& seci series ¢

C@SOFT\NARE SECURITY SERIES)

Software Security
Engineering
A Guide for Project Managers

vew

num
cGraw




Software Security Engineering



This page intentionally left blank



Software Security Engineering

A Guide for Project Managers

Julia H. Allen
Sean Barnum
Robert J. Ellison
Gary McGraw
Nancy R. Mead

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston « Indianapolis ¢ San Francisco
New York ¢ Toronto « Montreal « London ¢« Munich e Paris « Madrid
Capetown ¢ Sydney « Tokyo e Singapore « Mexico City



——=—=—— CarnegieMellon
——=—  Software Engineering Institute
The SEI Series in Software Engineering

SOFTWARE SECURITY SERIES)

The Addison-Wesley Software Security Series

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordi-
nation Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM,; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolu-
tionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim
Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for
Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead
Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie
Mellon University.

Special permission to reproduce portions of Build Security In, © 2005-2007 by Carnegie Mellon University, in this
book is granted by the Software Engineering Institute.

Special permission to reproduce portions of Build Security In, © 2005-2007 by Cigital, Inc., in this book is granted by
Cigital, Inc.

Special permission to reprint excerpts from the article “Software Quality at Top Speed,” © 1996 Steve McConnell, in
this book is granted by Steve McConnell.

The authors and publisher have taken care in the preparation of this book, but make no express or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales,
(800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States, please contact: International Sales, international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Software security engineering : a guide for project managers / Julia H. Allen ... [et al.].
p- cm.
Includes bibliographical references and index.
ISBN 978-0-321-50917-8 (pbk. : alk. paper) 1. Computer security. 2. Software engineering. 3. Computer
networks—Security measures. 1. Allen, Julia H.

QA76.9.A255654 2008
005.8—dc22
2008007000

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite
900, Boston, MA 02116, Fax: (617) 671-3447.

ISBN-13: 978-0-321-50917-8

ISBN-10: 0-321-50917-X

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, April 2008



Contents

FOT@WOId ..oeerrrtttetettctctctettctctctetetsttte sttt sesesese s sssesssssssssssessassssnens xi
Preface .ttt aeanes xiii
About the AUthOrS ...t xxiii
Chapter 1: Why Is Security a Software Issue? ..........cccoeveeieninennncns 1
1.1 Introduction ...t 1
1.2 The Problem ... 2
1.2.1 System Complexity: The Context within
Which Software Lives .........evvevnivccrinisnineiinnenenes 5
1.3 Software Assurance and Software Security ..........c.c...... 6
1.3.1 The Role of Processes and Practices in
Software SECUTILY  ...oveuveveerereriierctcteeeetee e 8
1.4 Threats to Software Security ..........ceeeeevieieiunncncnnas 9
1.5 Sources of Software Insecurity ..........ccoevvrericinnnnen. 11
1.6 The Benefits of Detecting Software Security
Defects Early ... 13
1.6.1 Making the Business Case for Software Security:
CUITeNt SEALE .unneevreniiicrctcitctctaane 17
1.7 Managing Secure Software Development ................... 18
1.7.1 Which Security Strategy Questions
SHOUld T ASK? e 18
1.7.2 A Risk Management Framework for Software
SECUTTEY  cvevreniietctctetctctc e 20
1.7.3 Software Security Practices in the Development
Life CYCle vttt 20
1.8 SUMMATY oottt 23
Chapter 2: What Makes Software Secure? .........cccevevrcrevucennencne 25
2.1 Introduction ... 25
2.2 Defining Properties of Secure Software ..................... 26
2.2.1 Core Properties of Secure Software ...........ueueveeeennes 26

2.2.2 Influential Properties of Secure Software .................. 28



vi CONTENTS

2.3 How to Influence the Security Properties of

SOftWATE .t 36
2.3.1 The Defensive Perspective .........ueevevrerenereseenenenes 37
2.3.2 The Attacker’s Perspective .........ueevevevuiuccrenunnenenes 43
2.4 How to Assert and Specify Desired Security
Properties ...t 61
2.4.1 Building a Security Assurance Case ..........cceeeveune. 62
2.4.2 A Security Assurance Case Example — .............uu...... 63
2.4.3 Incorporating Assurance Cases into the SDLC ......... 67
2.4.4 Related Security Assurance and Compliance
Lo OO 68
2.4.5 Maintaining and Benefitting from Assurance
CaSES ovvrenirctcteitctcstc s 69
2.5 SUMMATY oottt as 71
Chapter 3: Requirements Engineering for Secure Software ........ 73
3.1 Introduction ... 73
3.1.1 The Importance of Requirements Engineering .......... 74
3.1.2 Quality ReqUirements ...........ocvveveecvcrinusnecrcsessenenes 75
3.1.3 Security Requirements Engineering .............c.ceeeeueee. 76
3.2 Misuse and Abuse Cases .......coueeeeeeeeeeeenenennen. 78
3.2.1 Security Is Not a Set of Features ..........uuuevevevuvrenenes 79
3.2.2 Thinking About What You Can’t Do ...........cuueuueee. 80
3.2.3 Creating Useful Misuse Cases .......ccovvvuerererururuenenes 81
3.2.4 An Abuse Case Example ..........cuvvvuvvcvivivuvnccrirnrnencnes 82
3.3 The SQUARE Process Model ......ccoeeeveeceeeerrerceecreeeennne 84
3.3.1 A Brief Description of SQUARE .........coeerereunnenenen 88
3.3.2 TOOIS .uvvvererererercttetctctctctctcscttet e 90
3.3.3 Expected ReSults ........uuueevivrvvencirinnircniinicscncneinnenenns 90
3.4 SQUARE Sample Outputs .....cccovvvvrvcvnivirncccninnincncnes 91
3.4.1 Output from SQUARE Steps  ......ceeeeuererercrcncrcncncnen. 92
3.4.2 SQUARE Final ReSults ......coceeueeeeverserseecenreeseeneennenes 99
3.5 Requirements Elicitation ........cccovcviccccccncncnnee. 99
3.5.1 Overview of Several Elicitation Methods ................ 100
3.5.2 Elicitation Evaluation Criteria ..........eveeeuennee. 103
3.6 Requirements Prioritization ..........eceevvveeniicnnccnne. 106
3.6.1 Identify Candidate Prioritization Methods ............ 106
3.6.2 Prioritization Technique Comparison .................... 110
3.6.3 Recommendations for Requirements
Prioritization ......eeeeeveeeeeieiceeeeteeeete s 111

3.7 SUMMATY oottt eseaes 112



CONTENTS

Chapter 4: Secure Software Architecture and Design ................. 115
4.1 Introduction ... 115
4.1.1 The Critical Role of Architecture and Design ......... 115
4.1.2 Issues and Challenges ...........vvevcuevcreverrenccnnnnens 117

4.2 Software Security Practices for Architecture and
Design: Architectural Risk Analysis ........ccccoeevrnnnenee. 119
4.2.1 Software Characterization ............veverereeeeneenes 120
4.2.2 Threat ANalysis .......weeeveveveveveeeeeeeeeeennenens 123
4.2.3 Architectural Vulnerability Assessment .................. 126
4.2.4 Risk Likelihood Determination .............eeeeeennes 130
4.2.5 Risk Impact Determination ..............vvevcvcnnennns 132
4.2.6 Risk Mitigation Planning ............veeneseecnnes 134
4.2.7 Recapping Architectural Risk Analysis ................... 136

4.3 Software Security Knowledge for Architecture
and Design: Security Principles, Security

Guidelines, and Attack Patterns .......cccceeveevveeenveennen. 137
4.3.1 Security Principles .........evvivvuenercninnsnenccnnnnnns 137
4.3.2 Security GUIdeliNes ... 143
4.3.3 Attack Patterns ........evviereeennicrenieneesesesennens 147
4.4 SUMMATY  .oooeieiereeeisieteeetee ettt 148
Chapter 5: Considerations for Secure Coding and Testing ........ 151
5.1 INtroduction ... 151
5.2 Code ANalysis ... 152
5.2.1 Common Software Code Vulnerabilities ................. 153
5.2.2 Source Code Review ........oveeverereveeevrcrereineireneninnnens 156
5.3 Coding Practices ........covverieiininrirciiniincncinicrcneninnns 160
5.3.1 Sources of Additional Information on Secure
COAING ettt 161
5.4 Software Security Testing ......cccccevevvviiriciriruinccennns 163
5.4.1 Contrasting Software Testing and Software
Security TeSHNG ....ueveveveveerreeeeeeeeeseesnanens 165
5.4.2 Functional Testing ........ceeevevevevevevevevevevenennnnnnnns 167
5.4.3 Risk-Based Testing .......ccovvereverinurreneneresnirenenenenens 169
5.5 Security Testing Considerations Throughout
the SDLC ... 173
5.5.1 Unit Testing .....coevueeererresresiiicniitinieteieeeensesnesenens 174
5.5.2 Testing Libraries and Executable Files .................... 175
5.5.3 Integration Testing ........eeeeveveeerieeeneenieneennnns 176

5.5.4 System Testing ......cueeeveeenrerenrcrenicriicreieneienesenes 176



viii CONTENTS

5.5.5 Sources of Additional Information on

Software Security Testing .........eeveeveveerererreninnnes 179
5.6 SUMMATY oottt 180
Chapter 6: Security and Complexity: System Assembly
Challenges ... 183
6.1 INntroduction ... 183
6.2 Security Failures ... 186
6.2.1 Categories Of EITors ......eeveveeveererereiniisesesennnncaenes 187
6.2.2 Attacker BERAUIOT  ......ueeeeeeeerriiiniceeenenesesenens 188
6.3 Functional and Attacker Perspectives for
Security Analysis: Two Examples .......ccocovvviirurncncne 189
6.3.1 Web Services: Functional Perspective ..................... 190
6.3.2 Web Services: Attacker’s Perspective  ...........oeuuee.. 192
6.3.3 Identity Management: Functional Perspective ........ 196
6.3.4 Identity Management: Attacker’s Perspective ......... 198
6.3.5 Identity Management and Software
Development .......ccveviveiveeninisiinciinineseesssssenenens 201
6.4 System Complexity Drivers and Security .................. 203
6.4.1 Wider Spectrum of FAilures ............ceeevevererereuninnnes 205
6.4.2 Incremental and Evolutionary Development ......... 212
6.4.3 Conflicting or Changing Goals Complexity ............ 213
6.5 Deep Technical Problem Complexity ........cccoevennunes 215
6.6 SUMIMATY  ..ooviviiiiiiitiicicecee e aeaseaesees 217
Chapter 7: Governance, and Managing for More
Secure Software ..., 221
7.1 Introduction ... 221
7.2 Governance and Security ..., 223
7.2.1 Definitions of Security Governance ................ocu... 223
7.2.2 Characteristics of Effective Security Governance
and Management ..........vvveveecvevinninccrisisssneneens 224
7.3 Adopting an Enterprise Software Security
Framework ... 226
7.3.1 Common Pitfalls .........ccueveeiivivrereiininncncncinninenenes 227
7.3.2 Framing the SOIUtiON .......c.cuceevvvvcnciiniinincnciicncnnes 230
7.3.3 Define a Roadmap .........eeevevevuenecininncnccisnsncnenes 235
7.4 How Much Security Is Enough? ........cccovvviniriinnne 236
7.4.1 Defining Adequate SECUTTtY .......covuveererrererererernnnn. 236

7.4.2 A Risk Management Framework for
Software SECUTTEY .....uvveveueevirririniiiiicreircencenes 238



CONTENTS

7.5 Security and Project Management ..........cccccueueueunenes 244
7.5.1 Project SCOPe ....uuuuueeeveeenrereeinisieeeseieseessesesesenens 245
7.5.2 Project PIAn ...t 246
7.5.3 RESOUICES .uveverenrrereretiniiereteenettese et 250
7.5.4 Estimating the Nature and Duration of Required
RESOUTCES oveverenrerenrretireetetetctr e 251
7.5.5 Project and Product Risks .........cccoeveeeeeeererenenenen. 253
7.5.6 Measuring Software Security .........cvcvccucucucnen. 254
7.6 Maturity of Practice ... 259
7.6.1 Protecting Information .............vvevreecnineenencncnns 259
7.6.2 Audit’s Role ....uuucvevcecricnicicicicicicnctctics e 260
7.6.3 Operational Resilience and Convergence  ................ 261
7.6.4 A Legal View ......oeeerererererererererenereneereeneesesesesnens 263
7.6.5 A Software Engineering View ..........ceveeeeenernens 263
7.6.6 EXOMPIATS  ...vnnnivrniniicrcncnicincnnanns 265
7.7 SUMIMATY vttt essssens 266
Chapter 8: Getting Started ..o 267
8.1 Where to Begin ... 269
8.2 In ClOSING ..eovvviiiiiiciciciciitt e 281
GIOSSATY ettt nsess e sssess e sssesesssnasenssenes 283
References ...ttt sssae s aesene 291
Build Security In Web Site References ..........ccouvuervreeerunnrucnccnnnne 311

INUACX aeuertiieeeiiirnneeeeeecissenreeeeeccsssssssseesecsssssssseesessssssssssssssesssssssssassessssssssaes 317

ix



This page intentionally left blank



Foreword

Everybody knows that software is riddled with security flaws. At first
blush, this is surprising. We know how to write software in a way that
provides a moderately high level of security and robustness. So why
don’t software developers practice these techniques?

This book deals with two of the myriad answers to this question. The
first is the meaning of secure software. In fact, the term “secure soft-
ware” is a misnomer. Security is a product of software plus environ-
ment. How a program is used, under what conditions it is used, and
what security requirements it must meet determine whether the soft-
ware is secure. A term like “security-enabled software” captures the
idea that the software was designed and written to meet specific secu-
rity requirements, but in other environments where the assumptions
underlying the software—and any implied requirements—do not
hold, the software may not be secure. In a way that is easy to under-
stand, this book presents the need for accurate and meaningful secu-
rity requirements, as well as approaches for developing them. Unlike
many books on the subject of secure software, this book does not
assume the requirements are given a priori, but instead discusses
requirements derivation and analysis. Equally important, it describes
their validation.

The second answer lies in the roles of the executives, managers, and
technical leaders of projects. They must support the introduction of
security enhancements in software, as well as robust coding practices
(which is really a type of security enhancement). Moreover, they must
understand the processes and make allowances for it in their schedul-
ing, budgeting, and staffing plans. This book does an excellent job of
laying out the process for the people in these roles, so they can realisti-
cally assess its impact. Additionally, the book points out where the
state of the art is too new or lacks enough experience to have
approaches that are proven to work, or are not generally accepted to
work. In those cases, the authors suggest ways to think about the
issues in order to develop effective approaches. Thus, executives, man-
agers, and technical leaders can figure out what should work best in
their environment.

xi



Xii

FOREWORD

An additional, and in fact crucial, benefit of designing and implement-
ing security in software from the very beginning of the project is the
increase in assurance that the software will meet its requirements. This
will greatly reduce the need to patch the software to fix security
holes—a process that is itself fraught with security problems, under-
cuts the reputation of the vendor, and adversely impacts the vendor
financially. Loss of credibility, while intangible, has tangible repercus-
sions. Paying the extra cost of developing software correctly from the
start reduces the cost of fixing it after it is deployed—and produces a
better, more robust, and more secure product.

This book discusses several ways to develop software in such a way
that security considerations play a key role in its development. It
speaks to executives, to managers at all levels, and to technical leaders,
and in that way, it is unique. It also speaks to students and developers,
so they can understand the process of developing software with secu-
rity in mind and find resources to help them do so.

The underlying theme of this book is that the software we all use could
be made much better. The information in this book provides a founda-
tion for executives, project managers, and technical leaders to improve
the software they create and to improve the quality and security of the
software we all use.

Matt Bishop
Davis, California
March 2008



Preface

The Problem Addressed by This Book

Software is ubiquitous. Many of the products, services, and processes
that organizations use and offer are highly dependent on software to
handle the sensitive and high-value data on which people’s privacy,
livelihoods, and very lives depend. For instance, national security—
and by extension citizens’ personal safety—relies on increasingly com-
plex, interconnected, software-intensive information systems that, in
many cases, use the Internet or Internet-exposed private networks as
their means for communication and transporting data.

This ubiquitous dependence on information technology makes soft-
ware security a key element of business continuity, disaster recovery,
incident response, and national security. Software vulnerabilities can
jeopardize intellectual property, consumer trust, business operations
and services, and a broad spectrum of critical applications and infra-
structures, including everything from process control systems to com-
mercial application products.

The integrity of critical digital assets (systems, networks, applications,
and information) depends on the reliability and security of the software
that enables and controls those assets. However, business leaders and
informed consumers have growing concerns about the scarcity of practi-
tioners with requisite competencies to address software security [Carey
2006]. Specifically, they have doubts about suppliers” capabilities to build
and deliver secure software that they can use with confidence and with-
out fear of compromise. Application software is the primary gateway to
sensitive information. According to a Deloitte survey of 169 major global
financial institutions, titled 2007 Global Security Survey: The Shifting Secu-
rity Paradigm [Deloitte 2007], current application software countermea-
sures are no longer adequate. In the survey, Gartner identifies application
security as the number one issue for chief information officers (CIOs).

Selected content in this preface is summarized and excerpted from Security in the Software Lifecycle:

Making Software Development Processes—and Software Produced by Them—More Secure [Goertzel 2006].

xiii



Xiv

PREFACE

The absence of security discipline in today’s software development prac-
tices often produces software with exploitable weaknesses. Security-
enhanced processes and practices—and the skilled people to manage
them and perform them—are required to build software that can be
trusted to operate more securely than software being used today.

That said, there is an economic counter-argument, or at least the per-
ception of one: Some business leaders and project managers believe
that developing secure software slows the software development
process and adds to the cost while not offering any apparent advan-
tage. In many cases, when the decision reduces to “ship now” or “be
secure and ship later,” “ship now” is almost always the choice made
by those who control the money but have no idea of the risks. The
opposite side of this argument, including how software security can
potentially reduce cost and schedule, is discussed in Chapter 1
(Section 1.6, “The Benefits of Detecting Software Security Defects
Early”) and Chapter 7 (Section 7.5.3, in the “Knowledge and Exper-
tise” subsection discussing Microsoft’s experience with its Security
Development Lifecycle) in this book.

Software’s Vulnerability to Attack

The number of threats specifically targeting software is increasing, and
the majority of network- and system-level attacks now exploit vulner-
abilities in application-level software. According to CERT analysts at
Carnegie Mellon University,! most successful attacks result from tar-
geting and exploiting known, unpatched software vulnerabilities and
insecure software configurations, a significant number of which are
introduced during software design and development.

These conditions contribute to the increased risks associated with
software-enabled capabilities and exacerbate the threat of attack.
Given this atmosphere of uncertainty, a broad range of stakeholders
need justifiable confidence that the software that enables their core
business operations can be trusted to perform as intended.

Why We Wrote This Book: Its Purpose, Goals, and Scope
The Challenge of Software Security Engineering

Software security engineering entails using practices, processes, tools,
and techniques to address security issues in every phase of the software

1. CERT (www.cert.org) is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.


www.cert.org

PREFACE

development life cycle (SDLC). Software that is developed with security
in mind is typically more resistant to both intentional attack and unin-
tentional failures. One view of secure software is software that is engi-
neered “so that it continues to function correctly under malicious
attack” [McGraw 2006] and is able to recognize, resist, tolerate, and
recover from events that intentionally threaten its dependability.
Broader views that can overlap with software security (for example,
software safety, reliability, and fault tolerance) include the notion of
proper functioning in the face of unintentional failures or accidents
and inadvertent misuse and abuse, as well as reducing software
defects and weaknesses to the greatest extent possible regardless of
their cause. This book addresses the narrower view.

The goal of software security engineering is to build better, defect-free
software. Software-intensive systems that are constructed using more
securely developed software are better able to do the following:

¢ Continue operating correctly in the presence of most attacks by
either resisting the exploitation of weaknesses in the software by
attackers or tolerating the failures that result from such exploits

¢ Limit the damage resulting from any failures caused by attack-
triggered faults that the software was unable to resist or tolerate
and recover as quickly as possible from those failures

No single practice offers a universal “silver bullet” for software secu-
rity. With this caveat in mind, Software Security Engineering: A Guide for
Project Managers provides software project managers with sound prac-
tices that they can evaluate and selectively adopt to help reshape their
own development practices. The objective is to increase the security
and dependability of the software produced by these practices, both
during its development and during its operation.

What Readers Can Expect

Readers will increase their awareness and understanding of the secu-
rity issues in the design and development of software. The book’s con-
tent will help readers recognize how software development practices
can either contribute to or detract from the security of software.

The book (and material referenced on the Build Security In Web site
described later in this preface) will enable readers to identify and com-
pare potential new practices that can be adapted to augment a

XV



Xvi

PREFACE

project’s current software development practices, thereby greatly
increasing the likelihood of producing more secure software and
meeting specified security requirements. As one example, assurance
cases can be used to assert and specify desired security properties,
including the extent to which security practices have been successful
in satisfying security requirements. Assurance cases are discussed in
Chapter 2 (Section 2.4, “How to Assert and Specify Desired Security
Properties”).

Software developed and assembled using the practices described in
this book should contain significantly fewer exploitable weaknesses.
Such software can then be relied on to more capably resist or tolerate
and recover from attacks and, therefore, to function more securely in
an operational environment. Project managers responsible for ensur-
ing that software and systems adequately address their security
requirements throughout the SDLC should review, select, and tailor
guidance from this book, the Build Security In Web site, and the
sources cited throughout this book as part of their normal project man-
agement activities.

The five key take-away messages for readers of this book are as follows:

1. Software security is about more than eliminating vulnerabilities
and conducting penetration tests. Project managers need to take a
systematic approach to incorporate the sound practices discussed
in this book into their development processes (all chapters).

2. Network security mechanisms and IT infrastructure security ser-
vices do not sufficiently protect application software from security
risks (Chapters 1 and 2).

3. Software security initiatives should follow a risk management
approach to identify priorities and determine what is “good
enough,” while understanding that software security risks will
inevitably change throughout the SDLC (Chapters 1, 4, and 7).

4. Developing secure software depends on understanding the opera-
tional context in which it will be used (Chapter 6).

5. Project managers and software engineers need to learn to think
like an attacker to address the range of things that software should
not do and identify how software can better resist, tolerate, and
recover when under attack (Chapters 2, 3, 4, and 5).



PREFACE

Who Should Read This Book

Software Security Engineering: A Guide for Project Managers is primarily
intended for project managers who are responsible for software devel-
opment and the development of software-intensive systems. Lead
requirements analysts, experienced software and security architects
and designers, system integrators, and their managers should also
find this book useful. It provides guidance for those involved in the
management of secure, software-intensive systems, either developed
from scratch or through the assembly, integration, and evolution of
acquired or reused software.

This book will help readers understand the security issues associated
with the engineering of software and should help them identify prac-
tices that can be used to manage and develop software that is better able
to withstand the threats to which it is increasingly subjected. It pre-
sumes that readers are familiar with good general systems and software
engineering management methods, practices, and technologies.

How This Book Is Organized

This book is organized into two introductory chapters, four technical
chapters, a chapter that describes governance and management con-
siderations, and a concluding chapter on how to get started.

Chapter 1, Why Is Security a Software Issue?, identifies threats that
target most software and the shortcomings of the software develop-
ment process that can render software vulnerable to those threats. It
describes the benefits of detecting software security defects early in
the SDLC, including the current state of the practice for making the
business case for software security. It closes by introducing some prag-
matic solutions that are further elaborated in the chapters that follow.

Chapter 2, What Makes Software Secure?, examines the core and influ-
ential properties of software that make it secure and the defensive and
attacker perspectives in addressing those properties, and discusses how
desirable traits of software can contribute to its security. The chapter
introduces and defines the key resources of attack patterns and assur-
ance cases and explains how to use them throughout the SDLC.

Chapter 3, Requirements Engineering for Secure Software, describes
practices for security requirements engineering, including processes

XVvii



XViii

PREFACE

that are specific to eliciting, specifying, analyzing, and validating secu-
rity requirements. This chapter also explores the key practice of mis-
use/abuse cases.

Chapter 4, Secure Software Architecture and Design, presents the
practice of architectural and risk analysis for reviewing, assessing, and
validating the specification, architecture, and design of a software sys-
tem with respect to software security, and reliability.

Chapter 5, Considerations for Secure Coding and Testing, summa-
rizes key practices for performing code analysis to uncover errors in
and improve the quality of source code, as well as practices for secu-
rity testing, white-box testing, black-box testing, and penetration test-
ing. Along the way, this chapter references recently published works
on secure coding and testing for further details.

Chapter 6, Security and Complexity: System Assembly Challenges,
describes the challenges and practices inherent in the design, assem-
bly, integration, and evolution of trustworthy systems and systems of
systems. It provides guidelines for project managers to consider, rec-
ognizing that most new or updated software components are typically
integrated into an existing operational environment.

Chapter 7, Governance, and Managing for More Secure Software,
describes how to motivate business leaders to treat software security
as a governance and management concern. It includes actionable prac-
tices for risk management and project management and for establish-
ing an enterprise security framework.

Chapter 8, Getting Started, summarizes all of the recommended prac-
tices discussed in the book and provides several aids for determining
which practices are most relevant and for whom, and where to start.

The book closes with a comprehensive bibliography and glossary.

Notes to the Reader
Navigating the Book’s Content

As an aid to the reader, we have added descriptive icons that mark the
book’s sections and key practices in two practical ways:

¢ Identifying the content’s relative “maturity of practice”:

The content provides guidance for how to think about a topic
for which there is no proven or widely accepted approach. The



PREFACE

intent of the description is to raise awareness and aid the
reader in thinking about the problem and candidate solutions.
The content may also describe promising research results that
may have been demonstrated in a constrained setting.

The content describes practices that are in early (pilot) use and
are demonstrating some successful results.

The content describes practices that are in limited use in indus-
try or government organizations, perhaps for a particular mar-
ket sector.

The content describes practices that have been successfully
deployed and are in widespread use. Readers can start using
these practices today with confidence. Experience reports and
case studies are typically available.

¢ Identifying the designated audiences for which each chapter sec-
tion or practice is most relevant:

@ Executive and senior managers
@ Project and mid-level managers

@ Technical leaders, engineering managers, first-line managers,
and supervisors

As the audience icons in the chapters show, we urge executive and
senior managers to read all of Chapters 1 and 8, plus the following sec-
tions in other chapters: 2.1,2.2,2.5,3.1,3.7,4.1,5.1,5.6,6.1,6.6,7.1, 7.3,
74,7.6,and 7.7.

Project and mid-level managers should be sure to read all of Chapters
1,2,4,5,6,7,and 8, plus these sections in Chapter 3: 3.1, 3.3, and 3.7.

Technical leaders, engineering managers, first-line managers, and
supervisors will find useful information and guidance throughout the
entire book.

Build Security In: A Key Resource

Since 2004, the U.S. Department of Homeland Security Software Assur-
ance Program has sponsored development of the Build Security In (BSI)
Web site (https://buildsecurityin.us-cert.gov/), which was one of the
significant resources used in writing this book. BSI content is based on
the principle that software security is fundamentally a software engi-

neering problem and must be managed in a systematic way throughout
the SDLC.

Xix


https://buildsecurityin.us-cert.gov/

XX

PREFACE

BSI contains and links to a broad range of information about sound
practices, tools, guidelines, rules, principles, and other knowledge to
help project managers deploy software security practices and build
secure and reliable software. Contributing authors to this book and the
articles appearing on the BSI Web site include senior staff from the
Carnegie Mellon Software Engineering Institute (SEI) and Cigital, Inc.,
as well as other experienced software and security professionals.

Several sections in the book were originally published as articles in
IEEE Security & Privacy magazine and are reprinted here with the per-
mission of IEEE Computer Society Press. Where an article occurs in
the book, a statement such as the following appears in a footnote:

This section was originally published as an article in IEEE
Security & Privacy [citation]. It is reprinted here with permis-
sion from the publisher.

These articles are also available on the BSI Web site.

Articles on BSI are referenced throughout this book. Readers can consult
BSI for additional details, book errata, and ongoing research results.

Start the Journey

A number of excellent books address secure systems and software
engineering. Software Security Engineering: A Guide for Project Managers
offers an engineering perspective that has been sorely needed in the
software security community. It puts the entire SDLC in the context of
an integrated set of sound software security engineering practices.

As part of its comprehensive coverage, this book captures both stan-
dard and emerging software security practices and explains why they
are needed to develop more security-responsive and robust systems.
The book is packed with reasons for taking action early and revisiting
these actions frequently throughout the SDLC.

This is not a book for the faint of heart or the neophyte software
project manager who is confronting software security for the first time.
Readers need to understand the SDLC and the processes in use within
their organizations to comprehend the implications of the various
techniques presented and to choose among the recommended prac-
tices to determine the best fit for any given project.



PREFACE

Other books are available that discuss each phase of secure software
engineering. Few, however, cover all of the SDLC phases in as concise
and usable a format as we have attempted to do here. Enjoy the journey!

Acknowledgments

We are pleased to acknowledge the support of many people who helped
us through the book development process. Our organizations, the CERT
Program at the Software Engineering Institute (SEI) and Cigital, Inc.,
encouraged our authorship of the book and provided release time as
well as other support to make it possible. Pamela Curtis, our SEI techni-
cal editor, diligently read and reread each word of the entire manuscript
and provided many valuable suggestions for improvement, as well as
helping with packaging questions and supervising development of fig-
ures for the book. Jan Vargas provided SEI management support,
tracked schedules and action items, and helped with meeting agendas
and management. In the early stages of the process, Petra Dilone pro-
vided SEI administrative support as well as configuration management
for the various chapters and iterations of the manuscript.

We also appreciate the encouragement of Joe Jarzombek, the sponsor of
the Department of Homeland Security Build Security In (BSI) Web site.
The Build Security In Web site content is a key resource for this book.

Much of the material in this book is based on articles published with
other authors on the BSI Web site and elsewhere. We greatly appreci-
ated the opportunity to collaborate with these authors, and their
names are listed in the individual sections that they contributed to,
directly or indirectly.

We had many reviewers, whose input was extremely valuable and led
to many improvements in the book. Internal reviewers included Carol
Woody and Robert Ferguson of the SEI. We also appreciate the inputs
and thoughtful comments of the Addison-Wesley reviewers: Chris
Cleeland, Jeremy Epstein, Ronda R. Henning, Jeffrey A. Ingalsbe, Ron
Lichty, Gabor Liptak, Donald Reifer, and David Strom. We would like to
give special recognition to Steve Riley, one of the Addison-Wesley
reviewers who reviewed our initial proposal and all iterations of the
manuscript.

We would like to recognize the encouragement and support of our
contacts at Addison-Wesley. These include Peter Gordon, publishing

xxi



xxii  PREFACE

partner; Kim Boedigheimer, editorial assistant; Julie Nahil, full-service
production manager; and Jill Hobbs, freelance copyeditor. We also
appreciate the efforts of the Addison-Wesley and SEI artists and
designers who assisted with the cover design, layout, and figures.



About the Authors

Julia H. Allen

Julia H. Allen is a Senior Member of the Technical Staff within the
CERT Program at the Software Engineering Institute (SEI), a unit of
Carnegie Mellon University in Pittsburgh, Pennsylvania. In addition
to her work in software security and assurance, Allen is engaged in
developing and transitioning executive outreach programs in enter-
prise security and governance. Prior to this technical assignment,
Allen served as Acting Director of the SEI for an interim period of six
months as well as Deputy Director/Chief Operating Officer for three
years. She formalized the SEI's relationship with industry organiza-
tions and created the Customer Relations team.

Before joining the SEI, Allen was a Vice President at Science Applica-
tions International Corporation (SAIC), responsible for starting a new
software division specializing in embedded systems software. Allen
led SAIC’s initial efforts in software process improvement. Allen also
worked at TRW (now Northrop Grumman), tackling a range of assign-
ments from systems integration, testing, and field site support to man-
aging major software development programs.

Her degrees include a B.S. in Computer Science from the University
of Michigan and an M.S. in Electrical Engineering from the Univer-
sity of Southern California. Allen is the author of The CERT® Guide to
System and Network Security Practices (Addison-Wesley, 2001), Govern-
ing for Enterprise Security (CMU/SEI-2005-TN-023, 2005), and the
CERT Podcast Series: Security for Business Leaders (2006-2008).

Sean Barnum

Sean Barnum is a Principal Consultant at Cigital, Inc., and is Technical
Lead for Cigital’s federal services practice. He has more than twenty
years of experience in the software industry in the areas of develop-
ment, software quality assurance, quality management, process archi-
tecture and improvement, knowledge management, and security.
Barnum is a frequent contributor and speaker for regional and

xxiii



XXiv

ABOUT THE AUTHORS

national software security and software quality publications, confer-
ences, and events. He is very active in the software assurance commu-
nity and is involved in numerous knowledge standards-defining
efforts, including the Common Weakness Enumeration (CWE), the
Common Attack Pattern Enumeration and Classification (CAPEC),
and other elements of the Software Assurance Programs of the Depart-
ment of Homeland Security and the Department of Defense. He is also
the lead technical subject matter expert for the Air Force Application
Software Assurance Center of Excellence.

Robert |. Ellison

As a member of the Survivable Systems Engineering Team within the
CERT Program at the Software Engineering Institute, Robert J. Ellison
has served in a number of technical and management roles. He was a
project leader for the evaluation of software engineering development
environments and associated software development tools. He was also
a member of the Carnegie Mellon University team that wrote the pro-
posal for the SEI; he joined the new FFRDC in 1985 as a founding
member.

Before coming to Carnegie Mellon, Ellison taught mathematics at
Brown University, Williams College, and Hamilton College. At Hamil-
ton College, he directed the creation of the computer science curricu-
lum. Ellison belongs to the Association for Computing Machinery
(ACM) and the IEEE Computer Society.

Ellison regularly participates in the evaluation of software architec-
tures and contributes from the perspective of security and reliability
measures. His research draws on that experience to integrate security
issues into the overall architecture design process. His current work
explores developing reasoning frameworks to help architects select
and refine design tactics to mitigate the impact of a class of cyberat-
tacks. He continues to work on refinements to the Survivability Analy-
sis Framework.

Gary McGraw

Gary McGraw is the Chief Technology Officer at Cigital, Inc., a soft-
ware security and quality consulting firm with headquarters in the
Washington, D.C., area. He is a globally recognized authority on soft-
ware security and the author of six best-selling books on this topic.
The latest book is Exploiting Online Games (Addison-Wesley, 2008). His



ABOUT THE AUTHORS

other books include Java Security, Building Secure Software, Exploiting
Software, and Software Security; he is also editor of the Addison-Wesley
Software Security series. Dr. McGraw has written more than ninety
peer-reviewed scientific publications, authors a monthly security col-
umn for darkreading.com, and is frequently quoted in the press as an
expert on software security.

Besides serving as a strategic counselor for top business and IT execu-
tives, Dr. McGraw is on the advisory boards of Fortify Software and
Raven White. He received a dual Ph.D. in Cognitive Science and Com-
puter Science from Indiana University, where he serves on the Dean’s
Advisory Council for the School of Informatics. Dr. McGraw is also a
member of the IEEE Computer Society Board of Governors and pro-
duces the monthly Silver Bullet Security Podcast for IEEE Security &
Privacy magazine.

Nancy R. Mead

Nancy R. Mead is a Senior Member of the Technical Staff in the Surviv-
able Systems Engineering Group, which is part of the CERT Program
at the Software Engineering Institute. She is also a faculty member in
the Master of Software Engineering and Master of Information Sys-
tems Management programs at Carnegie Mellon University. Her
research interests are in the areas of information security, software
requirements engineering, and software architectures.

Prior to joining the SEI, Mead was Senior Technical Staff Member at
IBM Federal Systems, where she spent most of her career in the devel-
opment and management of large real-time systems. She also worked
in IBM’s software engineering technology area and managed IBM Fed-
eral Systems’ software engineering education department. She has
developed and taught numerous courses on software engineering top-
ics, both at universities and in professional education courses.

To date, Mead has more than one hundred publications and invited
presentations. She is a fellow of the Institute of Electrical and Elec-
tronic Engineers (IEEE) and the IEEE Computer Society, and is also a
member of the Association for Computing Machinery (ACM). Mead
received her Ph.D. in Mathematics from the Polytechnic Institute of
New York and received a B.A. and an M.S. in Mathematics from New
York University.

XXV



This page intentionally left blank



Chapter 1

Why Is Security a
Software Issue?

1.1 Introduction

Software is everywhere. It runs your car. It controls your cell phone.
It’s how you access your bank’s financial services; how you receive
electricity, water, and natural gas; and how you fly from coast to
coast [McGraw 2006]. Whether we recognize it or not, we all rely on
complex, interconnected, software-intensive information systems
that use the Internet as their means for communicating and trans-
porting information.

Building, deploying, operating, and using software that has not been
developed with security in mind can be high risk—like walking a high
wire without a net (Figure 1-1). The degree of risk can be compared to
the distance you can fall and the potential impact (no pun intended).

This chapter discusses why security is increasingly a software problem.
It defines the dimensions of software assurance and software security. It
identifies threats that target most software and the shortcomings of the

Selected content in this chapter is summarized and excerpted from Security in the Software Lifecy-
cle: Making Software Development Processes—and Software Produced by Them—~More Secure [Goertzel
2006]. An earlier version of this material appeared in [Allen 2007].



2

CHAPTER 1 WHY Is SECURITY A SOFTWARE ISSUE?

Figure 1-1: Developing software without security in mind is like walking a
high wire without a net

software development process that can render software vulnerable to
those threats. It closes by introducing some pragmatic solutions that are
expanded in the chapters to follow. This entire chapter is relevant for
executives (E), project managers (M), and technical leaders (L).

1.2 The Problem

Organizations increasingly store, process, and transmit their most
sensitive information using software-intensive systems that are
directly connected to the Internet. Private citizens’ financial transac-
tions are exposed via the Internet by software used to shop, bank,
pay taxes, buy insurance, invest, register children for school, and join
various organizations and social networks. The increased exposure
that comes with global connectivity has made sensitive information
and the software systems that handle it more vulnerable to uninten-
tional and unauthorized use. In short, software-intensive systems



1.2 THE PROBLEM

and other software-enabled capabilities have provided more open,
widespread access to sensitive information—including personal
identities—than ever before.

Concurrently, the era of information warfare [Denning 1998], cyberter-
rorism, and computer crime is well under way. Terrorists, organized
crime, and other criminals are targeting the entire gamut of software-
intensive systems and, through human ingenuity gone awry, are being
successful at gaining entry to these systems. Most such systems are not
attack resistant or attack resilient enough to withstand them.

In a report to the U.S. president titled Cyber Security: A Crisis of Prioriti-
zation [PITAC 2005], the President’s Information Technology Advisory
Committee summed up the problem of nonsecure software as follows:

Software development is not yet a science or a rigorous disci-
pline, and the development process by and large is not con-
trolled to minimize the vulnerabilities that attackers exploit.
Today, as with cancer, vulnerable software can be invaded
and modified to cause damage to previously healthy soft-
ware, and infected software can replicate itself and be carried
across networks to cause damage in other systems. Like can-
cer, these damaging processes may be invisible to the lay per-
son even though experts recognize that their threat is
growing.

Software defects with security ramifications—including coding bugs
such as buffer overflows and design flaws such as inconsistent error
handling—are ubiquitous. Malicious intruders, and the malicious
code and botnets! they use to obtain unauthorized access and launch
attacks, can compromise systems by taking advantage of software
defects. Internet-enabled software applications are a commonly
exploited target, with software’s increasing complexity and extensibil-
ity making software security even more challenging [Hoglund 2004].

The security of computer systems and networks has become increas-
ingly limited by the quality and security of their software. Security
defects and vulnerabilities in software are commonplace and can
pose serious risks when exploited by malicious attacks. Over the past
six years, this problem has grown significantly. Figure 1-2 shows the
number of vulnerabilities reported to CERT from 1997 through 2006.
Given this trend, “[T]here is a clear and pressing need to change the

1. http:/ /en.wikipedia.org/wiki/Botnet


http://en.wikipedia.org/wiki/Botnet

4 CHAPTER 1 WHY Is SECURITY A SOFTWARE ISSUE?

9000 +

8064

8000 - Total vulnerabilities reported

(1997-2006): 30,264

7000
6000 +
5000 4

4129
4000

3784 3780
3000
2000

1000

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Figure 1-2: Vulnerabilities reported to CERT

way we (project managers and software engineers) approach com-
puter security and to develop a disciplined approach to software
security” [McGraw 2006].

In Deloitte’s 2007 Global Security Survey, 87 percent of survey respon-
dents cited poor software development quality as a top threat in the
next 12 months. “Application security means ensuring that there is
secure code, integrated at the development stage, to prevent potential
vulnerabilities and that steps such as vulnerability testing, application
scanning, and penetration testing are part of an organization’s soft-
ware development life cycle [SDLC]” [Deloitte 2007].

The growing Internet connectivity of computers and networks and the
corresponding user dependence on network-enabled services (such as
email and Web-based transactions) have increased the number and
sophistication of attack methods, as well as the ease with which an
attack can be launched. This trend puts software at greater risk.
Another risk area affecting software security is the degree to which
systems accept updates and extensions for evolving capabilities.
Extensible systems are attractive because they provide for the addi-
tion of new features and services, but each new extension adds new



1.2 THE PROBLEM

capabilities, new interfaces, and thus new risks. A final software
security risk area is the unbridled growth in the size and complexity of
software systems (such as the Microsoft Windows operating system).
The unfortunate reality is that in general more lines of code produce
more bugs and vulnerabilities [McGraw 2006].

1.2.1 System Complexity: The Context within Which
Software Lives

Building a trustworthy software system can no longer be predicated
on constructing and assembling discrete, isolated pieces that address
static requirements within planned cost and schedule. Each new or
updated software component joins an existing operational environ-
ment and must merge with that legacy to form an operational whole.
Bolting new systems onto old systems and Web-enabling old systems
creates systems of systems that are fraught with vulnerabilities. With
the expanding scope and scale of systems, project managers need to
reconsider a number of development assumptions that are generally
applied to software security:

¢ Instead of centralized control, which was the norm for large
stand-alone systems, project managers have to consider multiple
and often independent control points for systems and systems of
systems.

¢ Increased integration among systems has reduced the capability to
make wide-scale changes quickly. In addition, for independently
managed systems, upgrades are not necessarily synchronized.
Project managers need to maintain operational capabilities with
appropriate security as services are upgraded and new services are
added.

e With the integration among independently developed and oper-
ated systems, project managers have to contend with a heteroge-
neous collection of components, multiple implementations of
common interfaces, and inconsistencies among security policies.

¢ With the mismatches and errors introduced by independently
developed and managed systems, failure in some form is more
likely to be the norm than the exception and so further complicates
meeting security requirements.

There are no known solutions for ensuring a specified level or degree
of software security for complex systems and systems of systems,



CHAPTER 1 WHY Is SECURITY A SOFTWARE ISSUE?

assuming these could even be defined. This said, Chapter 6, Security
and Complexity: System Assembly Challenges, elaborates on these
points and provides useful guidelines for project managers to consider
in addressing the implications.

1.3 Software Assurance and Software Security

The increasing dependence on software to get critical jobs done means
that software’s value no longer lies solely in its ability to enhance or
sustain productivity and efficiency. Instead, its value also derives from
its ability to continue operating dependably even in the face of events
that threaten it. The ability to trust that software will remain depend-
able under all circumstances, with a justified level of confidence, is the
objective of software assurance.

Software assurance has become critical because dramatic increases in
business and mission risks are now known to be attributable to
exploitable software [DHS 2003]. The growing extent of the resulting
risk exposure is rarely understood, as evidenced by these facts:

* Software is the weakest link in the successful execution of interde-
pendent systems and software applications.

* Software size and complexity obscure intent and preclude exhaus-
tive testing.

¢ Outsourcing and the use of unvetted software supply-chain com-
ponents increase risk exposure.

¢ The sophistication and increasingly more stealthy nature of attacks
facilitates exploitation.

* Reuse of legacy software with other applications introduces unin-
tended consequences, increasing the number of vulnerable targets.

* Business leaders are unwilling to make risk-appropriate invest-
ments in software security.

According to the U.S. Committee on National Security Systems’
“National Information Assurance (IA) Glossary” [CNSS 2006], soft-
ware assurance is

the level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or accidentally



1.3 SOFTWARE ASSURANCE AND SOFTWARE SECURITY

inserted at any time during its life cycle, and that the software
functions in the intended manner.

Software assurance includes the disciplines of software reliability? (also
known as software fault tolerance), software safety,® and software secu-
rity. The focus of Software Security Engineering: A Guide for Project Manag-
ers is on the third of these, software security, which is the ability of
software to resist, tolerate, and recover from events that intentionally
threaten its dependability. The main objective of software security is to
build more-robust, higher-quality, defect-free software that continues to
function correctly under malicious attack [McGraw 2006].

Software security matters because so many critical functions are com-
pletely dependent on software. This makes software a very high-value
target for attackers, whose motives may be malicious, criminal, adver-
sarial, competitive, or terrorist in nature. What makes it so easy for
attackers to target software is the virtually guaranteed presence of
known vulnerabilities with known attack methods, which can be
exploited to violate one or more of the software’s security properties
or to force the software into an insecure state. Secure software remains
dependable (i.e., correct and predictable) despite intentional efforts to
compromise that dependability.

The objective of software security is to field software-based systems
that satisfy the following criteria:

¢ The system is as vulnerability and defect free as possible.

¢ The system limits the damage resulting from any failures caused
by attack-triggered faults, ensuring that the effects of any attack
are not propagated, and it recovers as quickly as possible from
those failures.

® The system continues operating correctly in the presence of most
attacks by either resisting the exploitation of weaknesses in the
software by the attacker or tolerating the failures that result from
such exploits.

2. Software reliability means the probability of failure-free (or otherwise satisfactory) software
operation for a specified /expected period/interval of time, or for a specified/expected number
of operations, in a specified/expected environment under specified/expected operating condi-
tions. Sources for this definition can be found in [Goertzel 2006], appendix A.1.

3. Software safety means the persistence of dependability in the face of accidents or mishaps—

that is, unplanned events that result in death, injury, illness, damage to or loss of property, or
environmental harm. Sources for this definition can be found in [Goertzel 2006], appendix A.1.



CHAPTER 1 WHY Is SECURITY A SOFTWARE ISSUE?

Software that has been developed with security in mind generally
reflects the following properties throughout its development life cycle:

* Predictable execution. There is justifiable confidence that the soft-
ware, when executed, functions as intended. The ability of mali-
cious input to alter the execution or outcome in a way favorable to
the attacker is significantly reduced or eliminated.

* Trustworthiness. The number of exploitable vulnerabilities is inten-
tionally minimized to the greatest extent possible. The goal is no
exploitable vulnerabilities.

* Conformance. Planned, systematic, and multidisciplinary activities
ensure that software components, products, and systems conform
to requirements and applicable standards and procedures for spec-
ified uses.

These objectives and properties must be interpreted and constrained
based on the practical realities that you face, such as what constitutes
an adequate level of security, what is most critical to address, and
which actions fit within the project’s cost and schedule. These are risk
management decisions.

In addition to predictable execution, trustworthiness, and conform-
ance, secure software and systems should be as attack resistant, attack
tolerant, and attack resilient as possible. To ensure that these criteria
are satisfied, software engineers should design software components
and systems to recognize both legitimate inputs and known attack pat-
terns in the data or signals they receive from external entities (humans
or processes) and reflect this recognition in the developed software to
the extent possible and practical.

To achieve attack resilience, a software system should be able to
recover from failures that result from successful attacks by resuming
operation at or above some predefined minimum acceptable level of
service in a timely manner. The system must eventually recover full
service at the specified level of performance. These qualities and prop-
erties, as well as attack patterns, are described in more detail in
Chapter 2, What Makes Software Secure?

1.3.1 The Role of Processes and Practices in Software Security

A number of factors influence how likely software is to be secure.
For instance, software vulnerabilities can originate in the processes



1.4 THREATS TO SOFTWARE SECURITY

and practices used in its creation. These sources include the deci-
sions made by software engineers, the flaws they introduce in spec-
ification and design, and the faults and other defects they include in
developed code, inadvertently or intentionally. Other factors may
include the choice of programming languages and development
tools used to develop the software, and the configuration and
behavior of software components in their development and opera-
tional environments. It is increasingly observed, however, that the
most critical difference between secure software and insecure software lies
in the nature of the processes and practices used to specify, design, and
develop the software [Goertzel 2006].

The return on investment when security analysis and secure engineer-
ing practices are introduced early in the development cycle ranges
from 12 percent to 21 percent, with the highest rate of return occurring
when the analysis is performed during application design [Berinato
2002; Soo Hoo 2001]. This return on investment occurs because there
are fewer security defects in the released product and hence reduced
labor costs for fixing defects that are discovered later.

A project that adopts a security-enhanced software development process
is adopting a set of practices (such as those described in this book’s chap-
ters) that initially should reduce the number of exploitable faults and
weaknesses. Over time, as these practices become more codified, they
should decrease the likelihood that such vulnerabilities are introduced
into the software in the first place. More and more, research results and
real-world experiences indicate that correcting potential vulnerabilities as
early as possible in the software development life cycle, mainly through the adop-
tion of security-enhanced processes and practices, is far more cost-effective than
the currently pervasive approach of developing and releasing frequent
patches to operational software [Goertzel 2006].

1.4 Threats to Software Security

In information security, the threat—the source of danger—is often a
person intending to do harm, using one or more malicious software
agents. Software is subject to two general categories of threats:

o Threats during development (mainly insider threats). A software
engineer can sabotage the software at any point in its development



10

CHAPTER 1 WHY Is SECURITY A SOFTWARE ISSUE?

life cycle through intentional exclusions from, inclusions in, or
modifications of the requirements specification, the threat models,
the design documents, the source code, the assembly and integra-
tion framework, the test cases and test results, or the installation
and configuration instructions and tools. The secure development
practices described in this book are, in part, designed to help
reduce the exposure of software to insider threats during its devel-
opment process. For more information on this aspect, see “Insider
Threats in the SDLC” [Cappelli 2006].

* Threats during operation (both insider and external threats). Any
software system that runs on a network-connected platform is
likely to have its vulnerabilities exposed to attackers during its
operation. Attacks may take advantage of publicly known but
unpatched vulnerabilities, leading to memory corruption, execu-
tion of arbitrary exploit scripts, remote code execution, and buffer
overflows. Software flaws can be exploited to install spyware,
adware, and other malware on users’ systems that can lie dormant
until it is triggered to execute.*

Weaknesses that are most likely to be targeted are those found in the
software components’ external interfaces, because those interfaces
provide the attacker with a direct communication path to the soft-
ware’s vulnerabilities. A number of well-known attacks target soft-
ware that incorporates interfaces, protocols, design features, or
development faults that are well understood and widely publicized as
harboring inherent weaknesses. That software includes Web applica-
tions (including browser and server components), Web services, data-
base management systems, and operating systems. Misuse (or abuse)
cases can help project managers and software engineers see their soft-
ware from the perspective of an attacker by anticipating and defining
unexpected or abnormal behavior through which a software feature
could be unintentionally misused or intentionally abused [Hope 2004].
(See Section 3.2.)

Today, most project and IT managers responsible for system operation
respond to the increasing number of Internet-based attacks by relying
on operational controls at the operating system, network, and data-
base or Web server levels while failing to directly address the insecurity

4. See the Common Weakness Enumeration [CWE 2007], for additional examples.



