

THE LEAN THINKING HOUSE

Management applies and teaches lean thinking,
and bases decisions on this long-term philosophy

Respect
for People

- don�t trouble
 your �customer�

- “develop people,
 then build products”

- no wasteful work

- teams & individuals
 evolve their own
 practices and
 improvements

- build partners with
 stable relationships,
 trust, and coaching
 in lean thinking

- develop teams

Sustainable shortest lead time, best quality and value (to people
and society), most customer delight, lowest cost, high morale, safety

Product Development
- long-term great engineers
- mentoring from manager-
 engineer-teacher
- cadence
- cross-functional
- team room + visual mgmt
- entrepreneurial chief
 engineer/product mgr
- set-based concurrent dev
- create more knowledge

14 Principles
long-term, flow, pull, less
variability & overburden,

Stop & Fix, master norms,
simple visual mgmt, good
tech, leader-teachers from
within, develop exceptional

people, help partners be
lean, Go See, consensus,

reflection & kaizen

Continuous
Improvement

- Go See

- kaizen
 - spread knowledge
 - small, relentless
 - retrospectives
 - 5 Whys
 - eyes for waste
 * variability, over-
 burden, NVA ...
 (handoff, WIP,
 info scatter,
 delay, multi-
 tasking, defects,
 wishful thinking..)

- perfection challenge

- work toward flow
 (lower batch size,
 Q size, cycle time)

Systems Thinking

• Try…Causal loop sketching workshop to see sys-
tem dynamics 16

• Try…Sketch causal loop diagrams at whiteboards
with others 16

• Try…See the positive feedback loops in your sys-
tem 23

• Try…See mental models and assumptions during
a causal modeling workshop 25

• Try…See root causes during causal modeling and
retrospective workshops, with 5 Whys and Ishika-
wa diagrams 29

• Try…See and hear local optimizations; these are
endemic in large product groups 32

Lean Thinking

• Avoid…Lean misconceptions 40
• Avoid…Thinking that queue management, kan-

ban, and other tools are pillars of lean 41
• Try…Reflect on the two pillars of lean: respect for

people and continuous improvement 43
• Try…Know system goals in lean thinking 46
• Try…Foundation of lean thinking manager-teach-

ers 48
• Try…Continuous improvement with Go See, kai-

zen, perfection challenge, and working towards
flow 52

• Try…Spread knowledge rather than force con-
formance to central processes 54

• Try…Study the lean meaning of value and waste;
learn to see them 58

• Try…Improve by removing waste 59
• Try…Learn, see, and eliminate NVA actions in-

cluding handoff, overproduction, and waiting 60
• Try…Reduce the three sources of waste: variabili-

ty, overburden, NVA actions 62
• Try…Apply the 14 principles, including exception-

al people, stop and fix, leveling, and pull 65
• Try…Visual management 71
• Try…Outlearn the competition 73
• Try…Long-term hands-on engineers 74
• Try…Increase the value and lower the cost of infor-

mation 74
• Try…Cadence (such as timeboxing) in lean devel-

opment 78
• Try…Re-use more information and knowledge

through mentoring, design patterns, wikis, … 80
• Try…Team rooms for lean development 80
• Try…Chief engineer with business acumen as

chief product manager 81
• Try…Set-based concurrent engineering—several

alternate designs in parallel 82

Queueing Theory

• Try…Compete on shorter cycle times 94
• Try…Use several high-level cycle-time KPIs 95
• Try…Eradicate queues by changing the system 98
• Avoid…Fake queue reduction by increased multi-

tasking or utilization rates 99
• Try…Small batches of equal size 100
• Try…Visual management to see the invisible

queues 111
• Try…Reduce the variability in Scrum 117
• Try…Limit size of the clear-fine subset of the Re-

lease Backlog 120

False Dichotomies

• Try…Adjust method weight empirically in Scrum
126

• Try…Identify and avoid false dichotomies 129
• Avoid…Extreme Relativism 131
• Try…Identify misconceptions and misreads 132

Be Agile

• Try…Be agile 139
• Try…Learn and applying the four values and

twelve agile principles for competitive advantage
141

• Try…Know and share the five Scrum values 141
• Try…Learn and applying nine agile management

principles 144

Feature Teams

• Avoid…Single-function teams 155
• Avoid…Component teams 155
• Try…Feature teams 174

Teams

• Try…Self-organizing teams 194
• Avoid…Manager not taking responsibility for cre-

ating the conditions needed for teams to self-orga-
nize 194

• Try…Set challenging but realistic goals 195
• Try…Cross-functional teams 196
• Avoid…Single-function specialist teams 196
• Avoid…IBM 198
• Try…Long-lived teams 199
• Try…Team owns the process 200
• Try…Team manages external dependencies 202
• Try…Dedicated team members 204
• Try…Multi-skilled workers 204

Experiments

• Try…Team makes decisions 207
• Try…Open team conflict 208
• Avoid…Phase-based “resource allocation” 209
• Avoid…Parallel releases (a symptom of imbal-

anced groups and work) 209
• Avoid…Staircase branching (a symptom of imbal-

anced groups and work) 210
• Avoid…Projects in product development (a symp-

tom of imbalanced groups and work) 212

Requirement Areas

• Try…One Product Owner and one Product Backlog
217

• Try…Requirements areas 218
• Try…Affinity clustering or diagram for finding re-

quirement areas 218
• Try…Moving whole teams between areas 223
• Try…An all-at-once transition to requirement ar-

eas 224
• Avoid…Development areas 224
• Avoid… Traditional requirement management

tools 226
• Avoid…Tools optimized for reporting 226

Organization

• Try…Work redesign 234
• Try…Distinguish between products and projects

236
• Avoid…Projects in product development 238
• Try…Continuous product development 238
• Try…Give projects to existing teams 239
• Avoid…Resource pools with resource management

240
• Try…Keep the organization as flat as possible 241
• Try…Make the organization slightly flatter than it

can handle. 242
• Try…Invite managers to join teams to do develop-

ment work 242
• Avoid…Functional units 243
• Try…Scrum teams as organizational unit 243
• Try…Organize around requirement areas 244
• Try…Keep the formal organization flexible 245
• Try…Eliminating the ‘Undone’ unit by eliminating

‘Undone’ work 245
• Try…Service and support unit 246
• Try…Internal open source for internal tools 247
• Try…Product Owner Team as organizational unit

248
• Avoid…Project Management Office 249
• Avoid…So-called Agile PMO 249

• Avoid…Fake ScrumMasters 250
• Avoid…Matrix organizations in product develop-

ment 250
• Try…Self-organized team creation 251
• Try…Form self-organizing teams based on skill

252
• Try…Cultivate Communities of Practice 252
• Try…Use CoPs for functional learning 253
• Try…Merged product backlog for a set of products

256
• Try…Team works on multiple products 257
• Avoid…Stage-gate processes (if Scrum is adopted)

258
• Avoid…Especially…traditional stage-gate 260
• Avoid…Stage-gate becoming a waterfall 260
• Try…Beyond budgeting 261
• Try…Engage HR 267
• Try…Ask HR for credible research evidence 267
• Avoid…Incentives linked to performance 268
• Try…De-emphasize incentives 270
• Avoid…Putting incentives on productivity mea-

sures 271
• Try…Team incentives instead of individual incen-

tives 272
• Try…Team-based targets without rewards 273
• Avoid…Performance appraisals 273
• Avoid…ScrumMasters do performance appraisals

275
• Try…Discuss with your team how to do appraisals

275
• Try…Fill in the forms 275
• Avoid…Limiting peoples’ perspective 276
• Avoid…Job titles 276
• Try…Create only one job title 277
• Try…Let people make their own titles; encourage

funny titles 277
• Try…(if all else fails) Generic title with levels 277
• Try…Simple internal titles map to special external

titles 277
• Avoid…Job descriptions 278
• Try…Simple general job descriptions 278
• Avoid…Career paths 278
• Try…Job rotation 279
• Try…Start people with job rotation 280
• Try…Hire the best 280
• Avoid…Hiring when you cannot find the best 281
• Try…Team does the hiring 281
• Try…Long and in-depth hands-on evaluation 281
• Try…Pair programming with developer candi-

dates 282

• Try…Trial iteration 282
• Try…Lots of formal education and coaching 282
• Try…Lots of coaching 283

Large-Scale Scrum

• Try…Large-scale Scrum FW-1 for up to ten teams
291

• Try…Large-scale Scrum FW-2 for ‘many’ teams
298

Scrum Primer

• Try…Learn and do standard Scrum 308

Scaling Lean & Agile
Development

This page intentionally left blank

Scaling Lean & Agile
Development

Thinking and Organizational Tools
for Large-Scale Scrum

Craig Larman
Bas Vodde

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Larman, Craig.
Scaling lean & agile development : thinking and organizational tools for large-scale Scrum / Craig

Larman, Bas Vodde.
 p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-48096-5 (pbk. : alk. paper) 1. Agile software development. 2. Scrum (Computer

software development) I. Vodde, Bas. II. Title.

QA76.76.D47L394 2008
005.1—dc22

 2008041701

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-48096-5
ISBN-10: 0-321-48096-1
Text printed in the United States at Courier in Westford, Massachusetts.
First printing, December 2008

To our clients, and my friend and co-author Bas

To

This page intentionally left blank

xi

1 Introduction 1

Thinking Tools

2 Systems Thinking 9

3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools

7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany

12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

CONTENTS

This page intentionally left blank

xiii

PREFACE

Thank you for reading this book! We’ve tried to make it useful.
Some related articles and pointers are at www.craiglarman.com
and www.odd-e.com. Please contact us for questions.

Typographic Conventions

Basic point of emphasis or Book Title or minor new term. A notice-
able point of emphasis. A major new term in a sentence.
[Bob67] is a reference in the bibliography.

About the Authors

Craig Larman serves as chief scientist for Valtech, a consulting
and outsourcing company with divisions in Europe, Asia, and
North America. He spends most of his time working as a manage-
ment and product-development consultant and coach within large
or offshore groups adopting agile and lean product development,
usually with an embedded systems focus. He led the agile offshore
adoption (with Scrum) at Valtech India and served as creator and
lead coach for the lean software development initiative at Xerox,
in addition to consulting and coaching on large-scale agile and
Scrum adoption for long periods at Nokia, Siemens, and NSN,
among many other groups. Originally from Canada, he has lived
off and on in India since 1978. Craig is the author of Agile and
Iterative Development: A Manager’s Guide and Applying UML and
Patterns: An Introduction to Object-Oriented Analysis and Design
& Iterative Development, the world’s best-selling books on agile
methods, OOA/D and iterative development. Along with Bas, he is
also co-author of the companion book Practices for Scaling Lean &
Agile Development: Large, Multisite, and Offshore Product Devel-
opment with Large-Scale Scrum.

After a failed career as a wandering street musician, he built sys-
tems in APL and 4GLs in the 1970s. Starting in the early 1980s he
became interested in artificial intelligence (having little of his
own). Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Bas Vodde works as an independent product-development consult-
ant and large-scale Scrum coach. For several years he led the agile

www.craiglarman.com
www.odd-e.com

xiv

and Scrum enterprise-wide adoption initiative at Nokia Networks.
He has been a member of the leadership team of a very large mul-
tisite product group (in Europe and China) adopting Scrum. Bas
has worked as a senior developer/architect in embedded telecom-
munication systems, in addition to serving as a quality manager.
He has led the development of solutions and the coaching for test-
driven development in embedded systems. Along with Craig, Bas
is co-author of the companion book Practices for Scaling Lean &
Agile Development. Originally from Holland, he has lived in China
for years and is now based in Singapore.

Acknowledgments

Thanks to all our clients.

Thanks to reviewers or contributors, including Peter Alfvin, Alan
Atlas, Gabrielle Benefield, Bjarte Bogsnes, Mike Bria, Larry Cai,
Mike Cohn, Pete Deemer, Esther Derby, Jutta Eckstein, Kenji
Hiranabe, Clinton Keith, Kuroiwa-san, Diana Larsen, Timo Lep-
pänen, Eric Lindley, Mary Poppendieck, Tom Poppendieck, Ken
Schwaber, Maarten Smeets, Jeff Sutherland, Dave Thomas, and
Ville Valtonen.

Current and past Flexible company team members (and review-
ers), including Kati Vilki, Petri Haapio, Lasse Koskela, Paul Nagy,
Joonas Reynders, Gabor Gunyho, Sami Lilja, and Ari Tikka. Cur-
rent and past IPA LT members (and reviewers), especially Tero
Peltola and Lü Yi.

Bas appreciates his wife Sun Yuan for all the time he had to “focus
on the books” rather than on each other, and for her support when
moving or traveling to different countries to work with different
product groups. And he thanks Craig for the stimulating discus-
sions and the years working together with large products and with
debugging organizations—and Bas’s writing.

Craig thanks Albertina for her help so that he could write.

Thanks to Louisa Adair, Raina Chrobak, Chris Guzikowski, Julie
Nahil, and Mary Lou Nohr for publication support.

This page intentionally left blank

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Thinking and Organizational Tools 2

• Action Tools 4

• Experiments: Try… and Avoid… 4

• Limitations 5

1

Chapter

1
INTRODUCTION

The future ain’t what it used to be.
—Yogi Berra

We sat down in the meeting room with our hot coffee. Outside was a
bitter-cold north European winter morning. In came our new client
and we shook hands. “Thanks for visiting,” he said. “First, you
should know that our product group is not large, maybe only eighty
developers.”

We once met a group adopting agile development that was not sure
if they could grow to very large-scale development: 12 people.

People have different scales in mind regarding ‘large.’ To some it
means only 50 people or even less. To others, much more. We define
a large product1 group as one whose members’ names you could not
remember if you were all together in a room. We work typically with
single-product groups in the range of 100–500 people that are adopt-
ing Scrum, lean principles, and agile development practices, usually
on software-intensive embedded systems. So by this definition—at
least with our limited memories—this is the realm of ‘large.’

On to our key recommendation: After working for some years in the
domains of large, multisite, and offshore development, we have dis-
tilled our experience and advice down to the following: Don’t do it.

There are better ways to build large systems than with many devel-
opers in many places. Rather, build a small group of great develop-
ers and other talents that can work together in teams, pay them
well, and keep them together in one place with product management
or whoever acts as the voice of the customer.

1. Scrum (and this book) applies both to product development for an
external market, and to internal applications (internal products).

2

1 — Introduction

But of course you are still going to do large, multisite, or offshore
development. This is because your existing system is already struc-
tured that way, or because—in the case of large groups—there is the
mindset that “big systems need lots of people.” We regularly coach
groups that ask, “How can we calculate how many people we will
need?” Our suggestion is, “Start with a small group of great people,
and only grow when it really starts to hurt.” That rarely happens.

Since large, multisite, and offshore development is going to happen,
we would like to share what we have tried or seen at the intersection
of these domains with lean and agile product development principles
and practices.2

THINKING AND ORGANIZATIONAL TOOLS

When Bas was a member of the leadership team of a large product
group, he frequently (in meetings) asked, “Why do we have this pol-
icy? … What will happen to the organizational system if we do
that?” Months later a member of the team told Craig, “It drove me
nuts to keep hearing those questions. But later, I appreciated it.”
Bas wasn’t trying to be annoying; he was trying to suggest and
encourage systems thinking—a thinking tool (1) to consider the
deeper dynamics of the development system as a whole, (2) to under-
stand how a system became the way it is, and (3) to reconsider
assumptions underlying the existing organization.

When people are introduced to Scrum with its short timeboxed
development iterations, they first see it as a localized practice to
incrementally grow a product in small manageable steps, with
learning and corrective actions toward a goal. Consequently, people
will say, “Oh, ‘agile’ doesn’t affect me; that’s a development practice.”
But there is a bigger picture and a potential higher-level learning

2. The companion book is Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development with
Large-Scale Scrum. It covers detailed practice tips related to scaling
and planning, product management, multisite, offshore develop-
ment, contracts, requirements, design and architecture, coordina-
tion, legacy code, testing, and more.

3

Thinking and Organizational Tools

loop beyond the lower-level development learning cycle: a learning
organization of people that repeatedly re-examine the structures
and policies that define and surround agile product development.
The result of adopting Scrum or lean principles in very large product
groups inevitably leads to this higher-level organizational learning
challenge.

Example: Consider an enterprise whose R&D division tries to be
more adaptive by adopting Scrum. The Sales division continues in
their old mode: Maximize personal commissions and quarterly sales
by promising the moon and the stars to customers, combined with
almost boundless optimism for what “our great people in R&D can
do.” Faced with unattainable ‘commitments’ R&D did not them-
selves design or make, R&D is then blamed for not meeting “our
promises,” and it is concluded that “Scrum doesn’t really help.”

If this were a book about adopting Scrum only in one small 20-per-
son single-product group within a large enterprise, systems thinking
and organizational tools would be interesting but non-vital topics.
But they are vital to a successful adoption when Scrum is being
scaled to a 400-person single-product group, probably within a
larger R&D organization in the thousands that is also making the
transition, with deep connections to the Sales and Delivery groups,
and constrained by traditional Human Resource and Enterprise
Governance policies on team structures, reporting, measurement,
milestones, contracts, and rewards.

Consequently, this book suggests that one cornerstone for large-
scale Scrum and agile development is people who learn and apply
various thinking tools, including (but not limited to) systems think-
ing, mental-model awareness, lean thinking, queueing theory, and
recognition of false dichotomies.3

With those thinking tools in place, it will become increasingly clear
that the existing organizational design inhibits flow of value, lead-
ing to pressure for redesign. Hence, this book suggests a second cor-
nerstone of organizational tools, including feature teams,

3. The term thinking tools was popularized in [Reinertsen97].

4

1 — Introduction

requirement areas, and many other changes in structure, process,
task, people, and rewards.

ACTION TOOLS

In parallel with adopting thinking and organizational tools, many
action tools—specific development practices—help the product
group get going on large, multisite, and offshore agile development.
The effective use of these action tools—shared in the companion
Practices book—is somewhat dependent on organization redesign.
Many practices can be tried without deeper structural change, but
constraints on benefit will be felt.

So the tools in this book could be seen as prerequisites for the
actions tools of the companion book. Yet in reality, practices will be
adopted first—because that is where people want to start. And that
will eventually invite a look back at thinking and organizational
tools.

We suggest that coaches and other change agents involved in the
adoption of large-scale Scrum or lean development acquaint them-
selves early with thinking and organizational tools, while in parallel
helping to introduce action tools. At some point the situation will be
ripe—people will be ready—for a turn in the discussion from “How
do we do large-scale continuous integration?” to “Do existing HR pol-
icies prevent real teams?” and “What is flow of value and what inhib-
its it in our organizational design?”

EXPERIMENTS: TRY… AND AVOID…

Scrum emphasizes empirical process control; there is too much com-
plexity and variability for a cookbook approach to processes for
development. Therefore, the tools in both books are presented as a
series of tips that start with Try… or Avoid… to suggest experi-
ments, nothing more. They certainly may not work in your circum-
stance. The approach both in Scrum and in the lean thinking
practice of kaizen is to first inspect and grasp the existing situation.
Then, second, to adapt with new improvement experiments. The

5

Limitations

attitude of endless experimentation is vigorously encouraged in lean
thinking; perhaps the only bad process-improvement experiment is
the one not tried. At Toyota, Taiichi Ohno—arguably the key con-
tributor to lean thinking—would visit an area and inspect any writ-
ten standards document. If it was covered with dust or otherwise not
recently changed, he would grow quite impassioned and urge people
to always evolve their ‘standards.’

In Scrum this inspect-and-adapt (experiment) cycle repeats every
two- or four-week timeboxed iteration as long as the product exists.
And in lean thinking, this continuous experimentation and improve-
ment cycle applies both to individual products and to the enterprise
as a whole.

LIMITATIONS

There is still much for us to learn about these domains. What we
have written here and in the companion book reflects our current
(limited) experience and understanding, which we hope will evolve
in the coming years. For example, although we have lived for some
years in China and India, we feel we have barely scratched the sur-
face in terms of our multicultural experience and insight in relation
to offshore and multisite agile development. Nevertheless, our sin-
cere wish is that these tips are of some value to you. We welcome
further insights and stories from our readers.

Large-scale Scrum can influence almost all aspects of a product-cen-
tric enterprise. To keep the scope of this material manageable and
because of our limited experience in some of these areas, we
bounded or deferred subjects that are worthy of more discussion.
These include:

Essentially, this book is relevant to general-purpose product devel-
opment. Scrum and lean product development are not limited to

• budgeting and finance

• sales

• marketing

• hardware development

• product development not involv-
ing any software

• deployment/delivery

• field support

6

1 — Introduction

software systems [NT86]. However, the bias is toward software-
intensive systems (usually embedded) because of our background
and because of the ever-growing ubiquity of software in everyday
devices, from washing machines to shoes.

Especially in this book we dissect some assumptions and policies in
traditional organizations that inhibit flow of value and effective
teams. This analysis may come across as startling or challenging at
times. We do not mean to give offense, but organizational redesign to
support lean and agile development will not happen without
increased scrutiny of traditional assumptions and increased trans-
parency. Organizational change can also lead to displacement of tal-
ented people from old roles. As in Toyota, we encourage finding new
areas of contribution for people within a company—both because
skilled people deserve this, and because otherwise it inhibits change.

With both books combined pushing over 700 pages, we regret that
we could not write or think better to make the subject of
large…smaller.

On to thinking tools…

Thinking Tools

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Seeing System Dynamics 13

• Seeing Mental Models 25

• Example: The “Faster is Slower” Dynamic 26

• Seeing Root Causes 29

• Seeing (and Hearing) Local Optimization 32

9

Chapter

2
SYSTEMS THINKING

I took a speed reading course and read “War and Peace”
in twenty minutes. It involves Russia.

—Woody Allen

“No matter what we do, the number of defects in our backlog
remains about the same,” a manager told us; this for a 15 MSLOC C
and C++ product with several hundred developers where we were
working (and adopting lean principles). What’s going on? Systems
thinking may help. In small groups the forces at play are more
quickly seen and informally understood, but in large product devel-
opment—or any large system—it’s tough. Gerry Weinberg high-
lights two decisive factors in this situation:

Weinberg-Brooks’ Law: More software projects have gone awry
from management’s taking action based on incorrect system
models than for all other causes combined.

Causation Fallacy: Every effect has a cause… and we can tell
which is which. [Weinberg92]

These reflect the impact of our mental models on the system, a
subject that will be revisited later in the chapter.

Problems stemming from mental models and assumptions are one
issue. Another is that large-scale adoption of Scrum, lean thinking,
and agile principles is not isolated to the development group. It
bumps into product management, budgeting, beta-testing, launch,
and governance and HR policies. Accordingly, in large-scale agile
adoption it is useful to be able to get together with colleagues and
effectively reason about the mental models, causal relations, feed-
back loops, and control mechanisms (or illusions of control) in a big
system that is about to be seriously perturbed. Systems thinking is
one of those reasoning tools.

10

2 — Systems Thinking

In 1958, the Harvard Business Review published “Industrial
Dynamics: A Major Breakthrough for Decision Makers,” a landmark
paper by Jay Forrester, MIT Sloan School professor [Forrester58].
This paper spurred the movement of systems thinking in business
education, and the MIT Sloan School of Management became known
for educating people in system dynamics. System dynamics is
sometimes treated as a synonym for systems thinking, though the
latter is a more general term.

MIT also attracted other system-dynamics-oriented researchers
such as Peter Senge.1

1. Senge wrote The Fifth Discipline, on systems thinking and learning
organizations, named “one of the seminal management books of the
last 75 years” by the Harvard Business Review. See [Senge94].

It Depends on Common Sense?

“It depends on common sense.”—A statement sometimes heard in Scrum and
common parlance. But what is this? Einstein quipped, “Common sense is the col-
lection of prejudices acquired by the age eighteen.”

Taiichi Ohno, the father of the Toyota Production System, said, “[…] misconcep-
tions easily turn into common sense. When that happens, the debate can become
endless. Or, each side tried to be more outspoken than the other and things do not
move ahead at all. That is why there was a time when I was constantly telling peo-
ple to take a step outside of common sense and think by ‘going beyond common
sense.’ Within common sense, there are things that we think are correct because of
our misconceptions. Also, perhaps a big reason we do some of the general common
sense things we do is that based on long years of experience, we see there are no big
advantages to doing things a certain way but neither are there many disadvan-
tages to it. … we are all human so we’re like walking misconceptions believing
that the way we do things now is the best way. Or perhaps you do not think it is
the best way, but you are working within the common sense that ‘We can’t help it,
this is how things are’” [Ohno07].

“Common sense” is not so reliable when trying to understanding nonlin-
ear systems—such as large-scale product development.

11

Consistent with Weinberg-Brook’s Law, Forrester’s research showed
that decision makers who were given dynamic models of a business
system and asked to improve their output performance, usually
made them run worse [SKRRS94]. The observation was that most
people have weak judgement on how to fundamentally improve sys-
tems, usually applying incorrect “common sense” and quick-fix ‘solu-
tions’ that do not create long-lasting systemic improvement.

Why is the behavior of a large development group (a system) not
understood or guided skillfully? The answer lies, in part, in the
behavior of stochastic systems with queues and variability, as
explored in the Queueing Theory chapter. And the same answer lies
in control theory: Most systems of interest—such as a product devel-
opment group—have complex positive and negative feedback loops
and nonlinear behavior. The behavior of these systems defies our gut
instinct. And then there is the minor issue of people.

In summary, reasons for not being skillful in fathoming or guiding a
big system include (but are not limited to):

❑ lack of knowledge about the system dynamics, feedback loops,
nonlinear systems behavior, and unintended consequences in
workplace systems

❑ not understanding root causes of problems (and how to find)

– causes, not cause; in systems thinking one sees that there
are multiple, indirect, and dynamic causes to problems

❑ not knowing if or why quick-fix or local-department decisions
degraded overall delivery performance.

In short, not being systems thinkers.2

These reasons are consequential at the intersection of management
and large-scale adoption of lean and agile principles. The leadership
team is part of the system being perturbed; if they do not apply sys-
tems thinking, they could really perturb it—and not in a good way.

2. Another reason: Believing more control is possible than actually is.
Complexity science suggests fundamental limits on predicting and
controlling semi-chaotic social systems [Stacey07]. This is a rather
large can of worms that will remain unopened in this book.

12

2 — Systems Thinking

As a summary of systems thinking insight, we like the ‘laws’
described in The Fifth Discipline:

Toyota’s internal motto is “Good thinking, good products.” Systems
thinking is a set of thinking tools to help…

❑ see system dynamics—a development organization is a sys-
tem of people and policies with subtle feedback loops and unin-
tended consequences

– we can learn to see and thus improve the system with
causal loop diagrams created in a workshop

❑ see mental models—one reason behind suboptimal decisions
is mistaken assumptions and faulty reasoning

– casual loop diagramming and Five Whys expose these

❑ see root causes—real improvement requires learning how to
find root causes of problems and see deeper relationships

– causal loop diagrams, 5 Whys, and Ishikawa diagrams
reveal these

❑ see local optimization—another source of suboptimal deci-
sions is local optimization, making the ‘best’ decision from
the viewpoint of a person or department, rather than global
optimization for the lean systems-level goal of deliver value
fast with high quality and high morale.

• Today’s problems come from yes-
terday’s ‘solutions.’

• The harder you push, the harder
the system pushes back.

• Behavior will grow worse before
it grows better.

• The easy way out usually leads
back in.

• The cure can be worse than the
disease.

• Faster is slower.

• Cause and effect are not closely
related in time and space.

• Small changes can produce big
results…but the areas of highest
leverage are often the least obvi-
ous.

• You can have your cake and eat it
too—but not all at once.

• Dividing an elephant in half does
not produce two small elephants.

• There is no blame.

13

Seeing System Dynamics

This chapter is organized around the following areas in systems
thinking: Learning to see (1) system dynamics, (2) mental models, (3)
root causes, and (4) local optimization.

SEEING SYSTEM DYNAMICS

Static versus Dynamic Complexity

Many of us, especially in engineering and finance, are educated to
master complexity of static details—learning to analyze and
manage information (requirements, financial analysis, …), decom-
pose complex structures into simpler ones, and so forth. That is,
complexity of a static, information, or structural nature.

Why do big software systems tend to degrade, with more and more
time spent on defects? What might happen if the USA invades Iraq?
Seeing the dynamics behind these questions involves analysis of the
complexity of dynamics.

In contrast to static-details education, many of us receive no formal
education in analyzing dynamics complexity3, especially workplace
dynamics. Perhaps there is a belief it is sufficient to rely on common
sense in the workplace. Forrester demonstrated that “common
sense” is just not so in complex systems, and showed it is possible to
formally educate people to become better system dynamics thinkers
in the workplace using dynamic system models visualized in flow
diagrams [Forrester61].

Flow diagrams encompass material, financial, and information
flows, stocks (variables with a quantity, such as cash or number of
defects), the impact of decisions and policies, and cause-effect rela-
tions. A popular simplification is the causal loop diagram that
focuses on cause-effect relationships and feedback loops in a system
[Sterman00]. There are a variety of similar notations; they all show
stocks (variables), causal links, and delay. In [Weinberg92] this is
called the diagram of effect.

3. Macroeconomics, psychology, sociology, and biology are exceptions,
among many others.

14

2 — Systems Thinking

The First Law of Diagramming: Model to Have a Conversation

A tool to learn to see system dynamics is a causal loop diagram, ide-
ally sketched on a whiteboard in a Sprint Retrospective with col-
leagues. Before going further, here is the First Law of Diagramming

The primary value in diagrams is in the discussion while dia-
gramming—we model to have a conversation.

When a group gets together to sketch a causal loop diagram on a
whiteboard (Figure 2.1), the primary value is the conversation and
shared understanding they arrive at while creating the model. Its
visualization as an easy-to-see diagram is important to make con-
crete and unambiguous (on the whiteboard) the ideas—the mental
models people have—because words alone can be fuzzy and misun-
derstood. But still, the diagram is secondary to what people take
away: learning and a revised understanding through a discussion.

Figure 2.1 it is the
the acts of
discussing and
thinking that are
most important
when diagramming,
Valtech India

Basic Problems and Simple Enjoyable Tools

Over the years, we have learned sophisticated analysis and design
skills and heuristics for engineering, management, and more. At
first we were inspired and excited to apply and share all these, until
we realized in the course of real-world work…

15

Seeing System Dynamics

The vast majority of problems in business (including develop-
ment) are so basic that a key solution is education in and con-
sistent use of simple, enjoyable thinking and action tools.4

Simple—For example, system dynamics and causal loop modeling
books and courses can get overly complicated, with unnecessary
overhead such as the archetypes idea described in the Fifth Disci-
pline, computer simulation, nonlinear equations, and so forth. In
practice, this serves to intimidate ordinary people from experiment-
ing with—and sticking with—what in essence can be applied as a
simple tool: standing around a whiteboard to sketch, discuss, and
model basic cause-effect dynamics in business.

When considering any thinking or action tools for the workplace
reality, know that

Le mieux est l’ennemi du bien. (The best is the enemy of the
good.)—François-Marie Arouet (Voltaire)

Enjoyable—There are many intricate thinking or action tools that
professors or methodologists bemoan are not used—or at least not
sustainably used. Why, on the other hand, are the practices in
Scrum or Extreme Programming (XP) often adopted and remain
sticky in practice? First, there is quick value to the hands-on worker
participants—the cost/benefit ratio is attractive and pays fast. Sec-
ond, they are not painful; some will even say they are interesting or
enjoyable. It is not uncommon for people in a system dynamics
sketching workshop to say it was interesting (and useful). Humans
are humans; enjoyable practices are important for sustainable use.

Emphasis on such tools is especially important
when scaling to large product development,
because the ability to push practices and pro-
cesses grows very weak as group size increases.
As a bee is attracted to colorful fragrant flowers,
you want to attract people to simple, enjoyable
tools, including…

4. ‘Basic’ does not mean trivial or easy to solve. For example, ‘motiva-
tion’ and ‘quality’ are basic but not easy issues.

16

2 — Systems Thinking

Try…Causal loop
sketching
workshop to see
system dynamics

Causal Loop Diagrams

Causal loop diagrams are presented several times in this book, to
help see the dynamics of what is going on in large-scale develop-
ment. It is useful to understand them for that reason alone. And
more useful to you, we recommend:

Try…Sketch causal loop diagrams at whiteboards with others

The practical aspect of this tip is more important than may first be
appreciated. It is vague and low-impact to suggest “be a systems
thinker.” But if you and four colleagues get into the habit of standing
together at a large whiteboard, sketching causal loop diagrams
together, then there is a concrete and potentially high-impact prac-
tice that connects “be a systems thinker” with “do systems thinking.”

The following examples seem sterile when presented in a book. But
imagine you were at a whiteboard with other people and the dia-
grams were being sketched during a lively conversation. That’s the
way we suggest ‘doing’ systems thinking.

Concrete modeling tip: We start by writing on sticky notes to define
variables. A note might read “feature velocity” or “# defects.” We
place these on a whiteboard. Then we sketch causal link lines
between the sticky notes. There will be (or should be) lots of rewrit-
ing, erasing, and redrawing during the modeling session. The most
meaningful outcome is understanding; in addition, some partici-
pants will want to take a digital photo of the whiteboard sketch.

Notation and Examples

Causal loop diagrams contain many elements; the following common
useful subset is explored through a scenario.

• variables

• causal links

• opposite effects

• constraints

• goals

• reactions; quick-fix reactions

• interaction effects

• extreme effects

• delays

• positive feedback loops

17

Seeing System Dynamics

The following simplified scenario is for a particular organization. It
is not a generalization.

Variables—Causal loop diagrams include variables (or stocks) such
as the velocity (rate of delivery) of software features and number of
defects. Variables have a measurable quantity.

Causal links—An element can have an effect on another, such as if
feature velocity increases, then the number of defects increase; that
is, more new code, more defects.

Now it is time to bump into Weinberg-Brook’s Law and the Causa-
tion Fallacy. It is easy to sketch a diagram; it is something else to
model with insight. For example, consider the relationship between
the number of developers and feature velocity.

The nature of any cause-effect relationship is actually not obvious,
though it is common for people to jump to conclusions such as more
developers means better velocity. Adding people late in development
may reduce velocity (a sub-element of “Brooks’ Law” [Brooks95]). Or,
more bad programmers could really slow you down. An argument
can be made that removing terrible developers can improve velocity.

Opposite effects—A causal link effect may be the same or opposite
direction; if A goes up then B goes up, or vice versa. Opposite effect

defectsfeature
velocity

defects

feature
velocity

defects

feature
velocity

of
developers

?

based upon people’s beliefs (mental model) they will
ascribe some causal link between # of developers and
feature velocity; it may not be accurate

18

2 — Systems Thinking

is shown with an ‘O’ on the line. Suppose defects going up puts a
drag on the system, lowering the velocity of new features because
people spend more time fixing or working around bugs.

Constraints—Unless you can find people to work for free, there is a
constraint on the number of developers, based upon cash supply.

Constraints are not causal links. As cash supply goes up, it is not the
case that the number of developers goes up.

Goals and Reactions—People, departments, and systems have
goals, such as higher feature velocity. Goals often generate pressure
for people to react (or act), with the intent of achieving the goal. But
since there is Causation Fallacy and Weinberg-Brooks’ Law to con-
tend with, people should be cautious about assuming what actions
will help. Now a goal and pressure for reaction is shown:

defects

feature
velocity

O

Opposite effect: as number of defects
goes up, feature velocity goes down

defects

feature
velocity

O

of
developers

cash
supply

C

number of developers is
constrained by the cash supply

?

defects

feature
velocity

O

of
developers

?

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

19

Seeing System Dynamics

Not only does a goal with a reward create pressure to act, but also it
creates pressure to appear to be acting and achieving, due to the
measurement dysfunction generated by rewards. And the mea-
surement dysfunction can be proportional to the perceived value of
the reward because people are being motivated to get a reward, not
to improve the system [Austin96]. Notice how rewards can actually
degrade system performance. Visually, the system dynamics may
be…

It is quite interesting that all these dynamics have been added by
introduction of reward, and yet there is no necessary connection
between the top part of this model and the bottom.

There is no guarantee that feature velocity has improved—or even
been worked on.

Go See p. 52Removing the reward system is a root-cause solution to the dysfunc-
tion. Another (lesser) surface countermeasure is the lean Go See
principle and management behavior:

defects

feature
velocity

O

of
developers

?

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

Goal: get
rewards

value of
reward

degree of measurement
dysfunction (not seeing

what is really happening)

ability to guide and
improve the system

pressure to
“game the
numbers”

O

20

2 — Systems Thinking

Quick-fix reactions—One difficult and slow solution toward the
goal of higher velocity is to hire great developers, to increase coach-
ing and education of existing staff, and to remove terrible workers.
The alternative is called a quick fix, a reaction that is hoped to
achieve the goal quickly and with less effort. Sometimes a quick fix
works well both in the short and long term, really strengthening the
system. Sometimes not…hence, “faster is slower.” For example, peo-
ple may believe that increasing the number of developers increases
the feature velocity. And they may thereby hope that hiring more
developers will most quickly and easily solve the velocity problem.
‘QF’ indicates the quick fix:

Interaction effects—There is the constraint of cash supply on hir-
ing. One hard and slow solution is to get more cash. A quicker fix is
to hire much cheaper developers. In this case, the level of cash sup-
ply now has an interaction effect with other causal links. Low cash

Goal: higher
feature
velocity

amount and
quality of Go

See behavior by
management

pressure to try
actions for higher
feature velocity

Goal: get
rewards

value of
reward

degree of measurement
dysfunction (not seeing

what is really happening)

ability to guide and
improve the system

pressure to
“game the
numbers”

O

O

defects

feature
velocity

O

of
developers

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

hire rate

QF

belief

