

Praise for Professional Excel Development, Second Edition

“As Excel applications become more complex and the Windows development platform
more powerful, Excel developers need books like this to help them evolve their solutions
to the next level of sophistication. Professional Excel Development is a book for devel-
opers who want to build powerful, state-of-the-art Excel applications using the latest
Microsoft technologies.”

—Gabhan Berry, Program Manager, Excel Programmability, Microsoft

“The first edition of Professional Excel Development is my most-consulted and most-
recommended book on Office development. The second edition expands both the depth
and range. It shines because it takes every issue one step further than you expect. The
book relies on the authors’ current, real-world experience to cover not only how a feature
works, but also the practical implications of using it in professional work.”

—Shauna Kelly, Director, Thendara Green

“This book illustrates techniques that will result in well-designed, robust, and maintainable
Excel-based applications. The authors’ advice comes from decades of solid experience of
designing and building applications. The practicality of the methods is well illustrated by
the example timesheet application that is developed step-by-step through the book.
Every serious Excel developer should read this and learn from it. I did.”

—Bill Manville, Application Developer, Bill Manville Associates

“This book explains difficult concepts in detail. The authors provide more than one
method for complex development topics, along with the advantages and disadvantages of
using the various methods described. They have my applause for the incorporation of
development best practices.”

—Beth Melton, Independent Contractor and Microsoft Office MVP

“Professional Excel Development is THE book for the serious Excel developer. It reaches
far beyond object models and worksheet layouts and code syntax, to the inner workings of
a professional developer’s mind. The book covers Excel in great depth, but more impor-
tant it explores the thought processes and logistics behind successful Excel development.”

—Jon Peltier, Microsoft Excel MVP and President of Peltier Technical Services, Inc.

“The authors have done what I deemed impossible: improve a book that I already
considered the best book ever on Excel development!”

—Jan Karel Pieterse, Excel MVP and owner of www.jkp-ads.com

www.jkp-ads.com

This page intentionally left blank

PROFESSIONAL
EXCEL DEVELOPMENT

SECOND EDITION

This page intentionally left blank

PROFESSIONAL
EXCEL DEVELOPMENT

SECOND EDITION

THE DEFINITIVE GUIDE TO DEVELOPING

APPLICATIONS USING MICROSOFT®

EXCEL, VBA®, AND .NET

Rob Bovey
Dennis Wallentin
Stephen Bullen

John Green

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Professional Excel development : the definitive guide to developing applications using Microsoft Excel, VBA,
and .NET / Rob Bovey ... [et al.]. — 2nd ed.

p. cm.

Rev. ed. of: Professional Excel development : the definitive guide to developing applications using Microsoft
Excel and VBA / Stephen Bullen, Rob Bovey, John Green. 2005.

ISBN 978-0-321-50879-9 (pbk. : alk. paper) 1. Microsoft Excel (Computer file) 2. Microsoft Visual Basic
for applications. I. Bovey, Rob. II. Bullen, Stephen. Professional Excel development.

HF5548.4.M523B85 2009

005.54—dc22

2009005855

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-50879-9
ISBN-10: 0-321-50879-3
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing May 2009

vii

TABLE OF CONTENTS

Acknowledgments .xiv

About the Authors .xv

Chapter 1 Introduction

About This Book .1
Who Should Read This Book .2
Excel Developer Categories .2
Excel as an Application Development Platform 4
Structure .7
Examples .8
Supported Versions of Excel .9
Typefaces .10
On the CD .10
Help and Support .11
The Professional Excel Development Web Site12
Feedback .12

Chapter 2 Application Architectures

Concepts .13

Chapter 3 Excel and VBA Development Best Practices

Naming Conventions .27
Best Practices for Application Structure and Organization 40
General Application Development Best Practices 45

Chapter 4 Worksheet Design

Principles of Good Worksheet UI Design .69
Program Rows and Columns: The Fundamental UI Design Technique . . .70
Defined Names .71
Styles .78

viii Contents

User Interface Drawing Techniques .83
Data Validation .88
Conditional Formatting .92
Using Controls on Worksheets .98
Practical Example .100

Chapter 5 Function, General, and Application-Specific Add-ins

The Four Stages of an Application .107
Function Library Add-ins .110
General Add-ins .117
Application-Specific Add-ins .118
Practical Example .125

Chapter 6 Dictator Applications

Structure of a Dictator Application .141
Practical Example .157

Chapter 7 Using Class Modules to Create Objects

Creating Objects .166
Creating a Collection .170
Trapping Events .177
Raising Events .180
Practical Example .188

Chapter 8 Advanced Command Bar Handling

Command Bar Design .198
Table-Driven Command Bars .199
Putting It All Together .219
Loading Custom Icons from Files .228
Hooking Command Bar Control Events .232
Practical Example .241

Chapter 9 Introduction to XML

XML .249

Chapter 10 The Office 2007 Ribbon User Interface

The RibbonX Paradigm .273
An Introduction to the Office 2007 Open XML File Format 274

Ribbon Design and Coding Best Practices .278
Table-Driven Ribbon UI Customization .289
Advanced Problem Solving .291
Further Reading .300
Related Portals .300

Chapter 11 Creating Cross-Version Applications

Command Bar and Ribbon User Interfaces in a Single Application . . .304
Other Excel 2007 Development Issues .319
Windows Vista Security and Folder Structure 326

Chapter 12 Understanding and Using Windows API Calls

Overview .331
Working with the Screen .337
Working with Windows .340
Working with the Keyboard .349
Working with the File System and Network 355
Practical Examples .369

Chapter 13 UserForm Design and Best Practices

Principles .375
Control Fundamentals .384
Visual Effects .392
UserForm Positioning and Sizing .400
Wizards .407
Dynamic UserForms .411
Modeless UserForms .419
Control Specifics .425
Practical Example .432

Chapter 14 Interfaces

What Is an Interface? .433
Code Reuse .435
Defining a Custom Interface .437
Implementing a Custom Interface .438
Using a Custom Interface .440
Polymorphic Classes .443
Improving Robustness .448

Contents ix

x Contents

Simplifying Development .448
A Plug-in Architecture .460
Practical Example .462

Chapter 15 VBA Error Handling

Error Handling Concepts .465
The Single Exit Point Principle .475
Simple Error Handling .475
Complex Project Error Handler Organization 476
The Central Error Handler .481
Error Handling in Classes and UserForms .488
Putting It All Together .490
Practical Example .496

Chapter 16 VBA Debugging

Basic VBA Debugging Techniques .507
The Immediate Window (Ctrl+G) .517
The Call Stack (Ctrl+L) .521
The Watch Window .522
The Locals Window .532
The Object Browser (F2) .533
Creating and Running a Test Harness .537
Using Assertions .540
Debugging Shortcut Keys That Every Developer Should Know 542

Chapter 17 Optimizing VBA Performance

Measuring Performance .545
The PerfMon Utility .546
Creative Thinking .551
Macro-Optimization .556
Micro-Optimization .567

Chapter 18 Introduction to Database Development

An Introduction to Databases .577
An Introduction to SQL .594
Data Access with ADO .598
Further Reading .613

Chapter 19 Programming with Access and SQL Server

A Note on the Northwind Sample Database615
Designing the Data Access Tier .616
Working with Microsoft Access Databases .620
Working with Microsoft SQL Server Databases 630
Upsizing from Access to SQL Server .642
Further Reading .647
Practical Example .648

Chapter 20 Data Manipulation Techniques

Excel’s Data Structures .661
Data Processing Features .667
Advanced Functions .678

Chapter 21 Advanced Charting Techniques

Fundamental Techniques .687
VBA Techniques .702

Chapter 22 Controlling Other Office Applications

Fundamentals .709
The Primary Office Application Object Models 725
Further Reading .739
Practical Example .740

Chapter 23 Excel and Visual Basic 6

A Hello World ActiveX DLL .742
Why Use VB6 ActiveX DLLs in Excel VBA Projects 758
In-Process Versus Out-of-Process .774
Automating Excel from a VB6 EXE .775
COM Add-ins .783
A “Hello World” COM Add-in .783
The Add-in Designer .788
Installation Considerations .790
The AddinInstance Events .792
Command Bar Handling .795
Why Use a COM Add-in? .798
Automation Add-ins .799
Practical Examples .802

Contents xi

xii Contents

Chapter 24 Excel and VB.NET

.NET Framework Fundamentals .818
Visual Basic.NET .819
Debugging .845
Useful Development Tools .853
Automating Excel .855
Resources in .NET Solutions .863
Retrieving Data with ADO.NET .864
Further Reading .870
Additional Development Tools .871
Q&A Forums .871
Practical Example—PETRAS Report Tool .NET 872

Chapter 25 Writing Managed COM Add-ins with VB.NET

Choosing a Development Toolset .890
Creating a Managed COM Add-in .891
Building the User Interface .908
Creating Managed Automation Add-ins .928
Manually Register and Unregister COM Add-ins 940
Using Classes in VB.NET .940
Using Classic ADO to Export Data to Excel 948
Shimming COM Add-ins .952
Related Blogs .962
Additional Development Tools .962
Practical Example—PETRAS Report Tool.NET 963

Chapter 26 Developing Excel Solutions with Visual Studio Tools for
Office System (VSTO)

What Is VSTO? .976
When Should You Use VSTO? .983
Working with VSTO Add-Ins .985
Working with VSTO Templates and Workbook Solutions 1006
Deployment and Security .1016
Further Reading .1026
Related Portal and Blogs .1026
Additional Development Tools .1026

Chapter 27 XLLs and the C API

Why Create an XLL-Based Worksheet Function 1029
Creating an XLL Project in Visual Studio .1030
The Structure of an XLL .1034
The XLOPER and OPER Data Types .1044
The Excel4 Function .1050
Commonly Used C API Functions .1052
XLOPERs and Memory Management .1053
Registering and Unregistering Custom Worksheet Functions 1054
Sample Application Function .1057
Debugging the Worksheet Functions .1060
Miscellaneous Topics .1061
Additional Resources .1062

Chapter 28 Excel and Web Services

Web Services .1065
Practical Example .1072

Chapter 29 Providing Help, Securing, Packaging, and Distributing

Providing Help .1085
Securing .1094
Packaging .1099
Distributing .1104

Index .1107

Contents xiii

ACKNOWLEDGMENTS

First and foremost, this book would never have been written without the
support of our partners and families, who have graciously put up with our
insatiable computer habits and many late nights over the past year. Neither
would it have been done without our dogs, who kept our feet warm while
we worked and forced us to get out of the house at least once each day.

We all owe a debt of gratitude to the Excel group at Microsoft, past and
present, for making Excel the amazing development platform it is today. It
is their dedication and commitment to us that makes Excel application
development possible and enjoyable. They have repeatedly demonstrated
their willingness to listen to and implement our suggestions over the years.

There are many people we want to thank at Addison-Wesley
Professional, particularly our editor Joan Murray for her support while
writing the book, Anne Goebel for steering us through the production
process, and Curt Johnson for getting it on the shelves.

The quality of a technical book depends as much on the reviewers as
the authors, so we want to thank all our technical reviewers. Most of your
suggestions were implemented. At the risk of offending the others, we
would particularly like to thank Bill Manville, John Peltier, and Gabhan
Berry for the quality and rigor of their reviews.

Finally, we want to thank you for buying this book. Please tell us what
you think about it, either by e-mail or by writing a review at Amazon.com.

Thank you,

Rob Bovey
Dennis Wallentin
Stephen Bullen
John Green

ABOUT THE AUTHORS

Rob Bovey (robbovey@appspro.com) is president of Application
Professionals, a software development company specializing in Microsoft
Office, Visual Basic, and SQL Server applications. He brings many years of
experience creating financial, accounting, and executive information sys-
tems for corporate users to Application Professionals. You can visit the
Application Professionals Web site at www.appspro.com.

Rob developed several add-ins shipped by Microsoft for Microsoft
Excel, co-authored the Microsoft Excel 97 Developers Kit and contributed
to the Excel 2002 and 2007 VBA Programmer’s References. He earned his
Bachelor of Science degree from The Rochester Institute of Technology
and his MBA from the University of North Carolina at Chapel Hill.
Microsoft has awarded him the title of Most Valuable Professional each
year since 1995.

Dennis Wallentin (dennis@excelkb.com) is located in Östersund,
Sweden, where he lives with his wife and two daughters. Dennis has been
developing Excel business solutions since the 1980s and he has a Master’s
degree in business management and accounting.

He is the founder of XL-Dennis, which delivers solutions for all sizes
of companies including the public sector both in Sweden and internation-
ally. He also writes reviews about new Excel versions, books, and other
related Excel articles for Swedish magazines. For the last few years he has
specialized in creating Excel business solutions based on .NET technolo-
gies, including Visual Studio Tools for Office System (VSTO).

Stephen Bullen (stephen@oaltd.co.uk) lives in Woodford Green,
London, England, with his partner Clare, daughter Becky, and their dogs,
Fluffy and Charlie. A graduate of Oxford University, Stephen has an MA
in engineering, economics, and management, providing a unique blend of
both business and technical skills.

xv

www.appspro.com

He is now an employee of Merrill Lynch in London, managing a glob-
al spreadsheet development team producing Front Office pricing and risk
management tools.

Stephen’s Web site, www.oaltd.co.uk, provides a number of helpful and
interesting utilities, examples, tips, and techniques to help in your use of
Excel and development of Excel applications.

Stephen contributed chapters to John Green’s Excel 2000 VBA
Programmer’s Reference and co-authored subsequent editions, published
by Wrox Press.

He has been active in various Excel-related online communities for
more than 15 years. In recognition of his knowledge, skills, and contribu-
tions, Microsoft has awarded him the title of Most Valuable Professional
each year since 1996.

John Green (greenj@bigpond.net.au) lives and works in Sydney,
Australia, as an independent computer consultant, specializing in integrat-
ing Excel, Access, Word, and Outlook using VBA. He has more than 30
years of computing experience, a chemical engineering degree, and an
MBA.

He wrote his first programs in FORTRAN, took part in the evolution
of specialized planning languages on mainframes, and, in the early 1980s,
became interested in spreadsheet systems, including 1-2-3 and Excel.

John established his company, Execuplan Consulting, in 1980, develop-
ing computer-based planning applications and training users and developers.

John has had regular columns in a number of Australian magazines and
has contributed chapters to a number of books, including Excel Expert
Solutions and Using Visual Basic for Applications 5, published by Que. He
is the principal author of Excel 2000 VBA Programmer’s Reference and its
subsequent editions, published by Wrox Press.

Between 1995 and 2006 he was accorded the status of Most Valuable
Professional by Microsoft for his contributions to the CompuServe Excel
forum and MS Internet newsgroups.

xvi About the Authors

www.oaltd.co.uk

1

C H A P T E R 1

INTRODUCTION

About This Book

Microsoft Excel is much more than just a spreadsheet. With the introduc-
tion of the Visual Basic Editor in Excel 97, followed by the significantly
improved stability of Excel 2000, Excel became a respected development
platform in its own right. Excel applications are now found alongside those
based on C++, Java, and the .NET development platform, as part of the
core suite of mission-critical corporate applications.

Unfortunately, Excel is still too often thought of as a hobbyist platform,
that people only develop Excel applications in their spare time to automate
minor tasks. A brief look at many Excel VBA books seems to confirm this
opinion. These books focus on the basics of automating Excel tasks using
VBA. This book is the first of its kind in providing a detailed explanation
of how to use Excel as the platform for developing professional quality
applications.

While most other major development platforms seem to have a de
facto standard text that explains the commonly agreed best practices for
architecting, designing, and developing applications using that platform,
until now Excel has not. This book attempts to fill that gap. The authors are
professional Excel developers who create Excel-based applications for
clients ranging from individuals to the largest multinational corporations.
This book explains the approaches we use when designing, developing, dis-
tributing, and supporting the applications we write for our clients.

2 Chapter 1 Introduction

Who Should Read This Book

This is not a beginner-level book. If you do not already have a clear under-
standing of the core Excel object model and a basic understanding of Excel
VBA development this is not the place to start. We assume that readers of this
book have already read and (mostly) understood our Excel 2002 or 2007 VBA
Programmer’s Reference, John Walkenbach’s Excel Power Programming, or
similar titles. This book begins where other Excel VBA books end.

Owners of the first edition of Professional Excel Development have a
different decision to make. Should you purchase the second edition? We
have made numerous corrections and improvements throughout this edi-
tion as well as expanding it with over 300 pages of new material that you
simply will not find anywhere else.

In the interest of full disclosure, however, we want to be very clear that
the bulk of the new material is aimed at Excel developers who are working
with Excel 2007 and Visual Studio 2008. If you own the first edition of this
book and your primary focus is developing VBA applications in Excel 2003
and earlier, you will see incremental rather than revolutionary improve-
ments in this edition. We don’t want to discourage you from upgrading to
the second edition and would welcome it if you choose to do so. But most
of all we want you to be satisfied with our work, so we state the pros and
cons of upgrading honestly to help you make an informed decision.

Excel Developer Categories

Excel developers can be divided into five general categories based on their
experience and knowledge of Excel and VBA. This book has something to
offer each of them, but with a focus on the more advanced topics. Putting
yourself into one of these categories might help you decide whether this is
the right book for you.

Basic Excel users probably don’t think of themselves as developers at
all. Excel is no more than a tool to help them get on with their job. They
start off using Excel worksheets as a handy place to store lists or perform
simple repetitive calculations. As they discover more Excel features their
workbooks may begin to include more complex worksheet functions, pivot
tables, and charts. There is little in this book for basic Excel users, although
Chapter 4, “Worksheet Design,” details the best practices to use when
designing and laying out a worksheet for data entry; Chapter 20, “Data
Manipulation Techniques,” explains how to structure a worksheet and

Excel Developer Categories 3

which functions and features to use to manipulate their lists; and Chapter
21, “Advanced Charting Techniques,” explains how to get the most from
Excel’s chart engine. The techniques suggested in these chapters should
help the basic Excel user avoid some of the pitfalls often encountered as
their experience and the complexity of their worksheets increase.

Excel power users have a broad understanding of Excel’s functionali-
ty and they know which tool or function is best used in a given situation.
Power users create complex workbooks for their own use and are often
called on to help develop workbooks for their colleagues, or to identify why
their colleagues’ workbooks don’t work as intended. Power users occasion-
ally use snippets of VBA, either found on the Internet or created with the
macro recorder, but struggle to adapt the code to their needs. As a result,
their code tends to be messy, slow, and hard to maintain. While this book is
not a VBA tutorial, power users have much to gain from following the best
practices we suggest for both worksheets and code modules. Most of the
chapters in the book are relevant to power users who have an interest in
improving their Excel and VBA development skills.

VBA developers make extensive use of VBA code in their work-
books—often too much. They are typically either power users who started
to learn VBA too early or Visual Basic developers who switched to Excel
VBA development. While they may be proficient with VBA they believe
every problem must have a VBA solution. They tend to lack the experience
required to know when a problem is best solved using Excel, when a prob-
lem is best solved using VBA, and when the best solution is a combination
of the two. Their solutions are often cumbersome, slow, and make poor use
of the Excel object model. This book has much to offer VBA developers to
improve their use of Excel itself, including best practices for designing
worksheets and how to use Excel’s features for data entry, analysis, and pres-
entation. The book also seeks to improve their Excel VBA development
skills by introducing advanced coding techniques, detailing VBA best prac-
tices, and explaining how to improve VBA code performance.

Excel developers realize that the most efficient and maintainable
applications are those that make the most of Excel’s built-in functionality,
augmented by VBA where appropriate. They are confident in developing
Excel-based applications for their colleagues or as part of an in-house
development team. While their knowledge of Excel is put to good use in
their applications, their design techniques tend to be limited, and they are
reluctant to use other languages and applications to augment their Excel
solutions. They have probably read John Walkenbach’s Excel 2003 or 2007
Power Programming and/or our own Excel 2002 or 2007 VBA
Programmer’s Reference. Now they need a book to take them to the highest

1.
IN

TRO
DUCTIO

N

4 Chapter 1 Introduction

level of Excel application development—that of the professional develop-
er. This is the book to do that.

Professional Excel developers design and develop for their clients
or employer Excel-based applications and utilities that are robust, fast, easy
to use, maintainable, and secure. While Excel forms the core of their solu-
tions, they use other applications and languages where appropriate, includ-
ing third-party ActiveX controls, Office automation, Windows API calls,
external databases, various standalone programming languages, and XML.
This book teaches all of those skills. If you are already a professional Excel
developer, you will know that learning never stops and will appreciate the
knowledge and best practices presented in this book by four of your peers.

Excel as an Application Development Platform

If we look at Excel as a development platform rather than just a spread-
sheet, we find that it provides five fundamental components we can use in
our applications:

■ The worksheets, charts, and other objects used to create a user
interface and presentation layer for data entry and reporting

■ The worksheets used as simple data stores for lists, tables, and other
information required by our application

■ VBA code and UserForms for creating business logic and advanced
user interfaces

■ Worksheet formulas used as a declarative programming language
for high-performance numerical processing

■ The Excel object model, allowing programmatic control of (nearly) all
of Excel’s functionality, both from within Excel and from outside it

The Worksheet as a Presentation Layer for Data
Entry and Reporting
Most people think about Excel in terms of typing numbers into cells, hav-
ing some calculations update, and seeing a result displayed in a different
cell or on a chart. Without necessarily thinking in such terms, they are
using the worksheet as a user interface for their data entry and reporting
and are generally comfortable with these tasks. The in-cell editing, valida-
tion, and formatting features built in to Excel provide a rich and com-
pelling data entry experience, while the charting, cell formatting, and
drawing tools provide a presentation-quality reporting mechanism.

Excel as an Application Development Platform 5

It is hard to imagine the code that would be required if we tried to
reproduce this experience using the tools available in most other devel-
opment environments, yet Excel provides these features right out of the
box for use in our Excel-based applications. The biggest problem we face
is how to add structure to the free-form worksheet grid to present a sim-
ple and easy-to-use interface, while leveraging the rich functionality of
Excel. Chapter 4 introduces some techniques and best practices for devel-
oping worksheet-based data entry forms, while Chapter 21 covers
charting capabilities.

The Worksheet as a Simple Data Store
What is a worksheet when it’s never intended to be shown to the end user?
At its simplest, it’s no more than a large grid of cells in which we can store
just about anything we want, including numbers, text, lists, tables, and pic-
tures. Most applications use some amount of static data or graphical
resources. Storing that information in a worksheet makes it both easy to
access using VBA and simple to maintain. Lists and tables in worksheets can
directly feed Excel’s data validation feature (as shown in Chapter 4), great-
ly simplify the creation and maintenance of command bars (Chapter 8,
“Advanced Command Bar Handling”), and allow us to construct dynamic
UserForms (Chapter 13, “UserForm Design and Best Practices”).

VBA Code and UserForms
We expect most readers of this book have at least some familiarity with
VBA. If not, we suggest you read one of the resources mentioned at the
beginning of this chapter before continuing much further. Many people
see the “A” in VBA as meaning the language is somehow less than Visual
Basic itself. In fact, both VB6 and Office use exactly the same DLL to pro-
vide the keywords, syntax, and statements we program with.

Most beginner and intermediate VBA developers use VBA as a purely
procedural language, with nearly all their code residing in standard mod-
ules. VBA also allows us to create applications using an object oriented
programming (OOP) approach, in which class modules are used to create
our own objects. Chapter 7, “Using Class Modules to Create Objects,” and
Chapter 14, “Interfaces,” explain how to use VBA in this manner, while
basic OOP concepts (such as encapsulation) are used throughout the book.

Most of this book is dedicated to explaining advanced VBA tech-
niques and a professional approach to application design and develop-
ment that can put VBA in Excel on par with, and sometimes in front of,
VB6 or VB.Net for application development. In Chapters 23 through 26

1.
IN

TRO
DUCTIO

N

6 Chapter 1 Introduction

we show that Excel developers can achieve the best of both worlds by
combining Excel with VB6 or VB.Net in a seamless application.

The Worksheet as a Declarative Programming
Language
Take the following code:

dSales = 1000

dPrice = 10.99

dRevenue = dSales * dPrice

That could easily be a few lines of VBA. We give the variable dSales a value
of 1000, the variable dPrice a value of 10.99, and then calculate the rev-
enue as sales times price. If we change the names of the variables and
adjust the spacing, the same code could also be written as

D1 =1000

D2 =10.99

D3 =D1*D2

This looks much more like worksheet cell addresses and formulas than
lines of VBA code, showing that worksheet formulas are in fact a pro-
gramming language of their own if we choose to think of it in those
terms. The IF() worksheet function is directly equivalent to the
If...Then...Else VBA statement, while the judicious use of circular
references and iteration can be equivalent to either the For...Next or
Do...Loop structures.

Instead of stating a set of operations that are executed line-by-line,
we “program” in this language by making a set of declarations (by typing
formulas and values into worksheet cells), in any order we want:

“D3 is the product of D1 and D2”
“D1 has the value 1000”
“D2 has the value 10.99”

To “run” this program, Excel first examines all the declarations and builds
a precedence tree to identify which cells depend on the results of which
other cells and thereby determine the most efficient order in which the
cells must be calculated. The same precedence tree is also used to identify

Structure 7

the minimum set of calculations that must be performed whenever the
value in a cell is changed. The result is a calculation engine that is vastly
more efficient than an equivalent VBA program, and one that should be
used whenever complex numerical computations are required in your
application.

Microsoft Excel is unique among application development platforms
in providing both a procedural (VBA) and a declarative (worksheet func-
tions) programming language. The most efficient Excel application is one
that makes appropriate use of both these languages.

It is assumed the reader of this book has a basic understanding of
worksheet functions, so Chapter 20 focuses on using advanced worksheet
functions (including best-practice suggestions for handling circular refer-
ences) and Excel’s other data analysis features.

The Excel Object Model
While the other four components of the Excel platform are invaluable in
the development of applications, it is probably the rich Excel object model
that provides the most compelling reason to base our applications in Excel.
Almost everything that can be accomplished through the Excel user inter-
face can also be accomplished programmatically using the objects in the
Excel object model. (Accessing the list of number formats and applying a
digital signature to a workbook are perhaps the most notable exceptions.)

The vast feature set exposed by these objects makes many complex
applications fairly simple to develop. Unlike most other development plat-
forms, there is no need to figure out how to program these features from
scratch. Excel provides them ready-made, so all we need to do is deter-
mine how to plug them together most effectively. This book does not
attempt to explore and document every obscure niche of the Excel object
model. Instead, we demonstrate the best way to use the objects we most
commonly use in our own application development.

Structure

Over the course of this book we cover both the concepts and details of each
topic and apply those concepts to a time sheet reporting and analysis appli-
cation that we will build in stages as we move along. The chapters are

1.
IN

TRO
DUCTIO

N

8 Chapter 1 Introduction

therefore arranged approximately in the order in which we would design
and develop an Excel application:

■ Chapter 2 discusses the different styles of application we might
choose to create.

■ Chapter 3 identifies some general best practices for working with
Excel and VBA. These are followed throughout the book.

■ Chapter 4 explains how to design and structure a worksheet for
data entry and analysis.

■ Chapters 5 and 6 introduce two specific types of application—the
add-in and the dictator application, which form the basis of our time
sheet reporting and analysis application.

■ Chapter 7 introduces the use of class modules in our Excel
applications.

■ Chapters 8 to 11 discuss topics relevant to building command bar
and Ribbon user interfaces as well as designing applications that
must run in all current Excel versions using a single code base.

■ Chapters 12 to 17 discuss advanced techniques for a range of VBA
topics.

■ Chapters 18 and 19 cover database development for Excel
developers.

■ Chapters 20 and 21 explain how to efficiently use Excel’s features
to analyze data and present results.

■ Chapters 22 to 27 look outside Excel, by explaining how to auto-
mate other applications and extend Excel with Visual Basic 6,
VB.NET, and C.

■ Chapter 28 focuses on how Excel applications can make use of
Web Services.

■ Chapter 29 completes the development by explaining how to pro-
vide help for, secure, and deploy an Excel application.

Examples

As mentioned previously, throughout the book, we illustrate the concepts
and techniques we introduce by building a time sheet data entry, consoli-
dation, analysis, and reporting application. This consists of a data entry
template to be completed by each employee, with the data sent to a cen-
tral location for consolidation, analysis, and reporting. At the end of most
chapters we show an updated working example of the application that

Supported Versions of Excel 9

incorporates ideas presented in those chapters, so the application grows
steadily more complex as the book progresses.

In Chapter 4, we start with a simple data entry workbook and assume
that each employee would e-mail the completed file to a manager who
would analyze the results manually—a typical situation for a company with
just a few employees.

By the end of the book, the data entry workbook will use XML to upload
the data to a Web site, where it will be stored in a central database. The
reporting application will extract the data from the database, perform various
analyses, and present the results as reports in Excel worksheets and charts.

Along the way we rewrite some parts of the application in a number of
different ways to show how easy it can be to include other languages and
delivery mechanisms in our Excel-based applications. Most chapters also
include specific concept examples to illustrate key points that are impor-
tant to understand but would be too artificial if forced into the architecture
of our time sheet application.

Supported Versions of Excel

When we develop an Excel application for a client, that client’s upgrade
policy usually determines the version of Excel we must use. Few clients
agree to upgrade just so we can develop using the latest version of Excel
unless there is a compelling business requirement that can only be satisfied
by using features the latest version introduces. At the time of this writing,
an extremely unscientific poll (based on postings to the Microsoft support
newsgroups) seems to indicate the following approximate usage distribu-
tion for each current version of Excel:

1.
IN

TRO
DUCTIO

N

There are still a small number of users on Excel 97 and earlier ver-
sions, but for various reasons we no longer consider these versions of Excel
to be viable development platforms. We therefore decided to use Excel
2000 as our lowest supported version. Many features we discuss, especial-
ly when we cover XML and the .NET development platform, are only sup-
ported in Excel 2002 or 2003 and higher. Whenever we discuss a feature

Excel 2000 10%

Excel 2002 15%

Excel 2003 50%

Excel 2007 25%

that is only supported in a later version of Excel we state which version(s)
it applies to.

Typefaces

The following text styles are used in this book:
Menu items and dialog text are shown as Tools > Options > Calculation

> Manual, where the “>” indicates navigation to a submenu or dialog tab.

Sub SomeCode()

‘Code listings are shown like this

End Sub

Code within the text of a paragraph is shown in a fixed-width font like
Application.Calculation = xlManual.

Paths on the CD are shown as \Concepts\Ch14 - Interfaces.
New terms introduced or defined appear like this.
Important points or emphasized words appear like this.

On the CD

Most of the code listings shown in the book are also included in example
workbooks on the accompanying CD. For clarity, the code shown in the
printed examples may use shorter line lengths, reduced indent settings,
fewer code comments, and less error handling than the corresponding
code in the workbooks. The CD has three main directories, containing the
following files:

■ \Tools contains a number of tools and utilities developed by the
authors that we have found to be invaluable during our application
development. The MustHaveTools.htm file contains details about
each of these tools and links to other third-party utilities.

■ \Concepts has separate subdirectories for each chapter, each one
containing example files to support the text of the chapter. For best
results, we suggest you have these workbooks open while reading
the corresponding chapter.

10 Chapter 1 Introduction

Help and Support 11

1.
IN

TRO
DUCTIO

N

■ \Application has separate subdirectories for the chapters where we
have updated our time sheet example application. These chapters
end with a Practical Example section that explains the changes
made to implement concepts introduced in that chapter.

Help and Support

By far the best place to go for help with any of your Excel development
questions, whether related to this book or not, are the Microsoft sup-
port newsgroup archives maintained by Google at http://groups.google.
com. A quick search of the archives is almost certain to find a question
similar to yours, already answered by one of the many professional
developers who volunteer their time helping out in the newsgroups,
including all the authors of this book. On the rare occasions that the
archives fail to answer your question, you’re welcome to ask it directly
in the newsgroups by connecting a newsreader (such as Outlook
Express) to msnews.microsoft.com and selecting an appropriate news-
group, such as

microsoft.public.excel.misc for general Excel questions
microsoft.public.excel.programming for VBA-related questions
microsoft.public.excel.worksheet.functions for help with worksheet
functions

For assistance with Excel and VB.NET integration issues we recommend
the MSDN VSTO Web forum located here:

http://social.msdn.microsoft.com/Forums/en-US/vsto/threads/
A number of Web sites provide a great deal of information and free down-
loadable examples and utilities targeted towards the Excel developer,
including

www.appspro.com
www.excelkb.com
www.oaltd.co.uk
http://peltiertech.com
www.cpearson.com
http://msdn.microsoft.com/office

www.appspro.com
www.excelkb.com
www.oaltd.co.uk
http://peltiertech.com
www.cpearson.com
http://msdn.microsoft.com/office
http://groups.google.com
http://groups.google.com
http://social.msdn.microsoft.com/Forums/en-US/vsto/threads/

The Professional Excel Development Web Site

As an experiment for the second edition of Professional Excel
Development, we are introducing a new Web site to accompany the book
at www.ProExcelDev.net.

As of this writing the site does not yet exist, so it is difficult to say exact-
ly what you will find there. However, at a minimum you will find the latest
corrections, bug fixes, and clarifications related to this book. Our hope is to
eventually expand the site to provide more in-depth coverage of popular
topics than we were able to fit into our publishing deadline as well as blogs
and possibly even interactive technical forums.

Feedback

We have tried very hard to present the information in this book in a clear
and concise manner, explaining both the concepts and details needed to
get things working as well as providing working examples of everything we
cover. We have tried to provide sufficient information to enable you to
apply these techniques in your own applications without getting bogged
down in line-by-line explanations of entire code listings.

We’d like to think we’ve been successful in our attempt, but we
encourage you to let us know what you think. Constructive criticism is
always welcomed, as are suggestions for topics you think we may have
overlooked. Please send feedback to the following authors:

Rob Bovey: robbovey@appspro.com
Dennis Wallentin: dennis@excelkb.com

12 Chapter 1 Introduction

www.ProExcelDev.net

13

C H A P T E R 2

APPLICATION ARCHITECTURES

One of the first decisions to be made when starting a new project is how to
structure the application. This chapter explains the various architectures
we can use, the situations where each is most applicable, and the pros and
cons of each choice.

Concepts

The choice of where to put the code for an Excel application is rarely
straightforward. In anything but the simplest of situations there is a trade-
off among numerous factors, including

■ Complexity—How easy will the chosen architecture be to create?
■ Clarity—How easy will it be for someone other than the author to

understand the application?
■ Development—How easy will it be to modify the code, particular-

ly in a team environment?
■ Extensibility—How easy is it to add new features?
■ Reliability—Can the results be relied on? How easily can calcula-

tion errors be introduced into the application?
■ Robustness—How well will the application be able to handle appli-

cation errors, invalid data, and other problems?
■ Security—How easy will it be to prevent unauthorized changes to

the application?
■ Deployment—How easy will it be to distribute the application to

the end user?
■ Maintainability—How easy will it be to modify the application

once it has been distributed to the end user?

14 Chapter 2 Application Architectures

Codeless Applications
The most basic application architecture is one that only uses Excel’s built-in
functionality. Everyone creates this type of application without knowing it,
simply by using Excel. Codeless applications are typically created by begin-
ning to intermediate Excel users who have not yet learned to use VBA. All
the custom formatting, validation, formulas, and so on are placed directly on
the same worksheet where data entry will be performed. There are some
major problems with this approach when it is applied to non-trivial Excel
applications, so totally codeless applications are rarely a good choice.

To avoid VBA, the worksheet functions and data validation criteria
tend to become convoluted and hard to follow. The equivalent VBA often
is easier to understand and maintain. The same worksheet is normally used
for data entry, analysis, and presentation. This tends to result in a cluttered
appearance that is difficult to understand, unintuitive to use, and almost
impossible for anyone except the author to modify reliably.

Codeless applications have to rely on Excel’s worksheet protection to pre-
vent users from making unauthorized changes. Worksheet passwords are
notoriously easy to break, and a simple copy and paste will wipe out any cell
data validation. Codeless applications are therefore neither secure nor robust.

Without code, we are unable to provide much assistance to users; we
have to rely on them to do everything themselves—and do it correctly—
instead of providing reliable helper routines that automate some of their
tasks. The more complex the application, the less likely it is that all the
tasks will be performed correctly.

If we consider the definition of a “program” to be “anything that isn’t
the data,” we see that all the conditional formatting, data validation, work-
sheet functions, and so on are really part of the “program,” so codeless
applications break the basic tenet of keeping the program and data physi-
cally separate. Once users have started to enter data it is difficult to dis-
tribute an updated workbook to them without losing the data they’ve
already entered. You have to either hope the user can copy the existing
data to the new workbook correctly or write a conversion program to copy
the data from the old workbook to the new workbook for them.

Codeless applications can work well in the following situations:

■ There will only be one copy of the application workbook, so any
changes can be made directly to that workbook.

■ Each copy of the workbook will have a short lifetime. In this case,
the assumption is that the workbooks will not need updating after
they have been distributed.

Concepts 15

■ The end users will maintain the workbook themselves or the work-
book will not require any maintenance at all.

■ There is a small number of relatively sophisticated end users who
can be trained well enough to ensure the application is used cor-
rectly and not inadvertently broken.

A good example of a codeless application would be a simple survey or data
collection form that requires the end user to fill in the details and e-mail
the completed workbook to a central address for consolidation and analy-
sis. The main benefit of a codeless application in such a situation is the
avoidance of Excel’s macro security warnings and the corresponding assur-
ance that there is nothing malicious in the file.

Self-Automated Workbooks
A self-automated workbook is one in which the VBA code is physically con-
tained within the workbook it acts upon. The automation code can be as
simple as ensuring the workbook always opens with Sheet1 active or as
complex as an entire application. This is usually the first type of application
a beginning VBA developer produces, by adding helper routines to a work-
book that get progressively numerous and more complex over time.

Once we introduce VBA into the workbook we acquire much more flex-
ibility in how we provide the features required by the application. We can
make a considered choice whether to use Excel’s built-in functions or write
our own equivalents to avoid some of Excel’s pitfalls. For example, Excel’s
data validation feature may not operate correctly when entries are made in
multiple cells simultaneously, and data validation is usually cleared when
data is pasted onto a range that uses it. We can work around these limita-
tions by trapping the Worksheet_Change event and performing our own
validation in code, making the application more robust, reliable, and secure.

The Workbook and Worksheet code modules provided by Excel allow
us to trap the events we want to use. Any ActiveX controls we add to a
worksheet are automatically exposed in that worksheet’s code module. This
is the simplest application architecture to create and probably the simplest
to understand—most VBA developers have written an application of this
type and therefore understand, for example, how the code within a work-
sheet code module is triggered.

The biggest advantage of the self-automated workbook application
architecture is its ease of deployment. There is only one file to distribute.
There is no need to install or configure anything, and because the code is
physically stored within the workbook, it is available and working as soon
as the workbook is opened.

2.
A

PPLICATIO
N

A
RCHITECTURES

16 Chapter 2 Application Architectures

Unfortunately, the self-automated workbook’s clearest advantage is
also its biggest problem. When the code is physically inside the workbook,
how do you update the code without affecting the data that has been
entered on the worksheets? While it is possible to write VBA that modifies
the code within another workbook, the user has to make a specific macro
security setting to allow that to happen (in Excel 2002 and above). Also, it
is only possible to unprotect and reprotect the VBA project using
SendKeys, which cannot be relied on to work in foreign-language versions
of Excel or if Excel doesn’t have the focus. Even if the project could be
unprotected and reprotected, saving the updated project would remove
any digital signature that had been applied, resulting in macro virus warn-
ings every time the workbook was subsequently opened. The only reliable
way self-automated workbooks can be updated is to provide a completely
new workbook with VBA code (or instructions) to copy the data from the
old workbook. Self-automated workbooks are a good choice if the follow-
ing conditions apply:

■ The VBA code contained within the workbook provides functionali-
ty specific to that workbook (as opposed to general purpose utilities).

■ There will only be one copy of the application workbook, so any
changes can be made directly to that workbook.

■ The workbook will have a short lifetime or will be distributed to a
large audience, in which case ease of deployment becomes a signif-
icant consideration.

■ The workbook does not contain any data that will need to be retained
during an update, such as one that obtains its data from an external data
source or saves the data entered into it to an external data repository.

General Purpose Add-ins
An add-in is a specific type of application, usually used to add features to
Excel. The worksheets in an add-in are hidden from the user, so the user
never interacts directly with the workbook. Instead, the add-in exposes its
features by adding items to Excel’s menus and toolbars or Ribbon, hooking
key combinations, trapping Excel events, and/or exposing functions to be
used from worksheets in other workbooks. VBA procedures in an add-in
can also be executed by typing their fully qualified name (for example,
MyAddin.xla!MyProcedure) in the Tools > Macro > Macros dialog, even
though they do not appear in the list of available macros.

The procedures in a general purpose add-in will always be available to
the Excel user, so this application architecture is most appropriate for utility

Concepts 17

functions that are designed to work with any file, typically using the
ActiveWorkbook, ActiveSheet, or Selection objects to identify the items
to operate on.

Care should be taken to handle potential user errors, where proce-
dures in the add-in may be called from a context in which they won’t work.
For example, if your add-in changes the case of the text in the selected cell,
you must verify that a cell is selected, isn’t locked, and doesn’t contain the
result of a formula. Similarly, if your code applies custom formatting to the
active worksheet, you must verify that there is an active sheet (there may
be no workbooks open), it’s a worksheet (not a chart or macro sheet, for
example), and it’s not protected.

An add-in is just a much hidden workbook, so it doesn’t appear in the
list of workbooks or the VBA Workbooks collection. It is, however, just like
any other workbook in almost every other respect and should therefore be
easy for an intermediate Excel/VBA developer to understand and main-
tain. In fact you can toggle between having the add-in workbook behave
like an add-in or a normal workbook by simply changing the IsAddin prop-
erty of its ThisWorkbook object in the VBE Properties window between
True and False.

Because add-ins never expose their worksheets to the user, all user
interaction is done with UserForms (although the VBA InputBox and
MsgBox functions can be used in simple situations). This gives us a high
level of control over user inputs, allowing us to create applications that are
robust and reliable—assuming we include data validation code and good
error handling.

If the add-in needs to persist any information, such as the most recent
selections made by the user in a UserForm, that information should be kept
separate from the add-in file, either by storing it in the registry (using
SaveSetting/GetSetting) or in a separate file such as an INI file. By follow-
ing this practice you ensure the add-in will never need to be saved by the end
user and can simply be replaced by a new version if an update is required.

If you are willing to trust the end user to install the add-in correctly, it
is also easy to deploy—just send the XLA file with instructions to either
copy it into their Library folder or to use the Browse button in the Tools >
Add-Ins dialog to locate the file. The alternative is to use an installation
routine to write the registry entries Excel uses to maintain its add-ins list,
such that the add-in is automatically opened and installed when the client
next starts Excel. These registry entries are covered in detail in Chapter 29,
“Providing Help, Securing, Packaging, and Distributing.”

2.
A

PPLICATIO
N

A
RCHITECTURES

18 Chapter 2 Application Architectures

Structure of a General Purpose Add-in
Most general purpose add-ins use the same basic structure:

■ Code in an Auto_Open or Workbook_Open procedure that creates
the add-in’s menu items and sets up the keyboard hooks. Each menu
item has its OnAction property set to call the appropriate procedure
in the add-in file.

■ Procedures associated with each menu item that are located in a
standard code module.

■ (Optionally) Public functions located in a standard code module that
are exposed for use in worksheet formulas.

■ Code in an Auto_Close or Workbook_Close procedure that removes
the add-in’s menu items and clears its keyboard hooks.

Application-Specific Add-ins
As mentioned previously, the main problem with both codeless and self-
automated workbooks is that the program is physically stored in the same
file as the data it works with. It is difficult to reliably update the program
part of those workbooks without affecting or destroying the data.

The alternative is to structure the application such that all the code is
contained within one workbook, while a separate workbook is used for data
entry, analysis, and so on. One such architecture is that of an application-
specific add-in. These are similar to general purpose add-ins, but instead
of immediately setting up their menu items, keyboard hooks, and so on,
they stay invisible until the user opens a workbook the add-in can identify
as one that it should make itself available for.

In a typical application-specific add-in architecture, the user would be
supplied with at least two workbooks: the XLA workbook containing the
program and a template workbook used for data entry. The template work-
book(s) contains some kind of indicator the add-in can use to identify it,
usually either a hidden defined name or a custom document property.

The key benefit of using an application-specific add-in is that we can
safely distribute updates to the code, knowing we will not cause any harm to
the user’s data. There is, however, a small price to pay for this convenience:

■ Splitting the application into two (or more) workbooks makes it
slightly harder to manage, because we have to keep the correct ver-
sions of both workbooks synchronized during the development
process. Simple version control is discussed in more detail in
Chapter 3, “Excel and VBA Development Best Practices.”

Concepts 19

■ The application is slightly harder for other developers to under-
stand, particularly if they are used to single-workbook applications
or do not understand the technique of using class modules to hook
application-level events, as explained in Chapter 7, “Using Class
Modules to Create Objects.”

■ Deployment is more complicated, because we need to distribute
multiple files. Deployment strategies are covered in Chapter 29.

Structure of an Application-Specific Add-in
Application-specific add-ins are similar in structure to general purpose
add-ins, but with extra code to identify when to enable or disable the
menu items:

■ A class module used to trap the application-level events.
■ Code in an Auto_Open or Workbook_Open procedure adds the

add-in’s menu items. Each menu item has its OnAction property
set to call the appropriate procedure in the add-in file, but these
menu items are all initially either disabled or hidden. It then cre-
ates an instance of the class module and initializes application event
hooks.

■ Procedures associated with each menu item that are located in a
standard code module.

■ (Optionally) Public functions located in a standard code module that
are exposed for use in worksheet formulas.

■ Code in the class module that hooks the application-level
WorkbookActivate event, checks whether the workbook “belongs”
to the add-in and if so enables the menu items and sets up the key-
board hooks.

■ Code in the class module hooks the application-level
WorkbookDeactivate event, to disable the menu items and
remove the keyboard hooks when no application workbook is
active.

■ Code in an Auto_Close or Workbook_Close procedure removes the
add-in’s menu items.

General purpose and application-specific add-ins are discussed in more
detail in Chapter 5, “Function, General, and Application-Specific Add-ins.”

2.
A

PPLICATIO
N

A
RCHITECTURES

20 Chapter 2 Application Architectures

Dictator Applications
All the architectures considered so far have sought to enhance Excel in
some way to improve the end user’s experience when they’re using our
application. In contrast, dictator applications attempt to take over the
Excel user interface completely, replacing Excel’s menus with their own
and exercising a high level of control over the user interface. In the ideal
dictator application, users will not be able to tell they are working inside
Excel.

These applications are created in Excel to use the features Excel pro-
vides, but those features are entirely controlled by the application. The
user interface is made up of tightly controlled data entry worksheets and/or
UserForms designed to appear like any other Windows application. These
applications require large amounts of code to provide that degree of con-
trol, but that control allows us to write large-scale, fully functional
Windows applications on par with any that can be written in Visual Basic
or other “mainstream” application development platforms. In fact, by
building our application within Excel, we have a head start over other
development platforms because we are immediately able to utilize the
incredible amount of functionality Excel provides.

As dictator applications become more complex, they will often start to
use functionality that only exists in the most recent versions of Excel (such
as the XML import/export introduced in Excel 2003), so we need to decide
what should happen if the application is opened in an older version of
Excel. If the functionality being used is a core part of the application, it is
unlikely the application will be usable at all in older versions of Excel. If
the use of the new features can be limited to a small part of the applica-
tion, it may make more sense to just disable user interface access to those
features when running in older versions of Excel or provide separate pro-
cedures for older versions to use.

Making use of new Excel features often results in compile errors if the
application workbook is opened in an older version of Excel, so many dic-
tator applications use a “front-loader” workbook to do an initial version
check, verify that all external dependencies are available, and then open
and run the main application workbook if all the checks are okay. If the
checks fail, we can provide meaningful error messages to the end user
(such as “This application requires Excel 2003 or higher and will not work
in Excel 2000”).

There’s no escaping the fact that dictator applications are much more
complicated than either self-automated workbooks or application-specific
add-ins and will require an intermediate to advanced level Excel/VBA
developer to create and maintain them. The complexity of dictator

Concepts 21

applications can be mitigated by following the best practices advice dis-
cussed in Chapter 3 (general advice) and Chapter 6, “Dictator
Applications” (specific advice for dictator applications).

Once the decision to build a dictator application has been made, we
have an incredible amount of flexibility in terms of physically creating the
application. The data can be stored in one or more separate workbooks,
local databases such as Access, or a central database such as SQL Server.
We can put all the code into a single add-in workbook or have a small core
add-in with numerous applets that plug into the core, each performing a
specific task. The decision will probably be a trade-off between (at least)
the following considerations:

■ A single-workbook structure tends to be easier for a single develop-
er to maintain, because everything is in the one place.

■ A multiworkbook structure is easier for a team of developers to cre-
ate, because each developer can work on her own applet without
conflicting with another team member.

■ If a multiworkbook structure is built so each plug-in applet is not
loaded until it is first used, the initial opening of the “core” add-in
will be faster than loading the full application of the single-work-
book structure—though modern PCs may make that difference
appear immaterial.

■ A single-workbook structure must be updated in its entirety, but the
applets of a multiworkbook structure can be updated and deployed
independently.

■ The code required to implement a multiworkbook plug-in architec-
ture is complex, and may be too complex for the intermediate VBA
developer to fully understand—though we explain it in Chapter 14,
“Interfaces.”

Requirements of a Dictator Application
To look and operate like a standalone Windows application, a dictator
application needs to modify many Excel application properties, from turn-
ing on IgnoreOtherApplications (so double-clicking an XLS file in
Explorer will not use our instance of Excel) to turning off
ShowWindowsInTaskBar (because we may have multiple workbooks open
and do not want each of them to spawn new TaskBar buttons), as well as
hiding all the built-in command bars. Unfortunately, Excel will remember

2.
A

PPLICATIO
N

A
RCHITECTURES

22 Chapter 2 Application Architectures

many of these settings the next time it is started, so every dictator applica-
tion must first record the existing state of all the settings it changes and
restore them all when it closes. If the code to do this is written as two sep-
arate procedures that are assigned shortcut keys, they also provide an easy
way to switch between the application user interface and the Excel user
interface during development.

Once a snapshot of the user’s settings has been taken, the dictator
application can set the application properties it requires. It then needs to
lock down Excel to prevent the user from doing things we don’t want them
to do. This includes

■ Hiding and disabling all built-in command bars or Ribbon tabs
(including shortcut command bars), and then setting up our own.

■ Protecting our command bars and disabling access to the command
bar customization dialog.

■ Disabling all the shortcut key combinations that Excel provides, and
then optionally reenabling the few we want to be exposed to the
user.

■ Setting Application.EnableCancelKey to xlDisabled at the start
of every entry point to prevent users from stopping the code.

■ When using worksheets as data entry forms, we don’t want the user
to be able to copy and paste entire cells, since that would include all
formatting, data validation, and so on, so we need to turn off drag-
and-drop (which does a cut and paste), redirect both Ctrl+X and
Shift+Delete to do a Copy instead of a Cut, and redirect Ctrl+V and
Shift+Insert to paste only values.

Having locked down the Excel environment while our application is run-
ning, we need to provide a mechanism to access the code so that we can
debug the application. One method is to set a global IsDevMode Boolean
variable to True if a particular file exists in the application directory or
(more securely) depending on the Windows username. This Boolean can
then be used throughout the application to provide access points, such as
enabling the Alt+F11 shortcut to switch to the VBE, adding a Reset menu
item and/or shortcut key to switch back to the Excel environment, and not
setting the EnableCancelKey property, to allow the developer to break into
the code. This variable can also be used within error handlers, to control
whether to display a user- or developer-oriented error message.

Concepts 23

Structure of a Dictator Application
A typical dictator application uses the following logical structure:

■ A front-loader/startup procedure to perform version and dependen-
cy checks as well as any other validation required to ensure the
application can run successfully.

■ A core set of procedures to
■ Take a snapshot of the Excel environment settings and to

restore those settings.
■ Configure and lock down the Excel application.
■ Create and remove the application’s command bars.
■ Handle copying and pasting data within the worksheet templates.
■ Provide a library of common helper procedures and classes.
■ (Optionally) Implement a plug-in architecture using class

modules, as described in Chapter 14.
■ A backdrop worksheet, to display within the Excel window while

UserForms are being shown, usually with some form of application-
specific logo (if we’re primarily using forms for the user interface).

■ Multiple independent applets that provide the application’s
functionality.

■ Multiple template worksheets used by the applets, such as data
entry forms or preformatted report templates.

Physically, all the elements that make up a typical dictator application can
reside in a single workbook or can be distributed across multiple work-
books. Dictator applications are discussed in more detail in Chapter 6.

Technical Implementations
In our discussion of the main types of application architecture there has
been an underlying assumption that the application will be written using
VBA. That need not be the case, as we discuss in Chapters 23 through 27,
where we examine how we can use the C API to create XLL add-ins and
use Visual Basic 6 and/or VB.Net to support our VBA procedures and cre-
ate COM add-ins.

Any of these architectures can be implemented using either a tradi-
tional procedural design, where most of the functionality is implemented
using helper procedures in standard code modules, or an object-oriented
approach, where the functionality is implemented as properties and meth-
ods of class modules, as discussed in Chapter 7.

2.
A

PPLICATIO
N

A
RCHITECTURES

24 Chapter 2 Application Architectures

Summary

The five main types of application architecture each have their pros and
cons and each is the most applicable to certain situations. The choice of
architecture should be made carefully, with appropriate consideration
given to ongoing maintenance (probably by a different person than the
original author) as well as just the ease with which the application can be
created initially. Table 2-1 lists each architecture and the advantages and
disadvantages of each.

Table 2-1 Summary of Application Architectures

Architecture Pros Cons Applicable To

Codeless
Workbook

No VBA requirement.

No macro security
issues.

Easy to deploy.

Usually cluttered and
hard to use.

Neither robust nor
reliable.

Doesn’t provide much
assistance to the user.

Difficult to update.

Simple data entry
forms, surveys, etc.

Self-automated
workbook

Simple application, easy
for a beginner VBA
developer to
understand.

VBA can be used to
improve robustness and
reliability.

Provides a lot of extra
functionality for the
user.

Easy to deploy.

If the VBA needs to be
updated, it will be
difficult or impossible
to do so once
deployed.

More complex data-
entry forms, where the
VBA can be used to
improve the quality of
the data being entered,
but there is little data
stored in the workbook
long-term.

Summary 25

2.
A

PPLICATIO
N

A
RCHITECTURES

Table 2-1 Summary of Application Architectures

Architecture Pros Cons Applicable To

General purpose
add-in

Designed to extend
Excel’s functionality.

Simple application, only
slightly more complex
than an automated
workbook.

Easy to deploy (though
not as simple as a
workbook).

Must include robust
context checks and
error handling.

Harder to deploy if it
should be automatically
ready for use.

Ideal for adding custom
functionality to Excel,
designed for use with
any workbook.

Application-
specific add-in

Separates the code
from the data, so the
code can be updated
without affecting the
user’s work.

Removing the code
from the data
workbooks makes them
smaller and avoids the
macro security
warning.

Slightly more
technically complex
than the general add-in,
requires an
intermediate level VBA
developer.

Slightly harder to
deploy, as it requires at
least two workbooks to
be installed, sometimes
to separate locations.

Suitable for applications
of any size and
complexity.

Dictator
application

Can write fully
functional applications
that appear to be
applications in their
own right.

High degree of control
over the user
interaction allows you
to write very robust and
reliable applications.

Functionality can be
split over multiple
workbooks, making
them easier for a team
to develop and easier to
deploy updates.

Much more complex
than other
architectures.

Care must be taken to
restore the user’s Excel
environment.

Harder to deploy,
typically requiring an
installation routine.

Best suited to complex
applications or those
that require a high
degree of control over
user interaction.

This page intentionally left blank

27

C H A P T E R 3

EXCEL AND VBA DEVELOPMENT
BEST PRACTICES

This chapter appears early in the book because we want you to understand
why we do certain things the way we do in later chapters. Unfortunately,
this also means we’ll have to cover a few topics in this chapter that don’t
get full coverage until later. For best results, you may want to review this
chapter after you’ve read the rest of the book.

As you read this chapter, you should also keep in mind that even
though the practices described here are generally accepted best practices,
there will always be certain cases where the best thing to do is not follow
the best practice. We try to point out the most common examples of this
here and in the best practices discussions in the chapters that follow.

Naming Conventions

The term “naming convention” refers to the system you use to name the
various parts of your application. Whenever you declare a variable or cre-
ate a UserForm, you give it a name. You implicitly name objects even when
you don’t give them a name directly by accepting the default name pro-
vided when you create a UserForm, for example. One of the hallmarks of
good programming practice is the consistent use of a clearly defined nam-
ing convention for all parts of your VBA application.

Let’s look at an example that may help demonstrate why naming con-
ventions matter. In the following line of code:

x = wksDataSheet.Range(“A1”).Value

What do you know about x? From its usage you can reasonably assume it’s
a variable. But what data type is it designed to hold? Is its scope public,

28 Chapter 3 Excel and VBA Development Best Practices

module-level, or private? What is its purpose in the program? As it stands,
you can’t answer any of these questions without searching through the rest
of the code. A good naming convention conveys the answers to these ques-
tions with a simple visual inspection of the variable name. Here’s a revised
example (we cover the specifics in detail in the next section):

glListCount = wksDataSheet.Range(“A1”).Value

Now you know the scope of the variable (g stands for global or public
scope), what data type it was designed to hold (1 stands for the Long data
type), as well as having a rough idea of the purpose of the variable (it holds
the number of items in a list).

A naming convention helps you to immediately recognize the type and
purpose of the building blocks used in an application. This allows you to
concentrate on what the code is doing rather than having to figure out how
the code is structured. Naming conventions also help make your code self-
documenting, which reduces the number of comments required to make
the purpose of your code clear.

We present one example of a well-structured naming convention in the
following section. This is the naming convention we use throughout the
book. You may or may not decide to use the naming convention we pres-
ent here; this is not important. What is important is that you do pick some
naming convention and use it consistently. As long as everyone involved in
a project understands the naming convention, it doesn’t matter exactly
what prefixes it uses or what its conventions are for capitalization in vari-
able names. When it comes to the use of a naming convention, consistency
rules, both across projects and over time.

A Sample Naming Convention
A good naming convention applies not just to variables, but to all the ele-
ments of your application. The sample naming convention we present here
covers all the elements in a typical Excel application. We begin with a dis-
cussion of variables, constants, and related elements, since these are the
most common elements in any application. The general format of the nam-
ing convention is shown in Table 3-1. The specific elements of the naming
convention and their purposes are described afterwards.

Naming Conventions 29

Table 3-1 A Naming Convention for Variables, Constants, UDTs, and Enumerations

Element Naming Convention

Variables <scope><array><data type>DescriptiveName

Constants <scope><data type>DESCRIPTIVE_NAME

User-defined types Type DESCRIPTIVE_NAME

<data type>DescriptiveName

End Type

Enumeration types Enum <project prefix>GeneralDescr

<project prefix>GeneralDescrSpecificName1

<project prefix>GeneralDescrSpecificName2

End Enum

The Scope Specifier (<scope>)

g—Public
m—Module-level
(nothing)—Procedure-level

The Array Specifier (<array>)

a—Array
(nothing)—Not an array

The Data Type Specifier (<data type>)
There are so many data types that it’s difficult to provide a comprehensive
list of prefixes to represent them. The built-in data types are easy. The most
frequently used built-in data types get the shortest prefixes. Problems arise
when naming object variables that refer to objects from various applica-
tions. Some programmers use the prefix “obj” for all object names. This is

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

30 Chapter 3 Excel and VBA Development Best Practices

Table 3-2 Suggested Naming Convention Prefixes

Prefix Data
Type

Prefix Data Type Prefix Data Type

b Boolean cm ADODB.Command cbo MSForms.ComboBox*

byt Byte cn ADODB.Connection chk MSForms.CheckBox

cur Currency rs ADODB.Recordset cmd MSForms.
CommandButton

dte Date ddn MSForms.ComboBox**

dec Decimal cht Excel.Chart fra MSForms.Frame

d Double rng Excel.Range lbl MSForms.Label

i Integer wkb Excel.Workbook lst MSForms.ListBox

l Long wks Excel.Worksheet mpg MSForms.MultiPage

obj Object opt MSForms.OptionButton

sng Single cbr Office.CommandBar spn MSForms.SpinButton

s String ctl Office.
CommandBarControl

txt MSForms.TextBox

u User-
Defined
Type

not acceptable. However, devising consistent, unique, and reasonably short
prefixes for every object type you will ever use is also too much to ask. Try
to find reasonably meaningful one- to three-letter prefixes for the object
variables you use most frequently and reserve the “obj” prefix for objects
that appear infrequently in your code.

Make your code clear, and above all, be consistent. Keep data type pre-
fixes to three or fewer characters. Longer prefixes, in combination with
scope and array specifiers, make for unwieldy variable names. Table 3-2
shows some suggested prefixes for the most commonly used data types.

Naming Conventions 31

Table 3-2 Suggested Naming Convention Prefixes

Prefix Data
Type

Prefix Data Type Prefix Data Type

v Variant cls User-Defined Class
Variable

ref RefEdit Control

frm UserForm Variable col VBA.Collection

*Used for ComboBox controls with a DropDownCombo Style setting.

**Used for ComboBox controls with a DropDownList Style setting.

Using Descriptive Names
VBA gives you up to 255 characters for each of your variable names. Use
a few of them. Don’t try to save yourself a little effort by making your vari-
able names very short. Doing so will make your code difficult to under-
stand in the long run, both for you and for anyone else who has to work
on it.

The Visual Basic IDE provides an auto-complete feature for identifiers
(all the names used in your application). You typically need to type only the
first few characters to get the name you want. Enter the first few charac-
ters of the name and press Ctrl+Spacebar to activate an auto-complete list
of all names that begin with those characters. As you type additional char-
acters, the list continues to narrow down. In Figure 3-1 the Ctrl+Spacebar
shortcut has been used to display a list of message string constants avail-
able to add to a message box.

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

FIGURE 3-1 Using the Ctrl+Spacebar shortcut to auto-complete long names

32 Chapter 3 Excel and VBA Development Best Practices

FIGURE 3-2 The Excel paper size enumeration list

A Few Words about Enumeration Types
Enumerations are a special type of constant available in Excel 2000 and
higher. They allow you to group a list of related values together using sim-
ilar, logical friendly names. VBA and the Excel object model make exten-
sive use of enumerations. You can see these in the auto-complete list that
VBA provides for the values of many properties. For example if you type

Sheet1.PageSetup.PaperSize =

into a VBA module, you’ll be prompted with a long list of XlPaperSize
enumeration members that represent the paper sizes available to print on.
Figure 3-2 shows this in action.

These names actually represent numeric constants whose values you
can examine by looking them up in the Object Browser, discussed in
Chapter 16, “VBA Debugging.” Notice the structure of these enumeration
names. First, they all begin with a prefix identifying the application they
are associated with, in this case “xl,” which obviously stands for Excel.
Next, the first part of their name is a descriptive term that ties them togeth-
er visually as belonging to the same enumerated type, in this case “Paper.”
The last part of each enumeration name is a unique string describing the
specific value. For example, xlPaper11x17 represents 11x17 paper and
xlPaperA4 represents A4 paper. This system for naming enumerated con-
stants is common and is the one we use in this book.

Naming Convention Examples
Naming convention descriptions are difficult to connect to real-world
names, so we show some real-world examples of our naming convention in

Naming Conventions 33

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

this section. All these examples are taken directly from commercial-quali-
ty applications written by the authors.

Variables

■ gsErrMsg—A public variable with the data type String used to
store an error message.

■ mauSettings()—A module-level array of user-defined type that
holds a list of settings.

■ cbrMenu—A local variable with the data type CommandBar that
holds a reference to a menu bar.

Constants

■ gbDEBUG_MODE—A public constant of type Boolean that indicates
whether the project is in debug mode.

■ msCAPTION_FILE_OPEN—A module-level constant of data type
String that holds the caption for a customized file open dialog
(Application.GetOpenFilename in this instance).

■ lOFFSET_START—A local constant of data type Long holding the
point at which we begin offsetting from some Range object.

User-Defined Types
The following is a public user-defined type used to store the dimensions
and location of an object. It consists of four variables of data type Double
that store the top, left, width, and height of the object and a variable of data
type Boolean used to indicate whether the settings have been saved.

Public Type DIMENSION_SETTINGS

bSettingsSaved As Boolean

dValTop As Double

dValLeft As Double

dValHeight As Double

dValWidth As Double

End Type

The variables within a user-defined type definition are called member
variables. These can be declared in any order. However, our naming

convention suggests you sort them alphabetically by data type unless
there is a strong reason to group them in some other fashion.

Enumeration Types
The following is a module-level enumeration type used to describe various
types of days. The “sch” prefix in the name of the enumeration stands for
the application name. This enumeration happens to come from an appli-
cation called Scheduler. DayType in the enumeration name indicates the
purpose of the enumeration, and each of the individual enumeration ele-
ments has a unique suffix that describes what it means.

Private Enum schDayType

schDayTypeUnscheduled

schDayTypeProduction

schDayTypeDownTime

schDayTypeHoliday

End Enum

If you don’t indicate what values you want to give your enumeration
member elements, VBA automatically assigns a value of zero to the first ele-
ment in the list and increments that value by one for each additional ele-
ment. You can easily override this behavior and assign a different starting
point from which VBA will begin incrementing. For example, to make the
preceding enumeration list begin with one instead of zero you would do the
following:

Private Enum schDayType

schDayTypeUnscheduled = 1

schDayTypeProduction

schDayTypeDownTime

schDayTypeHoliday

End Enum

VBA continues to increment by one for each element after the last ele-
ment for which you’ve specified a value. You can override automatic
assignment of values to all your enumeration elements by simply specify-
ing values for all of them.

Figure 3-3 shows one of the primary advantages of using enumeration
types. VBA provides you with an auto-complete list of potential values for
any variable declared as a specific enumeration type.

34 Chapter 3 Excel and VBA Development Best Practices

FIGURE 3-3 Even custom enumeration types get a VBA auto-complete listing.

Naming Conventions 35

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Procedures
Subroutines and functions are grouped under the more general term proce-
dure. Always give your procedures very descriptive names. Once again, you
are allowed up to 255 characters for your procedure names. Procedure names
are included in the Ctrl+Spacebar auto-complete list, so don’t sacrifice a name
that makes the purpose of a procedure obvious for one that’s simply short.

It is not a common practice to do so, but we find that giving functions a
prefix indicating the data type of their return value to be helpful in under-
standing code. When calling a function, always place open and closed paren-
theses after the function name to distinguish it from a variable or subroutine
name, even if the function takes no arguments. Listing 3-1 shows a well-
named Boolean function being used as the test for an If...Then statement.

Listing 3-1 An Example of Naming Conventions for Function Names

If bValidatePath(“C:\Files”) Then

‘ The If...Then block is executed

‘ if the specified path exists.

End If

Subroutines should be given a name that describes the task they per-
form. For example, a subroutine named ShutdownApplication leaves little
doubt as to what it does. Functions should be given a name that describes
the value they return. A function named sGetUnusedFilename() can rea-
sonably be expected to return an available filename.

The naming convention applied to procedure arguments is exactly the
same as the naming convention for procedure-level variables. For example,

36 Chapter 3 Excel and VBA Development Best Practices

FIGURE 3-4 Class modules, UserForms, and standard modules sorted in the
Project window

the bValidatePath function shown in Listing 3-1 would be declared in the
following manner:

Function bValidatePath(ByVal sPath As String) As Boolean

Modules, Classes, and UserForms
In our sample naming convention, the names of standard code modules
should be prefixed with an uppercase “M,” class modules with an upper-
case “C,” and UserForms with an upper case “F.” This has the advantage
of neatly sorting these objects in the VBE Project Window if you don’t care
for the folder view, as shown in Figure 3-4.

This convention also makes code that uses classes and UserForm objects
much clearer. In the following code sample, for example, this naming con-
vention makes it very clear that you are declaring an object variable of a
certain user-defined class type and then creating a new instance of that
class:

Dim clsMyClass As CMyClass

Set clsMyClass = New CMyClass

In each case, the name on the left is a class variable and the object on the
right is a class.

Naming Conventions 37

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Worksheets and Chart Sheets
Because the CodeNames of worksheets and chart sheets in your project
are treated by VBA as intrinsic object variables that reference those sheets,
the CodeNames given to worksheets and chart sheets should follow vari-
able naming conventions. Worksheet CodeNames are prefixed with “wks”
to identify them in code as references to Worksheet objects. Similarly,
chart sheets are prefixed with “cht” to identify them as references to Excel
Chart objects.

For both types of sheets, the prefix should be followed by a descriptive
term indicating the sheet’s purpose in the application. In Figure 3-4 for
example, wksCommandBars is a worksheet that contains a table defining
the command bars created by the application. For sheets contained with-
in an add-in or hidden in a workbook and not designed to be seen by the
user, the sheet tab name should be identical to the CodeName. For sheets
that are visible to the user, the sheet tab name should be a friendly name,
and one that you should be prepared for the user to change. Wherever it
is reasonably possible to do so, you should rely on sheet CodeNames rather
than sheet tab names within your VBA code.

The Visual Basic Project
In Figure 3-4, you’ll notice the Visual Basic Project has been given the
same name as the workbook it’s associated with. You should always give
your VBProject a name that clearly identifies the application it belongs to.
There’s nothing worse than having a group of workbooks open in the VBE
with all of them having the same default name “VBAProject.” If you plan
on creating references between projects you will be required to give them
unique names.

Excel UI Naming Conventions
Excel user interface elements used in the creation of an application should
also be named using a consistent and well-defined naming convention. We
covered worksheets and chart sheets in a previous section. The three other
major categories of Excel UI elements that can be named are shapes,
embedded objects, and defined names.

Shapes
The term “shapes” refers to the generic collection that can contain the
wide variety of objects you can place on top of a worksheet or chart sheet.
Shapes can be broadly divided into three categories: controls, drawing

38 Chapter 3 Excel and VBA Development Best Practices

pic Picture

rec Rectangle

txt TextBox (not the ActiveX control)

objects and embedded objects. Shapes should be named similarly to object
variables, which is to say they should be given a prefix that identifies what
type of object they are followed by a descriptive name indicating what pur-
pose they serve in the application.

Many controls that can be placed on UserForms can be placed on
worksheets as well. Worksheets can also host the old Forms toolbar con-
trols, which are similar in appearance to the ActiveX MSForms controls
but with their own unique advantages and disadvantages. We’ll talk more
about these in Chapter 4, “Worksheet Design.” Controls placed on work-
sheets should be named using exactly the same conventions you’d use for
controls placed on UserForms.

Worksheets can also host a wide variety of drawing objects (technical-
ly known as Shapes) that are not strictly controls, although you can assign
macros to all of them. These fall into the same naming convention catego-
ry as the wide variety of objects that you can use in VBA. It would be very
difficult to devise unique prefixes for all of them, so use well-defined pre-
fixes for the most common drawing objects and use a generic prefix for the
rest. Here are some sample prefixes for three of the most commonly used
drawing objects:

Embedded Objects
The term “embedded object” is used here to refer to Excel objects such as
PivotTables, QueryTables, and ChartObjects, as well as objects created by
applications other than Excel. Worksheets can host a variety of embedded
objects. Common examples of non-Excel embedded objects would include
equations created with the Equation Editor and WordArt drawings.
Sample prefixes for embedded objects are as follows:

cht ChartObject

eqn Equation

qry QueryTable

pvt PivotTable

art WordArt

Naming Conventions 39

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Defined Names
Our naming convention for defined names is a bit different than for other
program elements. In the case of defined names, the prefix should indicate
the broad purpose of the defined name, as opposed to the data type it’s
expected to hold. This is because non-trivial Excel applications typically
have many defined names that are much easier to work with if they are
grouped together by purpose within the Define Name dialog. When a
worksheet contains dozens or hundreds of defined names, there are signif-
icant efficiencies to be gained by having names with related functions
grouped together in the defined name list by prefix.

The descriptive name portion of a defined name is used to specify
exactly what purpose the name serves within its broader category. The fol-
lowing list shows some examples of purpose-prefixes for defined names.

cht Chart Data Range

con Named Constant

err Error Check

for Named Formula

inp Input Range

out Output Range

ptr Specific Cell Location

rgn Region

set UI Setting

tbl Table

Exceptions—When Not to Apply the Naming
Convention
Two specific situations are commonly encountered in which you want to
break the general rule and not apply your naming convention. The first is
when you are dealing with elements related to Windows API calls. These
elements have been named by Microsoft and the names are well known
within the programming community. The Windows API constants, user-
defined types, procedure declarations, and procedure arguments should
appear in your code exactly as they appear in the Windows API

40 Chapter 3 Excel and VBA Development Best Practices

Reference, which can be viewed on the MSDN Web site at
http://msdn2.microsoft.com/en-us/library/aa383749(VS.85).aspx. Note
that this reference is provided in C/C++ format only.

The second situation where you want to avoid applying your own nam-
ing conventions is when you use plug-in code from an outside source to
perform a specific task. If you modify the names used in this code and refer
to those modified names from code elsewhere in your application, you
make it very difficult to upgrade the plug-in code when a newer version
becomes available.

Best Practices for Application Structure and
Organization

Keeping your applications well structured and well organized makes them
much easier to maintain and upgrade. In this section, we examine a num-
ber of best practices for improving the structure and organization of your
application.

Application Structure
The first decision you must make when designing your application struc-
ture is how many separate workbooks should it be divided into. The num-
ber of workbooks used in an Excel application is driven primarily by two
factors: the complexity of the application itself and the limitations imposed
by application distribution issues.

Simple applications and those for which you cannot impose a formal
installation sequence demand the fewest number of workbooks.
Complex applications and those over which you have complete control of
the installation process allow division into multiple workbooks or other
file types such as DLLs. Chapter 2, “Application Architectures,” discuss-
es the various types of Excel applications and the structure suited to
each.

When you have the liberty to divide your application across multiple
files, there are a number of good reasons to do so. These include separa-
tion of the logical tiers in your application, separation of code from data,
separation of user-interface elements from code elements, encapsulating
functional elements of the application, and managing change conflicts in a
team development environment.

http://msdn2.microsoft.com/en-us/library/aa383749(VS.85).aspx

Best Practices for Application Structure and Organization 41

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Separation of Logical Tiers
Almost every non-trivial Excel application has three distinct logical tiers or
sections (see Figure 3-5):

■ User-interface tier—Consists of all the code and visible elements
required for your application to interact with the user. In an Excel
application, the user-interface tier consists of visible elements such as
worksheets, charts, command bars, UserForms, and the code
required to directly manage those visible elements. The user-interface
tier is the only logical tier that contains elements visible to the user.

■ Business logic or application tier—Completely code-based, this
tier performs the core operations the application was designed to
accomplish. The business logic tier accepts input from the user-
interface tier and returns output to the user-interface tier. For long-
running operations, the business logic tier may transmit periodic
updates to the user-interface tier in the form of status bar messages
or progress bar updates.

■ Data access and storage tier—Responsible for the storage and
retrieval of data required by the application. This can be as simple
as reading from and writing data to cells on a local, hidden work-
sheet or as complex as executing stored procedures in a SQL Server
database across a network. The data access and storage tier com-
municates directly only with the business logic tier.

As Figure 3-5 shows, all three tiers are necessary for a complete appli-
cation, but they must not be inextricably linked. The three tiers of your
application should be loosely coupled, such that a significant change in one
tier does not require significant changes to the other two. Strongly coupled
application tiers inevitably lead to maintenance and upgrade difficulties.

For example, if your data access and storage tier needs to move from
using an Access database for storage to using a SQL Server database for stor-
age you want the changes required to be isolated within the data access and
storage tier. In a well-designed application, neither of the other two tiers

The User-
Interface Tier

The Business
Logic Tier

The Excel Application

The Data Access
and Storage Tier

FIGURE 3-5 The relationships among the three tiers of an Excel application

42 Chapter 3 Excel and VBA Development Best Practices

would be affected in any way by such a change. Ideally, data should be trans-
ferred between the business logic tier and the data access and storage tier in
the form of user-defined types. These provide the best trade-off between effi-
ciency and loose coupling. Alternatively, ADO Recordset objects can be used,
but these introduce subtle linkage issues that it would be better if the busi-
ness logic layer didn’t rely on, such as the order of fields returned from the
database.

Similarly, if you need to provide an alternate Web-based presentation
interface for your application, loose coupling between the user-interface
tier and the business logic tier will make it much easier to accomplish. This
is because no implicit assumptions will be built into the business logic tier
regarding how the user interface is constructed. Elements that accept data
input from the user should be completely self-contained. The business
logic tier should pass the user-interface tier the data it requires for initial-
ization as simple data types. The user-interface tier should collect the user
input and pass it back to the business logic tier as simple data types, or as
a UDT for more complex interfaces. Because the business logic tier should
have no intrinsic knowledge of how the user-interface is constructed, ref-
erencing controls on a UserForm directly from a business logic tier proce-
dure is expressly forbidden.

Separation of Data/UI from Code
Within the user-interface tier of many Excel applications lie two unique
subtiers. These consist of the workbook and sheet elements used to con-
struct the user interface and the code supporting those elements. The con-
cept of separation should be applied rigorously to these subtiers. A work-
book-based interface should contain no code, and the UI code that con-
trols a workbook-based interface should reside in an add-in completely
separated from the workbook it controls.

The reasoning for this separation is the same as the reasoning
described previously for separating the main application tiers: isolating the
effects of change. Of all the application tiers, the user-interface tier tends
to undergo the most frequent changes. Therefore it’s not sufficient to sim-
ply isolate user interface changes to the user-interface tier, you should also
isolate changes to the visible elements of the user interface from the code
that controls the user interface.

We provide real-world examples of application tier separation in the
chapters that follow, so don’t be concerned if what we’ve discussed here is
not totally obvious to you at this point.

Best Practices for Application Structure and Organization 43

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Application Organization for Procedural
Programming
Procedural programming is the programming methodology most developers
are familiar with. It involves dividing an application into multiple procedures,
each of which is designed to perform a specific task within the application. An
entire application can be written in procedural fashion, procedural elements
can be combined with object oriented elements, or an entire application can
be written in object oriented fashion. This section focuses on best practices
for procedural programming. We discuss object oriented programming tech-
niques in Chapter 7, “Using Class Modules to Create Objects.”

Organizing Code into Modules by Function/Category
The primary purpose of separating code into modules is to improve the
comprehensibility and maintainability of the application. In a procedural
application, procedures should be organized into separate code modules in
a logical fashion. The best way to do this is to group procedures that per-
form similar functions into the same code module.

TIP VBA has an undocumented “soft limit” on the maximum size of any single
standard code module. A single standard code module should not exceed 64KB
as measured by its text file size when exported from the project. (The VBETools
utility included on the CD reports module sizes for you automatically.) Your proj-
ect will not crash immediately upon a single module exceeding this 64KB limit,
but consistently exceeding this limit will almost invariably lead to an unstable
application.

Functional Decomposition
Functional decomposition refers to the process of breaking your applica-
tion into separate procedures such that each procedure is responsible for
a single task. In theory, you could write many applications as one large,
monolithic procedure. However, doing so would make your application
extremely difficult to debug and maintain. By using functional decomposi-
tion you design your application such that it consists of multiple procedures
that are each responsible for a well-defined task that is easy to understand,
validate, document, and maintain.

44 Chapter 3 Excel and VBA Development Best Practices

Best Practices for Creating Procedures
A comprehensive set of guidelines for creating good procedures could eas-
ily fill a chapter of its own. We cover the most important guidelines in the
following list:

■ Encapsulation—Whenever possible, a procedure should be
designed to completely encapsulate the logical operation it per-
forms. Ideally, your procedures should have no linkages to anything
outside them. This means, for example, that a properly encapsulat-
ed procedure can be copied into a completely different project and
work just as well there as it did in the project where it originated.
Encapsulation promotes code reuse and simplifies debugging by
isolating different logical operations from each other.

■ Elimination of duplicate code—When writing a non-trivial Excel
application, you will frequently discover you are writing code to
perform the same operation in multiple places. When this occurs,
you should extract this duplicated code and place it in a separate
procedure. Doing so reduces the number of places where that oper-
ation needs to be validated or modified from many to one. The
common procedure can also be optimized in one place and the ben-
efits will be felt throughout your application. All this leads to a sig-
nificant improvement in code quality. It also serves a second impor-
tant purpose: making your code more reusable. As you factor com-
mon operations into dedicated procedures, you will discover that
you can often reuse these procedures in other applications. This
type of code forms the basis of a code library that you can use to
increase your productivity when writing new applications. The
more logical operations you have available as complete, fully tested
library procedures, the less time it will take you to develop a new
application.

■ Isolation of complex operations—In many real-world applications
you will find that some sections of the business logic are both com-
plex and specific to the application for which they were designed (that
is, not reusable). These sections of business logic should be isolated
into separate procedures for ease of debugging and maintenance.

■ Procedure size reduction—Procedures that are overly long are
difficult to understand, debug, and maintain, even for the program-
mer who wrote them. If you discover a procedure containing more
than 150 to 200 lines of code, it is probably trying to accomplish
multiple goals and therefore should be factored into multiple single-
purpose procedures.

General Application Development Best Practices 45

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

■ Limiting the number of procedure arguments—The more
arguments a procedure accepts, the more difficult it will be to
understand and the less efficient it will be to execute. In general,
you should limit the number of procedure arguments to five or
fewer. And don’t simply replace procedure arguments with public or
module-level variables. If you find yourself requiring more than five
procedure arguments it’s probably a good sign that your procedure,
or your application logic, needs to be redesigned.

General Application Development Best Practices

Each chapter in this book explains the best development practices related
specifically to the subject of that chapter. This section covers best devel-
opment practices common to all application development areas.

Code Commenting
Good code commenting is one of the most important practices in Excel
application development. Your code comments should provide a clear
and complete description of how your code is organized, how each object
and procedure should be used, and what you are trying to accomplish
with your code. Comments also provide a means of tracking changes to
your code over time, a subject we cover later in this chapter.

Code comments are important to both you and other developers who
may need to work on your code. The value of code comments to other
developers should be self-evident. What you may not realize until the
cruel fist of experience has pounded it into you is that your comments are
very important to you as well. It is very common for a developer to write
an initial version of an application and then be asked to revise it substan-
tially after a long period of time has passed. You would be surprised at how
foreign even your own code looks to you once it has been out of sight and
out of mind for a long period of time. Code comments help solve this
problem.

Comments should be applied at all three major levels of your applica-
tion’s code: the module level, the procedure level, and individual sections
or lines of code. We discuss the types of commenting appropriate to each
of these levels in the following sections.

46 Chapter 3 Excel and VBA Development Best Practices

Module-Level Comments
If you used the module naming conventions described previously in this
chapter, anyone examining your code will have a rough idea of the purpose
of the code contained within each module. You should supplement this
with a brief comment at the top of each module that provides a more
detailed description of the purpose of the module.

NOTE For the purposes of code commenting, when we use the term “module,”
we mean it to include standard modules, class modules, and code modules
behind UserForms and document objects like worksheets and the workbook.

A good module-level comment should be located at the top of the
module and look something like the example shown in Listing 3-2.

Listing 3-2 A Sample Module-Level Comment

’

‘ Description: A brief description of the purpose of the code in

‘ this module.

‘

Option Explicit

Procedure-Level Comments
Procedure-level comments are typically the most detailed comments in
your application. In a procedure-level comment block you describe the
purpose of the procedure, usage notes, a detailed list of arguments and
their purposes, and a description of expected return values in the case of
functions.

Procedure-level comments can also serve a rudimentary change-track-
ing purpose by providing a place to add dates and descriptions of changes
made to the procedure. A good procedure-level comment like the one
shown in Listing 3-3 would be placed directly above the first line of the
procedure. The procedure-level comment in Listing 3-3 is designed for a
function. The only difference between a comment block for a function and
a comment block for a subroutine is the subroutine comment block does
not contain a Returns section, obviously because subroutines do not return
a value.

General Application Development Best Practices 47

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Listing 3-3 A Sample Procedure-Level Comment

’’

‘ Comments: Locates the chart to be operated on or asks the

‘ user to select a chart if multiple charts are

‘ located.

‘

‘ Arguments: chtChart Returned by this function. An object

‘ reference to the chart to be

‘ operated on, or Nothing on user

‘ cancel.

‘

‘ Returns: Boolean True on success, False on error or

‘ user cancel.

‘

‘ Date Developer Action

‘ ———————————————————————————————

‘ 07/04/02 Rob Bovey Created

‘ 10/14/03 Rob Bovey Error trap for charts with no series

‘ 11/18/03 Rob Bovey Error trap for no active workbook

‘

Internal Comments
Internal comments appear within the body of the code itself. These com-
ments should be used to describe the purpose of any code where the purpose
is not self-evident. Internal comments should describe the intent of the code
rather than the operation of the code. The distinction between intent and
operation is not always clear, so Listing 3-4 and Listing 3-5 show two exam-
ples of the same code, one with a bad comment and the other with a good
comment.

Listing 3-4 Example of a Bad Internal Code Comment

’ Loop the asInputFiles array.

For lIndex = LBound(asInputFiles) To UBound(asInputFiles)

‘...

Next lIndex

The comment in Listing 3-4 is monumentally unhelpful. First of all, it
describes only the line of code directly below it, giving you no clue about

48 Chapter 3 Excel and VBA Development Best Practices

the purpose of the loop structure as a whole. Second, the comment is sim-
ply an exact written description of that line of code. This information is
easy enough to determine by simply looking at the line of code. If you
removed the comment, you would not lose any information at all.

Listing 3-5 Example of a Good Internal Code Comment

’ Import the specified list of input files into the working area

‘ of our data sheet.

For lIndex = LBound(asInputFiles) To UBound(asInputFiles)

‘...

Next lIndex

In Listing 3-5, we have a comment that adds value to the code. Not only
does it describe the intent, rather than the operation of the code, it also
explains the entire loop structure. After reading this comment you know
what you’re looking at as you delve into the code within the loop.

As with most rules, there are exceptions to the internal comment
guidelines specified previously. The most important exception concerns
comments used to clarify control structures. If...Then statements and
Do...While loops can make code difficult to understand as they become
wider, because you can no longer see the entire control structure in a sin-
gle code window. At that point, it becomes difficult to remember what the
applicable control expression was. For example, when evaluating a lengthy
procedure we have often found ourselves looking at something like the
code snippet shown in Listing 3-6.

Listing 3-6 Inscrutable Control Structures

End If

lNumInputFiles = lNumInputFiles - 1

Loop

End If

In Listing 3-6, what are the logical tests being made by the two If...Then

statements and what expression controls the Do...While loop? Once these
structures have been filled with a substantial amount of code, you simply can’t

General Application Development Best Practices 49

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

tell without scrolling back and forth within the procedure, because the entire
block is no longer visible within a single code window. This problem can be
alleviated easily by using the end of control block commenting style shown in
Listing 3-7.

Listing 3-7 Understandable Control Structures

End If ‘ If bContentsValid Then

lNumInputFiles = lNumInputFiles - 1

Loop ‘ Do While lNumInputFiles > 0

End If ‘ If bInputFilesFound Then

The comments in Listing 3-7, although they simply restate the code at the
top of each control structure, make it completely obvious what you are
looking at. These types of comments should be used anywhere you have a
control structure within your code that is too large to fit completely into
one code window.

Avoiding the Worst Code Commenting Mistake
It may seem obvious, but the most frequent and damaging mistake related
to code commenting is not keeping the comments updated as you modify
the code. We have frequently seen projects that appeared at first glance to
implement good code commenting practices, but upon closer examination
discovered the comments were created for some ancient version of the
project and now bore almost no relationship to the current code.

When attempting to understand a project, bad comments are worse
than no comments at all because bad comments are actively misleading.
Always keep your comments current. Old comments can either be deleted
or retained as a series of change tracking records. We recommend remov-
ing obsolete in-line comments, or they will quickly clutter your code, mak-
ing it difficult to understand simply due to the number of lines of inappli-
cable comments that accumulate. Use procedure-level comments as a
change tracking mechanism where necessary.

50 Chapter 3 Excel and VBA Development Best Practices

Code Readability
Code readability is a function of how your code is physically arranged.
Good visual layout of code allows you to infer a significant amount of
information about the logical structure of the program. This is a key
point. Code layout makes not one bit of difference to the computer. Its
sole purpose is to assist humans in understanding the code. Like naming
conventions, the consistent use of good code layout conventions makes
your code self-documenting. The primary tool of code layout is white
space. White space includes space characters, tabs, and blank lines. In the
following paragraphs we discuss the most important methods of using
white space to create a well-designed code layout.

Group related code elements together and separate unrelated code
elements with blank lines. Sections of code separated by blank lines with-
in a procedure can be thought of as serving a similar function to para-
graphs within the chapters of a book. They help you determine what
things belong together. Listing 3-8 shows an example of how blank lines
can improve code readability. Even without the code comments, it would
be obvious which lines of code were related.

Listing 3-8 Using Blank Lines to Group Related Sections of Code

’ Reset Application properties.

Application.ScreenUpdating = True

Application.DisplayAlerts = True

Application.EnableEvents = True

Application.StatusBar = False

Application.Caption = Empty

Application.EnableCancelKey = xlInterrupt

Application.Cursor = xlDefault

‘ Delete all custom CommandBars

For Each cbrBar In Application.CommandBars

If Not cbrBar.BuiltIn Then

cbrBar.Delete

Else

cbrBar.Enabled = True

End If

Next cbrBar

‘ Reset the Worksheet Menu bar.

With Application.CommandBars(1)

.Reset

General Application Development Best Practices 51

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

.Enabled = True

.Visible = True

End With

Within a related section of code, horizontal alignment is used to indicate
which lines of code belong together. Indentation is used to show the logical
structure of the code. In Listing 3-9 we show a single section from Listing
3-8 where alignment and indentation have been used to good effect. You
can look at this section of code and understand immediately which ele-
ments go together as well as deduce the logical flow of the code’s execution.

Listing 3-9 Proper Use of Alignment and Indentation

’ Delete all custom CommandBars

For Each cbrBar In Application.CommandBars

If Not cbrBar.BuiltIn Then

cbrBar.Delete

Else

cbrBar.Enabled = True

End If

Next cbrBar

Line continuation can be used to make complex expressions and long dec-
larations more readable. Keep in mind that breaking code into continued
lines solely for the purpose of making the entire line visible without scroll-
ing is not necessarily a good practice and can often make code more con-
fusing. Listing 3-10 shows examples of judicious use of line continuation.

Listing 3-10 Judicious Use of Line Continuation

’ Complex expressions are easier to understand

‘ when properly continued

If (uData.lMaxLocationLevel > 1) Or _

uData.bHasClientSubsets Or _

(uData.uDemandType = bcDemandTypeCalculate) Then

End If

‘ Line continuations make long API declarations easier to read.

Declare Function SHGetSpecialFolderPath Lib “Shell32.dll” _

(ByVal hwndOwner As Long, _

ByRef szBuffer As String, _

52 Chapter 3 Excel and VBA Development Best Practices

ByVal lFolder As Long, _

ByVal bCreate As Long) As Long

General VBA Programming Best Practices
In this section, we examine a number of VBA programming best practices
that help you write code that is more robust and easier to maintain and
update.

Use of Module Directives
Module directives are statements at the top of a code module that instruct
VBA how to treat the code within that code module. Although these direc-
tives are not required, you should always use at least one or two of them,
as explained in the following list:

■ Option Explicit—Always use the Option Explicit statement
in every module. The importance of this practice cannot be over-
stated. Without Option Explicit, any typographical error you make
results in VBA automatically creating a new Variant variable. This
type of error is insidious because it may not cause an immediate run-
time error, but it will almost certainly cause your application to even-
tually return incorrect results. Errors caused by the lack of an
Option Explicit statement often pass without notice until your
application is distributed, and they are difficult to debug under any
circumstances.
The Option Explicit statement forces you to explicitly declare all
the variables you use. Option Explicit causes VBA to throw a
compile-time error (initiated by selecting Debug > Compile from
the VBE menu) whenever an unrecognized identifier name is
encountered. This makes it easy to discover and correct typo-
graphical errors. You can ensure that Option Explicit is automat-
ically placed at the top of every module you create by choosing
Tools > Options > Editor from the VBE menu and checking the
Require Variable Declaration check box. This setting is strongly
recommended.

■ Option Private Module—The Option Private Module

statement makes all procedures within the module where it is used
unavailable from the Excel user interface or from other Excel proj-
ects. Use this statement to hide procedures that should not be called
from outside your application.

General Application Development Best Practices 53

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

TIP The Application.Run method can circumvent the Option Private
Module statement and run private procedures in modules where this statement
has been used. Also, if a user knows the exact name of your procedure and
your procedure does not require any arguments, the user can type the name of
your procedure into the Macro dialog and run it manually. These scenarios can
be made much less likely by protecting your project so that your private proce-
dure names are not visible in the Object Browser.

■ Option Base 1—The Option Base 1 statement causes all array
variables whose lower bound has not been specified to have a lower
bound of 1. Do not use the Option Base 1 statement. Instead,
always specify both the upper and lower bounds of every array vari-
able you use. A procedure created in a module that uses Option
Base 1 may malfunction if copied to a module in which this state-
ment isn’t used. This behavior inhibits one of the most important
procedure design goals, that of reusability.

■ Option Compare Text—The Option Compare Text statement
forces all string comparisons within the module where it is used to
be text-based rather than binary. In a text-based string comparison,
upper- and lowercase versions of the same character are treated as
identical, whereas in a binary comparison they are different. The
Option Compare Text statement should be avoided for the same
reason Option Base 1 should be avoided. It makes procedures
behave differently when placed in modules with the statement ver-
sus modules without it. Text-based comparisons are also much more
computationally expensive than binary comparisons, so Option
Compare Text slows down all string comparison operations in the
module where it’s located. Most Excel and VBA string comparison
functions provide an argument you can use to specify binary or text-
based comparison. It’s much better to use these arguments to pro-
vide text-based comparisons only where you need them.
There are some rare cases where Option Compare Text is
required. The most frequent case occurs when you need to do
case-insensitive string comparisons with the VBA Like operator.
The only way to get the Like operator to perform in a case-insen-
sitive manner is to use the Option Compare Text statement. In this
case, you should isolate the procedures that require this statement
in a separate code module so that other procedures that don’t
require this option aren’t adversely affected. Be sure to document
why you have done this in a module-level comment.

54 Chapter 3 Excel and VBA Development Best Practices

Best Practices for Variables and Constants
Variables and constants are the most fundamental building blocks of an
application. We can become so used to them that we forget they are active
pieces of our application that must be used properly or the quality of our
application will suffer. In this section, we cover a number of best practices
to follow when using variables and constants.

Avoid Reusing Variables Each variable declared in your program should
serve one purpose only. Using the same variable for multiple purposes
saves you only one variable declaration line but introduces massive poten-
tial for confusion within your program. If you are trying to determine how
a procedure works and you have figured out what a certain variable does in
a certain place, you will naturally assume the variable serves the same pur-
pose the next time you see it. If this is not the case, the code logic will
become difficult to understand.

Avoid the Variant Data Type Avoid the use of the Variant data type when-
ever possible. Unfortunately, VBA is not a strongly typed programming
language. Therefore, you can simply declare variables without specifying
their data type and VBA will create these variables as Variants. The main
reasons not to use Variants are

■ Variants are inefficient—This is because internally, a Variant is a
complex structure designed to hold any data type in the VBA pro-
gramming language. Variant values cannot be accessed and modi-
fied directly as can fundamental data types such as Long and
Double. Instead, VBA must use a series of complex Windows API
calls behind the scenes whenever it needs to perform any operation
on a Variant.

■ Data stored in a variant can behave unexpectedly—Because
Variants are designed to hold any type of data, the data type that
goes into a Variant is not necessarily the data type that will come out
of it. When accessing the data in a Variant, VBA attempts to coerce
the data into whatever data type it thinks makes the most sense in
the context of the operation. If you must use Variants, convert them
explicitly to the data type you want when using their values using
one of the VBA functions provided for this purpose (CStr, CLng,
CDate, and so on).

Variants do have one valuable characteristic that you can take advan-
tage of, which is if you assign a multicell range to them using the

General Application Development Best Practices 55

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Range.Value property they automatically become a two-dimensional array
containing all the values in that range. When you need to manipulate large
numbers of values contained in a range of cells, it is faster to dump them
into a Variant array, loop the Variant array, and perform your operations on
it, and then dump the Variant array back into the range of cells. Listing 3-
11 shows an example of how to do this.

Listing 3-11 Using a Variant Array to Manipulate Range Values

Sub UseVariantArray()

Dim lRow As Long

Dim lCol As Long

Dim vaArray As Variant

vaArray = Sheet1.Range(“A1:E5”).Value

For lRow = LBound(vaArray, 1) To UBound(vaArray, 1)

For lCol = LBound(vaArray, 2) To UBound(vaArray, 2)

vaArray(lRow, lCol) = vaArray(lRow, lCol) * 2

Next lCol

Next lRow

Sheet1.Range(“A1:E5”).Value = vaArray

End Sub

Beware of Evil Type Coercion Evil Type Coercion (ETC) is another symp-
tom that results from VBA not being a strongly typed programming lan-
guage. ETC occurs when VBA automatically converts one data type to
another data type in a way you did not intend. The most frequent examples
are Strings that hold numbers being converted to Integers and Booleans
being converted to their String equivalents. Don’t mix variables of differ-
ent data types in your VBA expressions without using the explicit casting
functions (CStr, CLng, CDate, and so on) to tell VBA exactly how you want
those variables to be treated.

Avoid the As New Declaration Syntax Never declare object variables
using the As New syntax. For example, the following form of an object
variable declaration should never be used:

56 Chapter 3 Excel and VBA Development Best Practices

Dim rsData As New ADODB.Recordset

If VBA encounters a line of code that uses this variable and the variable has
not been initialized, VBA automatically creates a new instance of the vari-
able. This is never the behavior you want. Good programming practice
implies that the programmer should maintain complete control over the cre-
ation of all the objects used in the program. If VBA encounters an uninitial-
ized object variable in your code, it is almost certainly the result of a bug, and
you want to be notified about it immediately. Therefore, the proper way to
declare and initialize the object variable shown previously is the following:

Dim rsData As ADODB.Recordset

Set rsData = New ADODB.Recordset

Using this style of declaration and initialization, if the object variable is
destroyed somewhere in your procedure and you inadvertently reference it
again after that point, VBA immediately throws the runtime error “Object
variable or With block variable not set,” notifying you of the problem.

Always Fully Qualify Object Names Always fully qualify object names
used in variable declarations and code with their class name prefix. This is
because many object libraries share the same object names. If you simply
declare a variable with an object name alone and there are multiple object
libraries with that object name being referenced by your application, VBA
creates a variable from the first library in the Tools > References list where
it finds the object name you used. This is often not what you want.

UserForm controls present the most common situation where prob-
lems result from object variable declarations that aren’t fully qualified. For
example, if you wanted to declare an object variable to reference a TextBox
control on your UserForm, you might be inclined to do the following:

Dim txtBox As TextBox

Set txtBox = Me.TextBox1

Unfortunately, as soon as VBA attempted to execute the second line of
code, a “Type mismatch” error would be generated. This is because the
Excel object library contains a TextBox object that is different from the
object you are trying to reference and the Excel object library comes
before the MSForms object library in the Tools > References list. The cor-
rect way to write this code is as follows:

Dim txtBox As MSForms.TextBox

Set txtBox = Me.TextBox1

General Application Development Best Practices 57

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Never Hard-Code Array Bounds When you are looping the contents of an
array variable, never hard-code the array bounds in the loop. Use the
LBound and UBound functions instead, as shown in the Listing 3-12.

Listing 3-12 The Correct Way to Loop an Array

Dim lIndex As Long

Dim alListItems(1 To 10) As Long

‘ Load the array here.

For lIndex = LBound(alListItems) To UBound(alListItems)

‘ Do something with each value.

Next lIndex

The reason for this is because array bounds frequently change over the
course of creating and maintaining an application. If you hard-code the
array bounds 1 and 10 in the loop shown in Listing 3-12, you will have to
remember to update the loop any time the bounds of the alListItems
array change. Failure to do so is a frequent source of errors. By using
LBound and UBound you make the loop self-adjusting.

Always Specify the Loop Counter after a Next Statement Listing 3-12
demonstrates another good coding practice. You should always specify the
loop counter variable after a Next statement. Even though this is not strict-
ly required by VBA, doing so makes your code much easier to understand,
especially if the distance between the For and Next statements is long.

Make Use of Constants Constants are useful programming elements.
They serve the following purposes in your code, among others:

■ Constants eliminate “magic numbers,” replacing them with recog-
nizable names. For example, in the following line of code, what does
the number 50 mean?

If lIndex < 50 Then

There is no way of knowing unless you wrote the code and you still
remember what 50 represents. If instead you saw the following, you

58 Chapter 3 Excel and VBA Development Best Practices

would have a very good idea of what the If...Then test was look-
ing for:

Const lMAX_NUM_INPUT_FILES As Long = 50

‘ More code here.

If lIndex < lMAX_NUM_INPUT_FILES Then

If you need to know the value of a constant at design time, you can
simply right-click over the constant name in the VBE and choose
Definition from the shortcut menu. You will be brought directly to
the line where the constant is defined. In break mode at runtime it’s
even easier. Simply hover your mouse over the constant and a
ToolTip window containing its value appears.

■ Constants improve coding efficiency and avoid errors by eliminat-
ing duplicate data. In the preceding example, assume you refer-
ence the maximum number of input files in several places through-
out your program. At some point you may need to upgrade your
program to handle more files. If you hard-coded the maximum
number of input files everywhere you’ve needed to use it, you will
have to locate all these places and change the number in each one.
If you used a constant, all you need to do is modify the value of the
single constant declaration and the new value automatically is used
wherever the constant has been used in your code. This situation
is a frequent source of errors that can be eliminated by simply
using constants instead of hard-coded numbers.

Public variables are dangerous. They can be modified anywhere in
your application without warning, making their values unpredictable. They
also work against one of the most important programming principles—
encapsulation. Always create variables with the minimum scope possible.
Begin by creating all your variables with local (procedure level) scope and
only widen the scope of a variable when it is absolutely necessary.

As with most rules, there are a few cases where the variable scope
rule should be broken because the use of public variables is useful and/or
necessary:

■ When data must be passed deep into the call stack before it is used.
For example, if procedure A reads some data and then passes that
data to procedure B, which passes it to procedure C, which passes
it to procedure D where the data is finally used, a good case can be

General Application Development Best Practices 59

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

made that the data should be passed directly from procedure A to
procedure D by way of a public variable.

■ Certain inherently public classes, such as an application-level event
handling class, require a public object variable so they never go out
of scope while your application is running.

Early Binding Versus Late Binding The distinction between early binding
and late binding is widely misunderstood and often confused with how an
object is created. The only thing that affects whether an object is early
bound or late bound is how the object variable holding the reference to
the object was declared. Variables declared as a specific object data type
are always early bound. Variables declared with the Object or Variant
data type are always late bound. Listing 3-13 shows an example of a late
bound reference, while Listing 3-14 shows an example of an early bound
reference.

Listing 3-13 A Late Bound Reference to an ADO Connection Object

Dim objConnection As Object

‘ It doesn’t matter how you create the object, it’s still

‘ late bound due to the As Object variable declaration.

Set objConnection = New ADODB.Connection

Set objConnection = CreateObject(“ADODB.Connection”)

Listing 3-14 An Early Bound Reference to an ADO Connection Object

Dim cnConnection As ADODB.Connection

‘ It doesn’t matter how you create the object, it’s still early

‘ bound due to the data type used in the variable declaration.

Set cnConnection = New ADODB.Connection

Set cnConnection = CreateObject(“ADODB.Connection”)

Note that to use early binding with objects outside the Excel object model
you must set a reference to the appropriate object library using the Tools >
References menu in the Visual Basic Editor. For example, to create early
bound variables referencing ADO objects, you must set a reference to the
Microsoft ActiveX Data Objects 2.X Library, where X is the version of ADO

60 Chapter 3 Excel and VBA Development Best Practices

you intend to use. You should use early bound object variables wherever pos-
sible. Early bound object variables provide the following advantages over late
bound variables:

■ Improved performance—When you use an object variable
whose data type is known to VBA at compile time, VBA can look up
the memory locations of all property and method calls you use with
this object and store them with your code. At runtime, when VBA
encounters one of these early bound property or method calls, it
simply executes the code located at the stored location. (This is a
bit of an oversimplification. What VBA actually stores is a numeric
offset to the code to be executed from a known starting point in
memory, which is the beginning of a structure called the object’s
Vtable.)
When you use a late bound object variable, VBA has no way of
knowing in advance what type of object the variable will contain.
Therefore, it cannot optimize any property or method calls at com-
pile time. This means that each time VBA encounters a late bound
property or method call at runtime, it must query the variable to
determine what kind of object it holds, look up the name of the
property or method being executed to determine where in memo-
ry it is located, and then execute the code located at that memory
address. This process is significantly slower than an early bound
call.

■ Strict type checking—In the late bound example shown previous-
ly in Listing 3-13, if you accidentally set your object variable to ref-
erence an ADO Command object instead of a Connection object,
VBA would not complain. You would only discover you had a prob-
lem later in your code when you tried to use a method or property
not supported by the Command object. With early binding, VBA
immediately detects that you are trying to assign the wrong type of
object reference to your object variable and notifies you with a
“Type mismatch” error. Incorrect property and method calls can be
detected even earlier, before the code is ever run. VBA attempts to
look up the name of the property or method being called from with-
in the appropriate object library at compile time and throws a
compile-time error if the name cannot be located.

■ IntelliSense availability—Early bound object variables make for
much easier programming as well. Since VBA knows exactly what
type of object a variable represents, it can parse the appropriate
object library and provide a drop-down list of all available properties

General Application Development Best Practices 61

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

and methods for the object as soon as you type a dot operator after
the variable’s name.

As you might expect, there are some cases where you need to use late bind-
ing rather than early binding. The two most common reasons for using late
binding instead of early binding are

■ When a newer version of an application’s object library has broken
compatibility with an earlier version.
This is an all too common situation. If you set a reference to the
later version of the application’s object library in your application
and then attempt to run it on a computer that has the earlier ver-
sion, you will get an immediate compile-time error “Can’t find
project or library,” and the reference on the target machine will
be prefixed with “MISSING.” The worst problem with this error
is that the line of code flagged as being the source of the error
often has nothing to do with the object library actually causing the
problem.
If you need to use objects from an application that exhibits this
problem and you can’t develop against the earliest possible version
of the application that you might encounter, you need to use late
binding for all variables referencing objects from the application. If
you are creating new objects, you also need to use the CreateObject
function with the version independent ProgID of the object you
want to create, rather than the = New ObjectName syntax.

■ When you want to use an application that you cannot be sure will
exist on the user’s computer and that you cannot install yourself.
In this case, you need to use late binding to avoid the compile-time
error that would immediately result from attempting to run an
application that referenced an object library that did not exist on the
user’s computer. Your application can then check for the existence
of the object library in question and exit gracefully if that library is
not installed on the user’s computer.

TIP Even if you will eventually use late binding in your code, early binding
offers such a great increase in productivity while coding that you should write
and test the application using early binding. Convert your code to late binding
only for the final round of testing and distribution.

62 Chapter 3 Excel and VBA Development Best Practices

Defensive Coding
Defensive coding refers to various programming practices designed to help
you prevent errors rather than having to correct them after they occur.

Write Your Application in the Earliest Version of Excel That You Expect It to
Run In Although the Microsoft Excel team has done a better job than
most of maintaining backward compatibility with earlier versions of
Excel, there are many subtle differences between the versions. If you do
not write your application in the earliest version of Excel that you expect
it to run in you can easily write an application that will not run on earlier
versions of Excel because some feature you used did not exist in those
versions.

The solution to this problem is to always develop your applications in
the earliest version of Excel that you expect them to run in. This may force
you to do one of the following in order of worst to best practice:

■ Maintain multiple versions of Excel on one computer (not recom-
mended).

■ Maintain separate computers for each version of Excel.
■ Use virtualization software such as VMWare or Virtual PC to main-

tain as many separate development environments as you need on a
single computer.

Developing in the earliest version of Excel you expect to run in is essential.
If you develop an application in Excel 2003 and then discover it doesn’t run
properly in Excel 2000, you will have much debugging and rewriting
ahead. You will save considerable time and stress by simply developing the
application using Excel 2000 to begin with.

Explicitly Use ByRef or ByVal If a procedure takes arguments, there are
two ways to declare those arguments: ByRef or ByVal.

■ ByRef—This convention means you are passing the memory
address of the variable rather than the value of the variable. If the
called procedure modifies a ByRef argument, the modification will
be visible in the calling procedure.

■ ByVal—This convention means you are passing a value to the pro-
cedure. A procedure can make changes to a ByVal argument but
these changes will not be visible to the calling procedure. In fact, a
procedure can use ByVal arguments exactly as if they were locally
declared variables.

General Application Development Best Practices 63

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

Always explicitly declare your procedure arguments as ByRef or ByVal.
If you do not specify this, all arguments are created ByRef by default. You
should declare procedure arguments ByVal unless you have a specific need
for the calling procedure to see changes made to the arguments. Declaring
arguments ByVal prevents changes made to those arguments from being
propagated back to the calling procedure.

The only exceptions are when you are passing large strings (very large
strings), which are far more efficiently passed ByRef, or when your proce-
dure argument is of a data type, such as an array, that cannot be passed
ByVal. Be aware that declaring procedure arguments ByVal does leave you
more exposed to Evil Type Coercion. A ByRef procedure argument must
be passed exactly the same data type as it is declared to accept; otherwise
a compile-time error will result. By contrast, VBA attempts to coerce a
value passed to a ByVal procedure argument into a compatible data type.

Explicitly Call the Default Property of an Object With the possible excep-
tion of the Item property of a Collection object, it’s never a good idea to
implicitly invoke the default property of an object by simply using the
object’s name in an expression. Listing 3-15 shows the right way and the
wrong way of accessing the default property of an object using an
MSForms.TextBox control for demonstration purposes (the Text property is
the default property of an MSForms.TextBox control).

Listing 3-15 Default Properties

’ The right way.

txtUsername.Text = “My Name”

‘ The wrong way

txtUsername = “My Name”

By avoiding the implicit use of default properties, you make your code
much more readable and protect yourself from errors if the default behav-
ior of the object changes in some future version of Excel or VBA.

Validate Arguments before Using Them in Procedures If your procedure
accepts input arguments that must have certain properties to be valid—for
example, if they must be within a specific range of values—verify that the
values passed to those arguments are valid before attempting to use them in
your procedure. The idea is to catch erroneous input as soon as possible so
you can generate a meaningful error message and simplify your debugging.

64 Chapter 3 Excel and VBA Development Best Practices

Wherever possible, create a test harness to validate the behavior of
your procedure. A test harness is a wrapper procedure that can call the
procedure being tested multiple times, passing it a wide range of argu-
ments, and test the result to be sure it is correct. We discuss test harness-
es in detail in Chapter 16.

Use Guard Counters to Protect Against Infinite Loops Program your
loops to automatically handle infinite loop conditions. One of the most
common mistakes made when using Do...While or While...Wend loops
is to create a situation where the loop control condition is never satisfied.
This causes the loop to run forever (or until you can force your code to
break by pressing Ctrl+Break if you are lucky, or the Windows Task
Manager to shut down your application if you are not). Always add a
counter that automatically bails out when the number of loops executed
is known to be more than the highest number that should ever occur in
practice. Listing 3-16 shows a Do...While loop with an infinite loop
guard structure.

Listing 3-16 Guard Against Infinite Loops

Dim bContinueLoop As Boolean

Dim lCount As Long

bContinueLoop = True

lCount = 1

Do

‘ The code that goes here should set the

‘ bContinueLoop variable to False once the

‘ loop has achieved its purpose.

‘ This infinite loop guard exits the loop

‘ with an error after 10000 iterations.

lCount = lCount + 1

If lCount > 10000 Then Err.Raise _

Number:=9999, Description:=”Infinite Loop Error!”

Loop While bContinueLoop

The only purpose of the lCount variable within the loop is to force the loop
to exit if the code within the loop fails to set the control variable to exit

General Application Development Best Practices 65

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

within 10,000 iterations (the appropriate number would depend on the
particular situation). This type of construct adds very little overhead to
your loop, but if performance is a significant concern, use the infinite loop
guard until you are sure all the code within the loop is functioning proper-
ly; then delete it or comment it out.

Use Debug > Compile Early and Often Never let your code stray more
than a few changes away from being able to run a flawless Debug >
Compile. Failing to adhere to this practice will lead to long, inefficient
debugging sessions.

Use CodeNames to Reference Sheet Objects Always reference worksheets
and chart sheets in your application by their CodeName. Depending on
sheet tab names to identify sheets is risky because you or your users may
change these tab names, breaking any code that uses them.

Validate the Data Types of Selections If you write a procedure designed to
operate on a specific type of object the user has selected, always check the
object type of the selection using either the TypeName function or the If
TypeOf...Is construct. For example, if you need to operate on a range
selected by the user, ensure the selection really is a Range object before
continuing, as shown in Listing 3-17.

Listing 3-17 Verify That the Selection Is the Correct Object Type

’ Code designed to operate on a range.

If TypeOf Application.Selection Is Excel.Range Then

‘ OK, it’s a Range object.

‘ Continue code execution.

Else

‘ Error, it’s not a Range object.

MsgBox “Please select a range.”, vbCritical, “Error!”

End If

Change Control
Change control, also known as version control, at the most basic level
involves two practices: maintaining a set of prior versions of your applica-
tion that you can use to recover from various programming or technical
errors and documenting changes made to your application over time.

66 Chapter 3 Excel and VBA Development Best Practices

Saving Versions
When most professional programmers talk about version control, they
mean the use of dedicated version control software, like Microsoft Visual
Source Safe. However, this type of software is expensive, has a steep learn-
ing curve, and doesn’t integrate well with applications built in Excel. This
is because Excel doesn’t store its modules natively as separate text files.
The version control method we suggest here is quick, simple, requires no
special software, and delivers the most crucial benefits of a traditional ver-
sion control system.

The most important objective of a version control system is to allow
you to recover an earlier version of your project if you have encountered
some significant problem with the version you are currently working on. If
a significant code modification has gone terribly wrong or you suddenly
find yourself with a corrupt file, you will be in a very difficult position if you
do not have a recent backup to help you recover.

A simple version control system that can save you from these prob-
lems would be implemented in a fashion similar to the following. First
create a folder named Backup as a subfolder to the folder in which your
project is stored. Each time you prepare to make a significant addition or
modification to your project, or once a day at minimum, use a file
compression utility such as WinZip to zip all the files in your project
folder into a file with the following name format: Backup_
YYYYMMDDHH.zip, where Y stands for year, M stands for month, D
stands for day, and H stands for hour. This naming format gives your
backup file a unique name that will sort in correct sequential order when
viewed in Windows Explorer. Move this file into your Backup folder and
continue working.

If you encounter a problem, you can recover your project from the
most recent backup. You will obviously lose some work, but if you save
backup versions diligently you can minimize the loss. Each time you are
sure you have a fully tested build of your project you can delete most of the
intermediate files from your Backup folder. It is advisable to retain at least
weekly backups throughout the life of a project.

Documenting Changes with Comments
When you are maintaining code, if you make a significant change to the
logic of a procedure you should also make a note with a brief description
of the change, the date it was made and your name in the procedure-
level comment block (refer to Listing 3-3). All non-trivial modifications
to your code should be noted with an internal comment that includes the

Summary 67

3.
EXCEL

AN
D

VBA D
EVELO

PM
EN

T
B

EST
P

RACTICES

date the change was made and the name of the developer who made the
change if multiple developers are working on the application.

Summary

Whether you use the naming convention proposed here or create your
own, use a naming convention consistently across all your applications and
over time. It makes your code self-documenting and easy to follow. Code
the separate logical tiers of your application as independent entities. This
prevents changes in one logical tier from forcing you to rebuild much of
your application. Comment your code liberally at all levels. When trying to
understand the purpose of a section of code, it’s a lot easier if that purpose
is explained by a code comment than if you have to figure it out yourself.
Following these and all the other best practices presented in this chapter
will result in robust, understandable, maintainable applications.

This page intentionally left blank

69

C H A P T E R 4

WORKSHEET DESIGN

A tremendous amount of Excel user interface design can and should be
accomplished using the built-in features of Excel alone, with no VBA
required. One of the guiding principles of Excel development is “let Excel
be Excel.” Don’t try to reinvent the wheel. Excel provides a wide variety of
prepackaged, performance-optimized features you can use to build your
application’s user interface. In this chapter we examine how you can pro-
duce a fully functional user interface with just the features Excel provides
for this purpose.

There are two fundamental sections of an Excel worksheet user inter-
face: those designed to be visible to the user and through which the user
operates your application, and those designed to be hidden from the user
and used only by your application to perform the tasks required of it. We
cover each of these sections in more detail in this chapter.

Principles of Good Worksheet UI Design

The following list provides some design guidelines that apply to all work-
sheet user interfaces:

1. Use formatting to create visual contrast among cells designed to
serve different purposes, input cells versus formula cells for exam-
ple, as well as visual separation among different sections of your
user interface.

2. Use consistent formatting based on the purpose of each cell. For
example, don’t format input cells with a white background in one
area and a green background in another.

3. Don’t use garish colors. Your choice of formatting should not dis-
tract from the task at hand. Do try to use colors with enough con-
trast that people with color-impaired vision will be able to recog-
nize the different sections of your user interface.

70 Chapter 4 Worksheet Design

4. Create a logical, well-structured flow through your user interface.
Your user interface should flow from left to right and then top to
bottom within a worksheet and from left to right among multiple
worksheets.

5. Make your user interface as uncluttered as possible. Provide suffi-
cient space between and around the various sections of your user
interface. Leave an empty row at the top and an empty column at
the far left to separate your worksheet user interface from the
Excel container (this is in addition to the program rows and
columns we cover in the next section).

6. Make it obvious to users what they are supposed to do each time
they are required to perform some action. Techniques for doing this
include the use of cell comments, validation lists, validation input
messages, default values, good descriptive field names, and so on.

7. Use dynamic input verification techniques to provide feedback as
quickly as possible if the user has done something wrong. Waiting
until the user has completed the entire form before pointing out
data entry errors should be viewed as a last resort, to be used only
when there are no good alternatives.

8. Don’t create an environment that potentially allows the user to
make catastrophic mistakes. Protect all user interface worksheets,
leaving only cells that require data entry unlocked. This prevents
critical formulas from being accidentally overwritten.

9. Don’t allow the user to get lost. Restrict the area of the worksheet
within which the user can navigate to just the working area of your
user interface.

Program Rows and Columns: The Fundamental UI
Design Technique

When you design a user interface on an Excel worksheet, one of the first
things you should do is leave row 1 and column A empty. This section of
the worksheet will be hidden from the user and will allow your application
to perform many tasks associated with an advanced Excel UI, including
error checking, storing validation lists, and calculating intermediate values.
In complex worksheet user interfaces it is not uncommon to have several
initial rows and/or columns used as hidden work areas. These are called
program rows and program columns.

Defined Names 71

An Excel worksheet user interface is typically laid out in a table format:
left to right, top to bottom. Implementing design principle #6 described
previously is most easily accomplished if you have a hidden area you can
use to automatically examine each of the user’s entries and determine
whether they meet all the criteria that are enforceable using worksheet-
based constructs. The result of these tests can then be used by condition-
al formatting and/or VBA-based validation to signal users when they have
entered data incorrectly.

In the simple time sheet example shown in Figure 4-1, the user com-
pletes the first three columns of the table. The last column of the table is
calculated by the worksheet. The first column of the worksheet itself is
designed to be a hidden column. It performs a simple validation check on
each row of the time sheet table. It counts the number of entries made by
the user in each row and returns True if the number of entries is incorrect
(which is to say the user has not completed all of the required entries for
that row).

4.
W

O
RKSHEET

D
ESIGN

Here there are only two possible valid conditions. Either a row has not yet
been used, and therefore has zero entries, or a row has been completely filled
out, in which case there will be three entries. Any other condition is an error.
Notice the error checking formula for row 6 indicates there is a data entry
error in that row. This is because the user has not yet entered a Stop Time.
The user may very well eliminate this error by entering a Stop Time after he
completes this task. If he doesn’t, it is a simple matter for your application to
examine the validation range in column A and determine there is an error.

Defined Names

Defined names are an integral part of worksheet user interface design.
Defined names are a superset of the more commonly understood named

FIGURE 4-1 An example of hidden column data validation

range feature. Defined names include named constants, named ranges,
and named formulas. Each type of defined name serves an important pur-
pose, and all non-trivial Excel worksheet user interfaces use some or all of
the defined name types. The naming conventions used for the defined
names in this chapter are described in Chapter 3, “Excel and VBA
Development Best Practices.”

Named Constants
A defined name can refer to a constant value. For example, the
setHiddenCols defined constant shown in Figure 4-2 refers to the value 1.

72 Chapter 4 Worksheet Design

This name illustrates a typical use of defined constants: storing settings that
will be made to a user interface worksheet. In this case it indicates the
number of initial columns that will be hidden. Named constants can also
serve all of the same purposes on a worksheet that VBA constants serve in
a VBA program, as discussed in Chapter 3.

Other common uses of named constants are worksheet identification,
workbook identification, and version identification. It is common to have
several broad classes of worksheet in your Excel application, such as input
worksheets, analysis worksheets, reporting worksheets, and so on. You can
use named constants to specify the type of each worksheet so that your
application code can determine the type of the active worksheet and
respond correctly, displaying the appropriate worksheet type-specific tool-
bar, for example.

Each user-interface workbook you create should have a unique named
constant that identifies it as belonging to your application. The add-in for
your application can then use this constant to determine whether the

FIGURE 4-2 A sample named constant

Defined Names 73

4.
W

O
RKSHEET

D
ESIGN

currently active workbook belongs to it. You should also include a version
constant so you can pinpoint exactly what version of your application a
given workbook belongs to. This becomes important when you upgrade
the application such that prior version user interface workbooks must be
updated or handled differently than current version user interface
workbooks in some way.

Named Ranges
Named ranges allow you to reference a location on a worksheet with a
friendly name that conveys information about the location rather than
using a range address that cannot be interpreted without following it back
to the cell or cells it refers to. As we see in the following example, named
ranges also allow you to accomplish things you cannot accomplish with
directly entered cell addresses.

Everyone reading this book should be familiar with fixed named
ranges, those referring to a fixed cell or group of cells on a worksheet. This
section concentrates on the less well-understood topic of relative named
ranges. A relative named range is called relative because the location it ref-
erences is determined relative to the cell in which the name is used.
Relative named ranges are defined in such a way that the cell or cells they
refer to change depending on where the name is used. There are three
types of relative named ranges:

■ Column-relative—The referenced column can change but the ref-
erenced row remains fixed. These can be identified because the
absolute reference symbol ($) only prefixes the row number. The
address A$1 is an example of a column-relative address.

■ Row-relative—The referenced row can change but the referenced
column remains fixed. These can be identified because the absolute
reference symbol ($) only prefixes the column letter. The address
$A1 is an example of a row-relative address.

■ Fully relative—Both the referenced row and the referenced col-
umn can change. In fully relative named ranges, neither the row nor
the column is prefixed with the absolute reference symbol ($). The
address A1 is an example of a fully relative address.

To create a relative named range you must first select a cell whose position
you will define the name relative to. This cell is your starting point. This
cell is not the only cell where the name can be used; it simply gives you a
point from which to define the relative name.

74 Chapter 4 Worksheet Design

In the next example we demonstrate how to define and use a fully rel-
ative named range that allows you to create formulas that automatically
adjust the range they refer to when a row is inserted directly above them.
First let’s see why this is important.

Figure 4-3 shows a simple table of sales for three hypothetical regions.
The total sales for all three regions are calculated using the built-in SUM
worksheet function, which you can see displayed in the formula bar.

Now assume we need to add a fourth region to our list. We insert a new
row directly above the Total Sales row and add Region D. Figure 4-4 shows
the result.

Because the new region was inserted at the bottom of the list, the SUM
function range did not adjust and the Total Sales number reported by the
function is now wrong. This example is overly simplistic and designed to
make the problem blindingly obvious. In real-world worksheets, this type
of mistake is frequent and rarely so obvious. In fact it is one of the most
common errors we discover when auditing malfunctioning worksheets.

This error is easy to avoid by defining a fully relative named range that
always refers to the cell directly above the cell where the name is used. To
do this, choose Insert > Name > Define to display the Define Name dialog

FIGURE 4-3 Total sales using a standard formula

FIGURE 4-4 Insert an additional region to the list

Defined Names 75

4.
W

O
RKSHEET

D
ESIGN

(or better yet, use the Ctrl+F3 keyboard shortcut). In Excel 2007 select the
Formulas tab > Define Name. As you can see in Figure 4-5, our starting
point is cell B6 and we have defined a fully relative, sheet-level named
range called ptrCellAbove that refers to cell B5.

Next we modify our SUM function so it references the ptrCellAbove
named range rather than a specific ending cell address, as shown in Figure
4-6. We’ve also changed the first cell entry to B1.

Not only does our SUM function now display the correct answer, you can
insert as many rows as you want directly above it or directly below the
header, and it will always sum the correct area. We use relative named
ranges extensively in our sample application.

FIGURE 4-5 Creating a fully relative named range

FIGURE 4-6 Using a fully relative named range in a worksheet function

76 Chapter 4 Worksheet Design

NOTE In Excel 2002 and higher there is a feature that attempts to automatical-
ly detect when you have invalidated a formula by inserting rows directly above
it as shown in the previous example. This feature works well for simple scenarios
like the one we describe here, but it can be confused by more complex scenar-
ios as well as turned off completely in the Tools > Options > Edit settings. It is
always better to construct your worksheets to be self-correcting in the first place.

Named Formulas
The least understood and most powerful defined name type is the named
formula. Named formulas are built from the same Excel functions as reg-
ular worksheet formulas, and like worksheet formulas they can return sim-
ple values, arrays, and range references.

Named formulas allow you to package up complex but frequently used
formulas into a single defined name. This makes the formula much easier
to use, because all you need to do is enter the defined name you’ve
assigned to it rather than the entire formula. It also makes the formula eas-
ier to maintain because you can modify it in one place (the Define Name
dialog) and the changes automatically propagate to every cell where the
defined name is used.

In the “Practical Example” section of this chapter we show an example
of how to use a named formula to package a complex worksheet formula
into a defined name to make it more maintainable and easier to use.

Named formulas can also be used to create dynamic lists. A dynamic
list formula is used to return a reference to a list of entries on a worksheet
when the number of entries in the list is variable. Worksheet user interface
development makes extensive use of dynamic lists for data validation pur-
poses, a topic we cover in depth in the “Data Validation” section later in
the chapter, but let’s revisit the time sheet from Figure 4-1 to show a quick
example.

In this type of user interface, we wouldn’t want the user to enter arbi-
trary activity names in the Activity column. To make our data consistent
from user to user we would define a data validation list of acceptable activ-
ity names and the user would pick the activity that most closely described
what they were doing from our predefined data validation list. We put our
activity list on a background worksheet (one not designed to be seen by the
user) and create a dynamic list named formula that refers to it. This named
formula is shown in Figure 4-7.

Defined Names 77

4.
W

O
RKSHEET

D
ESIGN

The valActivitiesList named formula can now be used as the data valida-
tion list for the time sheet Activity column. A dynamic list named formula
consists of the following parts:

■ Starting point—The point at which the list begins. In this case our
starting point is cell wksData!A1.

■ Data area—The full range in which items of our list might be locat-
ed. This includes not only cells that are currently being used, but
also cells that might be used in the future. In this case our data area
is the entire column A, or wksData!$A:$A.

■ List formula—A formula that determines the number of items cur-
rently in the list and returns a range reference to just those items. This
is a combination of the OFFSET and COUNTA worksheet functions.

Scope of Defined Names
Defined names can have one of two scopes: worksheet-level or workbook-
level. These are roughly analogous to private and public variables. Like
variables, defined names should be given the most limited scope possible.
Always use worksheet-level defined names unless you must make a name
workbook-level.

When your workbook contains a large number of defined names, using
worksheet-level defined names helps reduce the number of names you
have to manage in the Define Name dialog at the same time. Worksheet-
level defined names can be used from other worksheets in most cases.

FIGURE 4-7 A dynamic named formula

78 Chapter 4 Worksheet Design

When they are used from another worksheet they are simply prefixed with
the name of the worksheet from which they originated. This makes audit-
ing worksheets that use defined names much simpler because you don’t
have to look up every defined name you come across in the Define Name
dialog to determine which worksheet it references.

It is also often useful to have the same defined name on multiple work-
sheets in your user interface workbook. Two good examples of this are
general-purpose, fully relative range names such as the ptrCellAbove
range we discussed earlier and names that hold the values of settings you
want to make to each worksheet using VBA code. We cover the latter in
more detail in Chapter 5, “Function, General, and Application-Specific
Add-ins.”

Some circumstances require you to use workbook-level defined names.
The most common case is demonstrated in Figure 4-7. A defined name
that refers to a range located on a different worksheet that you want to use
in a data validation list must be a workbook-level defined name. This is a
limitation inherent in Excel’s data validation feature.

In some cases a workbook-level defined name is simply appropriate,
such as when the name truly refers to the entire workbook rather than to
any individual worksheet. This would be the case with a named constant
used to identify the version number of a workbook. In the “Practical
Example” section of Chapter 7, “Using Class Modules to Create Objects,”
we demonstrate the use of a workbook-level defined constant to identify
workbooks that belong to our application.

Styles

Styles provide a number of advantages that make them an integral part of
any worksheet user interface. They provide a simple, flexible way to apply
similar formatting to all the cells in your worksheet user interface that
serve a similar purpose. The consistent use of styles also gives the user
clear visual clues about how your user interface works. Using our time
sheet example from Figure 4-1, Figure 4-8 shows how different styles
define different areas of the worksheet user interface.

Styles allow you to apply the multiple formatting characteristics
required for each user interface range all at once. Formatting character-
istics commonly applied through the use of styles include number for-
mat, font type, background shading, and cell protection. Other style
properties, such as text alignment and cell borders, are less commonly
used because they tend to be different, even within cells of the same

Styles 79

4.
W

O
RKSHEET

D
ESIGN

FIGURE 4-8 Using styles as visual indicators of the structure of your user interface

style. Custom styles, which we discuss in the next section, can be config-
ured to ignore the formatting characteristics you don’t want to include in
them.

If you need to change the format of a certain area of your user inter-
face, you can simply modify the appropriate style and all the cells using
that style will update automatically. Here’s an all too common real-world
example of where this is very useful.

You’ve created a complex, multisheet data entry workbook using white
as the background color for data entry cells. When you show this to your
client or boss, they decide they want the data entry cells to be shaded light
yellow instead of white. If you didn’t use styles to construct your user inter-
face you would have to laboriously reformat every data entry cell in your
workbook. If you did use styles, all that’s required is to change the pattern
color of your data entry style from white to light yellow and every data
entry cell in your workbook will update automatically. Given the frequen-
cy with which people change their minds about how their applications
should look, using styles throughout an application can save you a signifi-
cant amount of time and effort.

Creating and Using Styles
Adding custom styles is not the most intuitive process in Excel, but once
you’ve seen the steps required, you’ll be creating styles like an expert in no
time. Custom styles are created using the Format > Style menu (select the
Home tab > Cell Styles > New Cell Style in Excel 2007). This opens the
Style dialog, shown in Figure 4-9, from which all style confusions originate.

80 Chapter 4 Worksheet Design

When the Style dialog first opens in Excel 2003 and earlier, it automatical-
ly displays the formatting characteristics of the cell that was selected when
the dialog was invoked. In Figure 4-9, the Style dialog was invoked while
the selected cell was in the Start Time column shown in Figure 4-8. As you
can see, this cell was formatted with the Input style, so this is the style dis-
played by the Style dialog.

To create a new style, enter the name of the style you want to create in
the Style name combo box as shown in Figure 4-10.

Once you do this you will encounter one of the more confusing aspects of
the Style dialog. All of the Style Includes check boxes will be checked and
their values will be set to the format of the cell that was selected when the
Style dialog was invoked. This occurs even if those format characteristics
are not part of the style currently applied to that cell.

FIGURE 4-9 The Excel Style dialog

FIGURE 4-10 A new style is always based on the style of the cell selected when
the Style dialog is displayed.

Styles 81

4.
W

O
RKSHEET

D
ESIGN

NOTE In Excel 2007 the Style dialog opens with a default style name and
default style settings regardless of the style applied to the selected cell when the
dialog was displayed.

For example, Number, Alignment and Border attributes were excluded
from the Input style that was displayed in the Style dialog immediately
before we created our new style. All three of those attributes are included in
our new style, however, and their specific values are drawn from the format
applied to the cell that was selected when the Style dialog was first invoked.
This is what the By Example in parentheses after the Style Includes title
means. Don’t worry; all of these attributes can easily be changed.

First, remove the check mark from beside any format option that you
don’t want to include in your style. When a style is applied to a range, only
the format options you checked will be applied. Next, click the Modify but-
ton (or the Format button in Excel 2007) to define the properties of your
new style. This displays the Format Cells dialog, shown in Figure 4-11.

Notice that the six tabs on the Format Cells dialog correspond exactly to
the six Style Includes options shown in Figure 4-10. This is no accident.
Styles are simply a way of grouping multiple cell format characteristics
under a single name so they can be applied and maintained simultaneous-
ly through that name.

FIGURE 4-11 The Format Cells dialog as invoked from the Style dialog Modify
button

82 Chapter 4 Worksheet Design

NOTE If you remove the check mark from a Style Includes option but then
change any of the characteristics of that option in the Format Cells dialog, the
option automatically becomes checked again in the Style dialog.

Modifying Styles
Modifying an existing style in Excel 2003 and earlier is exactly like creating
a new style except that after selecting the Format > Style menu, you pick
the style you want to modify from the Style name combo box rather than
entering a new style name. Each time you select a style in the Style name
combo box, that style will have its settings summarized and displayed for
you in the Style Includes section of the dialog. Click the Modify button to
display the Format Cells dialog and change any of the format options for
the currently selected style. In Excel 2007 you modify an existing style by
selecting the Home tab > Cell Styles drop-down, then right-click on the
style sample button that displays the style name you want to modify, and
choose Modify from the shortcut menu.

There is one minor caution to keep in mind when creating new styles
or modifying existing styles in Excel 2003 and earlier. Once you have con-
figured the style using the Format Cells dialog, be sure to click the Add
button on the Style dialog to save your changes. If you click the OK but-
ton, your changes will be saved, but the style you have created or modified
will also be applied to the currently selected cell. This is often not the
result you want. Getting into the habit of using the Add button to add and
update styles will save you from having to undo changes to a cell you did-
n’t intend to change. Once you’ve used the Add button to create or modi-
fy a Style, you can safely use the Cancel button to dismiss the Style dialog
without losing your work or formatting the currently selected cell.

Adding the Style Drop-Down to the Toolbar
If you’re familiar with Word, you’ll notice styles there are considered so
important that a special style drop-down is automatically present on the
Formatting toolbar. This not only allows you to quickly apply a style to a
selection but also displays the style associated with the section of the docu-
ment where your cursor is located. Excel 2003 and earlier has a similar tool-
bar control, but for some reason styles in Excel were not deemed important
enough by Microsoft to have this control appear by default. You can add
this control to one of your Excel toolbars manually, however, and if you plan
on making full use of styles in Excel you should do so. Here’s how:

User Interface Drawing Techniques 83

4.
W

O
RKSHEET

D
ESIGN

1. Start by selecting View > Toolbars > Customize from the Excel menu.
2. In the Customize dialog select the Commands tab.
3. In the Commands tab select the Format item from the Categories

list. As shown in Figure 4-12, the Style drop-down is the fifth item
in the Commands list box.

4. Drag this control from the Commands list box and drop it onto one
of your existing toolbars. You will now have a Style control that pro-
vides most of the same benefits as the Style control in Word. (It
does not show the style names using their format as the Word Style
control does.)

You can select a group of cells and apply a style to all of those cells by sim-
ply selecting the style name from the Style drop-down. And when you
select a cell, the name of the style applied to that cell automatically is dis-
played in the Style drop-down. This feature is very helpful when creating
complex worksheet user interfaces that utilize many different styles.

User Interface Drawing Techniques

Excel provides built-in tools with a surprising amount of flexibility for cus-
tomizing worksheet user interfaces. In this section, we examine how to use
these tools to improve the appearance and functionality of your worksheet
user interface.

FIGURE 4-12 Selecting the Style drop-down from the list of format controls

84 Chapter 4 Worksheet Design

Using Borders to Create Special Effects
To keep the user focused on the elements of your worksheet user interface,
it is often helpful to modify the normal style so that all unused areas of the
worksheet have a consistent, light gray background color. This practice has
been demonstrated in most of the user interface examples shown so far
and will be used in our sample application. On top of this light gray back-
ground you can use cell borders to create some interesting special effects.
One of the most commonly used border-based special effects gives a range
of cells a 3D appearance, either raised or sunken. Examples of both effects
are shown in Figure 4-13.

To create a raised effect you simply add a white border to the top and right
sides of your range and add a 50% gray border to the left and bottom sides
of your range. To create a sunken effect you do exactly the opposite. The
width of the borders can be used to control the degree of the effect.

When you apply a background color to a worksheet, as we did in the
previous example, Excel’s standard gridlines are obscured. In many cases
gridlines are a useful visual guide for the user, so you want to put them
back. While there is no way to force Excel’s standard gridlines to display
over a background color, you can easily simulate gridlines by adding 25%
gray borders with the lightest width to the area where you want the grid-
lines to appear. This effect is shown in Figure 4-14.

FIGURE 4-13 Using borders to create 3D visual effects

User Interface Drawing Techniques 85

4.
W

O
RKSHEET

D
ESIGNFIGURE 4-14 Using borders to simulate gridlines

Creating Well-Formatted Tables
Tables used within an Excel worksheet user interface typically have one or
more of the following elements:

■ Table description
■ Row and column descriptions
■ Data entry area
■ Formula result area

Each section of your table should be formatted with a unique style that you
use consistently throughout your user interface. Figure 4-15 shows a sam-
ple table with all four of the elements described previously.

As you can see, in its simplest form the table is not very attractive. You can
give your tables a much more professional appearance by using borders to
provide a 3D effect, adding simulated gridlines, and increasing the row
heights and column widths to provide more visual separation. Turning off
row and column headers and the formula bar completes the effect. The

FIGURE 4-15 A basic worksheet user interface table layout

86 Chapter 4 Worksheet Design

table now looks like a completely custom user interface. Figure 4-16 shows
the table with these added effects.

FIGURE 4-16 A fully formatted worksheet user interface table

FIGURE 4-17 The format of an Excel comment status bar message

Cell Comments for Help Text
Cell comments are one of the most important user interface features pro-
vided by Excel. Their utility stems from the fact that in many cases they
can serve the same purpose as a help file without requiring the user to do
anything more complicated than hover the mouse cursor over the com-
mented cell. Note that cell comments have several limitations that may
make them inappropriate in certain situations:

If you are using the freeze panes feature on a worksheet and the worksheet
is scrolled beyond the freeze point, if the comment window overlaps the frozen
row and/or column it will be cut off at the point where the window is frozen.

Each cell comment is also associated with a specific status bar message
whose structure cannot be modified. The status bar message displayed
when a user hovers the mouse over a comment has the following structure,
which is shown graphically in Figure 4-17.

User Interface Drawing Techniques 87

4.
W

O
RKSHEET

D
ESIGN

Cell address commented by user name at the time the comment was
created.

The only part of this message you can modify is the user name at the
time the comment was created section, which displays the contents of
the User name entry located under the Tools > Options > General tab of
the Excel menu (in Excel 2007 this is located under Office Button > Excel
Options > Popular). If you are a consultant creating a worksheet user inter-
face for a client, it’s unlikely your client wants to see your name in the sta-
tus bar each time she views a cell comment. In that case, one of the best
workarounds is to change the User name setting on your machine to your
client’s company name while you create the comments for their client’s
user interface. Once the comments have been created, the user name dis-
played in the status bar is fixed and will not be affected when you change
your User name setting back to your own name.

Remember that cell comments can be rich-text formatted. This means
you can use formatting such as bold and italic fonts within the comment
text as well as multiple fonts. Rich-text formatting allows you to create
some sophisticated help messages. Figure 4-18 shows a rich-text formatted
cell comment from a real-world worksheet user interface.

Using Shapes
The ability to use shapes (objects drawn using the various options on the
Drawing or Forms toolbars) on an Excel worksheet is a powerful user
interface technique. Shapes are located in a special drawing layer that
floats above the cells on a worksheet, so shapes cover (and obscure) work-
sheet cells. Shapes are also connected to the underlying worksheet through
their properties, which allow them to

FIGURE 4-18 A rich-text formatted cell comment

88 Chapter 4 Worksheet Design

■ Move and size with the worksheet cells they cover
■ Move but don’t size with the worksheet cells they cover
■ Don’t move or size with the worksheet cells they cover

Almost all shapes can contain text. A shape’s text can either be manually
entered or it can be linked dynamically to a specific cell on a worksheet by
selecting the shape and entering the address of that cell as a formula in the
formula bar. As you can imagine, the ability to assign formulas to shapes
opens up a wide array of options for creating dynamic user interfaces.
Shapes can also be given a macro assignment that causes them to execute
the specified macro whenever the user clicks them. Simply right-click over
the shape and choose Assign Macro from the shortcut menu. Figure 4-19
shows an excellent example of how shapes can be used to create a custom
toolbar-like area across the top of a worksheet user interface.

These simulated toolbar buttons were created using professionally
drawn clip-art images. These types of images can be found in many differ-
ent places on the Web and using them in a situation like this is much
preferable to laboriously drawing your own images.

Data Validation

Data validation is one of the most useful yet underutilized features for
worksheet user interface design. It allows you to ensure that most, if not
all, of the inputs in your user interface are made correctly by disallowing

FIGURE 4-19 A custom on-sheet toolbar created with shapes

Data Validation 89

4.
W

O
RKSHEET

D
ESIGN

input that does not match the rules you specify. Data validation can be as
simple as restricting cell entries to whole numbers or as complex as
restricting cell entries to items on a list whose contents are conditionally
determined based on an entry made in a previous cell.

We assume you understand the basic use of data validation and instead
demonstrate two of the more complex validation scenarios that can be cre-
ated with this feature. Most complex data validation scenarios involve data
validated lists or custom data validation formulas.

Unique Entries
If you need the user to enter only unique item names in a data entry list
you can use a custom data validation formula to enforce uniqueness. First
select the entire data entry area you need to validate. Next, choose Data >
Validation from the menu (Data tab > Data Validation in Excel 2007) and
select the Custom option from the Allow list. The basic syntax of the for-
mula you need to enter is the following:

=COUNTIF(<entire range>,<relative reference to input cell>)=1

The first argument to the COUNTIF function is a fixed reference to the
entire data entry area that must contain unique entries. The second argu-
ment to the COUNTIF function is a relative reference to the currently
selected cell in the data input range.

If each entry is unique, the COUNTIF function evaluates to 1 and the
entire formula evaluates to True, meaning the data is valid. If the COUN-
TIF function locates more than one instance of an entry in the data entry
area, the entire formula will evaluate to False and data validation will pre-
vent that entry from being made. Figure 4-20 shows an example of this val-
idation setup and Figure 4-21 shows it in action.

NOTE The enforce unique entries data validation technique described previ-
ously only works correctly if the range being examined is entered into the Data
Validation dialog as a hard-coded range address. If you try to use an equivalent
defined name, this data validation technique will fail. This is a bug in the Excel
data validation feature.

90 Chapter 4 Worksheet Design

FIGURE 4-20 Data validation configuration to force unique entries in a list

FIGURE 4-21 Unique entries data validation in action

Cascading Lists
In this type of validation, the specific data validation list that is displayed
for a cell is determined by the entry selected in a previous cell. In Figure
4-22, the data validation list for the Item column is determined by the
selection in the Category column. All of the data validation lists are locat-
ed in the hidden column A.

Data Validation 91

4.
W

O
RKSHEET

D
ESIGN

FIGURE 4-22 Initial setup for cascading data validation lists

FIGURE 4-23 Defined names used for cascading data validation lists

The data validation list formula for the Category column is simple:
=Categories. The data validation list formula for the Item column is a bit
more complicated. It has to check the value of the corresponding Category
entry and do one of three things: display no list if the Category entry has
not been selected, display the list of fruits if Fruits has been selected, or
display the list of vegetables if Vegetables has been selected. The formula
that does this is shown here:

The Categories list is the data validation list for the Category column. The
Fruits list is the data validation list for the Item column when the Category
selected is Fruits. The Vegetables list is the data validation list for the Item
column when the Category selected is Vegetables. Each of these lists has been
given the worksheet-level defined name shown in the caption above their bor-
der. Figure 4-23 shows all of the defined names used in this example.

92 Chapter 4 Worksheet Design

=IF(ISBLANK(C3),””,INDIRECT(C3))

If the cell in the Category column is blank, the formula returns an empty
string, which removes the data validation list from the Item cell next to it.
If the cell in the Category column has an entry, the formula uses the INDI-
RECT worksheet function to coerce that Category column entry into a
range reference. The range reference refers to either the Fruits list or the
Vegetables list depending on which item the user selected in the Category
column. As Figure 4-24 shows, this formula successfully displays two com-
pletely different data validation lists depending on the category selection.

This logic can be extended to as many categories as you need. However, for
cases with large numbers of categories, a table-driven approach that you’ll
see used in our sample time sheet application is much easier to set up and
maintain.

Note that one drawback of this type of validation is that it doesn’t work
in both directions. In the scenario described previously, there is nothing to
stop a user from accidentally changing the category entry in a row where a
specific item has already been selected. In the next section you see how to
use conditional formatting to provide a visual indication that this kind of
error has been made.

Conditional Formatting

Conditional formatting is one of the most powerful features available for
Excel user interface development. It allows you to use simple worksheet for-
mulas to accomplish things that would otherwise require many lines of VBA

FIGURE 4-24 Cascading list validation in action

Conditional Formatting 93

4.
W

O
RKSHEET

D
ESIGN

code. Conditional formatting works by modifying the appearance of cells it
has been applied to only if one or more conditions that you specify have been
met. Conditional formatting overrides any style setting when the condition is
triggered. Once the condition that triggered the conditional formatting is no
longer true, the affected cell reverts to its original format. The two most
common uses of conditional formatting in Excel user interface development
are the creation of dynamic tables and calling out error conditions.

Creating Dynamic Tables
When building non-trivial worksheet-based user interfaces, you will often be
faced with the problem of providing a table that in extreme cases will allow
the entry of some large number of rows but the most common scenarios will
only require a few. Rather than hard-coding a visible table with the maxi-
mum possible number of rows, you can use conditional formatting to create
a table that expands dynamically as data is entered into it. We demonstrate
how this is done beginning with the sample table shown in Figure 4-25.

Let’s assume this table really requires 200 rows for the largest projects but
most users only need a few rows of input. Therefore, you’d like to hide the
unused area of the table. As you can see, the first step in creating a dynamic
table is to draw the entire table on the worksheet. You then use conditional
formatting to hide the unused area of the table and reveal rows dynamically
as needed. The trigger for displaying a data entry row is the user entering a
new name into the Item Name column. For that reason, we always need to
leave an empty Item Name entry cell at the bottom of the table.

When creating a dynamic table, it’s a good idea to also create an outline
showing the extent of the table in one of your hidden columns. Once we’ve
added the conditional formatting the table disappears. This makes the table

FIGURE 4-25 Data entry table prior to the addition of dynamic formatting

94 Chapter 4 Worksheet Design

difficult to maintain if you haven’t provided yourself with a visual marker
indicating its extent. The empty bordered area in column A serves this pur-
pose in our example. This area doesn’t need to be empty. It could include
error-checking formulas, for example. As long as it gives you a visual indi-
cation of the extent of the hidden area of the table it serves its purpose.

Our dynamic table requires three different conditionally formatted
sections. Referring back to Figure 4-25, the first section encompasses
range C3:C12, the second section encompasses range D3:F12, and the third
range encompasses range G3:G12. We add the conditional formats one step
at a time so you can see the results as they occur. To make the operation of
the conditional formats more obvious we add data to the first row of the
table. Keep in mind that the purpose of all three conditional formatting
sections is the same: to simulate the appearance of a table that is just large
enough to hold the data that has been entered into it. Figure 4-26 shows
the table with the first section of conditional formatting completed.

In addition to the purpose described previously, the first conditional for-
mat serves to leave a blank cell in front of the first unused table row to help
prompt the user to enter the next item. The second conditional format is
shown in Figure 4-27. It clears all unused rows in columns D through F

FIGURE 4-26 Conditional formatting for the first column

Conditional Formatting 95

4.
W

O
RKSHEET

D
ESIGN

and draws a bottom border below the first unused row in the table, there-
by helping to complete the table outline.

You can see the white border on the far right side of the table is missing in
Figure 4-27. The purpose of the third conditional format is to complete the
simulated table by drawing this border. Figure 4-28 shows the third condi-
tional format.

FIGURE 4-27 Conditional formatting for the remaining columns within the table

FIGURE 4-28 Conditional formatting outside the table to create the right-hand
border

96 Chapter 4 Worksheet Design

Figure 4-29 shows the fully formatted table with some additional
entries. Each time a new entry is made, the conditional format reveals the
row in which the entry was placed and adds a new prompt row below it.

The one major caveat when considering the use of conditional formatting
to create dynamic tables is that calculation must be set to automatic for it
to work. If your user interface workbook is so calculation intensive that you
need to set calculation to manual, you cannot create dynamic tables using
this method (or use any other type of formula-based conditional formatting
for that matter).

Calling Out Error Conditions
Conditional formatting can also work alone or in concert with formulas in
hidden rows and columns to highlight invalid entries as soon as they are
made. This should not be your method of first choice for pointing out data
entry errors. Always try to use data validation to prevent data entry errors
from being made in the first place.

A common situation where errors cannot be prevented by data valida-
tion is when you have two data entry columns such that the entry in the
first column determines the allowable entries in the second column. In
Figure 4-30 we revisit our cascading data validation list example from
Figure 4-22.

Even though both columns’ lists are data validated, an error can creep
in if the user initially selects a valid category and item combination but
then accidentally changes the category name at some later point in time.
This type of mistake cannot be prevented by data validation, so we need to
provide some visual indication that there is a mismatch between the cate-
gory and item selections if this error occurs. This is a task for conditional
formatting.

As you can see in Figure 4-30, we inserted a second hidden column.
In this column we created an error check for each row that verifies the

FIGURE 4-29 The complete dynamically formatted table

Conditional Formatting 97

4.
W

O
RKSHEET

D
ESIGN

entry selected in the Item column is valid for the selection in the Category
column.

The error check formula is as follows. Keep in mind that the purpose of the
error check formula is to return True if the corresponding row in the table
has a data entry error and False otherwise.

=IF(ISBLANK(E3),FALSE,ISERROR(MATCH(E3,INDIRECT(D3),0)))

The only type of error that can occur in this situation is the Item column
entry not matching the Category column entry. If there is no Item column
entry, the row is not complete and we cannot determine the validity of the
Category column entry. The ISBLANK function checks for this condition
and returns FALSE if this is the case. Once there is an entry in the Item
column, the formula uses the INDIRECT function to return a reference to
the list of valid entries (recall that the Category column entry is the same
as the range name of the corresponding Item list). The formula then uses
the MATCH function wrapped in the ISERROR function to return TRUE if the
Category entry is located in the list or FALSE if it isn’t.

The next thing we do is add a conditional format to the table that
checks the value of the HasError column. If the HasError column indi-
cates there is an error in one of the table rows, our conditional format will
give that row a bright red shade. Error condition highlighting is one excep-
tion to the rule of not using garish colors in your user interface. We do rec-
ommend using red, however, as this is almost universally recognized as a
warning color. The conditional format required to accomplish this is shown
in Figure 4-31.

FIGURE 4-30 The error check formula column for the conditional format

98 Chapter 4 Worksheet Design

The result of the conditional format in response to an error condition is
shown in Figure 4-32, where we’ve changed the Category column entry in
the second table row from Vegetables to Fruits so it no longer matches the
entry in the Item column.

Using Controls on Worksheets

Making extensive use of controls placed directly on worksheets is typically
not the best user interface design. For most Excel application development,

FIGURE 4-31 Setting up conditional formatting to flag an error condition

FIGURE 4-32 Conditional formatting flagging a bad entry in the table

Using Controls on Worksheets 99

4.
W

O
RKSHEET

D
ESIGN

we recommend you use custom command bars (or Ribbon controls in
Excel 2007) as entry points into your code and substitute data validation
lists for combo box controls on worksheets. Command bars are covered in
Chapter 8, “Advanced Command Bar Handling,” while the Ribbon is cov-
ered in Chapter 10, “The Office 2007 Ribbon User Interface.” There are
circumstances where placing controls directly on your worksheet user
interface is the best option, so in this section we cover some of the things
you need to watch out for when you do this.

When you do need to use controls on a worksheet you have to make
the choice between ActiveX controls and controls from the Forms toolbar.
Generally we recommend you use Forms controls unless you absolutely
need ActiveX controls. Forms controls are very lightweight and don’t
exhibit the many quirks you’ll run into when using ActiveX controls on
worksheets. Figure 4-33 shows a worksheet in which Forms controls have
been used to great effect.

Since everyone reading this chapter should be familiar with how controls
work, we simply cover the details critical to deciding whether you can use

FIGURE 4-33 Good use of forms controls on a worksheet

100 Chapter 4 Worksheet Design

Forms controls in your worksheet user interface or whether you need
ActiveX controls.

Advantages of Forms Controls

■ Forms controls can be used on Chart sheets; ActiveX controls cannot.
■ Forms controls are more tightly linked to Excel. You can select a

Label or Button control and enter a formula in the formula bar that
dynamically sets the captions of those controls. And unlike its
ActiveX counterpart, a Forms control Listbox updates its contents in
response to changes to a dynamic named range that has been
assigned to its Input range property.

■ It is easy to assign multiple Forms controls to run the same VBA
procedure. Doing the same with ActiveX controls requires a more
complicated class-based approach.

■ If you use multiple windows or the split panes feature in your appli-
cation to show two different views of the same worksheet, ActiveX
controls will only work in the original window. Forms controls will
work in any window.

Advantages of ActiveX Controls

■ You can modify the appearance of ActiveX controls to a much
greater degree than Forms controls.

■ There are more varieties of ActiveX controls than there are Forms
controls.

■ ActiveX controls have a wide variety of event procedures that you
can respond to, while Forms controls can only run a single macro.

Practical Example

In this chapter, we begin building a real-world Excel application that illus-
trates the points made in the chapter text. Our application is a time track-
ing system that starts as a simple, no-frills time sheet and works its way up
to being a full-featured Excel application as we progress through the book.
Due to space constraints we do not show every detail involved in creating

Practical Example 101

4.
W

O
RKSHEET

D
ESIGN

this application. We demonstrate the major features and allow you to
examine the rest by perusing the finished sample of the application avail-
able on the accompanying CD. This time sheet application will henceforth
be referred to by its acronym PETRAS, which stands for Professional
Excel Timesheet Reporting and Analysis System.

The first version of PETRAS is a simple workbook containing a time
entry table on one worksheet and data validation lists on a second hidden
worksheet. The user is expected to complete the time entry table each week
and manually copy the workbook to a central location for consolidation.
This version of PETRAS can be located on the accompanying CD in the
\Application\Ch04-Worksheet Design\ folder. It is displayed in Figure 4-34.

Most of the user interface design techniques discussed in this chapter have
been used in the PETRAS application, including all variations of defined
names, styles to differentiate areas by purpose, table formatting tech-
niques, use of comments for help text, data validation, and conditional for-
matting. Let’s quickly cover examples of how each of these techniques is
used in practice.

FIGURE 4-34 The first version of the PETRAS application

