction is used to move information into MARS cells. (The IMP
warrior explains this very clearly.) The general format of a Redcode command is of
the Opcode A, B form. Thus, the command MOV.AB  #0, @-2 will point to the DAT
statement in Dwarf’s code as a source. 

The A field points to the DAT statement, as each instruction has an equivalent
size of 1, and at 0, we find DAT #0, #0. Thus, MOV will copy the DAT instruction
to where B points. So where does B point to now? 

The B field points to DAT.F #0, #0 statement in it. Ordinarily, this would mean
that the bomb would be put on top of this statement, but the @ symbol makes this
an indirect pointer. In effect, the @ symbol says to use the contents of the location
to where the B field points as a new pointer (destination). In this case, the B field
appears to point to a value of 0 (location 0, where the DAT.F instruction is placed). 

The first instruction to execute before the MOV, however, is an ADD instruc-
tion. When this ADD #4, $-1 is executed, the DAT’s offset field will be increment-
ed by four each time it is executed—the first time, it will be changed from 0 to 4,
the next time from 4 to 8, and so on.

This is why, when the MOV command copies a DAT bomb, it will land four
lines (locations) above the DAT statement (see Listing 1.3).

Listing 1.3
Dwarf’s Code When the First Bomb Is Dropped
0 DAT.F #0, #8
1 -> ADD.AB 4, $-1
2 MOV.AB #0, @-2 ; launcher

continues
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Listing 1.3 continued
Dwarf’s Code When the First Bomb Is Dropped
3 JMP.A $-2, #0
4 DAT ; Bomb 1

5 .
6 .
7 .
8 DAT ; Bomb 2

9 .

The JMP.A $-2 instruction transfers control back relative to the current offset,
that is, back to the ADD instruction to run the Dwarf program “endlessly.” Dwarf
will continue to bomb into the core at every four locations until the pointers wrap
around the core and return. (After the highest number possible for the DAT loca-
tion has been reached, it will “wrap” back around past 0. For example, if the high-
est possible value were 10, 10+1 would be 0, and 10+4 would be 3.) 

At that point, Dwarf begins to bomb over its own bombs, until the end of
80,000 cycles/iterations or until another warrior acts upon it. At any time, another
warrior program might easily kill Dwarf because Dwarf stays at a constant loca-
tion—so that it can avoid hitting itself with friendly fire. But in doing so, it exposes
itself to attackers.

There are several common strategies in Core War, including scanning, replicat-
ing, bombing, IMP-spiral (those using the SPL instruction), and the interesting
bomber variation named the vampire.

Dewdney also pointed out that programs can even steal their enemy warrior’s
very soul by hijacking a warrior execution flow. These are the so-called vampire
warriors, which bomb JMP (JUMP) instructions into the core. By bombing with
jumps, the enemy program’s control can be hijacked to point to a new, predefined
location where the hijacked warrior will typically execute useless code. Useless
code will “burn” the cycles of the enemy warrior’s execution threads, thus giving
the vampire warrior an advantage.

Instead of writing computer viruses, I strongly recommend playing this harm-
less and interesting game. In fact, if worms fascinate you, a new version of Core
War can be created to link battles in different networks and allow warrior 
programs to jump from one battle to another to fight new enemies on those
machines. Evolving the game to be more networked allows for simulating worm-
like warrior programs.
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1.2 Genesis of Computer Viruses
Virus-like programs appeared on microcomputers in the 1980s. However, two fair-
ly recounted precursors deserve mention here: Creeper from 1971-72 and John
Walker’s “infective” version of the popular ANIMAL game for UNIVAC15 in 1975.

Creeper and its nemesis, Reaper, the first “antivirus” for networked TENEX
running on PDP-10s at BBN, was born while they were doing the early develop-
ment of what became “the Internet.” 

Even more interestingly, ANIMAL was created on a UNIVAC 1100/42 main-
frame computer running under the Univac 1100 series operating system, Exec-8. In
January of 1975, John Walker (later founder of Autodesk, Inc. and co-author of
AutoCAD) created a general subroutine called PERVADE16, which could be called
by any program. When PERVADE was called by ANIMAL, it looked around for all
accessible directories and made a copy of its caller program, ANIMAL in this case,
to each directory to which the user had access. Programs used to be exchanged
relatively slowly, on tapes at the time, but still, within a month, ANIMAL
appeared at a number of places.

The first viruses on microcomputers were written on the Apple-II, circa 1982.
Rich Skrenta17, who was a ninth-grade student at the time in Pittsburgh,
Pennsylvania, wrote “Elk Cloner.” He did not think the program would work well,
but he coded it nonetheless. His friends found the program quite entertaining—
unlike his math teacher, whose computer became infected with it. Elk Cloner had
a payload that displayed Skrenta’s poem after every 50th use of the infected disk
when reset was pressed (see Figure 1.8). On every 50th boot, Elk Cloner hooked the
reset handler; thus, only pressing reset triggered the payload of the virus.

Figure 1.8 Elk Cloner activates.



Not surprisingly, the friendship of the two ended shortly after the incident.
Skrenta also wrote computer games and many useful programs at the time, and he
still finds it amazing that he is best known for the “stupidest hack” he ever coded.

In 1982, two researchers at Xerox PARC18 performed other early studies with
computer worms. At that time, the term computer virus was not used to describe
these programs. In 1984, mathematician Dr. Frederick Cohen19 introduced this
term, thereby becoming the “father” of computer viruses with his early studies of
them. Cohen introduced computer virus based on the recommendation of his advi-
sor, Professor Leonard Adleman20, who picked the name from science fiction 
novels.

1.3 Automated Replicating Code: The Theory and Definition of 
Computer Viruses
Cohen provided a formal mathematical model for computer viruses in 1984. This
model used a Turing machine. In fact, Cohen’s formal mathematical model for a
computer virus is similar to Neumann’s self-replicating cellular automata model.
We could say, that in the Neumann sense, a computer virus is a self-reproducing
cellular automata. The mathematical model does not have much practical use for
today’s researcher. It is a rather general description of what a computer virus is.
However, the mathematical model provides significant theoretical foundation to
the computer virus problem.

Here is Cohen’s informal definition of a computer virus: “A virus is a program
that is able to infect other programs by modifying them to include a possibly evolved copy
of itself.”

This definition provides the important properties of a computer virus, such as
the possibility of evolution (the capability to make a modified copy of the same
code with mutations). However, it might also be a bit misleading if applied in its
strictest sense. 

This is, by no means, to criticize Cohen’s groundbreaking model. It is difficult
to provide a precise definition because there are so many different kinds of com-
puter viruses nowadays. For instance, some forms of computer viruses, called com-
panion viruses, do not necessarily modify the code of other programs. They do not
strictly follow Cohen’s definition because they do not need to include a copy of
themselves within other programs. Instead, they make devious use of the pro-
gram’s environment—properties of the operating system—by placing themselves
with the same name ahead of their victim programs on the execution path. This
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can create a problem for behavior-blocking programs that attempt to block mali-
cious actions of other programs—if the authors of such blockers strictly apply
Cohen’s informal definition. In other words, if such blocking programs are looking
only for viruses that make unwanted changes to the code of another program,
they will miss companion viruses.

Note

Cohen’s mathematical formulation properly encompasses com-
panion viruses; it is only the literal interpretation of the single-
sentence human language definition that is problematic. A 
single-sentence linguistic definition of viruses is difficult to come 
up with.

Integrity checker programs also rely on the fact that one program’s code
remains unchanged over time. Such programs rely on a database (created at some
initial point in time) assumed to represent a “clean” state of the programs on a
machine. Integrity checker programs were Cohen’s favorite defense method and
my own in the early ‘90s. However, it is easy to see that the integrity checker
would be challenged by companion viruses unless the integrity checker also alert-
ed the user about any new application on the system. Cohen’s own system proper-
ly performed this. Unfortunately, the general public does not like to be bothered
each time a new program is introduced on their systems, but Cohen’s approach is
definitely the safest technique to use.

Dr. Cohen’s definition does not differentiate between programs explicitly
designed to copy themselves (the “real viruses” as we call them) from the 
programs that can copy themselves as a side effect of the fact that they are gener-
al-purpose copying programs (compilers and so on).

Indeed, in the real world, behavior-blocking defense systems often alarm in
such a situation. For instance, Norton Commander, the popular command shell,
might be used to copy the commander’s own code to another hard drive or net-
work resource. This action might be confused with self-replicating code, especially
if the folder in which the copy is made has a previous version of the program that
we overwrite to upgrade it. Though such “false alarms” are easily dealt with, they
will undoubtedly annoy end users. 

Taking these points into consideration, a more accurate definition of a comput-
er virus would be the following: “A computer virus is a program that recursively and
explicitly copies a possibly evolved version of itself.”
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There is no need to specify how the copy is made, and there is no strict need
to “infect” or otherwise modify another application or host program. However,
most computer viruses do indeed modify another program’s code to take control.
Blocking such an action, then, considerably reduces the possibility for viruses to
spread on the system.

As a result, there is always a host, an operating system, or another kind of exe-
cution environment, such as an interpreter, in which a particular sequence of sym-
bols behaves as a computer virus and replicates itself recursively.

Computer viruses are self-automated programs that, against the user’s wishes,
make copies of themselves to spread themselves to new targets. Although particu-
lar computer viruses ask the user with prompts before they infect a machine, such
as, “Do you want to infect another program? (Y/N?),” this does not make them
non-viruses. Often, novice researchers in computer virus labs believe otherwise,
and they actually argue that such programs are not viruses. Obviously, they are
wrong!

When attempting to classify a particular program as a virus, we need to ask
the important question of whether a program is able to replicate itself recursively
and explicitly. A program cannot be considered a computer virus if it needs any
help to make a copy of itself. This help might include modifying the environment
of such a program (for example, manually changing bytes in memory or on a disk)
or—heaven forbid—applying a hot fix to the intended virus code itself using a
debugger! Instead, nonworking viruses should be classified as intended viruses.

The copy in question does not have to be an exact clone of the initial instance.
Modern computer viruses, especially so-called metamorphic viruses (further dis-
cussed in Chapter 7, “Advanced Code Evolution Techniques and Computer Virus
Generator Kits”), can rewrite their own code in such a way that the starting
sequence of bytes responsible for the copy of such code will look completely dif-
ferent in subsequent generations but will perform the equivalent or similar func-
tionality.
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CHAPTER 2
The Fascination of

Malicious Code Analysis
“The Lion looked at Alice wearily. ‘Are you animal—or vegetable—or mineral?’ he said,
yawning at every other word.”

—Lewis Carroll (1832–1898), Through the Looking-Glass and What Alice 
Found There (1871).



For people who are interested in nature, it is difficult to find a subject more fasci-
nating than computer viruses. Computer virus analysis can be extremely difficult
for most people at first glance. However, the difficulty depends on the actual virus
code in question. Binary forms of viruses, those compiled to object code, must be
reverse-engineered to understand them in detail. This process can be challenging
for an individual, but it provides a great deal of knowledge about computer 
systems. 

My own interest in computer viruses began in September of 1990, when my
new PC clone displayed a bizarre message, followed by two beeps. The 
message read

“Your PC is now Stoned!”
I had heard about computer viruses before, but this was my first experience

with one of these incredible nuisances. Considering that my PC was two weeks
old at the time, I was fascinated by how quickly I encountered a virus on it. I had
introduced the Stoned boot virus with an infected diskette, which contained a
copy of a popular game named Jbird. A friend had given me the game. Obviously
he did not know about the hidden “extras” stored on the diskette.

I did not have antivirus software at the time, of course, and because this inci-
dent happened on a Saturday, help was not readily available. The PC clone had
cost me five months’ worth of my summer salary, so you can imagine my disap-
pointment! 

I was worried that I was going to lose all the data on my system. I remembered
an incident that had happened to a friend in 1988: His PC was infected with a
virus, causing characters to fall randomly down his computer screen; after a while,
he could not do anything with the machine. He had told me that he needed to for-
mat the drive and reinstall all the programs. 

Later, we learned that a strain of the Cascade virus had infected his computer.
Cascade could have been removed from his system without formatting the hard
drive, but he did not know that at the time. Unfortunately, as a result, he lost all
his data. Of course I wanted to do the exact opposite on my machine—remove the
virus without losing my data.

To find the Stoned virus, I first searched the files on the infected diskette for
the text that was displayed on the screen. I was not lucky enough to find any files
that contained it. If I had had more experience in hunting viruses at the time, I
might have considered the possibility that the virus was encrypted in a file. But
this virus was not encrypted, and my instinct about a non–file system hiding place
was heading in the right direction.
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This gave me the idea that the virus was not stored in the files but instead was
located somewhere else on the diskette. I had Peter Norton’s book, Programmer’s
Guide to the IBM PC, on-hand. Up to this point, I had only read a few pages of it,
but luckily the book described how the boot sector of diskettes could be accessed
using a standard DOS tool called DEBUG.

After some hesitation, I finally executed the DEBUG command for the first
time to try to look into the boot sector of the diskette, which was inserted in drive
A. The command was the following:

DEBUG

-L 100 0 0 1

This command instructs DEBUG to load the first sector (the boot sector) from
drive A: to memory at offset 100 hexadecimal. When I used the dump (D) com-
mand of DEBUG to display the loaded sector’s content, I saw the virus’s message,
as well as some other text. 

-d280

1437:0280 03 33 DB FE C1 CD 13 EB-C5 07 59 6F 75 72 20 50 .3........Your P

1437:0290 43 20 69 73 20 6E 6F 77-20 53 74 6F 6E 65 64 21 C is now Stoned!

1437:02A0 07 0D 0A 0A 00 4C 45 47-41 4C 49 53 45 20 4D 41 .....LEGALISE MA

1437:02B0 52 49 4A 55 41 4E 41 21-00 00 00 00 00 00 00 00 RIJUANA!........

You can imagine how excited I was to find the virus. Finally, it was right there
in front of me! I spent the weekend reading more of the Norton book because I
did not understand the virus’s code at all. I simply did not know IBM PC
Assembly language at the time, which was required to understand the code. There
were so many things to learn!

The Norton book introduced me to a substantial amount of the information I
needed to begin. For example, it provided detailed and superb descriptions of the
boot process, disk structures, and various interrupts of the DOS and basic input-
output system (BIOS) routines. 

I spent a few days analyzing Stoned on paper and commenting every single
Assembly instruction until I understood everything. It took me almost a full week
to absorb all the information, but, sadly, my computer was still infected with the
virus.

After a few more days of work, I created a detection program, then a disinfec-
tion program for the virus, which I wrote in Turbo Pascal. The disinfection 
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program was able to remove the virus from all over: from the system memory as
well as from the boot and Master boot sectors in which the virus was stored. 

A couple of days later, I visited the university with my virus detector and
found that the virus had infected more than half of the PC labs’ machines. I was
amazed at how successfully this simple virus code could invade machines around
the world. I could not fathom how the virus had traveled all the way from New
Zealand where, I learned later, it had been released in early 1988, to Hungary to
infect my system. 

The Stoned virus was in the wild. (IBM researcher, Dave Chess, coined the
term in the wild to describe computer viruses that were encountered on production
systems. Not all viruses are in the wild. The viruses that only collectors or
researchers have seen are named zoo viruses.)

People welcomed the help, and I was happy because I wanted to assist them
and learn more about virus hunting. I started to collect viruses from friends and
wrote disinfection programs for them. Viruses such as Cascade, Vacsina,
Yankee_Doodle, Vienna, Invader, Tequila, and Dark_Avenger were among the first
set that I analyzed in detail, and I wrote detection and disinfection code for them
one by one. 

Eventually, my work culminated in a diploma, and my antivirus program
became a popular shareware in Hungary. I named my program Pasteur after the
French microbiologist Louis Pasteur.

All my efforts and experiences opened up a career for me in antivirus research
and development. This book is designed to share my knowledge of computer virus
research.

2.1 Common Patterns of Virus Research
Computer virus analysis has some common patterns that can be learned easily,
lending efficiency to the analysis process. There are several techniques that com-
puter virus researchers use to reach their ultimate goal, which is to acquire a pre-
cise understanding of viral programs in a timely manner to provide appropriate
prevention and to respond so that computer virus outbreaks can be controlled. 

Virus researchers also need to identify and understand particular vulnerabili-
ties and malicious code that exploits them. Vulnerability and exploit research has
its own common patterns and techniques. Some of these are similar to the meth-
ods of computer virus research, but many key differences exist.

This book will introduce these useful techniques to teach you how to deal with
viral programs more efficiently. Along the way, you will learn how to analyze a
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computer virus more effectively and safely by using disassemblers, debuggers,
emulators, virtual machines, file dumpers, goat files, dedicated virus replication
machines and systems, virus test networks, decryption tools, unpackers, and many
other useful tools. You can use this information to deal with computer virus prob-
lems more effectively on a daily basis. 

You also will learn how computer viruses are classified and named, as well as
a great deal about state-of-the-art computer virus tricks.

Computer virus source code is not discussed in this book. Discussions on this
topic are unethical and in some countries, illegal1. More importantly, writing even
a dozen viruses would not make you an expert on this subject.

Some virus writers2 believe that they are experts because they created a single
piece of code that replicates itself. This assumption could not be further from the
truth. Although some virus writers might be very knowledgeable individuals, most
of them are not experts on the subject of computer viruses. The masterminds who
arguably at various times represented the state of the art in computer virus writing
go (or went) by aliases such as Dark Avenger3, Vecna, Jacky Qwerty, Murkry,
Sandman, Quantum, Spanska, GriYo, Zombie, roy g biv, and Mental Driller.

2.2 Antivirus Defense Development
Initially, developing antivirus software programs was not difficult. In the late ’80s
and early ’90s, many individuals were able to create some sort of antivirus pro-
gram against a particular form of a computer virus. 

Frederick Cohen proved that antivirus programs cannot solve the computer
virus problem because there is no way to create a single program that can detect
all future computer viruses in finite time. Regardless of this proven fact, antivirus
programs have been quite successful in dealing with the problem for a while. At
the same time, other solutions have been researched and developed, but computer
antivirus programs are still the most widely used defenses against computer virus-
es at present, regardless of their many drawbacks, including the inability to con-
tend with and solve the aforementioned problem.

Perhaps under the delusion that they are experts on computer viruses, some
security analysts state that any sort of antivirus program is useless if it cannot find
all the new viruses. However, the reality is that without antivirus programs, the
Internet would be brought to a standstill because of the traffic undetected comput-
er viruses would generate.

Often we do not completely understand how to protect ourselves against
viruses, but neither do we know how to reduce the risk of becoming infected by
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them by adopting proper hygiene habits. Unfortunately, negligence is one of the
biggest contributors to the spread of computer viruses. The sociological aspects of
computer security appear to be more relevant than technology. Carelessly neglect-
ing the most minimal level of computer maintenance, network security configura-
tion, and failing to clean an infected computer opens up a Pandora’s box that
allows more problems to spread to other computers. 

In the early phases of virus detection and removal, computer viruses were easi-
ly managed because very few viruses existed (there were fewer than 100 known
strains in 1990). Computer virus researchers could spend weeks analyzing a single
virus alone. To make life even easier, computer viruses spread slowly, compared to
the rapid proliferation of today’s viruses. For example, many successful boot virus-
es were 512 bytes long (the size of the boot sector on the IBM PC), and they often
took a year or longer to travel from one country to another. Consider this: The
spread time at which a computer virus traveled in the past compared to today’s
virus spread time is analogous to comparing the speed of message transfer in
ancient times, when messengers walked or ran from city to city to deliver parcels,
with today’s instant message transfer, via e-mail, with or without attachments.

Finding a virus in the boot sector was easy for those who knew what a boot
sector was; writing a program to recognize the infection was tricky. Manually dis-
infecting an infected system was a true challenge in and of itself, so creating a pro-
gram that automatically removed viruses from computers was considered a
tremendous achievement. Currently, the development of antivirus and security
defense systems is deemed an art form, which lends itself to cultivating and devel-
oping a plethora of useful skills. However, natural curiosity, dedication, hard
work, and the continuous desire to learn often supersede mere hobbyist curiosity
and are thus essential to becoming a master of this artistic and creative vocation.

2.3 Terminology of Malicious Programs
The need to define a unified nomenclature for malicious programs is almost as old
as computer viruses themselves4. Obviously, each classification has a common pit-
fall because classes will always appear to overlap, and classes often represent
closely related subclasses of each other. 

2.3.1 Viruses
As defined in Chapter 1, “Introduction to the Games of Nature,” a computer virus
is code5 that recursively replicates a possibly evolved copy of itself. Viruses infect a
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host file or system area, or they simply modify a reference to such objects to take
control and then multiply again to form new generations.

2.3.2 Worms
Worms are network viruses, primarily replicating on networks. Usually a worm
will execute itself automatically on a remote machine without any extra help from
a user. However, there are worms, such as mailer or mass-mailer worms, that will
not always automatically execute themselves without the help of a user.

Worms are typically standalone applications without a host program.
However, some worms, like W32/Nimda.A@mm, also spread as a file-infector
virus and infect host programs, which is precisely why the easiest way to approach
and contain worms is to consider them a special subclass of virus. If the primary
vector of the virus is the network, it should be classified as a worm.

2.3.2.1 Mailers and Mass-Mailer Worms
Mailers and mass-mailer worms comprise a special class of computer worms,
which send themselves in an e-mail. Mass-mailers, often referred to as “@mm”
worms such as VBS/Loveletter.A@mm, send multiple e-mails including a copy of
themselves once the virus is invoked. 

Mailers will send themselves less frequently. For instance, a mailer such as
W32/SKA.A@m (also known as the Happy99 worm) sends a copy of itself every
time the user sends a new message.

2.3.2.2 Octopus
An octopus is a sophisticated kind of computer worm that exists as a set of pro-
grams on more than one computer on a network. 

For example, head and tail copies are installed on individual computers that
communicate with each other to perform a function. An octopus is not currently a
common type of computer worm but will likely become more prevalent in the
future. (Interestingly, the idea of the octopus comes from the science fiction novel
Shockwave Rider by John Brunner. In the story, the main character, Nickie, is on
the run and uses various identities. Nickie is a phone phreak, and he uses a “tape-
worm,” similar to an octopus, to erase his previous identities.)

2.3.2.3 Rabbits
A rabbit is a special computer worm that exists as a single copy of itself at any
point in time as it “jumps around” on networked hosts. Other researchers use the
term rabbit to describe crafty, malicious applications that usually run themselves
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recursively to fill memory with their own copies and to slow down processing time
by consuming CPU time. Such malicious code uses too much memory and thus
can cause serious side effects on a machine within other applications that are not
prepared to work under low-memory conditions and that unexpectedly cease func-
tioning.

2.3.3 Logic Bombs
A logic bomb is a programmed malfunction of a legitimate application. An appli-
cation, for example, might delete itself from the disk after a couple of runs as a
copy protection scheme; a programmer might want to include some extra code to
perform a malicious action on certain systems when the application is used. These
scenarios are realistic when dealing with large projects driven by limited code-
reviews. 

An example of a logic bomb can be found in the original version of the popu-
lar Mosquitos game on Nokia Series 60 phones. This game has a built-in function
to send a message using the Short Message Service (SMS) to premium rate lines.
The functionality was built into the first version of the game as a software distribu-
tion and piracy protection scheme, but it backfired6. When legitimate users com-
plained to the software vendor, the routine was eliminated from the code of the
game. The premium lines have been “disconnected” as well. However, the pirated
versions of the game are still in circulation, which have the logic bomb inside and
send regular SMS messages. The game used four premium SMS phone numbers
such as 4636, 9222, 33333, and 87140, which corresponded to four countries. For
example, the number 87140 corresponded to the UK. When the game used this
number, it sent the text “king.001151183” as short message. In turn, the user of the
game was charged a hefty £1.5 per message.

Often extra functionality is hidden as resources in the application—and
remains hidden. In fact, the way in which these functions are built into an applica-
tion is similar to the way so-called Easter eggs are making headway into large proj-
ects. Programmers create Easter eggs to hide some extra credit pages for team
members who have worked on a project. 

Applications such as those in the Microsoft Office suite have many Easter eggs
hidden within them, and other major software vendors have had similar credit
pages embedded within their programs as well. Although Easter eggs are not mali-
cious and do not threaten end users (even though they might consume extra space
on the hard drive), logic bombs are always malicious.
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2.3.4 Trojan Horses
Perhaps the simplest kind of malicious program is a Trojan horse. Trojan horses
try to appeal to and interest the user with some useful functionality to entice the
user to run the program. In other cases, malicious hackers leave behind Trojanized
versions of real tools to camouflage their activities on a computer, so they can
retrace their steps to the compromised system and perform malicious activities
later.

For example, on UNIX-based systems, hackers often leave a modified version
of “ps” (a tool to display a process list) to hide a particular process ID (PID), which
can relate to another backdoor Trojan’s process. Later on, it might be difficult to
find such changes on a compromised system. These kinds of Trojans are often
called user mode rootkits.

The attacker can easily manipulate the tool by modifying the source code of
the original tool at a certain location. At first glance, this minor modification is
extremely difficult to locate.

Probably the most famous Trojan horse is the AIDS TROJAN DISK7 that was
sent to about 7,000 research organizations on a diskette. When the Trojan was
introduced on the system, it scrambled the name of all files (except a few) and
filled the empty areas of the disk completely. The program offered a recovery solu-
tion in exchange of a bounty. Thus, malicious cryptography was born. The author
of the Trojan horse was captured shortly after the incident. Dr. Joseph Popp, 39 at
the time, a zoologist from Cleveland, Ohio was prosecuted in the UK8.

The filename scrambling function of AIDS TROJAN DISK was based on two
substitution tables9. One was used to encrypt the filenames and another to encrypt
the file extensions. At some point in the history of cryptography10, such an algo-
rithm was considered unbreakable11. However, it is easy to see that substitution
ciphers can be easily attacked based on the use of statistical methods (the distribu-
tion of common words). In addition, if given enough time, the defender can disas-
semble the Trojan’s code and pick the tables from its code.

There are two kinds of Trojans: 

� One hundred percent Trojan code, which is easy to analyze. 
� A careful modification of an original application with some extra functionali-

ty, some of which belong to backdoor or rootkit subclasses. This kind of
Trojan is more common on open source systems because the attacker can
easily insert backdoor functionality to existing code. 
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Note

The source code of Windows NT and Windows 2000 got into
circulation in early 2004. It is expected that backdoor and
rootkit programs will be created using these sources.

2.3.4.1 Backdoors (Trapdoors)
A backdoor is the malicious hacker’s tool of choice that allows remote connections
to systems. A typical backdoor opens a network port (UDP/TCP) on the host when
it is executed. Then, the listening backdoor waits for a remote connection from the
attacker and allows the attacker to connect to the system. This is the most com-
mon type of backdoor functionality, which is often mixed with other Trojan-like
features.

Another kind of backdoor relates to a program design flaw. Some applications,
such as the early implementation of SMTP (simple mail transfer protocol) allowed
features to run a command (for example, for debugging purposes). The Morris
Internet worm uses such a command to execute itself remotely, with the command
placed as the recipient of the message on such vulnerable installations.
Fortunately, this command was quickly removed once the Morris worm exploited
it. However, there can be many applications, especially newer ones, that allow for
similar insecure features.

2.3.4.2 Password-Stealing Trojans
Password-stealing Trojans are a special subclass of Trojans. This class of malicious
program is used to capture and send a password to an attacker. As a result, an
attacker can return to the vulnerable system and take whatever he or she wants.
Password stealers are often combined with keyloggers to capture keystrokes when
the password is typed at logon.

2.3.5 Germs
Germs are first-generation viruses in a form that the virus cannot generate to its
usual infection processes. Usually, when the virus is compiled for the first time, it
exists in a special form and normally does not have a host program attached to it.
Germs will not have the usual marks that most viruses use in second-generation
form to flag infected files to avoid reinfecting an already infected object.
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A germ of an encrypted or polymorphic virus is usually not encrypted but is
plain, readable code. Detecting germs might need to be done differently from
detecting second, and later, -generation infections.

2.3.6 Exploits
Exploit code is specific to a single vulnerability or set of vulnerabilities. Its goal is
to run a program on a (possibly remote, networked) system automatically or pro-
vide some other form of more highly privileged access to the target system. Often,
a single attacker builds exploit code and shares it with others. “White hat” hackers
create a form of exploit code for penetration (or “pen”) testing. Therefore, depend-
ing on the actual use of the exploit, the exploitation might be malicious in some
cases but harmless in others—the severity of the threat depends on the intention
of the attacker.

2.3.7 Downloaders
A downloader is yet another malicious program that installs a set of other items
on a machine that is under attack. Usually, a downloader is sent in e-mail, and
when it is executed (sometimes aided with the help of an exploit), it downloads
malicious content from a Web site or other location and then extracts and runs its
content.

2.3.8 Dialers
Dialers got their relatively early start during the heyday of dial-up connections to
bulletin board systems (BBSs) in homes. The concept driving a dialer is to make
money for the people behind the dialer by having its users (often unwitting vic-
tims) call via premium-rate phone numbers. Thus, the person who runs the dialer
might know the intent of the application, but the user is not aware of the charges.
A common form of dialer is the so-called porn dialer.

Similar approaches exist on the World Wide Web using links to Web pages
that connect to paid services.

2.3.9 Droppers
The original term refers to an “installer” for first-generation virus code. For exam-
ple, boot viruses that first exist as compiled files in binary form are often installed
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in the boot sector of a floppy using a dropper. The dropper writes the germ code
to the boot sector of the diskette. Then the virus can replicate on its own without
ever generating the dropper form again. 

When the virus regenerates the dropper form, the intermediate form is part of
an infection cycle, which is not to be confused with a dedicated (or pure) dropper. 

2.3.10 Injectors
Injectors are special kinds of droppers that usually install virus code in memory.
An injector can be used to inject virus code in an active form on a disk interrupt
handler. Then, the first time a user accesses a diskette, the virus begins to repli-
cate itself normally.

A special kind of injector is the network injector. Attackers also can use legiti-
mate utilities, such as NetCat (NC), to inject code into the network. Usually, a
remote target is specified, and the datagram is sent to the machine that will be
attacked using the injector. An attacker initially introduced the CodeRed worm
using an injector; subsequently, the worm replicated as data on the network with-
out ever hitting the disk again as a file.

Injectors are often used in a process called seeding. Seeding is a process that is
used to inject virus code to several remote systems to cause an initial outbreak
that is large enough to cause a quick epidemic. For example, there is supporting
digital evidence that W32/Witty worm12 was seeded to several systems by its
author.

2.3.11 Auto-Rooters
Auto-rooters are usually malicious hacker tools used to break into new machines
remotely. Auto-rooters typically use a collection of exploits that they execute
against a specified target to “gain root” on the machine. As a result, a malicious
hacker (typically a so-called script-kiddie) gains administrative privileges to the
remote machine.

2.3.12 Kits (Virus Generators)
Virus writers developed kits, such as the Virus Creation Laboratory (VCL) or
PSMPC generators, to generate new computer viruses automatically, using a
menu-based application. With such tools, even novice users were able to develop
harmful computer viruses without too much background knowledge. Some virus
generators exist to create DOS, macro, script, or even Win32 viruses and mass-
mailing worms. As discussed in Chapter 7 “Advanced Code Evolution Techniques
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and Computer Virus Generator Kits,” the so-called “Anna Kournikova” virus (tech-
nically VBS/VBSWG.J) was created by a Dutch teenager, Jan de Wit, from the
VBSWG kit—sadly, de Wit got lucky and the kit, infamous for churning out mainly
broken, intended code produced a working virus. De Wit was subsequently arrest-
ed, convicted, and sentenced for his role in this. 

2.3.13 Spammer Programs

Vikings: Spam spam spam spam

Waitress: …spam spam spam egg and spam; spam spam spam spam spam baked
beans spam spam spam…

Vikings: Spam! Lovely spam! Lovely spam!

—Monty Python Spam Song

Spammer programs are used to send unsolicited messages to Instant Messaging
groups, newsgroups, or any other kind of mobile device in forms of e-mail or cell
phone SMS messages. 

Two lawyers helped to make spam an international, albeit notorious, superstar
of the worldwide Internet virus scene. Their main objective was to send advertise-
ments to Internet newsgroups. Spam mail has become the number one Internet
nuisance for the global community. Many e-mail users complain that their inbox is
littered with more than 70% spam each day. This ratio has been on the rise for the
last couple of years.

The primary motivation of spammers is to make money by generating traffic
to Web sites. In addition, spam messages are often used to implement phishing
attacks. For example, you might receive an e-mail message asking you to visit your
bank’s Web site and telling you that if you don’t, they will disable your account.
There is a link in the e-mail, however, that forwards you to the fraudster. If you fall
victim to the attack, you might disclose personal information to the attacker on a
silver plate. The fraudster wants to get your credit card number, account number,
password, PIN (personal identification number), and other personal information to
make money. In addition, you might become the prime subject of an identity theft
as well.

2.3.14 Flooders
Malicious hackers use flooders to attack networked computer systems with an
extra load of network traffic to carry out a denial of service (DoS) attack. When
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the DoS attack is performed simultaneously from many compromised systems (so-
called zombie machines), the attack is called a distributed denial of service (DDoS)
attack. Of course, there are much more sophisticated DoS attacks including SYN
floods, packet fragmentation attacks, and other (mis-)sequencing attacks, traffic
amplification, or traffic deflection, just to name the most common types.

2.3.15 Keyloggers
A keylogger captures keystrokes on a compromised system, collecting sensitive
information for the attacker. Such sensitive information might include names,
passwords, PINs, birthdays, Social Security numbers, or credit card numbers. The
keylogger is installed on the system. Unbeknownst to the user, a computer could
be compromised for weeks before the attack is ever noticed. Attackers often use
keyloggers to commit identity theft.

2.3.16 Rootkits
Rootkits are a special set of hacker tools that are used after the attacker has bro-
ken into a computer system and gained root-level access. Usually, hackers break
into a system with exploits and install modified versions of common tools. Such
rootkits are called user-mode rootkits because the Trojanized application runs in
user mode.

Some more sophisticated rootkits, such as Adore13, have kernel-mode module
components. These rootkits are more dangerous because they change the behavior
of the kernel. Thus, they can hide objects from even kernel-level defense software.
For example, they can hide processes, files in the file system, registry keys, and
values under Windows, and implement stealth capabilities for other malicious
components. In contrast, user-mode rootkits cannot typically hide themselves
effectively from kernel-level defense software. User-mode rootkits only manipulate
with user-mode objects; therefore, defense systems relying on kernel objects have
chance to reveal the truth.

2.4 Other Categories
Some other categories of commonly encountered Internet pests are not necessarily
malicious in their primary intent. However, they can be a nuisance to end users;
therefore, antivirus and antispam products have been created to detect and
remove such annoying burdens from computers.
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2.4.1 Joke Programs
Joke programs are not malicious; however, as Alan Solomon (author of one of the
most widely used scanning engines today) once mentioned, “Whether a program
should be classified as a joke program or as a Trojan largely depends on the sense
of humor of the victim.” Joke programs change or interrupt the normal behavior of
your computer, creating a general distraction or nuisance. Colleagues often make
fun of each other by installing a joke program or by tricking others to run one on
their systems. A typical example of a joke program is a screen saver that randomly
locks the system. 

However, such programs can be considered harmful in some cases. Consider,
for example, a joke program that locks the system but never unlocks it. Thus,
computers cannot be stopped safely. As a result, important data could be lost
because it was never saved to the disk. Or worse, the file allocation table could get
corrupted, and the machine would become unbootable.

2.4.2 Hoaxes: Chain Letters
On computers, hoaxes typically spread information about computer virus infec-
tions and ask the recipient of the message to forward it to others. One of the most
infamous hoaxes was the Good Times hoax. Good Times appeared in 1994 and
warned users about a potential new kind of virus that would arrive in e-mail. The
hoax claimed that reading a message with “Good Times” in the subject line would
erase data from the hard disk. Although many believed at the time that such an 
e-mail based virus was a hoax, the reality is that such a payload might be possible.
Hoaxes typically mix some reality with lies. Good Times claimed that a particular
virus existed, which was simply not true. 

End users then spread the e-mail hoax to new people, “replicating” the mes-
sage on the Internet by themselves and overloading e-mail systems with the hoax.
At larger corporations, policies must be implemented to avoid the spread of hoax-
es on local systems. 

In the past, a typical hoax circulating at large corporations tried to deceive peo-
ple into believing an untrue story about a very sick child, attempting to collect
money for the child’s medical procedure. Most people were sympathetic and did
not recognize the danger of forwarding the e-mail message in this case; they trust-
ed the source and believed the fabricated story. 

With company policies intact, the problems that such hoaxes create can be
effectively eliminated. However, hoaxes are considered one of the most successful
Internet threats every year; take for example, the new chain letters that surface
and rapidly spread around the world.
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2.4.3 Other Pests: Adware and Spyware
A new type of application has appeared recently as a direct result of increased res-
idential Internet access. Many companies are interested in what people look for or
research on the Web, especially what kinds of products consumers might buy.
Therefore, some consumer retail businesses install little applications to collect
information and display customized advertisements in pop-up messages.

The most obvious problem with this type of application is that such applica-
tions were not written with malicious intent. In fact, many programmers make a
living out of writing such tools. However, many of these Internet pests get
installed on a system without the user’s permission or knowledge, raising ques-
tions about privacy. Not surprisingly, corporations as well as home users dislike
this type of program, referred to as spyware, which collects various information of
user activity and then sends these data to a company via the Internet. Home users
are undoubtedly disturbed by this invasive activity, not to mention the frustration
that users feel in response to pop-ups.

In addition, these programs are often very poorly written and are resource
hogs, particularly when two or more become installed on the same machine. Many
also have the highly undesirable habit of lowering Internet Explorer’s already
deplorable security settings to unconscionable levels, opening the (usually unwit-
ting) “victim” up to even worse exploits and infections14.

Because these applications are often a major source of business for organiza-
tions driven by consumer revenue, such businesses prefer that antivirus products
not detect such programs at all, or at least not by default. Often such companies
bring lawsuits against vendors who produce software to detect and remove their
“applications.” Such litigation makes the fight against this kind of pest much more
difficult. 

It is expected, however, that such programs will be illegal to create in several
countries in the future. To make things even more interesting, some corporations
prefer to remove “unwanted” spyware but want to keep the few “tools” that they
use to monitor their employees on a regular basis.

2.5 Computer Malware Naming Scheme
Back in 1991, founding members of CARO (Computer Antivirus Researchers
Organization) designed a computer virus naming scheme15 for use in antivirus (AV)
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products. Today, the CARO naming scheme is slightly outdated compared to daily
practice, but it remains the only standard that most antivirus companies ever
attempted to adopt. An up-to-date version of the document is in the works and is
expected to be published by CARO soon at www.caro.org. In this short section, I
can only show you a 10,000-foot view of malware naming. I strongly recommend
Nick FitzGerald’s AVAR 2002 conference paper16, which greatly expands on further
naming considerations. Furthermore, credit must be given to all the respected
antivirus researchers of CARO.

Note

The original naming scheme was designed by Dr. Alan
Solomon, Fridrik Skulason, and Dr. Vesselin Bontchev.

Virus naming is a challenging task. Unfortunately, there has been a major
increase in widespread, fast-running computer virus outbreaks. Nowadays,
antivirus researchers must add detections of 500, 1000, 1500, or even more threats
to their products each month. Thus, the problem of naming computer viruses,
even by the same common name, is getting to be a hard, if not impossible, task to
manage. Nonetheless, representatives of antivirus companies still try to reduce the
confusion by using a common name for at least the in-the-wild computer malware.
However, computer virus outbreaks are on the rise, and researchers do not have
the time to agree on a common name for each in-the-wild virus in advance of
deploying response definitions. Even more commonly, it is very difficult to predict
which viruses will be seen in the wild and which will remain zoo viruses.

Most people remember textual family names better than the naked IDs that
many other naming schemes have adopted in the security space. Let’s take a look
at malware naming in its most complex form:

<malware_type>://<platform>/<family_name>.<group_name>.<infective_length>.
�<variant><devolution><modifiers>

In practice, very little, if any, malware requires all name components.
Practically anything other than the family name is an optional field:

[<malware_type>://][<platform>/]<family_name>[.<group_name>]
�[.<infective_length>][.<variant>[<devolution>]][<modifiers>]

The following sections give a short description of each naming component.
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2.5.1 <family_name>
This is the key component of any malware name. The basic rule set for the family
name follows:

� Do not use company names, brand names, or the names of living people. 
� Do not use an existing family name unless the virus belongs to the same

family. 
� Do not use obscene or offensive names.
� Do not use another name if a name already exists for the family. Use a tool,

such as VGrep, to check name cross-references for older malware.
� Do not use numeric family names.
� Avoid the malware writer’s suggested or intended name. 
� Avoid naming malware after a file that traditionally or conventionally con-

tains the malware.
� Avoid family names such as Friday_13th, particularly if the dates represent

payload triggers. 
� Avoid geographic names that are based on the discovery site.
� If multiple acceptable names exist, select the original one, the one used by

the majority of existing antivirus programs, or the most descriptive one.

2.5.2 <malware_type>://
This part of the name indicates whether a malware type is a virus, Trojan, drop-
per, intended, kit, or garbage type (Virus://, Trojan://, .. ,Garbage://). Several
products have extended this set slightly, and these are expected to become part of
the standard malware naming in the future.

2.5.3 <platform>/
The platform prefix indicates the minimum native environment for the malware
type that is required for it to function correctly. An annotated list of officially rec-
ognized platform names is listed in the next section. 
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Note

Multiple platform names can be defined for the same threat, for
example, virus://{W32,W97M}/Beast.41472.A17. This name
indicates a file-infecting virus called Beast that can infect on
Win32 platforms and also is able to infect Word 97 documents.

2.5.4 .<group_name>
The group name represents a major family of computer viruses that are similar to
each other. The group name is rarely used nowadays. It was mostly used to group
DOS viruses.

2.5.5 <infective_length>
The infective length is used to distinguish parasitic viruses within a family or
group based on their typical infective length in bytes.

2.5.6 <variant>
The subvariant represents minor variants of the same virus family with the same
infective length.

2.5.7 [<devolution>]
The devolution identifier is used most commonly with the subvariant name in the
case of macro viruses. Some macro viruses have a common ability (mostly related
to programming mistakes) to create a subset of their original macro set during
their natural replication cycle. Thus, the subset of macros cannot regenerate the
original, complete macro set but is still able to recursively replicate from the 
partial set. 

2.5.8 <modifiers>
The original intent of the modifier was to identify the polymorphic engine of a
computer virus. However, most antivirus developers never used this modifier in
practice. Nowadays, modifiers include the following optional components:

[[:<locale_specifier>][#<packer>][@'m'|'mm'][!<vendor-specific_comment>]]
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[[:<locale_specifier>][#<packer>][@’m’|’mm’][!<vendor-specific_comment>]]2.5.9 :<locale_specifier>
This specifier is used mostly for macro viruses that depend on a particular lan-
guage version of their environment, such as Word. For example,
virus://WM/Concept.B:Fr is a virus that affects only the French version of
Microsoft Word.

2.5.10 #<packer>
The packer modifier is rarely used in practice. It can indicate that a computer mal-
ware was packed with a particular “on-the-fly” extractor unpacker, such as UPX.

2.5.11 @m or @mm
These symbols indicate self-mailer or mass-mailer computer viruses. Suggested by
Bontchev, this is probably the most widely recognized modifier. This modifier
highlights computer viruses that are more likely to be encountered by the general
public because of the way the viruses use e-mail to propagate themselves.

2.5.12 !<vendor-specific_comment>
The vendor-specific modifier is a recent addition to the set of modifiers. Vendors
are allowed to postfix any malware name with such a modifier. For example, a ven-
dor might want to indicate that a virus is multipartite by using !mp in the name.

2.6 Annotated List of Officially Recognized Platform Names
The platform names shown in Table 2.1 are the only officially recognized identi-
fiers following the proposed naming standard. A platform name that does not
appear on this list cannot be used as a platform identifier in a malware name fol-
lowing this standard. The Comments column helps to explain some of the finer
points of platform name selection. This is intended to be an authoritative list at
this book’s publication date. The platform list will need to be extended in the
future.
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Table 2.1

Officially Recognized Platform Names

Short Form Long Form Comments

ABAP ABAP Malware for the SAP /R3 Advanced Business 
Application Programming environment.

ALS ACADLispScript Malware that requires AutoCAD Lisp Interpreter.

BAT BAT Malware that requires a DOS or Windows command 
shell interpreter or close clone.

BeOS BeOS Requires BeOS.

Boot Boot Requires MBR and/or system boot sector of IBM 
PC–compatible hard drive and/or floppy. (Rarely used 
in practice.)

DOS DOS Infects DOS COM and/or EXE (MZ) and/or SYS 
format files and requires some version of MS-DOS 
or a closely compatible OS. (Rarely used in practice.)

EPOC EPOC Requires the EPOC OS up to version 5.

SymbOS SymbianOS Requires Symbian OS (EPOC version 6 and later).

Java Java Requires a Java run-time environment (standalone or 
browser-embedded).

MacOS MacOS Requires a Macintosh OS prior to OS X.

MeOS MenuetOS Requires MenuetOS. 

MSIL MSIL Requires the Microsoft Intermediate Language 
runtime.

Mul Multi This is a pseudo-platform, and its use is reserved for a 
few very special cases.

PalmOS PalmOS Requires a version of PalmOS.

OS2 OS2 Requires OS/2.

OSX OSX Requires Macintosh OS X or a subsequent, essentially 
similar version.

W16 Win16 Requires one of the 16-bit Windows x86 OSes. 
(Note: Several products use the Win prefix.)

W95 Win95 Requires Windows 9x VxD services.

W32 Win32 Requires a 32-bit Windows (Windows 9x, Me, NT, 
2000, XP on x86).

W64 Win64 Requires Windows 64.

WinCE WinCE Requires WinCE.

WM WordMacro Macro malware for WordBasic as included in 
WinWord 6.0, Word 95, and Word for Mac 5.x.
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Table 2.1 continued

Officially Recognized Platform Names

Short Form Long Form Comments

W2M Word2Macro Macro malware for WordBasic as included in 
WinWord 2.0.

W97M Word97Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Word (that shipped in Word 97) or 
later. Changes in VBA between Word 97 and 2003 
versions (inclusive) are sufficiently slight that we do 
not distinguish platforms even if the malware makes a 
version check or uses one of the few VBA features 
added in versions subsequent to VBA v5.0.

AM AccessMacro Macro malware for AccessBasic.

A97M Access97Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Access that shipped in Access 97 and 
later. As for W97M, changes in VBA versions between 
Access 97 and 2003 (inclusive) are insufficient to 
justify distinguishing the platforms.

P98M Project98Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Project that shipped in Project 98 and 
later. As for W97M, changes in VBA versions between 
Project 98 and 2003 (inclusive) are insufficient to 
justify distinguishing the platforms.

PP97M PowerPoint97Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Project, which shipped in Project 97 
and later. As for W97M, changes in VBA between 
Project 97 and 2002 inclusive are insufficient to justify 
distinguishing the platforms.

V5M Visio5Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Visio that shipped in Visio 5.0 and 
later. As for W97M, changes in VBA versions between 
Visio 5.0 and 2002 inclusive are insufficient to justify 
distinguishing the platforms.

XF ExcelFormula Malware based on Excel Formula language that has 
shipped in Excel since the very early days.

XM ExcelMacro Macro malware for Visual Basic for Applications 
(VBA) v3.0 that shipped in Excel for Windows 5.0 and 
Excel for Mac 5.x.

X97M Excel97Macro Macro malware for Visual Basic for Applications 
(VBA) v5.0 for Excel that shipped in Excel 97 and 
later. As for W97M, changes in VBA versions between 
Excel 97 and 2002 (inclusive) are insufficient to justify 
distinguishing the platforms.



Short Form Long Form Comments

O97M Office97Macro This is a pseudo-platform name reserved for macro 
malware that infects across at least two applications 
within the Office 97 and later suites. Cross-infectors 
between Office applications and related products, 
such as Project or Visio, can also be labeled thus.

AC14M AutoCAD14Macro VBA v5.0 macro viruses for AutoCAD r14 and later. 
As with W97M malware, minor differences in later 
versions of VBA are insufficient to justify new plat
form names.

ActnS ActionScript Requires the Macromedia ActionScript interpreter 
found in some ShockWave Flash (and possibly other) 
animation players.

AplS AppleScript Requires AppleScript interpreter.

APM AmiProMacro Macro malware for AmiPro.

CSC CorelScript Malware that requires the CorelScript interpreter 
shipped in many Corel products.

HLP WinHelpScript Requires the script interpreter of the WinHelp display 
engine. 

INF INFScript Requires one of the Windows INF (installer) script 
interpreters.

JS JScript, JavaScript Requires a JScript and/or JavaScript interpreter. 
Hosting does not affect the platform designator—
standalone JS malware that requires MS JS under 
WSH, HTML-embedded JS malware, and JS malware 
embedded in Windows-compiled HTML help files 
(.CHM) all fall under this platform type. 

MIRC mIRCScript Requires the mIRC script interpreter.

MPB MapBasic Requires MapBasic of MapInfo product.

Perl Perl Requires a Perl interpreter. Hosting does not affect the 
platform designator—standalone Perl infectors under 
UNIX(-like) shells, ones that require Perl under WSH 
and HTML-embedded Perl malware all fall under this 
platform type.

PHP PHPScript Requires a PHP script interpreter.

Pirch PirchScript Requires the Pirch script interpreter.

PS PostScript Requires a PostScript interpreter.

REG Registry Requires a Windows Registry file (.REG) interpreter. 
(We do not distinguish .REG versions or ASCII versus 
Unicode.)
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Table 2.1 continued

Officially Recognized Platform Names

Short Form Long Form Comments

SH ShellScript Requires a UNIX(-like) shell interpreter. Hosting does 
not affect the platform name—shell malware specific 
to Linux, Solaris, HP-UX, or other systems, or specific 
to csh, ksh, bash, or other interpreters currently all 
fall under this platform type.

VBS VBScript, Requires a VBS interpreter. Hosting does not affect 
VisualBasicScript the platform designator—standalone VBS infectors that 

require VBS under WSH, HTML-embedded VBS 
malware, and malware embedded in Windows-
compiled HTML help files (.CHM) all fall under this 
platform type.

UNIX UNIX This is a common name for binary viruses on UNIX 
platforms. (More specific platform names are 
available.)

BSD BSD Used for malware specific to BSD (-derived) platforms. 

Linux Linux Used for malware specific to Linux platforms and 
others closely based on it. 

Solaris Solaris Used for Solaris-specific malware.

References
1. Joe Hirst, “Virus Research and Social Responsibility,” Virus Bulletin, October 1989, 

page 3.

2. Sarah Gordon, “The Generic Virus Writer,” Virus Bulletin Conference, 1994.

3. Vesselin Bontchev, “The Bulgarian and Soviet Virus Writing Factories,” Virus Bulletin
Conference, 1991, pp. 11-25.

4. Dr. Keith Jackson, “Nomenclature for Malicious Programs,” Virus Bulletin, March, 1990,
page 13.

5. Vesselin Bontchev, “Are ‘Good’ Computer Viruses Still a Bad Idea?,” EICAR, 1994, 
pp. 25-47.

6. Jamo Niemela, “Mquito,” http://www.f-secure.com/v-descs/mquito.shtml.

7. Jim Bates, “Trojan Horse: AIDS Information Introductory Diskette Version 2.0,” Virus
Bulletin, January 1990, page 3.

8. Mark Hamilton, “U.S. Judge Rules In Favour Of Extradition,” Virus Bulletin, January,
1991.

http://www.f-secure.com/v-descs/mquito.shtml

